PARALLEL SIMULATION TECHNIQUES FOR LARGE-SCALE
DISCRETE-EVENT MODELS

By
Shafagh, Jafer, B. Eng., M.A.Sc.

A thesis submitted to the Faculty of Graduate apstd®dctoral Affairs

in partial fulfillment of the requirements for tdegree of

Doctor of Philosophy in Electrical and Computer Engneering

Ottawa-Carleton Institute for Electrical and CongyuEngineering (OCIECE)
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada, K1S 5B6
August 2011
© Copyright 2011, Shafagh Jafer

The undersigned recommend to
the Faculty of Graduate and Postdoctoral Affairs
acceptance of the thesis

Parallel Simulation Techniques for Large-Scale Disete-Event Models

submitted by
Shafagh Jafer, B. Eng., M.A.Sc.

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Electricadl @omputer Engineering

Chair, Howard Schwartz, Department of Systems amdfliter Engineering

Thesis Supervisor, Gabriel A. Wainer

External Examiner, Gregory Zacharewicz

Carleton University
September 2011

To my parents,
making me who | am now with their love and support,
and to my loving husband, Mohammad,

for his constant love, support, and encouragement.

Abstract

The Discrete Event System Specification (DEVS) mles a general methodology for
hierarchical construction of reusable models in auafar way and has been used to simulate
complex systems in a variety of domains. This diaten addresses software design and
performance issues that arise in parallel simutaid large-scale DEVS-based models on
multiprocessor cluster architecture.

Parallel simulation of complex DEVS-based modelyumes a robust simulator with low
synchronization overhead. Recent researches foarsegtimistic parallel simulation of DEVS-
based systems. In this research three conseryiatiel DEVS protocols (Lower-Bound-Time-
Stamp (LBTS), Chandy-Misra-Bryant (CMB), and Glchabkahead-Management (GLM)) are
proposed, allowing pure conservative simulationD&VS-based systems. The protocols are
based on the classical Chandy-Misra-Bryant synéhation mechanism, and they extend the
DEVS abstract simulator, providing means for lodadh computation and null message
distribution. A purely conservative simulator, eall CCD++, is presented designed for running
large-scale DEVS and Cell-DEVS models in paraliel distributed fashion.

An extensive comparative performance analysis esgnted, analyzing the performance of
CCD++ compared to an optimistic DEVS simulator. 8al DEVS-based environmental models
with different characteristics are studied. The esipents indicate that the conservative
simulator improves performance in terms of executime, memory usage, operational cost, and

system stability for large models.

Acknowledgements

| want to express my sincere gratitude toward myissd and my mentor, Professor Gabriel
Wainer, for his support, guidance, and trust trelpéd me through my graduate studies. His
diligence and commitment to science have been aldeva great influence on me for many

years to come. | am grateful for having the oppatyuto learn from him and work with him.

| would also like to thank the members of the ARSbdaratory and the Department of Systems
and Computer Engineering at Carleton Universityecsd thanks to Qi Liu and Narendra Mehta

for all kinds of technical assistance and support.

Table of Contents

Abstract

Table of Contents
List of Tables

List of Figures
List of Acronyms

Chapter 1: Introduction

1.1 Research Motivations and ODJECHIVES.....cccaaaaiiiiiiiiiiiiiiiiiiiiiiieiieeeeee e 3

A) DEVS Simulation with Conservative APProach eccoeceeeenieniiniennennennn 3

B) Comparative Study: Conservative vs. OptimiStEEMScccceeveeeeveeenns 4
(V2 @ o T- T a1 4= 11 0] o VTP PUPPPPPPPPPPP 5
Chapter 2: Background
2.1 Conceptual Modeling and Simulation Framework ... 6
2.2 Classical DEVS FOrMaliSMccooiiiimmeeeeeie it 7
2.3 Parallel DEVS FOrmMaliSM........ccoiiiiiiaeeeee ettt 10
2.4 Timed Cell-DEVS FOrmMaliSIMooiiimmmmme e e eeeesiiiie e e e eeeeeaes 12
2.5 Parallel Cell-DEVS FOrmaliSIM.............uommseuerererieeieeeeaaisiiinineeeeeee e e snmneeeens 15
2.6 Parallel Discrete-Event SIMUulation.........ccoooooooi s 16
2.6.1 Conservative Synchronization AlQOrthMS ccceee..vvevvvvviiiiiiiiiiiiiiiiiiieiens 17
2.6.2 Optimistic Synchronization Algorithms ... 7.2
2.6.3 Parallel and Distributed ENVIFONMENTS . ceeeeeeeieiiiiiiiiiiiieee e 30
2.7 Parallel DEVS and Cell-DEVS Simulation in CD#e.ccooeeiiiiiiiiiiiee 31
2.7.1 Event-Processing AIgOrithms ... 34
2.8 DEVS-based Parallel and Distributed Simulation..............ccccooeoiiiiiiiiennennnennn. 42

Vi

Vi

2.9 Performance Evaluation of PDES Environments

Chapter 3: Contributions

3.1 Research Publications

Chapter 4: Conservative DEVS Protocols

4.1 Problem Statement and Design Methodologies

4.2 The Lower-Bound-Time-Stamp Protocol

A)
B)
C)
D)
E)
F)
G)

4.3 The CMB DEVS Protocol

4.4 The Global Lookahead Management Protocol

A)
B)
C)
D)
E)
F)
G)

4.5 Comparison of the Protocols
4.6 The Classical P-DEVS Protocol
4.7 Zero-Lookahead in P-DEVS

Lookahead and LVT Computations

Scheduling

Resuming a Blocked LP

Null Message Handling

Deadlock Avoidance

Simulation Termination

Simulation Scenario in CCD++ with LBTS Protocol

Phase-Based Simulation with GLM Protocol

Lookahead and LVT Computation Strategy

Null Message Distribution

LP Block and Resume Mechanism

Deadlock Avoidance

I/O Operation

LT 0 010 T= 10 o TP

Chapter 5: Comparative Study: Optimistic VS. Consevative Simulation

5.1 Model-based Sensitivity Analysis
5.2 Protocol-based Sensitivity Analysis

Vii

51

76

Chapter 6: Performance Analysis 81

6.1 Introduction to Benchmark MOdelSoooeciiiiiiiiiiiiiiiie e 81
6.1.1 Definition of a Wildfire MOdelocoeiiiiiiiiiiiiieee e 82
6.1.2 Definition of a Watershed Modelccooeeeiiiiiiiiiiii e 84
6.1.3 Definition of the Synthetic Modelc.uviiiiiiiiiiiiiiiiiiees 84
6.2 Experimental Configurations and Performanceriget.................evveevviinininennnnns 85
6.3 Evaluation of the Conservative and Optimistigt®Colsccccevvvvveviveienennnn. 86
6.4 Evaluation of the Conservative ProtoCols................uuuuuiiiiiiiiiiiiiiiiiiinnees 99
6.5 Sensitivity Analysis of the Conservative Prafgc....................eevvveviieiieeieenennnes 510
Chapter 7: Conclusion and Future Work 113
7.1 Review of Key Contributions ..., 114
7.2 Suggestions for Future Research ..., 116
References 117

viii

List of Tables

Table 1. Comparison of PDES Approaches for DEVS......cuueiiiiiiiiiiiiiiieiiiiieiieiesieeeeeeeens 44
Table 2. PerfOrmManCe METICSuuuu e e e e eeeteeteeteeeee et eeeeee et e e ettt teeeaaaaeaaaaaeaaaeaaaaeaaaeaes 86

List of

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

Figures
Entities and Relationships of a System3Vi&ameworK8]cccccvvviiiiiiieninenen, 6
DEVS Semantics of an Atomic MORl..............oooeerriiii e 8
Sketch of a Cellular Automaton [WaiO0]..........eevieeiiiiiiiiiiiiiiiieiieieiiiiieeeeeeeee e 12
A Timed Cell-DEVS AtomiC MOAELOO0]uuvriiiiiiiiiiiiiiiiiiiiiiiiieieirireeeeeeeeeeeeeeeaens 13
Causality Error SCENAIMO. e eeee e 17
Layered Architecture of CCD++ SIMUIg@L]ccovvvviviiiiiiiiiiiiiiiiieiiiiieceeee e 32
CCD++ Flat Architecture and Message-Pa@sBaradigmeeueeveeiieinennees 33
Simulator AIgOrithm fON (0)eeeiiiiiiiiiiiiiiiie et 34
Simulator Algorithm fOr@, t)ccoooeeeeeeee e 35
. Simulator Algorithm fOFf (1)eeeeiiiiiiiiiie et eeeeees 35
Simulator Algorithm fOK()cooeeeeeeeee e 36
FC AIGorithm fOr () ..o 37
FC AIorithm fOr (@)ccooeeeeeeeeeeee e 37
FC AIGOTAM FONYL 1) oot 38
L O AN [0 To T 11 0] 01 {0 o) 38
[O (o T 11 0] 0 18 {0 ol A 39
[OFF=1 (o To 11T 0 418 (0] 5 (5) 39
NC algorithm fof(0)cooeeiiieiee e 41
NC algorithm fOKX(1)ooviiiiiiei e rnerreane 41
NC algorithm fOIY(1)ooeiiiiiiiee et renrnnnes 41
Conservative Architecture of CCD*+.cooiiiiiiiiiiiiiiiiiee e 54
Flow Chart of the Conservative Algoritbmeach LP...............cccciiiinnn, 55
Conservative NC Algorithm fDIONEMESSAJEoiiiiiiiiieeieeee e e e 60
Scheduler Mechanism of LBTS ProtoCal.............cevvviiiiiiiiiiiiiiieeeee e 62
Suspension-Event Execution Algorithm. ... 63
NC Null Message Handling AlGOItNM . ..eeeeneiiccee e 64
Simulation Termination Algorithm ..., 64

Figure 28. Sample Simulation Scenario in CCD+4..oiiiiiiiiiiiiiiiiieeeeee 65

Figure 29. Null Message Distribution Strategy inTl® CMB, and GLM Protocol 71
Figure 30. Parallel DEVS Simulation ProtO@®2]...............uuuuiuimuiimimiiiiiiiiiiiiimmeeeeeieneneeenennnes 73
Figure 31. Sample Activity Patterns in Cell-DEVS @Ats. ... 77
Figure 32. A: Horizontal, B: Vertical Partitioniraf an 8x8 Cell-DEVS Model on Four Nodes 78
Figure 33. A: Small, and B: Large Cell Neighborhaad...............cccoo, 78
Figure 34. Initial-Load Distribution by Setting Miple Initial POINtS...............ccceiiiiiinnnnes 79
Figure 35. Predetermined Spread Rates foFtiel Model[116]cccoveiviiiiiiiiiiniiieiieeeeeeen, 28
Figure 36. A Skeleton of tHarel Model Definition in CD+H116]ccooeiiiiiiiiiiieeeeeee e 83
Figure 37. A Skeleton of tHeire2 Model Definition in CD++ ..., 83
Figure 38. A Skeleton of th&/atershedModel Definition in CD++ [Wai06]cc...... 84
Figure 39. A Skeleton of theynthetidMlodel Definition in CD++coovvvvvviiiiiieviviiiiiiiiiinnns 85
Figure 40 Firel Results for Various SIZeS.........ccooeiiiiice e, 88
Figure 41. BT ReSUIS GFIr@L.....ccoiii i 0.9
Figure 42. NMR RESUIES BTIrEL........uuueiiiiiiieie e s 91
Figure 43. Memory Consumption fBirel Model..............ccccoiiiiiiii e, 92
Figure 44 Fire2 Results for Various SIZeS........cccooeii oo, 93
Figure 45. BT RESUIS BTIME2........uueiiiiiiiiiiiiiiiiiiiiiiiiiiit it memsme e e eeeeeeeeeaeessesessesseessssensnnsnnnnes 94
Figure 46. NMR RESUILS BTINE2........uuueiiiiiei i eee e s 94
Figure 47. Memory Consumption fBire2 Model..............ccc, 95
Figure 48 WatershedResults for Various SIZESccuuviiieeeeemeeereeeiiiiiieieeieeiiessesneseesennennne 96
Figure 49. BT ResSuUlts AVatershed.............uueeeiiiiii et 97
Figure 50. NMR Results dVatershed.............oooiiiiiiiiiieeeee 98
Figure 51. Memory consumption f@vatershednodel..............ccccoiiiiiiiiiiiiiiiiiie 98
Figure 52 Firel Model T and BT ReSUILS..........cooiiiiiiiiiiii e 100
Figure 53 Firel Model Memory Consumption RESUILS...........ceemeiiiiiiiiiiiiiiiiieieeeeeee 100
Figure 54 WatershedVlodel T and BT RESUILSouiiiiiiiiiiiii e 101
Figure 55WatershedModel Memory Consumption RESUILScommmmeeerrememrmemmmmmnnininnnn 102
Figure 56.SynthModel RESUILSuuuiiiiiiiiiiiiiiii i ceeeee ettt nmnnme e 102
Figure 57 Firel Model NMR RESUIScoooiiiiiiiiiiceee e 103

Figure 58 WatershedVlodel NIMR RESUILS.........uuuuuuuuiiiriinins cmmmmms s eeevenenenenennnsnnnnnnnnnnnnnnnnnnnnnn

Figure 59.SynthModel NMR and NEV RESUILS............cooiiiimmmmmmiiiiiiiiiiiiiiiiiiiie e

