
Conservative Synchronization Methods for Parallel DEVS and Cell-DEVS

Shafagh Jafer, Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University, Centre of Visualization and Simulation (V-Sim)
 1125 Colonel By Dr. Ottawa, ON, Canada.

{sjafer, gwainer}@sce.carleton.ca

Keywords: Discrete-event simulation, DEVS, conservative
synchronization, null message, centralized synchronization.

Abstract
We present three conservative synchronization mechanisms
for parallel DEVS and Cell-DEVS. The protocols are based
on the classical Chandy-Misra-Bryant null message mecha-
nism with deadlock avoidance. Our protocols provide a
novel DEVS-based conservative approach that is deadlock-
free, and extracts the lookahead information from the
model’s specification. The protocols are integrated into the
CD++ simulation toolkit, providing a conservative simulator
(named CCD++) for running large-scale DEVS and Cell-
DEVS models in parallel and distributed fashion. We pro-
vide a comparative study of these protocols by investigating
different performance metrics including: total execution
time, blocked time, memory consumption, total number of
positive and null event, as well as null message ratio, show-
ing how CCD++ provides considerable speedups, and its
ability for simulating large DEVS-based models.

1. INTRODUCTION
Discrete-event modeling and simulation (M&S) has been
used to study complex systems in a broad array of domains.
Among the existing simulation techniques, DEVS (Discrete
Event System Specification) [1] formalism provides a dis-
crete-event M&S approach that allows construction of hier-
archical models in a modular manner. DEVS is a sound
formal framework based on generic dynamic systems con-
cepts that allows model reuse, and reduction in development
and testing time due to its hierarchical approach in con-
structing models. The Cell-DEVS [2] formalism expands
DEVS to describe n-dimensional cell spaces as discrete
event models, where each cell is represented as a DEVS
model with explicit timing constructions.
 Parallel and distributed computing has become the
technology of choice to speed up large-scale simulations
and to allow geographically distributed simulations. Parallel
DEVS (P-DEVS) introduced a mechanism for handling si-
multaneous events, allowing for efficient execution of paral-
lel models [3]. Both Cell-DEVS and P-DEVS have been
implemented in CD++ [4], a M&S environment pro-
grammed in C++. Several versions of the tool have been
built in order to run large-scale simulations in parallel and

distributed fashion. PCD++ [5] is one of them, which allows
optimistic simulation of DEVS and Cell-DEVS models
based on the WARPED kernel [6]. In [7] we introduced a
Conservative DEVS protocol, and built CCD++, the first
purely conservative simulator for Cell-DEVS. The protocol
is based on the classical Chandy-Misra-Bryant (CMB) [8-9]
null message mechanism with deadlock avoidance. We refer
to this protocol as the Lower-Bound Time Stamp mecha-
nism (LBTS), the way used to compute the next global vir-
tual time. To reduce the number of null messages, we later
proposed the Global Lookahead Management (GLM) proto-
col [10], which maintains a central lookahead manager
(LM) to identify the global minimum lookahead of the sys-
tem.
 We are interested in analyzing different conservative
protocols in simulating large-scale DEVS-based models.
Here, we first introduce a new conservative protocol, the
CMB Conservative DEVS, which is similar to LBTS and it
differs in the null message distribution strategy. Then, we
provide a thorough performance analysis of the three con-
servative protocols (LBTS, GLM, and CMB) by conducting
a variety of simulations. We provide a comparative study of
these protocols by investigating different performance met-
rics including: total execution time, blocked time, memory
consumption, total number of positive and null event, as
well as null message ratio, showing how CCD++ provides
considerable speedups, and its ability for simulating large
DEVS-based models.

2. RELATED WORK
There are a number of parallel DEVS M&S toolkits includ-
ing: DEVS-C++ [11], DEVS/CORBA [12] , DEVSCluster
 [13] , DEVS/P2P [14] , and DEVS/RMI [15]. Aside, much
work has been done using the synchronization mechanisms
offered by HLA [16]. DEVS-HLA simulators have been re-
ported in [17-19]. In [20], a new simulation algorithm for
efficient distributed simulation of P-DEVS models is pre-
sented. The algorithm makes use of Java threads and per-
forms sequential execution among the entities on each com-
puting node while the simulation is distributed over remote
nodes. We are interested in CMB-based conservative simu-
lation by using null messages and lookahead information to
synchronize among participating nodes.