Figure 60. Initial States Analysis Bfrel Model (100X100).......ccoeeaaarareaiiareeee i 107
Figure 61. Initial States Analysis Bfrel Model (300X300).......ccceeaaaaariaiiereeee i 107
Figure 62. Initial States Analysis Bfrel Model (500X500)........ccceuaaaariiiiireaee i 107
Figure 63. Partitioning Experimentsfeifel Model (100X100).........cccceviiiieiiiiiiiiiiacaaceeeeee. 110
Figure 64. Partitioning Experimentseifel Model (300X300).........cccceviiiiiiiiiiiiiiiacaameeeeee 110
Figure 65. Partitioning Experimentseifel Model (500X500)..........cccovvvvieiiiiiiiiiiaceameeeeeee 110
Figure 66. Partitioning Experimentseife2 Model (100X100).........cccoeviviieiiiiiiiiiiaceameeeeeee. 111
Figure 67. Partitioning Experimentseife2 Model (300X300)...........ccvvvviiiiiiiiiiiiieceameeeeeee 111
Figure 68. Partitioning Experimentsfeife2 Model (500x500)...........ccceeviiiiiiiiiiiiiacaaneeeeee. 111
Figure 69. Partitioning Experiments \&fatershedModel (25X25X2)ccooeeeveeeiiiiiiiincee. 112
Figure 70. Partitioning Experiments \&fatershedModel (50X50X2)ccoveeeeeeieiiieeineenee. 112
Figure 71. Partitioning Experiments \&fatershedModel (L00X100X2)ccoeveeeeeeeieniienneenes 112

Xii

List of Acronyms

CMB
CTW
DEVS
EIT
EOT
FC
GLM
GVT
LBTS
LM
LP
LTW
LVT
M&S
MPI
MTW
NC
PDES
T™W

Chandy-Misra-Bryant
Conservative Time Window
Discrete Event System Specification
Earliest Input Time

Earliest Output Time

Flat Coordinator

Global Lookahead Management
Global Virtual Time

Lower Band Time Stamp
Lookahead Manager

Logical Process

Lightweight Time Warp

Local Virtual Time

Modeling and Simulation
Message Passing Interface
Moving Time Windows

Node Coordinator

Parallel Discrete Event Simulation

Time Warp

Xiii

Chapter 1: Introduction

Recent advances in computer technology have infeémodeling and simulation (M&S) techniques to
become an effective approach for analyzing andgdesy a broad array of complex systems where a
mathematical analysis is intractable. The simutapoocess begins with a problem to solve. Firs, th
real system is observed, its entities are idextifignd a model is constructed. Then, the model is
executed using a simulator consisting of a compsystem, which executes the model’s instructions
and generates relevant output. These outputs arpared with the real system to verify the corressne
of the model.

As models become larger and more complex, the enablof limited resources within a single
processor arise. In order to improve the perforraamicdiscrete-event simulations, Parallel Discrete-
Event Simulation (PDES) techniques were proposdtesd methods allow for executing a single
discrete-event simulation program on a parallel mat@r with multiple processors (or nodes). A PDES
system is typically constructed as a set of Logrralcesses (LPs), each representing a differetibpor
of the physical system and potentially executingaodifferent processor in event-driven fashion. The
execution of an event at a LP may modify the sbhtihe LP and generate new events that will be sent
to other LPs. During a simulation, the LPs intenaith each other solely by exchanging time-stamped
event messages. To ensure correct simulation sesiit LPs must be synchronized properly to comply
with thelocal causality constrainf26], which restricts each LP to process eventsoindecreasing time
stamp order. Errors resulting from out-of-order revexecution are referred to aausality errors
Synchronization, as the key to parallel and digted simulation, requires a robust mechanism tallean
communication among concurrent processes. Synaatom techniques for PDES systems are broadly
classified into two categories, namalgnservativeand optimistic The conservative approach, as the
first synchronization algorithm that was proposedhe late 1970s by Bryafit6], Chandy and Misra
[17] and known as the Chandy-Misra-Bryant (CMB) caithm, strictly avoids the possibility of
processing events out of time stamp order. In eshtrthe optimistic approaches, introduced by
Jefferson’s Time Warp (TWprotocol [15], allow causality errors to happen temporarilyt provide
mechanisms to recover from them during executiosthBapproaches have their own merits and are
being used in different applications. An extensuevey of existing PDES techniques can be found in
[14].

Among the existing modeling and simulation techegjuthe DEVS (Discrete Event System
Specification) formalisn1][2][3][8] is regarded as one of the most developed geparpose M&S
frameworks for Discrete Event Dynamic Systems (DE[AS]. DEVS not only allows for hierarchical
construction of reusable discrete-event models imadular way, but also provides an abstract
simulation engine architecturéhat can be realized on diverse computing platfoff). The term
simulation engine architecture refers to a hieraahsimulation entities and their associated athors
that can be used to execute DEVS-representable Isnodeectly. It is considered as abstract in the
sense that the conceptual simulation entities nodynacessarily be mapped to physical processaas in
one-to-one relatiorj4]. In the past four decades of research, mangnsibns to DEVS have been
proposed in the literature. For instance, the RArBIEVS (or P-DEVS) formalisnj9] eliminates the
serialization constraints existed in the origind\[5 by allowing adequate handling of simultaneous
events, which is needed for efficient executionmaidels in parallel and distributed environmentse Th
Cell-DEVS[12] formalism is an extension to DEVS that allogefining an n-dimensional cell space to
represent complex discrete event spatial modelsravbach cell is a DEVS atomic model, allowing for
specifying both temporal and spatial relations leetavmodel components. Aside from these theoretical
developments, various DEVS-based simulation toalgetbeen implemented, such as DEVS-(8}
RTDEVS/CORBA[13], DEVSClustelr[73], and DEVS/SOA74], just to mention a few. In particular,
the CD++ toolkit[18] is an open-source, object-oriented M&S envinent that implements both P-
DEVS and Cell-DEVS formalisms using different miedfare technologies on varied platforms (see,
e.g.,[19][20][21][22][23][24][25]).

The Parallel simulation of complex DEVS-based medequires a robust simulator with low
synchronization overhead. This dissertation conthamtvanced parallel simulation algorithms for large
scale DEVS-based simulations. The goal was to iateghe formal advantages of the DEVS formal
modeling and simulation framework with parallel siation techniques, specifically the conservative
synchronization approaches. Although PCD21%], an optimistic simulator for DEVS and Cell-DBV,
improves the overhead of optimistic parallel siriola the issue of memory consumption due to state
savings and rollbacks still remains. In order t@eximent with both the conservative and optimistic
methods within the DEVS modeling framework, thisearch work introduces three conservative DEVS

protocols and a purely conservative simuld@jrfor DEVS and Cell-DEVS. The resulting simulgtor

2

called CCD++ (Conservative CD++), incorporated wasi strategies and was successfully able to
execute large Cell-DEVS models, and in many caseperformed the optimistic PCD++ simulator.
This dissertation also provides a comparative stidiie performance of conservative versus optimist

simulation of DEVS-based large-scale models usingraber of Cell-DEVS models.

1.1 Research Motivations and Objectives

This research is motivated by two complementaryiatedrelated objectives. The first one is to addre
the challenges of large-scale conservative paraitallation of P-DEVS and Cell-DEVS models on
distributed-memory multiprocessor clusters usingiseovative null message-based protocols. The
second one is to achieve a thorough comparatiway sitioptimistic versus conservative DEVS-based
simulation by conducting extensive experiments padorming precise sensitivity analyses at both

model- and underlying synchronization protocol-leve

A) DEVS Simulation with Conservative Approach

Parallel simulation of complex models requires lbust simulator with low synchronization overhead.
There has been a number of research efforts focosdtie optimistic parallel simulation of DEVS-
based models (see, e.§7][28][8][29][30][31]). For instance, the CD++ toolkit was extended
support Time Warp (TW)15] simulation of P-DEVS and Cell-DEVS models ostdbuted-memory
multiprocessors using the WARPE[B7] simulation kernel as a middleware lay@1][34]. The
resulting optimistic parallel simulator, referredds PCD++, addressed several important issuexdrais
in DEVS-based TW simulations, including asynchranatate transition, messaging anomalies, and
rollbacks at virtual time zer34].

Although optimistic protocols allow higher degrdegparallelism, the issue of memory consumption
due to state savings and rollbacks still remainsis Tis especially apparent when the number of
participating nodes increases; resulting in castad#ébacks, and further memory and computation
overhead. In contrast, conservative approachesoner these issues by determining when it is safe to
process an event for all the LPs in the systengelmeral, conservative synchronization algorithnes ar
classified into two categories, namebynchronousand asynchronous Synchronous conservative

algorithms use global barrier synchronization agdiiction at specific points in the simulation psxe

3

to iteratively determine which events are saferticpess (see, e.455] [56][57][58]), making them best
suited for shared-memory computers where the owérloé global synchronization can be minimized.
On the other hand, asynchronous conservative istatiscard the global barrier computation by
imposing a locking mechanism where a LP is blockdxn it does not have enough information to
process its next event safely. However, deadloeks accur if the blocked LPs form a cydk9],
requiring the use of either deadlock-avoidance eadébck-recovery techniques to ensure the progress
of the simulation.

With many LPs allocated on each available processa typical large-scale simulation, saving
historical data in the event and state queuesmgtamnsumes an excessive amount of memory, bat als
raises the cost of queue operation, fossil cotectand dynamic process migration. More importantly
these problems are worse when a large number afltsineous events (i.e., events with exactly the
same time stamp) need to be executed at eachluirnegg as commonly found in large-scale, densely-
interconnected, and highly-active DEVS-based models

Aside from optimistic DEVS-based protocols, a numiseconservative DEVS parallel approaches
have been proposed in the literature (see, [@9][,76][77][1]). Nevertheless, most of these approaches
are in the High Level Architecture (HLA®8] domain[64][78][79][80][81][82], leaving the challenges
of purely conservativ®EVS-based simulations unaddressed.

The issues related to performance, scalability, @odhplexity of optimistic-based parallel
simulations and the need for a purely conservdiik®'S/Cell-DEVS simulator motivated this research
to investigate conservative approaches for efficmmnservative parallel simulation of P-DEVS and
Cell-DEVS models.

B) Comparative Study: Conservative vs. Optimistic DEVS

To analyze the effect of the underlying synchromaraprotocol on the overall simulation performance
a comparative study is required that carefully st\gates different metrics using the same benchmark
Deciding whether to use a conservative simulataarooptimistic one is only possible if large number
of experiments have been conducted under the sandevare/software infrastructure. To evaluate the
optimistic DEVS simulator (i.e., PCD++) versus cemnative versions, the DEVS or Cell-DEVS model

has to be executed on both simulators given theteseame conditions (such as initial values, sizéhef

4

model, hardware system configurations, etc.,). Tdwathis goal, the research presented in this
dissertation takes a comparative approach to amatiie efficiency of different parallel DEVS

synchronization mechanisms. In addition, this diss®n also attempts to take into account several
methods to provide a detailed analysis that coeldided for further expansion and development of the

proposed synchronization techniques.

1.2 Organization

The rest of this dissertation is organized as wdloChapter 2 provides background information on
DEVS-based simulation and also it presents a titezareview of parallel synchronization techniques
and their application to DEVS. Chapter 3 provides tontributions of this dissertation. Chapter 4
presents three conservative DEVS protocols anduséss their implementation details in CCD++
simulator. Chapter 5 describes the various seitgitanalyses metrics that can be used to conduct
experiments on PCD++ and CCD++. The experimentdfgin and metrics for performance evaluation
are provided in Chapter 6, followed by the resoltshis dissertation and a comparative performance
evaluation of CCD++ and PCD++ simulators in simagtDEVS-based cellular models. Finally, the

concluding remarks and future research directioaseported in Chapter 7.

Chapter 2: Background

This chapter first presents the DEVS M&S framewakd its implementation in the CD++
environment, and then it provides the state-ofdtieresearch efforts in PDES field. Section 2.1
introduces the basic concepts and the softwardtactire of the DEVS M&S framework. Section 2.2
reviews the classical DEVS formalism. Section 28ers the Parallel DEVS (or P-DEVS) formalism.
The Timed Cell-DEVS and Parallel Cell-DEVS formais are presented in Section 2.4 and 2.5
respectively. Section 2.6 describes the simulatigorithms and computational properties in the ewint

of the CD++ environment. The literature review afious parallel synchronization algorithms and the

DEVS-based parallel simulation techniques are pitesiein Section 2.7 and 2.8 respectively.

2.1 Conceptual Modeling and Simulation Framework

Conceptual M&S framework defines the system undedysas basic entities and their relationships.
Zeigleret al. proposed a conceptual M&S framework that strisgparates modelling from simulation

framework by introducing four basic entities anattypes of relationship@], as illustrated in Figure

1.

Simulation
Relation

Experimental Frame

Source
System

Modeling
Relation

Behavior Databas

Figure 1. Entities and Relationships of a System M&S Framé&v@y
The entities includesource systerexperimental framemode] andsimulator The source system
entity defines the real or virtual environment undealysis. This entity, which is viewed as theadat
source, together with the behavior database fohmasExperimental Frame. The experimental frame
6

specifies the conditions under which the sourceesydss observed or experimented with. A model
entity represents an abstraction of the sourceesystpresented by a set of instructions, rules,
mathematical equations, or a set of constraintaproximate the behavior of the real system. The
simulator entity is a computer-based entity whieimicharge of executing the model’s instructions.

The two fundamental relationships among the estdi® thenodeling relation(or validity) and the
simulation relation(or simulator correctne9q8]. The modeling relation links the model and Haeirce
system to validate the results generated by theemdéd general, the model is considered valid & th
data it generates agree with the data generateédebgource system in the experimental frame in use.
On the other hand, the simulation relation liesmMeein the simulator and the model to indicate how
reliable is the simulator in terms of being capdblexecute the model’s instructions.

The separation between model and simulator sigmflg simplifies the model validation and
simulator verification[8]. Furthermore, it gives the opportunity to uséedent simulation algorithms
within the simulator or even different simulatdrsaddition, the separation of concerns involvethis

architecture allows model reusability as well derfl@xtension of the model.

2.2 Classical DEVS Formalism

Based on the above M&S framework concepts, Digcrete Event System Specificatio(DEVS)
formalism supports hierarchical construction ofsahle discrete-event models in a modular {&yIn
DEVS, a real system is decomposed into behavia@n{iQ and structural doupled components.
DEVS theory provides a rigorous methodology forrespnting models, while presenting an abstract
way of thinking about the world with independenddhee simulation mechanisms and the underlying
hardware and middleware. A DEVS atomic model isnialty defined by8]:

M =<X, Y, S,8nt, Oexs A, 1>,

where

X={(p,v) | pO IPorts, viI X} Is the set of input ports and values;

Y ={(p,v) | pO OPorts, [Y} is the set of output ports and values;

S is thé aesequential states;

0t S-S is theernal state transition function

dext QX XS is thexternal state transition functipwhere

7

Q={(s,e) | 8 S, 0 <O < ta(s)} is the total state setis the time elapsed since the last state

transition;
A SSY is thautput function
ta:S—» Row is theme advance function

Figure 2 shows the description of states and vimsalm DEVS models. At any time, a DEVS
atomic model is in a statel] S. In the absence of external events, the modgs st this state for the
duration specified by td(. When the elapsed tinee is equal to ta), the state duration expires and the
atomic model outputs the value give bfg), and changes to a new statgs). An atomic model that
has a due internal state transition at the cursenulation time is referred to as anminentmodel
component. Notice that output is only generatedabyimminent model and occurs right before the
scheduled internal state transition. Transitiorss tdtcur due to the expiration ofgpére callednternal
transitions On the other hand, state transition can alsodrappe to arrival of an external event which
places the model into a new state specifieddqys,e,x); wheres is the current state is the elapsed
time, andx is the input value. Note that the life time oftats can take any real value frararoto
infinity. A state with zero duration is callé@nsientstate, while when ta(s) is equalitdinity the state

is said to bgassivein which the system will remain in this stateibrgceiving an external event.

X y

|1 | |11l

Figure 2. DEVS Semantics of an Atomic Modi]
The DEVS formalism provides a well-defined conceptsystem modularity and component
coupling allowing for construction of hierarchicalodels. A DEVScoupled modeis composed of
several atomic or coupled sub-models that are atedewith each other and with the external

environment, as shown in the following formal défon [8].

8

CM =<X, Y, D, {Mq | dID}, EIC, EOC, IC,Select>,
Where
X={(p,v) | pO IPorts, v X,} s the set of input ports and values;
Y ={(p,v) | pO OPorts, VJ Y} is the set of output ports and values;
D is the set of the component names;
The following requirements are imposed on each comptd that is included in D:
Mg = (Xg, Ya, Sty Oint, Oexs 4, t2) Is @ DEVS model with
Xd={(p,v) | pOIPorts, vVCIXp}, and Yy = {(p,v) | pU OPortg, vl Y}
The component couplings are subject to the follgweguirements:
External input coupling (EIC) connects external inputs to component inputs,
EICC {((N, ipn), (d, ipy) | ipve IPorts, dID, ipslJIPortss};
External output coupling (EOC) connects component outputs to external outputs,
EOCI {((d, opy), (N, opy)) | oI OPorts, dID, ogyJOPortg};
Internal coupling (IC) connects component outputs to component inputs,
ICH{((a, opy), (b, i) | @, AID,op.00Ports, ipplIPorts};
Select:2° - {} — D is the tie-breaking function for imminent compots.
Direct feedback loops are not allowed, i.e., apouport of a component may not be connected to
an input port of the same component which can bedlby specified as ((d, @p (e, ip)) O IC implies o+
e. In addition, the values sent from a source post follow the range inclusion constraint of atidegion

port, formally expressed as:
O ((N, ipn), (d, ipy) O EIC : XipnD Xipd

D ((a! OB)’ (N! OFN)) D EOC : YopeD YopN

O ((a, op), (b, im)) D IC : Yopdd Xipb-

From the coupled DEVS formalism it can be obsertlet due to theclosure under coupling
property, a coupled model is regarded as a new DBU&eI[96]. This property ensures that the overall
behavior of a coupled model is equivalent to adagdmic model, and therefore, allows for hieracahi
model construction. The X and Y sets describe ripeti and output events of the coupled model. Upon

reception of an input event, it has to be redirdtethe corresponding atomic component. Similarly,
9

when an output is generated by a component, it imeishapped as an input to another component or
sent out as an output of the coupled model. Thepmgpmechanism is defined by tAdunction.

In coupled DEVS models, when multiple imminent comgnts are scheduled for an internal
transition at the same time, this can lead to anityigFor example, let's consider a case where aweh
two imminent components: A, and B. When componee@cutes its internal transition, it produces an
output that maps to an external event for compolBentiowever, at this moment, component B is
already scheduled for an internal transition. Milscause an ambiguity for component B, not knogvin
which transition to execute first. The DEVS formsaili suggests two alternatives for this scenario: 1)
execute the external transition first wighbeing equal tda(s) and then the internal transition, or 2)
execute the internal transition first and then él&ernal transition witle being equal to zero. DEVS
resolves this ambiguity by introducing tkelecttie-breaking function. This function gives orderthe
imminent components of a coupled model so that amg component has = 0. Then the rest of
imminent components are divided into two groups:alget of components that receive an external
output from this model, 2) the rest of componefltse first group will then execute their external
transition functions witte = ta(s), and the second group will be imminent during tlet simulation
cycle which may further require the use of gsectfunction to decide which component will be the
first. The use of tie-breaking mechanism adds aemitto the simulation and, in addition, decredses t
level of parallelism and forces the simulation tvé a serialized manner. Since #aectmechanism
associates priorities with imminent componentsyilt cause a potential bottleneck in the simulation
system when many interconnected atomic modelsnam@rient at the same time. These problems have
been addressed by Chow and Zeigler in a DEVS exi@nenown as the Parallel DEVS formali$ii],
which will be presented in the next section.

2.3 Parallel DEVS Formalism

The Parallel DEVS or P-DEVS [11] formalism is an extension to DEVS that elime® all the
serialization constraints and provides an enviramnfer executing simultaneous DEVS models in
parallel. P-DEVS implementsonfluentfunction to deal with collision scenarios at whiebents are
scheduled simultaneoud]8]. This function allows a modeler to explicithefine the collision behavior

for individual atomic models. In addition, eachrato model maintains &ag structure to collect all

10

external events received from other model companaht given simulation time so that these events
can be processed as a group in the state transtmnbining the execution of multiple external
transitions into a single one. As a result, manginent components can be activated simultaneoasly t
send output to other components all at the samalaiion time[9]. The receiver is responsible for
examining the input external events and interpgetivem properly. The P-DEVS formalism allows for
increased parallelism to be exploited in a simafafi1].
An atomic P-DEVS model is specified fyl]:
M=<Xwm,Ym, S,dext,Oint, Ocon A, 1)

where

X'm={(p,v)| pOIPorts, v X, } is the set of input ports and values;

Y m ={(p,v)| pO OPorts, L1 Y , } is the set of output ports and values;

S is the set of sequential states;

Sexi QX Xu® = S is the external state transition function;
Oin: S-S Is the internal state transition function;
Scok QX Xu® = S is the confluent transition function;
A:So YW is the output function;

ta:S- Ry oo is the time advance function;

with Q :={(s, e) |8 S, 0< e< ta(s)} the set of total states.

The elimination of the sequenti8klectfunction and its replacement with tbenfluent transition
functiongives all the imminent components equal prioritg #he permission to be activated and to send
their output to other components at the same tlbmethe other hand, the receiver component is only
responsible for identifying the type of the receivaput event and taking the required actions. A P-
DEVS coupled model is similar to DEVS, except foe omission of th&electfunction. Formally, a
coupled model is defined &Kl]:

CM=<X,Y, D, {M4|dOD}, EIC, EOC, IC>

Therefore, the set of input and output eveisafdY), components¥ and My), and couplings

(EIC, EOC andIC) are identically the same as of DEVS. Since inB¥B there is no serialization

among imminent components, in case of having malimminent components within a coupled P-

11

DEVS model, firstly, all the outputs are collectadd redirected to the corresponding influences,

secondly, the transition function is execuf@p

2.4Timed Cell-DEVS Formalism

The Cellular Automata (CA) theory was first introduced by John von Neaman his study of self-
replicating systemg$97] . A cellular automaton, as presented in Fig8reis an infinite regular n-
dimensional lattice of finite state machines intenmvected locally with each other. The lattice cetssof
cells that change their states synchronously améiallel at discrete time steps based on thesstdta
finite set of neighboring cells, referred to as tleégghborhood, by evaluating a local update rutes Ts
performed by using the current cell's state ands¢hof a finite set of nearby cells. Despite its
widespread application, the CA approach has twoomépmitations making it computationally
inefficient [99]. First, due to its discrete time nature, siatigin precision and execution efficiency is
greatly restricted. Secondly, at each time stdpthal cells are evaluated synchronously, incuriamg
unnecessarily high computational cost when onlynallsfraction of the cells needs to be updated. The
Timed Cell-DEVS formalism [100] overcomes these issues by integrating DEVS and cCprésent

each cell as an atomic DEVS model.

Cell's Meighborthood
Figure 3. Sketch of a Cellular Automaton [Wai00]

Cell-DEVS formalism defines n-dimensional cell spa@s discrete-event models, allowing for

more efficient asynchronous execution using a oomiotiis time base without losing simulation accuracy.
Each cell is represented as a DEVS atomic mod¢ldmanges state in response to the occurrence of
events in an event-driven fashion. Moreover, C&M3 allows the implementation of cellular models

with timing delays. Two types of timing delays cha used, namelyransport and inertial. When

12

transport delay is used, the future value is addedqueue sorted by output time, allowing the jonev
values that were scheduled for output but haveyabbeen sent to be kept. On the other hand, aherti
delays allow a pre-emptive policy at which any poeg scheduled output value will be deleted and the
new value will be scheduled. Figure 4 illustratésreed Cell-DEVS atomic model.

Cell's connections

-
3

AL 19

84

IN oOuT
P ris)=s —
Cell definition

Figure 4. A Timed Cell-DEVS Atomic Mode]100]
A Cell-DEVS atomic model is defined §99]:
TDC =<XY,1,S6,N, d,dint, Oexs; T, A, D >,

where

X is a set of external input events;

<

is a set of external output events;

I represents the model's modular interface;

S is the set of sequential states for the cell;
0 is the cell state definition;

N is the set of states for the input events;

d is the delay for the cell;

Oint is the internal transition function;

Oext is the external transition function;

T is the local computation function;
A is the output function; and
D is the state's duration function.

13

The modular interface (I) represents the input/oufgorts of the cell and their connection to the
neighbor cell. Communications among cells are peréd through these ports. The values inserted
through input ports are used to compute the fustaiee of the cell by evaluating the local compotati
functiont. Oncet is computed, if the result is different than therent cell’s state, this new state value
must be sent out to all neighboring cells informthg state change. Otherwise, the cell remainssin i
current state and therefore no output will be pgaped to other cells. This will happen when theetim
given by the delay function expires. Finally, theernal, external transition functions and output
functions Q) define this behavior. Cell-DEVS improves execatmerformance of cellular models by
using a discrete-event approach. It also enharfbescell's timing definition by making it more
expressive. Cell-DEVS coupled models representéiespace as followfd.00]:

GCC = <Xjist, Yiist, I, X, Y, n, {,....t}, N, C, B, Z, select,
where
Xiist is the input coupling list;
Yiist is the output coupling list;

I represents the definition of the model’s inteefa

X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;

{t,....t} is the number of cells in each of the dimension

N is the neighborhood set;

C is the cell space;

B is the set of border cells;

V4 Is the translation function; and

select is the tie-breaking function for simultaneousrege
A coupled model is composed of an array of atoreits (C) with given size and dimensions where
each cell is connected through standard DEVS ioptglt ports to the cells defined in the
neighborhood (N). Since the cell space is finitee borders of the cells are either connected to a
different neighborhood than the rest of the spacéjey are “wrapped” (i.e. B =£{}) in which they are

connected to those in the opposite one using therse neighborhood relationship. However, border

14

cells have a different behavior due to their patéic locations, which result in a non-uniform
neighborhood. The Z function defines the internadl &xternal coupling of cells in the model. It
translates the outputs of tH& dutput port in cell ginto values for the"i input port in cell G. Select
function has similar functionality as in the baBliEVS, where it is the tie-breaking function for the
imminent components.

As in coupled DEVS models, the useS#lectfunction produces serialization, and thereforelaim
limitations when the Cell-DEVS models are considete be executed in parallel. These limitations
would lead to lack of parallelism exploitation amgrobable inconsistency with the real sys{é60].
Moreover, since the timed Cell-DEVS allows only amgut from each input port, zero-delay transitions
are not possible and also the external DEVS matelsiot allowed to send two simultaneous events to
the same cell.