 The Optimistic DEVS protocol [5], and its extension,
the Lightweight Time Warp protocol [21], were the first
pure optimistic mechanisms allowing parallel execution of
Cell-DEVS systems. Although these two protocols try to re-
duce the overhead of the optimistic algorithm, issues such as
numerous memory consumption and large number of state
savings and rollbacks remain. This is especially apparent
when the number of participating nodes increases; resulting
in cascaded rollbacks. In order to analyze the limitations of
the optimistic DEVS protocols and the parallel execution of
DEVS and Cell-DEVS, we developed DEVS-based conser-
vative protocols. The first one was the Conservative DEVS
(LBTS) protocol [7] based on the idea of lower-bound time-
stamp and the classical null message protocol of Chandy-
Misra-Bryant. To reduce the number of null messages, we
later proposed the Global Lookahead Management (GLM)
protocol [10], which maintains a centralized synchronizer
that deals with null message distribution and global time
advancement. Here, we propose another conservative proto-
col based on the classical CMB synchronization named
DEVS CMB. This protocol differs from our original LBTS
in the way null messages are distributed among neighboring
nodes. The goal is to reduce the number of null messages
compared to our LBTS protocol.
3. CONSERVATIVE SIMULATION IN CCD++
CCD++ is the first purely conservative simulator for run-
ning Cell-DEVS simulations in parallel and distributed fash-
ion. The simulator is built on top of the WARPED kernel
 [6], which provides services for defining processes (simula-
tion objects), scheduling, memory, file, event, communica-
tion, and time management. Simulation objects on a physi-
cal processor are grouped into a Logical Process (LP), and
communicate through Message Passing Interface (MPI).
 To reduce communication overhead, CCD++ adopts a
flat structure that creates a Node Coordinator (NC), a Flat
Coordinator (FC), and a set of Simulators on each node.
Doing so eliminates intermediary coordinators in the LP hi-
erarchy, reducing communication costs. The NC is a local
central controller and the final destination of inter-node
messages, whereas the FC routes messages between its child
Simulators and the parent NC, as seen in Figure 1.

Figure 1. LP structure on two nodes

 Six types of events are defined to execute the simula-
tion in a message-driven fashion: External (x, t) and output
(y, t) messages encode the input and output data; initializa-

tion (I, t), collect (@, t), internal (*, t), and done (D, t) con-
trol the execution of events at each virtual time [7].
 Our conservative protocols (LBTS, GLM, and CMB)
are implemented at the NC. Processes communicate only
through messaging with their neighbors; there are no shared
variables and no central process for message routing or
scheduling. Although each LP has its own Local Virtual
Time (LVT), no events are received at virtual past time.
Synchronization is maintained through null messages carry-
ing on lookahead information. The NC on each node is the
central synchronizer for driving the simulation on that node.
The focus on each of the protocols is on computing the loo-
kahead values and distributing them via null messages, and
deciding when to suspend or resume the LP. The NC is re-
sponsible for lookahead calculation, null message distribu-
tion, suspending the LP, receiving null messages from other
LPs while the LP is blocked, and resuming the LP when all
remote null messages are received. The NC drives the simu-
lation at the LP, while FC, Simulator, etc. are unaware of
the underlying synchronization mechanism.
 Although our conservative protocols exploit similar
parallelism level as in the classical P-DEVS simulation pro-
tocol, however, unlike P-DEVS, we do not have a global
synchronizer advancing the global time. Moreover, our pro-
tocols require smaller number of messages when calculating
the next time advance of the simulation [7]. In P-DEVS pro-
tocol there is a global coordinator asking all atomic compo-
nents to send their next state change values. Although, P-
DEVS is a risk-free optimistic protocol (not even local roll-
backs occur), but it only exploits parallelism in the simulta-
neous occurrence of internal events among many compo-
nents.
4. CONSERVATIVE PROTOCOLS FOR DEVS
In this section, we provide a brief overview of each of our
conservative protocols, highlighting their differences.
4.1. The LBTS Protocol
In LBTS [7], processes communicate only through mes-
sages with their neighbors; there are no shared variables and
no central process for message routing or process schedul-
ing. Although each LP has its own Local Virtual Time
(LVT), no event is received at the virtual past time. The null
messages carry lookahead information. The protocol is
deadlock-free, as null message cycles cannot occur. At the
start of every synchronization phase, each LP computes its
lookahead value, which is dynamically extracted from the
model specifications, and forwards it to all other LPs. Then
the LP suspends and waits for all remote null messages to
arrive from other LPs. Once all null messages are received
from all LPs participating in the simulation, it resumes and
first computes its new LVT based on the lookahead values it
received via the remote null messages. This lookahead and
LVT computation are described in details in [7]. As we can
see, the LVT of every LP at any time is equal to the Lower-