2.5Parallel Cell-DEVS Formalism

In order to resolve transition collisions withowging theSelectfunction, a new version of the Timed
Cell-DEVS formalism, referred to aarallel Cell-DEVS [98], has been proposed based on the P-
DEVS concepts. The Parallel Cell-DEM8rmalism overcomes these restrictions by revisamgl
extending Cell-DEVS to allow a higher degree ofgfilatism and allowing zero-delay transitions aslwel
as multiple simultaneous events per external moéatallel Cell-DEVS models are equivalent to
parallel DEVS models and closure under couplinglfiddr parallel Cell-DEVS models as well. That is
a coupled Cell-DEVS model is equivalent to an ato@ell-DEVS model.

The formal definition of a Parallel Cell-DEVS atammnodel is given as follow98].

PCM =< X%, Yu, I, S,0, N, d,dint, Sext; Ocon T, Tcom A, D >.

Most of the components in the definition remain hargged as in the Timed Cell-DEVS specification.
However, two exceptions exist: first, the exterstdte transition function and the output function
maintainbagsof inputs and outputs @and Yb) for each cell. Secondly, two additional conflustdte
transition functions&onandt con) are introduced in the definition. When collisidretween internal and
external events happen at a cell, the confluenttfon dconis invoked as in the P-DEVS formalism and
it activates theonfluent local transition functiomcon, Which in turn analyzes the current values in the

input bags and presents a unique set of inputth@cell to compute the next state. Hence, allowimeg

15

modeler to precisely control the behavior of eaeth ender collision situations by implementing the
confluent local transition function.
By eliminating theSelectfunction, the Parallel Cell-DEVS coupled model d#ion is given as follows
[98]:
GCC = <Xist, Yiist, I, X, Y, n, {ty, ..., 0}, N, C, B, Z >.

While each cell in the cell space (C) is a Paraldll-DEVS atomic model, all the other
components are defined in the same way as preseritieel previous section.

The Parallel DEVS and Cell-DEVS formalisms not oplpvide a unified M&S framework, but
also allow exploiting higher degree of parallelisnparallel and distributed simulations. Togetlleese

two formalisms serve as the theoretical foundaforihis research.

2.6 Parallel Discrete-Event Simulation

A Parallel Discrete-Event Simulation (PDES) consists ofLogical ProcessesLPs) acting as the
simulation entities, which doot share any state variables, and interact with esoér merely through
exchanging time-stamped event messdték In general, each LP is mapped to a physioatgssor of

a parallel computing system, but if the number &slexceeds the number of available processors,
multiple LPs are mapped to a single physical premesThe LPs that are allocated on the same
processor maintain a singkuture Event List (FEL) to schedule events execution irsequential
manner. The major challenge in PDES is being abl@roduce exactly the same results as in a
sequential execution of the simulation programsTrequires a precise and accurate synchronization o
all the LPs in the system since data and computalistribution may result in different errors reldtto

the concurrent processing of the simulation messa8gnchronization among these LPs is violated
when one of the LPs receives an out of order evidns. violation is referred to asusality error Such

a scenario is represented by Figure 5 where twg &€&sh with one event in its input queue, process
their events simultaneously. When LP1 executestexEiiwhose timestamp is = 1), it generates and
sends a new event messageto LP2 (with timestamp = 2). However, at this tinhd*2 has already
processe@6 and therefore its local clock has already advancegl Consequently, the arrival e at

LP2 violates causality, and an error occurs.

16

A A

LP2 LPI
€2
47
Clock =6 Clock =1
Queue: €6 Queue: ¢!

Figure 5. Causality Error Scenario
In order to prevent causality error, there is achyanization requirement expressed as the following
necessary and sufficient conditifi].

Local Causality Constraint A discrete-event simulation, consisting of LRattinteract exclusively

by exchanging timestamped messages obeys thecdagsality constraint if and only if each LP

processes events in non-decreasing timestamp order.

To satisfy the local causality constraint, diffearepnchronization techniques have been proposed for
PDES systems which generally fall into two majoassles of synchronizatiompnservative which
strictly avoid causality violations ; armgbtimistic which allow violations and recover from them the
past three decades, numerous approaches have tgesqd by different researches in this field. A
number of surveys can be found in the literaturéciwlsummarize both conservative and optimistic
techniqueg14][26][117][118][119][95]. The following subsections introduce the basacepts behind
these two approaches.

2.6.1Conservative Synchronization Algorithms

As discussed in the previous section, conservasiyiechronization algorithms strictly avoid any
occurrence of causality errors. To do so, the LUBlasked from further processing of events untdan
make sure that the next event in the local FutwmenEList is safe from future event arrivals frother
LPs with smaller timestamps. The basic problem doconservative parallel simulator is how to
determine if it is safe for a processor to exeawents. To deal with this issue, several technidae®
been proposed which are further classified intor foategories: methods with deadlock avoidance,
deadlock detection and recovery, synchronous aparand conservative time windows.

* Synchronous Operation

17

The first techniques developed for solving theseblg@ms proposed different centralized and
decentralized mechanisms for implementing globatkd, and they used synchronous operations for the
parallel discrete-event simulations. 9] the authors proposed a centralized mechanistim @ne
dedicated processor controlling a global clock @mhirepresents the global virtual time of the
simulation). Under that scheme, all the LPs’ ladatks are kept at the same value at every poirgah
time, and the simulation proceeds according to thabal clock, which is advanced based on the
minimum timestamp of all possible next events. Belcet al. [50] introduced the distributed
implementation of such a global clock, which wasduby[51] [51] on a hierarchical LP structure to
determine the minimum next event time. Timn-reduction operatiorf52] used a hierarchical LP
organization. In this method, the minimum timestasypoved to the root of a process tree, and it is
then propagated down the tree. Thistributed Snapshot Algorithii®3][110] proposed a method to
avoid the bottleneck of a centralized global cledkrdinator by enabling the processes to recond the
own states and the states of the communicationneanin this way, the set of process and channel
states recorded conform a global system state.

Three efficient algorithms for global snapshots lamge distributed systems are presented in
[120][121]. The proposed algorithms (a grid-based, e-lr@sed, and a centralized) overcome the issue
of scalability of other existing global snapshogalthms. Experiments showed that the proposed
mechanisms significantly reduce the message arw sjganplexity of a global snapshot.

In general, synchronous protocols decompose thalaiimn into two phases: (1) processing safe
events, (2) performing global computations to datee such events. Unlike the detection and recovery
methods that will be discussed in the followingtsets, synchronous mechanisms are deadlock-free.
However, they continuously suspend and restartsitmellation. In contrast, a major disadvantage of
detection and recovery method is that during theoddeading up to a deadlock, the execution may be
largely sequential, leading to limited speedup.

» Deadlock Avoidance

The first existing asynchronous parallel simulatwatocol was a conservative technique developed
independently by Chandy and Midi/], and Bryan{16]. In the CMB Chandy-Misra-Bryan(CMB)
algorithm, LPs are assumed to be connected sigtigal directional links. LPs communicate through

timestamped messages, also cabdednt messageshich are transmitted from one LP to another, in

18

non-decreasing timestamp order. This guarante¢sht@dimestamp of the last message received on an
incoming link is a lower bound of any future eveméssages that will be received later. At each LP,
there is a queue associated with each incomingthakis used to store incoming messages in FIFO
order. Each link has its own clock which is equathe timestamp of the first message in the quiue (
there is one), or the timestamp of the last reckimessage (if the queue is empty). The LP repeated|
selects the queue with the smallest clock andhefdueue is not empty, processes the first message
available. If the queue is otherwise empty, thebldtks until a message arrives at the queue, which
updates its clock value of the incoming link. Aftards, the LP selects a new queue with the smallest
clock and the procedure is repeated.

Since an LP may block on an empty link, deadlocley wccur in the case of a waiting cycle. The
CMB mechanism avoids deadlocks by introducing tlmion of null messageswhich are for
synchronization purposes only and do not repressitactivities in the model. A null message is a
promise about the earliest message that will arivéhe future. When an LP receives such a null
message, it advances the clock value associated tive link, and, if possible, it progresses by
processing events that are waiting in other quelfiggocessing is not possible, it propagates tme t
carried by the null message and other time advaestnto its successors by sending out more null
messages through its outgoing links. The essepaal of this mechanism is determining the null
message timestamp. THmokaheadvalue defines the degree to which LPs can looladfand predict
future events.

Since each incoming link defines the lower boundtli@ next unprocessed event, a good measure
for the lookahead value can be the minimum amohig@ming links’ clocks plus the LP service time.
In fact, the lookahead represents a lower bountheriimestamp of the next outgoing message. Every
time the LP finishes processing an event, it sendall message on each of its outgoing links t@irep
this bound. When an LP receives a null messaga/ctlates a new bound based on the information it
receives and passes it to its neighbors, and solbe.lookahead can also be determined by the
programmer statically. It has been shown that @éingelr the lookahead, the better is the performahce
the algorithm[122] [123] [119]. In order to avoid deadlock, there is a caist on the value of

lookahead; it cannot be zef80]. This restriction implies that certain typelssamulations that require

19

zero lookahead cannot be performed by the CMB dhgor(e.g. queuing networks with service time of
zero).

* Variations of CMB

The CMB algorithm can produce many null messagegtatling the performance of the simulation.
Since its original implementation, numerous appheachave been proposed aiming at reducing the
number of null messages. Here, some of the vamnistom the CMB approach that deal with this issue
are presented.

The demand-drivemull message protoc§B5] avoids the aggressive distribution of null seges
by enforcing LPs to send null messages only whew #re asked to. All synchronization messages are
of fixed size and independent of the number of @ssors. When an LP needs to process an event with
timestampg, but cannot do it due to timing constraints, id®a timing request, reporting the senddr's
and the requested tini¢o the neighboring LPs. The receiving LPs theonmf to the sender LP if they
can guarantee that they will not emit an eventtana earlier than the requested tim&here are three
types of replies (which can be used to avoid reggepolling in the presence of cycles). Mesmessage
indicates that the receiver LP has advanced toettpeested time; theo message indicates that it is still
lagging behind (resulting in another request tarizele by the sender LP), and tlyes (reflectedyeg
message indicates that the receiver LP has condiljoreached. Theryesare used to detect possible
cycles and minimize the number of subsequent reéggest to the neighboring LPs.

Misra [36] and Peacoclet al [37] also revisited the CMB mechanism by imposihg tdea of
sending null messages on demand rather than aftbreyent. Nicol and Reynol{8] used a variation
of this approach for distributed simulations withaged resources. Su and SdB9] investigated a
family of variants of the basic CMB algorithm toegglup gate-level simulations on an Intel iPSC
computer. They focused on reducing the volume df messages by deferring sending outputs and
packing the information into fewer messages.

Other approaches to null message generation, imgjugEneration after a time-owndgeneration
usingstimulus nullsvere introduced if40]. The purpose of the null message after a tmiealgorithm
is to reduce the system overhead of processingmedisages by reducing the actual number of null
messages transmitted between LPs. The null messagésansmitted only after a specified amount of

real clock time, théime-outvalue. It was shown that when the time-out vaheraases, fewer null

20

messages are generated, thus reducing overheadonknast to the null message with time-out
algorithm, the stimulus null variation added, ratlean eliminated, null messages. Stimulus null
messages are generated and transmitted after gwutedn of a given number of internal events,
specified as a ratio between the events and theulsts nulls. These nulls are in addition to anylswul
normally generated, and they give the receiving BR<searlier indication of time progression (when
compared to the original CMB null message algorjth@onsequently, there is a greater potential to
execute the simulation faster.

Although demand-driven protocols reduce the amadmull message distribution, in return, the
delay associated with receiving null messages asa® because two messages are required. The
carrier-null messagealgorithm introduced by Cai and Turngrl] reduces the number of CMB null
messages and it increases the lookahead abiligxplpring the simulation network topology. A carrie
null message includes extra information, in palicuthe message route. This carrier information is
record of all LPs visited by the carrier-null magsasince its creation. This information allows
individual LPs to advance their simulation clockbile keeping the null message traffic low. The
carrier-null message scheme only supports simugticith certain communication graphs such as those
with nested cycles. Wood and TurrjéR] extended the carrier-null message approachrbgosing a
generalized carrier-null method to support arbytrgraphs. In[43] the null message cancellation
protocol was investigated, and the impact of theceHation of spare null messages was examined.
Under this protocol, a null message is discardédrbdoeing receipt if it is overrun by a messagth\ai
larger timestamp. The empirical results showed Hmimpact of null message cancellation is affected
by the lookahead of the LP. Porrasal. [124] improved the CMB algorithm by using null mage
cancellation, simulation loop optimization, and tmasting techniques. Their algorithm, named
Simloopreduces the number of null messages and improwe®ithcution of messages by allowing
simulation of multiple messages instead of a singgssage.

The Critical Channel TraversingCCT) algorithm[125] extended the CMB algorithm with the
addition of rules that determine when to scheduld.R for event execution. CCT attempts to schedule
the LPs with the largest number of events thatraesly to execute. This is accomplished through
identifying critical channels. The CCT algorithmsvanplemented along with a simulation kernel called

TasKit, designed for high performance simulation on srn@limedium sized shared memory multi-

21

processors. The algorithm provides multi-level skhi@eg by allowing scheduling large grains of
computation even in very low granularity models.[126], two new versions of the CCT algorithm
were presented. The first one, calgiohple sender side CCiiiffers from the original in the elimination
of busy waiting. Consequently, it avoids the parfance problems that can be caused by busy waiting.
The second algorithm, calledceive side CCTyses a different strategy for updating channetkdand
scheduling objects connected to critical chanriéeive side CCT reported better scaling with retspe
to the connectivity of the model, but at the cdsadditional overhead for low connectivity models.

Boukerche and Dafl27] proposed a null message algorithm that redlube overhead of null
messages using load balancing. The synchronizgiotocol is a variation of CMB null messages
combined with a load-balancing algorithm that asssimo compile time knowledge about the workload
parameters. The algorithm is based on a processitioig mechanism, and the notion of @RU-queue
length which indicates the workload at each processoaddition, they presented two variations of the
algorithm: a centralized, and a multi-level hieracal method.

Other null message reduction algorithms that haenlproposed use a generic mathematical model
to approximate the optimal values of the parametatsare directly involved in the performance of a
time management algorithfd28][129]. Thomaset al. [130] proposed another null message reduction
algorithm based on grouping and status retrievaldigrmining an optimum value of the lookahead.

There have been varied efforts trying to improwe ltokahead computation. For examplej1ia1]
the authors presented a method where the compilfiermatically extracted information about the
lookahead present in the application. Toek-freealgorithm[132] is another conservative scheduling
technique implemented for shared-memory multiprecesnachines, which uséstch&addoperations
to avoid the inefficiencies associated with usiockk. The authors show that compared with lock-tbase
scheduling algorithms, the lock-free algorithm dxtsi better performance when the number of logical
processes assigned to each processor is smallesr thk workload becomes significant. However, due
to the overhead spent for extra bookkeeping, onbylest performance gain is achieved for a large
number of logical processes. Solcany and Saffr83] presented a user-transparent conservative
parallel simulator that allows users to build siatidn models with lookahead transparently. To do so
they analyze the conditions for cumulating the blwdad of entities inside the same LP, and usirgg thi

information they derived a mechanism to calculatehscumulated lookahead based on the Dijkstra's

22

shortest path first algorithm. Chumeg al. [134] proposed a scheme for the prediction of thiéware
execution path in order to extend the lookaheadptaation for parallel multiprocessor simulation.
They use templates for predicting the program etx@cyath, which are generated by software analysis
Then, a processor model obtains the lookahead bljuaing the templates at simulation time. The
proposed method aggressively extends the lookatfeadll messages by executing the path prediction
of the software application dynamically.

Other studies have devised and compared varianth@éoCMB algorithm by evaluating the
performance of the algorithms for inefficienciesdaoverhead. Parlet al [135] compared the
performance and scalability oflazy null messagalgorithm with global reduction approaches. They
suggested that, for scenarios simulating scalediankt models with constant number of input and
output channels per LP, the lazy null message itgoroffers better scalability than efficient globa
reduction based synchronous protocols. Bagrodia Taidi [140] studied the performance of three
diverse conservative algorithms implemented in Ma@ synchronous algorithm (conditional event), an
asynchronous algorithm (with null messages), antylrid algorithm (ANM - Accelerated Null
Messagg that combines features from the preceding algor®t Maisie models were developed for
standard queuing network benchmarks, and varioudigtmations of the model such as model
connectivity, computation granularity, load balanemd lookahead were executed using the three
different algorithms. Songt al [141] discussed an empirical study of conservasgheduling by
examining several heuristics that help identifyordical events. They presented a performance study
comparing several scheduling algorithms based ois bext event timestamp, safe time, or local
simulation clock. In[142], a performance evaluation of a CMB protocaswinvestigated. They
analyzed the performance and behavior of eachdbgrocess, and showed that, in the same simulation
different LPs can show different performance. Thalgses were performed by adding software
monitors to the simulation code. The monitors cotegusome metrics whose values were used to
estimate the performance of each logical procesgécution time.

» Deadlock Detection and Recovery

Another approach for conservative synchronizat®toiallow deadlocks to occur, and to provide a
mechanism to detect and recover from them. Thiscag eliminates the use of null messages and the

overhead associated with their communication tafdeadlock is broken by allowing to processing the

23

event with the smallest timestamp. Chandy and Mjd&] proposed an asynchronous distributed
simulation approach via a sequence of parallel egatjpns. Their approach did not use a global clock
nor did they use a single process to drive the lsiian. Rather, to avoid bottlenecks, they useecisp
process, called theontroller, which synchronizes the LPs when the simulatioadttecks. Under that
scheme, the simulation is divided into a sequerfceomputations: thgarallel phaseand thephase
interface The controller is only responsible for detectihg termination of one phase and initiating the
next one. Other seminal deadlock detection mechenigere discussed [A4][45][36].

One approach to determine safe events is to perdoset of distributed computations across all the
LPs. TheCritical Path Analysisalgorithm (CPA)[143][144] generates an acyclic event-dependency
graph by tracing the events in the simulation. Thical path is calculated as the longest eveth pa
the event graph, and its related time is considaedhe lower bound on the execution time of the
simulation. Srinivasan and Reynoldst6] mention that the conservatism of the CPAelsxed in the
sense that it only considers the dependency amesrgs requiring each LP to know exactly what the
next event is, and when does it arrive. This is ide@l since events in a parallel simulation are
unpredictable at runtime. Tt&tate Causality Analysalgorithm (SCA)[149] overcomes the limitation
of CPA by focusing on the dependency of the logicatess states, rather than on unpredictable vent
This technique takes into consideration the effgicimany algorithm independent factors, such as
lookahead, I/O overhead, physical transfer deleycgssor speed, and event distribution.

Groselj and Troppef47] proposed thdime-of-next-even{TNE) algorithm for situations where
multiple LPs reside on a single processor. TNEeselipon a shortest-path algorithm and increases
parallelism by computing the largest lower boundabfLPs independently on every processor. The
advantage of this approach is that it does not oelymessage passing to distribute the lookahead
information; rather, the algorithm is executed anleLP independently. A deadlock recovery algorithm
is used to resolve inter-process deadlocks. Bohkeand Troppef48] presented an extension to TNE,
namely SGTNE (Semi Global TNE), whose goal wasxplat lookahead information from both the
local and the neighbor LPs (unlike TNE where onBslwithin a process are used to unblock an LP).
Consequently, SGTNE outperforms TNE, as it allovisgher degree of parallelism as well as avoiding

inter-process deadlocks.

24

In order to increase the set of safe events, aagl@guction computation can be used to derive a
Lower Bound on the TimestanipBTS) among the events that can be received b an the future
(i.e., the minimum timestamp of the next future révan the entire simulation system). With such
information, each LP can safely process any penduants with a timestamp smaller than the LBTS
value [150][118][152][151]. Curryet al. [153] studied the performance of asynchronous covasige
PDES algorithms by examining the performance otesys based on a sequential Centralized Event
List (CEL) and compared those with that of CMB.their experiments the performance of a CMB-
based system was compared with three CEL implermensanamely the heap, splay tree, and calendar
queue for a particular workload model. The ressitidwed that both the number of instructions exetute
and the cache behavior have significant impacterperformance, and the superior cache performance
was able to make up for a larger number of insimastexecuted.

» Conservative Time Windows

Lubachevsky55] was the first to introduce the idea aihaving time windovo determine the set of
safe events that can be executed in parallel. Usiiggapproach, a lower edge is defined for the
window, based on the minimum timestamp of all thprocessed events, and a window size. Any event
whose timestamp is within the window size is elgilfor processing. Although this mechanism
eliminates the overhead associated to the searcbafe events, an important success factor is the
window size. A small window size would decreaseafialism while a large window size would result
as if there was no time window at all. An approgriaindow size can be obtained either from the
programmer, the compiler, or at runtime by monitgrihe simulatiorjl4]. TheMoving Time Windows
(MTW) protocol [63] is a relaxed version of Lubachevsky’'s approadiere global windows are
adjusted dynamically and the events within a windwesassumed to be parallel. When an event with a
timestamp earlier than the LP’s clock is receivad,anomaly occurs. Ayani and Rajfgd] show that
better parallelism can be achieved using @anservative Time Windo@CTW), where the global
ceiling of the window is eliminated, and allowingferent windows to have different sizes.

Lemeire and Dirkx[154] proposed a hybrid synchronization techniqiattcombined the
asynchronous CMB algorithm with CTW to maximize thekahead capabilities of a model by using
lookahead accumulation. The algorithm tries to mméze the performance by optimally tuning two

attributes of the model: granularity and lookah&adhnularity is defined as the amount of computegio

25

between two synchronization points. The mechanrged to improve the performance by maximizing
granularity and thus reducing the communicationrlogad. This is done aggregating all the dedicated
LPs in a processor, and forming a multiprocessclwvican be simulated sequentially on each processor.
The algorithm exploits maximum performance by acglatng lookahead information, and computing
and using the global lookahead of the multiprocess.et al [148] presented a method calledcro-
synchronizationto exploit the parallelism inside each LP. Unlikke methods of lookahead
accumulation[154] and local time warg155][156], this technique keeps the traditional use of
lookahead among LPs unchanged, while imposingaxedl sequential event scheduling inside each LP,
which can statistically increase the lookahead.

* Other Conservative Protocols

Numerous conservative protocols have been propaseldsome of them are presented here. Several
of these protocols were defined as a combinatioayathronous approaches with event-driven clock
progression. The idea is to divide the computaiida cycles, in which one first determines thefe
events and then processes all those events. Aj@afli used the concept of distance between LPs to
determine the safe events. Under this scheme,iskende gives the minimum time it takes for an éven
in one LP to directly or indirectly affect anothd? (similar to a shortest-path algorithm). Thiswisaa
bound on when should an LP expect an event fromeitghbors. Likewise, Lubachevskysunded-lag
algorithm [55] took advantage of the propagation delay betwkeRs to exploit lookaheaf60]. The
algorithm uses a time interval (called the time) lagorder to compute a set of LPs that can aféect
given LP within the lag interval.

The conditional evenfprotocol [61] categorized events into two typetefinite and conditional
Definite events are scheduled locally, while coodil events require communication among all LPs to
determine the earliest conditional event globalich is then converted into a definite event).dlic
[62] used a similar idea based eynchronization barriersand introducing time windows with the
restriction that all events within a window areestd process. Similar to the conditional event apph,
global computations are conducted to determinginte of next synchronization point.

Nicol and Liu [157] proposed a composition strategy by combinthg synchronous barrier
synchronization (global) with channel scanning &@idsynchronization protocols to allow tailoringeth

synchronization mechanism to the model being sitedlarheir attempt to combining synchronous and

26

asynchronous approaches allows using one methoarirof the model where the other method is weak.
Using this approach, the effect of high connegtivé limited by making most of a node's channels
synchronous. On the other hand, by making chanmigislow lookahead asynchronous, the effect of
unusually low lookahead is limited.

The success of all the conservative synchronizatiigorithms presented in this section largely
depends upon the ability to predict the futureteiis of the lookahead or LBT$4][117]. In order to
achieve acceptable performance, this, in turn, ireguan effective use o#pplication-specific
information such as the topological structure oé thetwork of LPs, the characteristics of the
communication network, and the underlying modeldvédr. A side effect of this requirement is that a
seemingly minor changes to the model could affeetsimulation performance dramatically, hindering
the robustness of the applicati@®]. Perhaps the most prominent drawback of coadime approaches
is that they often cannot fully exploit the potahparallelism available in a simulati¢®6], especially
when the estimated lookahead or LBTS values ardyopessimistic and when global synchronizations
are performed too frequently in the synchronouscetten mode. The optimistic synchronization
algorithms introduced in the following sections miat have any of these problems. Nonetheless, when
the application characteristics are favourable seorative approaches can reduce the execution time
significantly with moderate memory consumption (seg.,[158][159][160][134]).

2.6.20ptimistic Synchronization Algorithms

Jefferson’s Time Warp (TW) mechaniqib] was the first (and remains the best known)noistic
synchronization protocol. A TW simulation uses wait time to model the passage of time in a
simulation, and it is driven by a set of Time Wéuqgical Processes (TWLPs), each of which has its
own Local Virtual Time (LVT) and processes eventisoaomously without explicit synchronization.
Aside from LVT, another fundamental synchronizatimmcept in optimistic simulations is the notion of
Global Virtual Time (GVT) which is defined as tharkest time tag within the set of unprocessed
pending event in the entire simulation. TWLPs difftom ordinary LPs, (such as those used in
sequential and conservative simulations), in the wawhich the states and events are managed.
Specifically, an ordinary LP maintains only one ga@b its state (i.e., its current state), whicluplated

repeatedly during the event execution. Furthermameordinary LP does not need to keep a record of

27

past input and output events, allowing the eveatdéd reclaimed immediately after execution. In
contrast, each TWLP needs to manage a historysgbast events (both input and output) and states.
This includes three data structures: an input qtieatecontains the recently arrived input eventstésl

in receive timestamp order), an output queue tb&dshanti-messageshat are negative copies of the
recently sent output events (sorted in send timgstarder), and a state queue that stores the recent
states of the TWLP. The data of these queues g@teukdil it is guaranteed that no event with a deral
timestamp can ever be received by any TWLP in yiseem.

A causality erroris detected when an event with a timestamp edHgar the LVT of the receiving
TWLP is received. Such an event is referred to stsagglerevent. TWLP recovers from the causality
error by undoing the effects caused by a stragglent. This recovery operation is knownrakback
As a result, the state of the TWLP is restorechm last one that was saved prior to the arrivahef
straggler event. Since incorrect messages may $@aead to other TWLPs, they must be cancelled as
well. Cancellation of such messages is performeddnding anti-messages, which are negative copies
of those output messages that were saved in timutogtieue. Arrival of anti-messages at a TWLP
causes further rollback if the timestamp of tha-argssage is less than the LP’s LVT. Thereforei; ant
messages (just as positive stragglers) would cealEcks and further propagation of anti-messages.
These are referred to as secondary rollbacks wieshit in cascaded rollbacks flooding the simulatio
system with anti-messages.