Bound Time Stamp of any unprocessed event among all
LPs. The major issue of this protocol is the numerous
amounts of null messages that must be distributed at the
start of each synchronization phase. Each LP not only sends
null messages to its direct neighbors, but also to every other
LP to ensure correct computation of the LBTS value. This
issue motivated us to revise the null message distribution
mechanism by proposing two new protocols, the GLM and
the CMB protocols which are discussed next.
4.2. The GLM Protocol
The Global Lookahead Management (GLM) protocol [10]
uses the idea of safe processing intervals from the Conserva-
tive Time Window [22] algorithm and maintains global syn-
chronization in a fashion similar to the Distributed Snapshot
technique [23]. GLM reduces the number of null messages
by organizing the conservative execution in such a way that
every LP reports its lookahead only to the global manager
rather than to every LP. A central lookahead manager (LM)
is in charge of receiving every LP’s lookahead, identifying
the global minimum lookahead of the system, and broad-
casting it via null messages to all LPs. The sole function of
the LM is to detect the suspension phase, and to initiate the
resume phase by broadcasting the global minimum looka-
head. The simulation is divided into cycles of two phases:
(i) Parallel Phase: LPs run simulation until suspension.
(ii) Broadcast Phase: LM broadcasts global minimum loo-

kahead, allowing LPs to advance their LVTs.
 The key characteristic of GLM is that it is asynchro-
nous and the central LM is not expected to be a bottleneck
since the only message transmissions involving it take place
at the end of Parallel phase and Broadcast phase. In fact,
the LM does not carry out any computation and it is only
invoked when all LPs are blocked and the simulation is sus-
pended, not introducing any overhead.
4.3. The CMB Protocol
This protocol we introduce here is a variation of LBTS to
reduce the number of null messages. The protocol changes
the way conservative synchronization is maintained by fo-
cusing on null message distribution only among neighboring
LPs. An LP only forwards null messages to its direct
neighbors as defined by the DEVS translation function. Un-
der this scheme, at the start of every synchronization phase,
the LP computes its lookahead similarly to the way it is cal-
culated in LBTS, but the null message is only sent to its
neighbors. Then the LP blocks and waits for its neighboring
LPs to send their lookahead value via null messages. Once
all neighbor null messages are received, the LP computes its
new LVT based on the received lookahead values, and starts
another lookahead computation and null message distribu-
tion round. This process continues until no smaller looka-
head value can be received from neighbor LPs later in time.
Once the LP has received the smallest possible lookahead
value, it computes the new LVT and resumes the simulation.
With the CMB protocol, the overall number of null mes-

sages is reduced, but the multiple lookahead computation
and null message redistribution could have a negative effect
on the simulation performance. These effects will be dis-
cussed thoroughly in the Performance Evaluation section.
4.4. Comparison of the Conservative Protocols
Figure 2 illustrates the null message distribution strategy for
the three conservative protocols. As we can see, they share
the following common features and characteristics:
1. They are implemented at the NC; the other DEVS proc-

essors are unaware of the underlying synchronization
mechanism. The NC is the local controller and drives
the simulation on that node. It is responsible for looka-
head and LVT computation, LP suspension and re-
sumption, and null message distribution and reception.

2. Lookahead and LVT computations are performed dy-
namically based on the model’s data. The computation
formulas are the same for all the three protocols.

3. Lookahead computation is performed after each LVT
computation; hence, it is updated and distributed among
all remote LPs every time before the LP is suspended.
This strategy ensures that the lookahead value of an LP
represents the latest LVT update as there is at least one
lookahead computation per LVT update. Unlike other
conservative algorithms, the modeler does not need to
specify the lookahead, which is dynamically extracted
by the protocols.

4. Null message distribution occurs before LP suspension,
thus, deadlock is strictly avoided. NC only suspends the
LP after performing a lookahead computation and
propagating it to destination LPs via null messages.

Figure 2. Null message distribution of the protocols

5. PERFORMANCE EVALUATION
To obtain a comparative study of our conservative proto-
cols, we implemented LBTS, GLM, and CMB in CCD++,
and conducted extensive tests with each protocol. Tests
were carried out on a cluster of 12 compute nodes (dual 3.2
GHz Intel Xeon processors, 1 GB PC2100 266 MHz DDR

RAM) running Linux WS 2.4.21 interconnected through
Gigabit Ethernet and MPICH 1.2.6. Table 1 lists the metrics
collected in the experiments. The experimental results for
each test case were averaged over 10 independent runs to
strike a balance between data reliability and testing effort.
For the test cases on multiple nodes, the results were also
averaged over the participating nodes to obtain a per-node
evaluation (i.e. BT, MEM, PEV, and NEV represent the cor-
responding results per one node).

We used three different Cell-DEVS models in our ex-
periments. The first model, called Fire, simulates forest fire
propagation in a two dimensional cell space based on
Rothermel’s definition [24]. The second model, named Wa-
tershed, is a simulation of the environmental influence on
hydrological dynamics of water accumulation in a three di-
mensional cell space [25]. The third model, called Synth, is
a synthetic model consisting of a grid where cells are ini-
tially set to zero and throughout the simulation, they toggle

between the value of 0 and 1. Each cell has eight neighbors,
which leads to high communications. The purpose of this
model is to analyze parallelism with communication-
intensive models. The Fire model is computation-intensive
compared to Watershed model, which consists of a 3D cell
space that makes it a good candidate for analyzing commu-
nication-intensive simulations.

Table 1. Performance metrics
Metrics Description

T Total execution time of the simulation (sec)

BT Total blocked time during the simulation (sec)

MEM Maximum memory consumption (MB)

PEV Total number of positive events executed

NEV Total number of null events executed

NMR Null message ratio (NEV / PEV)

Fire Model (100x100) T and BT Results

0

10

20

30

40

50

1 2 4 6 8 10 12

Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Fire Model (200x200) T and BT Results

0

100

200

300

400

500

600

700

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Fire Model (300x300) T and BT Results

0

500

1000

1500

2000

2500

3000

3500

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Fire Model (500x500) T and BT Results

0

5000

10000

15000

20000

25000

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Figure 3. Fire model T and BT results

Fire Model (100x100) MEM

0

10

20

30

40

50

60

1 2 4 6 8 10 12

Number of machines

M
ax

. m
em

o
ry

 p
er

 n
o

d
e

(M
B

)

LBTS CMB GLM

Fire Model (500x500) MEM

0

200

400

600

800

1000

1200

1400

1 2 4 6 8 10 12

Number of machines

M
ax

. m
em

o
ry

 p
er

 n
o

d
e

(M
B

)

LBTS CMB GLM

Figure 4. Fire model memory consumption results

 Figure 3 illustrates the T and BT results for Fire model.
The LBTS and GLM protocols reduce the execution time
when more nodes are participating. However, this is only
true until a certain point, where after that adding more nodes
do not reduce the execution time. This is due to the over-
head of the protocol, where increased number of null mes-
sages and blocking times start to have a negative impact on
the overall performance. In terms of the BT, GLM produced
the smallest results in all cases, while CMB resulted in the
largest blocked time values. Although CMB produces less
null messages, it ends up with larger total number of null
messages and blocked periods compared to LBTS protocol
(because its strategy consists of multiple rounds of null
message distribution). Memory consumption per node is re-
duced in the same manner for all different sizes (we only
present the results for two sizes due to space limitation) as
seen in Figure 4. The maximum memory consumption per
node drops considerably as more nodes are engaged for all
the three protocols.
 The results of the Watershed model are given in Figure
5. Since the model is communication-intensive we can see
that for all the protocols, the execution time drops as more
nodes are engaged. The performance improves even with
small sizes (compared to Fire). GLM provides the best per-
formance in all cases, and the worst performance is for
CMB. In most cases, only the BT of CMB is larger than the