Jefferson’s original Time Warp has been revised @ptémized several times to reduce operational
overhead and improve performance of optimistic &wmons. A wide variety of techniques and
optimization strategies have been proposed initeeature to deal with the well-known challenges of
optimistic TW-based PDES. Issues like memory mameye, fossil collection, memory stall recovery,
checkpointing, cascaded rollback, and event caataahl remain to be top challenges of this fieldtHa
following points, a brief state-of-the-art is pretsd for each category to summarize the most rateva
previous contributions made towards tackling thetsslenges.

* Memory Management

Due to date and state saving and rollback opemstioptimistic parallel simulation requires much
higher memory space compared to sequential sirualabifferent memory-conserving techniques have
been proposed to reduce memory consumption in ggimsimulationd14][161][162][163][164].

28

» Fossil Collection

Fossil collection frees up memory occupied by mistd data (input/output events, LP states), thus
reducing memory stalls in optimistic simulationsedory stall occurs when the simulation is halted du
to memory exhaustion. Different techniques to adhiefficient fossil collection have been propoded.
[165][166] an optimistic mechanism is introduced wheyesfl collection decisions are made based on
locally predicted information without estimatingetiglobal state of the simulation. Chetlur and Wilse
[167] propose a fossil identification mechanisratthses an extended time stamp structure, known as
plausible total clock, instead of using the globiade of the simulation. The PAL fossil collector
technique is an enhanced mechanism that reducdéssisiecollection cost by prioritizing the LPs leas
on the amount of fossil they cand68].

* Memory Stall Recovery

Different approaches have been explored aimingeatvering from memory stalls. Among these,
techniques such asancelback[161][169][170], artificial rollback [163][171], andpruneback[172]
have shown promising results. Both cancelback atifiCel rollback require a globally shared podl o
memory that is accessible by all LPS in the systdowever, they differ in the way they deal with
situations where the pool runs out of memory. \edhcelback mechanism, memory-acquiring requests
are returned to their originating senders, thusifigr sender LPs to rollback and release memory. In
artificial rollback, those LPs with the greatest T/ are forced to artificially rollback, releasing
memory. Under the pruneback mechanism, memory metlan occurs by targeting past states, thus
forcing LPs to release portions of memory occupngdhe state queues.

» Checkpointing

An alternative approach to memory stalls is cheokpay. Such techniques reduce state-saving
overhead by enforcing LPs to save fewer historizah. There are two major types of checkpointing
algorithms: infrequent state-saving or periodic state-saving techniques
[173][174][175][176][177][178][179], which focus on reducing the number of stasased in a
simulation[180][181][182][183]; andincremental state-savingchniques, which attempt to reduce the
amount of data that need to be saved in each (sexte e.g.,). Technigues that combine differeatest

saving mechanisms are proposed as [A48#][185].

29

» Event Cancellation

Rollback operation significantly affects the perf@nce of optimistic simulations. An efficient
cancellation mechanism can improve rollback oveth&ae original TW protocol adapts aggressive
cancellation scheme where anti-messages are sent immediatetyn WwhLP rolls back. Théazy
cancellation technique [186][187] improves rollback efficiency by reducing treommunication
overhead of event cancellation. Under such mechmrasti-messages are only sent when the necessity
is verified by the LP. Another technique, refertedsthrottled lazy cancellatiofil88], slows down the
spread of potentially incorrect computation resulteom re-evaluation during lazy cancellation
operations. On the other hand, #erly cancellationschemg189] cancels false messages in place in
the buffer of a programmable network interface oalgr, which in return would require a specialized
hardware. Theproactive cancellationand thebatch-based cancellatioalgorithms[190][191][192]

improve cancellation performance by capturing tesal relationship between events.

2.6.3Parallel and Distributed Environments

A number of environments have been developed inpt, which provide numerous services to
building parallel/distributed simulation systems buypporting optimistic, conservative, or hybrid
synchronization strategies. Examples of such enments areYADDES (Yet Another Distributed
Discrete Event Simulator)65], SPEEDES (Synchronous Parallel Environment for Emulatiord an
Discrete Event Simulatiorfb6], WARPED [67], HLA (High-Level Architecture]67], WarplV [69],

and psik [70]. Park and Fujimoto [2006] proposedviaster/Worker (MW) paradigm for executing
large-scale parallel discrete event simulation @ot over network enabled computational resources.
The MW depicts a client/server architecture wheients repeatedly download state vectors of logical
processes and associated message data from a @easter), perform simulation computations locally
at the client, and then return the results backhto server. The advantages of such approach over
conventional PDES include support for executionrdwgterogeneous distributed computing platforms,
load balancing, efficient execution on shared platfs, easy addition or removal of client machines
during execution, simpler fault tolerance, and iowad portability. TheAurora Parallel and
Distributed Simulation SysterfAurora) [136] is a prototype implementation of the MW. Sawe

extensions and improvements to Aurora were pregdater on including a scalable version for patalle

30

discrete event simulations on desktop gid37], an optimistic time management compliantgablic-
resource computing infrastructures and desktop sgfiB8], and a version implemented for

metacomputing systenfi$39].

2.7 Parallel DEVS and Cell-DEVS Simulation in CD++

CD++ [Wai02], a M&S toolkit originally developed by Weer[101], is an open-source, object-oriented
environment that implements both P-DEVS and CelWBEheories in C++. The tool includes facilities
to build DEVS and Cell-DEVS models. DEVS atomic ralsdcan be programmed and incorporated into
a class hierarchy. Furthermore, coupled modelsbeadefined using a built-in specification language.
Therefore, coupled and Cell-DEVS models need nobeoprogrammed, rather the tool provides a
specification language that defines the model'spting, the initial values, the external events, dmel
local transition rules for Cell-DEVS models. CDHsa@includes an interpreter for Cell-DEVS models.
The language is based on the formal specificatidrizell-DEVS. The model specification includes the
definition of the size and dimension of the celhap, the shape of the neighborhood and the borter.
cell’'s local computing function is defined usingsat of rules with the fornPOSTCONDITION
DELAY { PRECONDITION }. These indicate that when tRRECONDITIONis met, the state of the
cell changes to the designatE®DSTCONDITIONafter the duration specified bRELAY. If the
precondition is not met, then the next rule is eatdd until a rule is satisfied or there are noenates.
Over years, CD++ has been evolved and extended) wfferent middleware technologies to
support simulation on varied platforni$9] [109] [20] [21][34][22][23][24][25] [12]. In particular,
Parallel CD++ (or PCD++ for short) simulation engine allows optimistic Ts\mulation of P-DEVS
and Cell-DEVS models on Linux-based distributed-rmagmmultiprocessor cluster systefil]. It is
built on top of the WARPED simulation kerné@l7] [111] and relies on the Message Passing Interface
(MPI) libraries[112] for inter-node communication. The optimissgnchronization protocol of PCD++
was revised iff34] and a new protocol, namelyightweight Time Warp (LTW) was integrated into
the tool which significantly improved the perforncar{32]. In PCD++, a model is partitioned at the
atomic level, and each abstract DEVS processomeimented as a LP. The resulting LPs are then
mapped to a set of physical processors (or nodes)pérallel execution[21]. The optimistic

synchronization of PCD++ simulator was replacedhvilie conservative protocols proposed in this

31

research resulting in a purely conservative sinoujatalledConservative CD++(CCD++ for short)
[87] addressing several important issues arisinBiHVS-based conservative simulations, providing a
testbed for the research presented in this disgeria

CCD++ consists of a layered architecture where &agr only depends on the layers below it, as
illustrated in Figure 6.

Model

CCD++

Time Warp - Warped

MPI

Operating System

Figure 6. Layered Architecture of CCD++ Simulaf@1]

The operating system resides on the bottom of thhitacture. CCD++ uses Linux Operating
System as the underlying platform for high-perfonge parallel and distributed computing. Above the
Operating System lays the MPI, the standard spatifin of message-passing library for high-
performance communications on parallel machinesvaorkstations clusters. The Operating System
with the use of MPI provides the communicationasfructure for the CCD++ simulator. TheaRPED
[67][111] kernel serves as a configuration middlewhet provides services for defining different types
of processes (simulation objects), memory managenmé&d, and file handling. Simulation objects
mapped on a physical processor are grouped by a@hRop of thevARPED kernel resides the CCD++
simulation engine source code. Finally, the top tntepger is the DEVS or Cell-DEVS model created in
CD++.

To reduce communication overhef®] [109], similar to PCD++, CCD++ adopts a flat sturet
that creates three types of DEVS processors on eacde: aNode Coordinator(NC), a Flat
Coordinator (FC), and a set dbimulators Doing so eliminates intermediate Coordinatorghe LP
hierarchy, reducing the communication cost. Bamulatorrepresents an atomic DEVS model, where
the Coordinator is paired with a coupled model. Tismulatoris in charge of invoking the atomic

model’s transition and external event functions. On the other hand, thHéoordinator has the

32

responsibility of translating its children’s outpewents and estimating the time of the next imntinen
dependent(s). At the beginning of the simulatiare &P is created on each machine (physical pracess)
Then, each LP will host one or more DEVS procesgordy oneNC is created on each machine and
acts as the local controller on its hosting LP. N is the parent coordinator for tlC and routes
remote messages received from other re@e to theFC. The Simulatorsare the child processors of
the localFC representing the atomic components of DEVS andt@EYS models. TheNC is a local
central controller and the final destination ofeinhode messages, whereas Bt routes messages
between its childSimulatorsand the parenNC. The DEVS processors exchange two categories of
messagescontentandcontrol. The first category includes tlexternal(x) and theoutput(y) messages,
and the second includes timtialization (I), collect (@), internal (*), anddone(D) message<xternal

and output messages exchange simulation data between thelspodect and internal messages
trigger the output and the state transition fundioespectively (in atomic DEVS models), atwhe
messages handle scheduling by carrying the madeidiinformation. The simulation is executed in a

message-driven manner. Figure 7 illustrates CCDré¢gssors and the messaging paradigm.

fffff » inter-process message
— intra-process message

4 Node @ Node 1

Simulators Simulators

J _ J
Figure 7. CCD++ Flat Architecture and Message-Passing Paradig

The simulation starts bMCssending anl(t) message to their childCs. At any virtual time, the
message flow among the LPs is organized into ai4plétsed structure that includes an optiaralect
phase and a mandatamansition phase, which in turn may involve multiple roundscomputation to
execute state transitions incrementally. Th#ectphase starts with @llect message sent from tiNGC
to theFC and ends with the followindonemessage received by thN€. Thetransition phase begins

with the firstinternal message sent from theC to theFC and ends at the ladbnemessage received by

33

the NC at that time. Théransition phase is mandatory for each individual simulatiare. Theoutput
functions in the imminent atomic models are invokleding collect phases, while the state transitions

for the atomic models are performed in ttansition phases (as defined in P-DEVS formalism).

2.7.1Event-Processing Algorithms

Based on the flat LP structure, this section hyiefescribes the parallel CD++ event-processing
algorithms defined for th8imulators the FC, and theNC respectively. In the following discussion, the
form (type, t)is used to denote a messageypethat has a receive time bf The send time stamp of an
event is by default the current virtual time.

» Simulator event-processing algorithm

The Simulator algorithm for initialization messagelefined as follows:

SIMULATOR parentFC

(0

initialize()

1,=0
1. =infinity

Figure 8. Simulator Algorithm for [, 0)

As defined in DEVS formalism, two variables are duse the simulator to record its current
simulation time (t) and the value afigma(ta). Using these two values, the valuab$olute next time
(denoted asy) is calculated as t+ ta. Upon receiving the initialization messade 0}, the Simulator
resets it to the timestamp of the message, therefore theil8ior's virtual time now is equal to zero.
Then, the simulator initializes the variables definn its associated atomic model, and after tihat,

informs its parent FC of the value gy sending @onemessage stamped with time 0.

34

SIMULATOR parentFC

|

|

|

|

|
L

@1

alf

o =1 1,=0
b y=M(s)

senc(y 1)

senc (D 1)

Figure 9. Simulator Algorithm for @, t)
When a @, §) message is received, the Simulator invokes thpubdunction £) of the atomic
model and as a result an output messgg® i sent to the FC. After this, the Simulator vedéind D, t)
to the FC with = 0 to indicate that it is imminent.

SIMULATOR

parentFC

T

T
|
| |
| |
| |
| |
L |

—_—

alf

I <1<t
e=1-1 ta=1y-1

s =0exi(s e bag)
emptyBag

[t =1y anc bag is empty] :‘ Bl <
€ = Ojnil €
[t =1, and bag not empty]
¢ = Beor(€ bag]

emptyBag (;
=1

senc(D 1)

Figure 10. Simulator Algorithm for t, t)

35

Following the collect message,*at) will arrive to trigger internal/external/confluefunction of

the atomic model depending on the timing of thesags and the status of the Simulator’s message bag.

SIMULATOR

x1

insertMsg (x)

Figure 11. Simulator Algorithm for X, t)

The last message that may arrive at the Simulaaoi,if) which is simply inserted into the
Simulator's message bag. Note that, only exterredsages with identical timestamp can be inserted
into the message bag at a given simulation timdorBeadding further messages with a different
timestamp, the existing messages must be procesgkthe bag be cleared in the receive function for
internal message. In other words, an internal ngessall always arrive in between two consecutive

batches of external messages.