T of GLM and LBTS. In all cases, CMB takes longer with 2
nodes compared to 1 node. The large overhead of the proto-
col overcomes the benefits of parallelism. However, as the
number of processors increases, the execution time and the
blocked period of CMB starts to drop. For BT, the tests
show that, similar to the Fire model, GLM has the lowest
blocked time; then comes LBTS, and finally CMB. For the
Watershed model, execution time and BT reduction rate for
various sizes of the model were very close. The three proto-
cols have the same performance gain regardless of the size
of the model, which is merely due to the numerous events
that are distributed throughout the simulation (this 3D
model includes a large number of neighbors that must be
updated more often). The MEM results are given in Figure
6. As in the Fire model, memory consumption per node
drops as the number of machines increases. All the three
protocols resulted in very close MEM values, showing that
the three protocols perform the same in terms of memory
consumption.
 The T, BT, and MEM for the Synth model are shown in
Figure 7. This model allows analyzing the performance of
each of the protocols when full parallelism takes place. As
can be observed from the execution results, for all the proto-
cols, the simulations have benefited from the full parallelism
such that the performance continuous to improve as the
number of nodes increases.

Watershed Model (25x25x2)T and BT Results

0

200

400

600

800

1000

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Watershed Model (30x30x2)T and BT Results

0

200

400

600

800

1000

1200

1400

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Watershed Model (50x50x2) T and BT Results

0

500

1000

1500

2000

2500

3000

3500

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Watershed Model (100x100x2) T and BT Results

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Figure 5. Watershed model T and BT results

 For GLM and LBTS, the BT value is considerably low
compared to the T value in each case. The BT values are
still too high with the CMB protocol compared to the other
two protocols. As in previous models, the GLM resulted in

best performance, while the CMB protocol has the worst re-
sults in every scenario. However, due to the nature of the
model, the results are overall better than those obtained
from the Watershed or Fire model. As shown by the mem-

ory consumption graph (for the 400x400 size) memory us-
age per node improves remarkably with the increase of
number of machines. The memory consumption is the same

for all protocols, and for all the three different sizes of the
model, however we only presented the graph of the 400x400
size due to space limitations.

Watershed Model (25x25x2) Memory Consumption

0

20

40

60

80

100

1 2 4 6 8 10 12

Number of machines

M
ax

. m
em

o
ry

 p
er

 n
o

d
e

(M
B

)

LBTS CMB GLM

Watershed Model (100x100x2) Memory Consumption

0
200
400
600
800

1000
1200
1400
1600

1 2 4 6 8 10 12

Number of machines

M
ax

. m
em

o
ry

 p
er

 n
o

d
e

(M
B

)

LBTS CMB GLM

Figure 6. Watershed model memory consumption results

 We are also interested in investigating the results of the
three protocols in terms of the total number of null messages
and the null message ratio. Figure 8 shows the NMR (i.e.
NEV/PEV) results for various sizes of the Fire model.
Looking at the GLM graphs, we see that this protocol pro-
duces the smallest NMR in all cases. The CMB protocol,
compared to the LBTS protocol, produces smaller NMR
values after a certain number of participating nodes, which
is 4, 6, 6, and 8 nodes for 100x100, 200x200, 300x300, and
500x500 sizes respectively. This behavior is explained by
the fact that as the number of machines increases, the syn-
chronization overhead associated with CMB gets smaller

than that of produced by the LBTS protocol. Meaning, with
smaller number of machines, the total null messages pro-
duced by the LBTS protocol are less than the number of null
message distribution rounds in CMB, thus resulting in lower
NMR compared to the CMB protocol. On the other hand,
when more nodes are participating, the total number of null
messages that are distributed by the LBTS protocol are
much higher than those produced by the CMB protocol, al-
though the CMB protocol causes more synchronization
rounds per each synchronization phase when more nodes are
engaged.

Synth Model (100x100) T and BT Results

0

50

100

150

200

250

1 2 4 6 8 10 12

Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Synth Model (200x200) T and BT Results

0

200

400

600

800

1000

1200

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Synth Model (400x400) T and BT Results

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 4 6 8 10 12
Number of machines

T
im

e
(s

ec
)

LBTS (BT) CMB (BT) GLM (BT)
LBTS (T) CMB (T) GLM (T)

Synthetic Model (200x200) Memory Consumption

0

200

400

600

800

1000

1 2 4 6 8 10 12

Number of machines

M
ax

. m
em

o
ry

 p
er

 n
o

d
e

(M
B

)

LBTS CMB GLM

Figure 7. Synth model T, BT, and MEM results

 As expected, the GLM protocol results in the smallest
number of null messages (average NEV per node) in all
cases. Similar to the NMR results, the CMB outperforms the

LBTS protocol after a certain point, while with smaller
number of machines it shows worse results compared to
LBTS. The NMR results for the Watershed model are illus-

trated in Figure 9. Similar to Fire model, the best results are
obtained with GLM, and the CMB protocol outperforms the

LBTS when more nodes are used.

Fire Model (100x100) Null Message Ratio

0.00

0.50

1.00

1.50

2.00

2.50

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Fire Model (200x200) Null Message Ratio

0.00

0.50

1.00

1.50

2.00

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Fire Model (300x300) Null Message Ratio

0.00

0.50

1.00

1.50

2.00

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Fire Model (500x500) Null Message Ratio

0.00

0.50

1.00

1.50

2.00

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Figure 8. Fire model NMR results

Watershed Model (25x25x2) Null Message Ratio

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Watershed Model (30x30x2) Null Message Ratio

0.000
0.005
0.010

0.015
0.020
0.025
0.030
0.035
0.040

0.045

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Watershed Model (50x50x2) Null Message Ratio

0.000

0.005

0.010

0.015

0.020

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Watershed Model (100x100x2) Null Message Ratio

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045
0.0050

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Figure 9. Watershed model NMR results

6. CONCLUSIONS
We presented a comparative study of three conservative
synchronization protocols (LBTS, CMB, and GLM) for
DEVS and Cell-DEVS applications. The protocols differ in

the strategy of null message distribution. The goal is to ana-
lyze the effect of different conservative synchronization
mechanism on the overall performance of the simulation.
We conducted thorough experiments using communication-

intensive and computation-intensive Cell-DEVS models to
analyze different metrics such as total execution time,
blocked time, memory consumption, total number of posi-
tive and null event, as well as null message ratio. The results
showed that the GLM protocol outperformed the other two
protocols at every scenario. In most cases, CMB outper-
formed LBTS when small number of nodes were participat-
ing. However, as the number of processors increased, LBTS
produced better results compared to CMB. We are currently
working on a thorough testing analysis by conducting sensi-
tivity analyses using larger and more complex models on
both CCD++ with different conservative protocols and the
purely optimistic simulator (PCD++) [5] to provide a refer-
ence guide on whether to use a conservative simulator or an
optimistic one and under what circumstances one outper-
forms the other.