» Flat coordinator event-processing algorithm

The FC, sitting in between the NC and the Simutatperforms three tasks: synchronizing the
execution of all child Simulators, routing messageshanged among its children, and deliveringgo it
parent NC those messages that are sent from itdre@hmito the environment or to other remote
Simulators. To accomplish the first task, the R&@i$i its imminent children with the minimum absolute
next time and records them in a structure cadhgachronize sett also uses a variabldpneCountto
keep track of the number of done messages it shregklve from its children. This variable is used t
implement a simple barrier. The FC only passesrobtt its parent NC after these children (the nemb
is given bydoneCounthave finished their previous computation. Theesotiwo tasks rely on the model
coupling information that is loaded into theain administratorof the simulation administration facility

during the bootstrap operation.

36

1L= 0

doneCouni= #of children
*for all childrer

senc(O

Figure 12.FC Algorithm for (, t)

When (, 0) is received, the FC records the total numideitsochildren in a variable named as
doneCounthen forwards thel (0) message to each child. After this, the FC svait all its children to
respond to this initialization by sending backba Q). The FC will only pass the control over to €
if all its children have finished their previousngputation and have sent done messages as notficati
messages.

1|_= o] 1a =(
*for each imminent child with t, =1

cachSyncSet(chilc}

send(@ 1,

Figure 13.FC Algorithm for (@)
Upon receiving a@, § message, the FC forwards it to all imminent Satuis and will keep a
record of this for later use (to know which childneeed to do state transitions wh&nt) is received).

37

EC parentNC
. child

|

|

|

|

|
——

ly influences Simulator OR env] send(y 1)

*for each child C;influenced by y

x =Z (y} cacheSyncSel(

send(x 1)

Figure 14.FC Algorithm for §, t)
Moreover, wheny, 1) is received, the FC searches the model couplifagration to find out the
correct destination. The destination is eitherrgoui port on an atomic model, or an output portren

topmost coupled model.

insertMsg (x,

Figure 15.FC Algorithm for , t)

In case of receivingk() message, the FC will simply insert the messatgeiis message bag.

38

EC
\
\
\

* 1

alt

[doneCount = 0] L=t

* for each x in bag
*for each C; of x

send (x, t)

: cacheSyncSet(i)

*for each i in Sync set

send(*, t)

: clearSyncSet()
|
felse] | raiseError()

Figure 16.FC Algorithm for ¢, t)
Upon receiving{, t) message, the external messages inside the FGsage bag are flushed to the

local receiving Simulators. This will trigger th@minent Simulators to perform a state transition.

EC parentNC

T

updateCi({}

{1=1 15 = mir(all children’s ty) - 1

[doneCouni==0]

send(C 1)

Figure 17.FC algorithm for D, t)

39

Finally, when a D, t) message is received from a child Simulator, t@eupdates the child’'s tto

the sum of the current simulation time andglggmavalue carried by the received,(t) message.

* Node coordinator event-processing algorithm
Each LP has one NC that acts as the local cergrdtaller in charge of the sequential simulation

on the hosting machine. It has a single child,RBeunderneath. The NC plays a very important nole i

the simulation as summarized below:
1) It takes care of the inter-LP communication amdrg $imulators. The messages exchanged

2)

3)

4)

between the NCs is handled using a special streictioeNC Message Bag

It is responsible for handling the external evérdm the environment that are known prior
to the start of the simulation and are schedulethbymodeler using a text file, nam&y
file. These external events are loaded into the N@saglthe bootstrap operations by the
main administrator Each NC uses a structure callEdent Listto hold those external
events it needs to handle during the simulatiorenEy in the structure are sorted so that
they can be processed in increasing timestamp .oftier NC uses a pointer callegtent-
pointer to reference the first event that has not yet besmt out. Initially, this pointer
points to the first event in the list.

It synchronizes the activities of all local progassand drives the simulation on the hosting
LP. The local simulation time is advanced by the bESed on three factors: the external
events in its Event List, the external messagesived in its NC Message Bag, and the
closest state transition time provided by the FC.

It manages the flow of control messages for thall&mulators in line with the Parallel
DEVS formalism. For example, the formalism requitest the output operation must take
place just before the state transition in immin8imhulators. Hence, the NC must ensure
that the collect message, which triggers the outpetation, will be received by imminent
Simulatorsbefore the internal message, which results in the statesition. The correct
sequence of these control messages is manipulsiegl a flag, namelpext-message-type

which is defined in the state of the NC. It may éavvalue of collect (@) or internal (*),

40

corresponding to the type of the control messagewiiil be sent out by the NC in the next

simulation cycle. The initial value of the flagsst to @.

NC childFC

(0

(0

Figure 18.NC algorithm for [, 0)
Upon receivingl| 0), the NC simply forwards it to the child FC.

NC

(x 1)

insertNCMsgBag(x)

Figure 19.NC algorithm for X, t)
In case of receivingx(1), NC will insert this message into tiNC Message Baglhese external

messages contain values sent from remote Simul@tdosal ones.

NC NC

o b H

Figure 20.NC algorithm for y, t)

41

When §, 1) is received, the NC simply forward it to the destion processor which happens to be a
remote NC. Finally, reception of ®(t) message by the NC from a child FC indicates thigtis a

response to a control message that was previoestyosit by the NC.

2.8 DEVS-based Parallel and Distributed Simulation

A number of studies have been devoted to DEVS-bpasdllel simulations including: DEVS-CH#1],
DEVS/CORBA[72], DEVSCluster[73], DEVS/P2P[75], DEVS/RMI [76], DEVSim++[77], and P-
DEVSim++ [78]. In [79] a distributed simulation strategy for DEVS psesented which combines
conservative and risk-free optimistic strategiestao[80] presented an implementation of the parallel
DEVS simulation protocol that uses a modified Tidvarp optimistic algorithm for a shared memory
multiprocessof81]. In terms of conservative DEVS-based simulaiothere has been a large body of
work proposed in the literature by integrating DEWSh HLA [68], allowing DEVS tools to use the
synchronization services provided by HLA. Based tbhe specifications of HLA, DEVS atomic
components are defined as HLA federates communigdiy exchanging messages through the Run
Time Infrastructure (RTI). 1fi82] the first integrating algorithm of DEVS modéfgo a HLA-compliant
environment was proposed, which was based on #ssichl CMB synchronization mechanism using
the conservative algorithm provided by HLA. Howewéis approach was prone to deadlock which was
later resolved in[103]. Zacharewiczet al investigated several approaches to improve logkdh
computation in the G-DEVS/HLA environment. [h04][105], they developed an algorithm for G-
DEVS federation execution with a conservative syootzation mechanism using a positive lookahead
value gained from the HLAeast Incoming Time Stamp(LITS) value. In[106], they present a new
HLA lookahead computation algorithm which uses Ehgstra path search in a graph to compute the
different values of state variables and mathemidticection analysis to determine the lookaheadiier
model states.

HLA requires complex system’s configuration whiokeds considerable efforts. In order to fully
benefit from HLA, the user needs to have an inv@&ivowledge which requires a considerable amount
of time. More importantly, one of the major issugsHLA-based parallel simulation is the extensive
performance overheads incurred due to the runtinfestructure (RTI) software that links the

simulators, especially for DEVS-based simulatorat thave fine-grained event computations. These

42

issues and the many advantages of WARPED kerneh (88 ease of use, simple configuration, light-
weight oriented middleware, and many more) werentieéivation to use WARPED as the middleware
in both PCD++ (optimistic CD++) and CCD++ (conssive CD++) simulators.

There has been some research done outside the Hir&id. For instance, Zeigl¢8] introduced
conservative parallel simulation of DEVS modelsdshen the classical CMB approach with deadlock
avoidance and the Yadd¢s08] algorithm. The principal idea behind this hwd is to maintain a
network of correlatecEarliest Output TimgEOT) andEarliest Input Time(EIT) estimates, which
matches the output-to-input coupling structure tef DEVS coupled model. The EOT/EIT estimates
represent the time information distributed via nolessages. Under this scheme, the lookahead
calculation is performed at each DE®8nulator by looking at input and output ports. Howevegerth
are two limitations associated with this technigalea large number of EIT and EOT computations are
required (since the algorithm is implemented atShwpulatorlevel, the overhead increases as the model
size grows; on&imulatoris needed per atomic component); b) a large numibeull messages are sent
among processors, since both EIT and EOT mustdighdited, as opposed to sending only one type of
information (i.e. only lookahead). Besides, Himrpalshet al [193] introduced a different conservative
simulation algorithm for efficient distributed sitation of P-DEVS models. The algorithm makes use
of Java threads and performs sequential executraong the entities on each computing node while the
simulation is distributed over remote nodes.

There are three approaches to mapping the DEVSalam into PDES protocols as illustrated in
Table 1. Two of these approaches are specializatd the more generic protocols (i.e., consereativ
and optimistic schemes). The third is the direcppiag into a simulation algorithm (e.g., the orain
DEVS|[8] and the classical P-DEVS protocgld]) .

43

Table 1.Comparison of PDES Approaches for DEVS

Scheme

Approach

Overhead

Advantages

Disadvantag

(D

Chandy-Misra - Process events- Null Messages | - Relatively simple | - Does not
Conservative in strict time to implement exploit all
(LBTS, GLM, and stamped order - Dynamic and parallelism
CMB protocols - Causality low-cost - Not
implemented in preservation lookahead and | intrinsically
CCD++) with deadlock LVT computation| load balancing
avoidance - Low memory
usage
Original DEVS - Propagation | - Global - Easy to Simultaneous
delay for Minimum time implement Events are
lookahead synchronization Problematic
Time Warp - Permits - State, Message | - Can exploit - Complex
Optimistic (LTW Causality Saving, Fossil higher level of logic is
protocol Violation Collection parallelism difficult to
implemented in - Detects -Anti-messages implement
PCD++) violations and | -GVT and verify
recovers using Computation - High memory
rollback consumption
P-DEVS Riskfree and - Global - Easy to - Does not
strict causality Minimum time | implement exploit all
adherence synchronization| - Exploits parallelism
- Simultaneous | Simultaneous - Not
output Events intrinsically
collection load
balancing

Performance evaluation of PDES protocols is a cermfask. PDES environments are commonly tested

implementation of it. For instance, conservativaetisynchronization protocols have been evaluated

44

2.9 Performance Evaluation of PDES Environments

and compared using synthetic or real models. Thave been many empirical and analytical studies on

the performance of PDES algorithms. Most of themegally try to evaluate a particular algorithm ar a

using synthetic application benchmarks simulatingasiety of topics including: queuing networks
[140][14][202], communication networkR201], or electronic circuit§203][201]. Similarly, parallel

discrete event simulation performance evaluatissiaguan optimistic synchronization protocol have

been conducted using synthetic benchmarks simglatiommunication network$201][204], or
electronic circuit4201].

Parallel DEVS-based simulators also mostly usehgfit models by conducting some experiments.
For instance, the work presented[#i] used a number of benchmarking models to aeatiie total
execution time and speed up.[li2] the performance of the DEVS/CORBA environmemass evaluated
by testing a number of Supply Chain Models. Theutator was also tested by conducting a benchmark
simulation for a large-scale logistics systgfBl]. A distributed DEVS simulator was proposed 5]
which measured the performances of the peer-toipe@rork systems. The DEVS/RMI system used a
test case of a large-scale dynamic 2D-Cell spaagehto analyze the performance of the simulator in
terms of dynamic re-configuration capabilitig®]. Zacharewiczet al. [107] used an example of a
microelectronic production workflow to test the fmemance of the G-DEVS/HLA environment.

From the above discussion it is clear that moshefPDES research efforts analyze their simulator
by investigating only a few real or synthetic madé&lloreover, performance evaluation studies foh bot
conservative and optimistic time synchronizatiorvehdeen limited to an evaluation of parameters
specific to the simulation model. In contrast, ffe¥formance analyses presented in this dissertation
(Chapter 6) analyze the impact of more generalreliscevent simulation parameters such as total
number of null messages, null message ratio, btbtikee, and memory consumption. In addition, the
performance evaluation conducted in this reseasels not only synthetic models, but also variouk rea
world scenarios. The performance results of thseaech quantify the impact of various simulation
model parameters on the attained speedup. As thehesults can be used to assess to what extent a
particular simulation can benefit from parallel extton under a conservative or optimistic time

synchronization protocol.

45

Chapter 3: Contributions

The central themes of this dissertation are tol¢éalDlEVS-based conservative simulation on distridute
memory multiprocessor clusters and to provide apauative study analyzing the effect of different
parallel synchronization strategies on the simafatperformance. This section summarizes the key
contributions made in pursuit of each of these te@gearch objectives.

As the first contribution of this research, thremservative DEVS protocols were proposed, based
on the classical Chandy-Misra-Bryant synchronizatitechanism with deadlock avoidance, extending
DEVS abstract simulator to provide means for lo@ahcomputation and null message distribution.
These protocols have been integrated into the C&tlation toolkit, providing a purely conservative
simulator, called CCD++, for running large-scale\[Eand Cell-DEVS models. The three algorithms
were implemented on a revised DEVS abstract simwultd reduce the frequency of lookahead
computation. They also replace time informationnestions with a single lookahead computation,
reducing the number of null messages. The dynaoakahead values of the proposed algorithms are
extracted directly from the model specification,viating the need for the modeler in providing
predefined values. In addition, the low-cost loadadh computation feature of the algorithms provales
fast and efficient method and reduces the undeglgnotocol’s overhead.