7. REFERENCES
[1] Zeigler, B., T. Kim, and H. Praehofer. 2000. Theory of
modeling and simulation. 2nd Edition. Academic Press.
[2] Wainer, G., Giambiasi, N. “N-dimensional Cell-DEVS
models”. Discrete Event Dynamic Systems 12(2): 135–157.
2002.
[3] Chow, A. C. and B. Zeigler. 1994. "Parallel DEVS: A
parallel, hierarchical, modular modeling formalism". In Pro-
ceedings of the Winter Computer Simulation Confer-ence,
Orlando, FL.
[4] Wainer, G. 2002. CD++: A toolkit to develop DEVS
models. Software, Practice & Experience, 32:1261-1306.
[5] Q. Liu, G. Wainer, “Parallel environment for DEVS
and Cell-DEVS models”. SIMULATION 83(6), 2007,
pp.449-471.
[6] Radhakrishnan, R., Martin, D. E., Chetlur, M., Rao, D.
M., Wilsey, P. A. “An object-oriented Time Warp simula-
tion kernel”. ISCOPE, LNCS 1505, 1998, pp. 13-23.
[7] Jafer, S., Wainer, G., “Conservative DEVS - A Novel
Protocol for Parallel Conservative Simulation of DEVS and
Cell-DEVS Models”. DEVS/TMS’10. 2010.
[8] Chandy, K. M.; Misra J. “Distributed simulation: A
case study in design and verification of distributed pro-
grams”. IEEE Transactions on Software Engineering.
pp.440-452. 1978.
[9] Bryant, R.E. “Simulation of packet communication ar-
chitecture computer systems”. Massachusetts Institute of
Technology. Cambridge, MA. USA. 1977.
[10] Jafer, S., Wainer, G., “Global Lookahead Management
(GLM) Protocol for Conservative DEVS Simulation”. Pro-
cedings of IEEE DS-RT, Washington DC. 2010.
[11] Zeigler, B.; Moon, Y.; Kim, D.; Kim, J. G. “DEVS-
C++: A high performance modeling and simulation envi-
ronment”. 29th Hawaii International Conference on System
Sciences. 1996.
[12] Zeigler, B.; Kim, D.; Buckley, S. “Distributed supply
chain simulation in a DEVS/CORBA execution environ-

ment”. Proceedings of the 1999 Winter Simulation Confer-
ence. 1999.
[13] Kim, K.; Kang, W. “CORBA-based, Multi-threaded
Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-hierarchical
One”. International Conference on Computational Science
and Its Applications (ICCSA).Assisi, Italy. 2004.
[14] Cheon, S.; Seo, C.; Park, S.; Zeigler, B. “Design and
implementation of distributed DEVS simulation in a peer to
peer network system”. Advanced Simulation Technologies
Conference. Arlington, VA. 2004.
[15] Zhang, M.; Zeigler, B.; Hammonds, P. “DEVS/RMI –
An auto-adaptive and reconfigurable distributed simulation
environment for engineering studies”. DEVS Integrative
M&S Symposium (DEVS’06). Huntsville, AL. 2006.
[16] IEEE std 1516.2-2000. IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture (HLA) -
Federate Interface Specification. Institute of Electrical and
Electronic Engineers, New York, NY, 2001.
[17] B.P. Zeigler, G. Ball, H.J. Cho and J.S. Lee, “Imple-
mentation of the DEVS formalism over the HLA/RTI: Prob-
lems and solutions”. Simulation Interoperability Workshop,
Orlando, FL, 1999.
[18] T. Lake, B.P. Zeigler, H.S. Sarjoughian and J. Nu-
taro,”DEVS Simulation and HLA Lookahead”. Simulation
Interoperability Workshop, Orlando, FL, 2000.
[19] G. Zacharewicz, N. Giambiasi and C. Frydman, “A
New Algorithm for the HLA Lookahead Computing in the
DEVS/HLA Environment”. European simulation Interop-
erability Workshop, Toulouse, France, 2005.
[20] Himmelspach, J., R. Ewald, S. Leye, and A. M.
Uhrmacher. "Parallel and Distributed Simulation of Parallel
DEVS Models".In Proceedings of the SpringSim ’07, DEVS
Integrative M&S Symposium, 249–256: SCS.
[21] Liu, Q., Wainer, G. “Lightweight Time Warp - A Novel
Protocol for Parallel Optimistic Simulation of Large-Scale
DEVS and Cell-DEVS Models”, DS-RT 2008.
[22] Lubachevsky, B.D. “Efficient distributed event-driven
simulations of multiple-loop networks”. Communications of
ACM 32, (January 1989), 111-123.
[23] L Lamport, KM Chandy. “Distributed snapshots: De-
termining global states of distributed systems”. ACM
Transactions on Computer Systems, 1985.
[24] Rothermel, R., “A Mathematical Model for Predicting
Fire Spread in Wild-land Fuels”. Research Paper INT-115.
Ogden, UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station. 1972.
[25] Wainer, G., “Applying Cell-DEVS methodology for
modeling the environment”. SIMULATION 82(10), 2006,
pp.635-660.