The first protocol is referred to as thewer Bound Time Stampmechanism (LBTS), the way used
to compute the next global virtual time. Under LBTBocesses communicate only through messages
with their neighbors; there are no shared variabtesno central process for message routing oregeoc
scheduling. Although each LP has its own LocalyéttTime (LVT), no event is received at the virtual
past time. The null messages carry lookahead ird#bom. The protocol is deadlock-free, as null
message cycles cannot occur. At the start of eggnchronization phase, each LP computes its
lookahead value, which is extracted dynamicallyrfrthe model specifications, and forwards it to all
other LPs. Then, the LP suspends and waits foealbte null messages to arrive from other LPs.

The main issue of the LBTS protocol is the largenbar of null messages that are distributed
throughout the simulation. Each LP not only send messages to its direct neighbors, but also to

every other LP to ensure correct computation of HBIS value. This limitation degrades the
46

performance when the processors are fully conneatedrloading the simulation with excessive
synchronization messages. In order to reduce tkeehead of the LBTS conservative DEVS algorithm,
the Global Lookahead Management (GLM) protocol was proposed. The GLM mechanism
significantly reduces the number of null message®rganizing the conservative execution in such a
way that every LP reports its lookahead only togleal manager rather than to every neighboring LP
The proposed protocol implemented an asynchronimategy in the sense that there is no global clock
(every process maintains its own local clock). ektcal lookahead manager is in charge of receiving
every LP’s lookahead, identifying the global minimlookahead of the system, and broadcasting it via
null messages to all LPs. The sole function ofddsatral manager is to detect the suspension phade,
to initiate the resume phase by broadcasting thkagiminimum lookahead. The simulation is divided
into cycles of two phaseparallel andbroadcast

The third protocol, referred to &handy-Misra-Bryant (CMB) DEVS, is a variation of the LBTS
mechanism aiming to reduce the number of null ngessdy introducing multiple rounds of null
messages. The protocol changes the way conserggtiv@ronization is maintained by focusing on null
message distribution among the neighboring LPs.LRnonly forwards null messages to its direct
neighbors as defined by the DEVS translation fumctiUnder this scheme, at the start of every
synchronization phase, the LP computes its lookdikeailarly to the way it is calculated in LBTS,tbu
the null message is only sent to its direct neighb&ach null message distribution and reception
continues in multiple rounds until there is a guéea that no smaller lookahead value can be reteive
from neighboring LPs later in time. Once the LP hexeived the smallest possible lookahead value, it
computes the new LVT and resumes the simulatioth Ye CMB protocol, the overall number of null
messages is reduced, but the multiple-round ofdbekd computation and null message distribution
could have a negative effect on the overall peréoroe of the simulation.

The conservative DEVS algorithms presented in tiésertation overcome the limitations of the
original conservative Parallel DEV31] by: (i) implementing the mechanism at the topst level of
the DEVS abstract simulator hierarchy (i.e. t@®ordinatol), thus reducing the frequency of
information computation, and (ii) performing a dmd¢pokahead computation rather than two types of

calculations (i.e. EIT and EOT), which results isignificant reduction of number of null messages.

a7

The key focus of these approaches is on how to ateripokahead values and distribute them via null
messages, and when to suspend/resume a processor.

The second contribution of this research is a coatp@ study of optimistic versus conservative
DEVS-based simulation by conducting experimentf wériety of Cell-DEVS models. To achieve this
goal, precise sensitivity analyses at both modet anderlying synchronization protocol-level were
carried out on both of the conservative simula@CD++) and the optimistic one (PCD++), studying
the performance in terms of execution time, memagge, operational cost, and system stability for

very large models.

3.1 Research Publications

Some of the results derived from this research Hmsaen already published thus far, including those
directly related to the two central research theares those relevant to DEVS-based M&S in general.
Following is a list of manuscripts that have beablighed or submitted awaiting acceptance.
Jafer, S., Wainer, G. “Conservative SynchronizatMethods for Parallel DEVS and Cell-
DEVS”. Proceedings of Summersim’ll, Netherlands112(B3]. This paper evaluates the
performance of the three conservative protocolprhegenting the results of running three Cell-
DEVS models on a cluster of 12 nodes. The metrsexiuo evaluate these protocols are based
on the synchronization protocol and the naturdnefrhodel.
Jafer, S., Wainer, G. “A Performance Evaluatiorthef Conservative DEVS Protocol in Parallel
Simulation of DEVS-based Models “. Proceedings epfii®sim’1l, 2011[84]. This paper
provides the performance gained using the LBTSogaitin running large-scale Cell-DEVS
environmental models on a cluster of 26 machines.
Jafer, S., Wainer, G. “Global Lookahead Manageni@hiV) Protocol for Conservative DEVS
Simulation”. Proceedings of DS-RT 2010, VirginiaSA. 2010[86]. This paper proposes the
GLM protocol by outlining the implementation detadnd the integration of the protocol into
CD++. Several Cell-DEVS models are examined toueatal the performance of the protocol.
Jafer, S., Wainer, G. “Conservative DEVS - A Nowiotocol for Parallel Conservative
Simulation of DEVS and Cell-DEVS Models “, Proceggs of SpringSim’10, Orlando, USA.

48

2010[87]. This paper introduces the LBTS protocol amtdsses the challenges with regards to
computing lookahead and LVT for DEVS-based parailigiulation.

Jafer, S., Wainer, G. “Conservative vs. OptimiStarallel Simulation of DEVS and Cell-DEVS:
A Comparative Study “, SummerSim’10, Canada. 2[&B). This paper provides a comparative
study by conducting thorough experiments runninggdascale Cell-DEVS model on a
conservative CD++ and an optimistic version of thel. Performance analyses are performed
highlighting the strength of each protocol undeaiiedscenarios.

Wainer, G., Liu, Q., and Jafer, S. “Parallel Sintiola of DEVS and Cell-DEVS models in
CD++", In Discrete-Event Modeling and Simulatiorhéory and Applications, Boca Raton, FL:
CRC Press, pp. 226-272, 20189]. This book chapter presents optimistic and rigyb
synchronization approaches for running large-sb&¥ S and Cell-DEVS models by evaluating
the protocols through performance analyses of enmental Cell-DEVS models.

Jafer, S., Wainer, G. “Flattened Conservative Rar8imulator for DEVS and CELL-DEVS”,
Proceedings of International Conferences on Coniput Science and Engineering,
Vancouver, 200990]. This paper proposes flat architecture for ssomative simulation of
parallel DEVS and Cell-DEVS using WARPED as a satioh middleware.

Jafer, S., Wainer, G. “Advanced Parallel/Distrilsut&imulation Benchmark for Cellular
Models”. Poster Proceedings of Al/ GI/ CRV/ IS AahConference, Windsor, May 20083].
This poster-paper outlines different simulation @aghes for running cellular models in parallel
and distributed fashion.

Jafer, S., Wainer, G. “Synchronization StrategmrsHarallel Simulation of Large-Scale DEVS-
based Models “. Submitted to SIMULATION: Transaas of the Society for Modeling and
Simulation International, 201[P4]. This journal paper summarizes the thesis @dirdusses the
different conservative protocols that are proposethis research. It also provides a thorough
performance analysis of these protocols and corspher performance in terms of a sent of
metrics.

Jafer, S., Liu, Q., and Wainer, G. “Synchronizatidethods in Parallel Discrete-Event
Simulation “. In-preparation for Journal of SIMULADN: Transactions of the Society for

Modeling and Simulation International, 20Jd5]. This journal paper is a literature survey of

49

existing synchronization methods in parallel dissmvent simulation. It surveys different
approaches that have been proposed in the lastdleades.

Other contributions published during this reseanctude:
Moallemi, M., Jafer, S., Seyed, A., and Wainer,|Gterfacing DEVS and Visualization Models
for Emergency Management”. Proceedings of Sprin@sin2011[85]. This paper proposes a
collaborative framework for integrating real-timeEWS simulation with real-time 3D
visualization in an emergency planning scenariagisbbotic agents.
Sanz, V., Jafer, S., Wainer, G., Nicolescu, G.,UizgA., and Dormido, S. “Hybrid Modeling of
OptoElectrical Interfaces Using DEVS and ModelicBtoceedings of the DEVS Integrative
M&S Symposium, Springsim’09. San Diego, CA, USA.090[91]. This paper provides
implementations of opto-electrical interfaces, itheharacteristics and functionalities using a
hybrid M&S approach based on CD++ and Modelica.
Jafer, S., Wainer, G. “Event Behavior of Discreteel Simulations in CD++ Vs. NS-2". Poster
Proceedings of Spring Simulation Multiconferencpril®Sim, Ottawa, April 200892]. This
paper analyzes Future Event Set data structuregoofliscrete event simulators: CD++ and NS-
2. Varied simulations are conducted on each simulat describe a real event behavior by

observing event timestamps, life times into the BB& event execution time.

50

Chapter 4: Conservative DEVS Protocols

This chapter proposes three conservative DEVS potdo Lower-Bound-Time-Stamp (LBTS)
DEVS, Global Lookahead Management(GLM), and Chandy-Misra-Bryant (CMB) DEVS) for
efficient conservative simulation of P-DEVS and ICHEVS models on distributed-memory
multiprocessor clusters. Section 4.1 outlines #s=arch problem and the underlying design ratignale
Section 4.2 introduces the LBTS protocol and thakddead and LVT computation mechanism that is
commonly used by the three protocols. . Sectiondéscribes the CMB DEVS protocol. Section 4.4
covers the GLM mechanism, while Section 4.5 congpdne three protocols. The classical P-DEVS
protocol is investigated in Section 4.6, while thero-lookahead issue in P-DEVS is explained in
Section 4.7.

4.1 Problem Statement and Design Methodologies

This chapter aims to tackle the various challengesDEVS-based conservative simulation on
distributed-memory multiprocessors by exploitinge titore computational properties of DEVS.
Specifically, the research attempts to addressishaes of conservative DEVS-based simulation
systematically, improving the simulation performan(@ terms of both execution time and memory
consumption) without complicating the synchroniaatimechanism. The first proposed mechanism,
referred to as théower-Bound-Time-Stamp (LBTS) Conservative DEVS protocol, is developed
based on the following rationale.

» Pure conservative synchronization

The proposed protocols take a purely conservapypecach to simulation synchronization, using the
Chandy-Misra-Bryant null message strategy with tadavoidance. The protocols make use of the
underlying simulation parameters to exploit incezhslegree of parallelism. That is, for lookahead
calculation and LVT computation, the protocols @s&sting parameters that are extracted from the
model automatically, reducing the overhead of thdeuwlying synchronization protocol significantly.
Doing so makes the system less reliant on the lkeayed of model behaviour, resulting general-

purposeDEVS-based simulations.
51

» Coordinator-centered optimization

As discussed in Section 2.6, CCD++ employs a fl&t d$tructure that consists of only two
coordinators (i.e., one NC and one FC) on each ,netide many Simulators are created in a typical
large-scale simulation. Hence, by implementingdbeservative protocols at the NC level, a substanti
reduction in the operational overhead occurs riegulin a significant improvement in the overall
simulation performance. The adoption of the NC-emd strategy drops the cost of null message
distribution and the lookahead computation sigaifiity.

» Simultaneous reduction of memory consumption and ecution time

In general, the optimistic synchronization mechiasisnake a trade-off between the execution time
and the memory usage. In contrast, the conservptotecols like the ones proposed in this reseasch
to achieve both objectives simultaneously by maimg shorter data lists (there is no need to keep
historic data as in optimistic protocols), whilé,tlhe same time they attempt to reduce the number o
null messages and the cost of the lookahead cotigout@s much as possible. Moreover, the proposed
conservative protocols also try to speed up memexhamation by performing it more frequent, without
incurring negative impact on the overall simulatpgerformance.

» Event-queue management

The protocols use a simple Least-Time-Stamp-FUSGF) queuing mechanism to facilitate event
queue operations, instead of using advanced datetwstes and algorithms. Although the simulation
performance can be improved further using such gttectures, by keeping the LTSF event queues
relatively short throughout the simulation consai#e speedups can be achieved. This is done by
deleting the input queues’ events as soon as theyergecuted (unlike optimistic protocols where
historic data are kept in case rollback occurs)addition, the protocols are specifically tailorfot
efficient execution of a large number of simultameevents at each virtual time, directly addrestieg

computational property of large-scale, denselyrotenected, and highly-active DEVS-based models.

4.2 The Lower-Bound-Time-Stamp Protocol

In this section, the LBTS conservative DEVS protasopresented, which serves as the base for the
other two protocols (i.e., CMB and GLM) that wik Ipresented next. The LBTS protocol (named after

Lower-Bound-Time-Stamp concept[150], due to the way used to compute the next saie) is

52

mainly based on the original Chandy-Misra-Bryanprapch with deadlock avoidance. The protocol is
implemented at the NC and extends the DEVS abstiautilator to provide means for lookahead
computation and null message distribution. Proeessenmunicate only through messaging with their
neighbors; there are no shared variables and ntvaterocess for message routing or scheduling.
Although each LP has its own Local Virtual Time (L no events are received at virtual past time.
Moreover, synchronization is maintained throughl mukssages carrying lookahead information. The
NC on each LP is the central synchronizer for dgvithe simulation on that node. The NC is
responsible for lookahead calculation, null messdg#ribution, suspending the LP, receiving null
messages from other LPs while the LP is blocked,rasuming the LP when all remote null messages
are received. That is, the NC drives the simulaabthe LP, while other DEVS processors (FC and
Simulators) are unaware of the underlying synclaation mechanism.

The LBTS protocol is deadlock-free, since null sagge cycles cannot occur. At the start of every
synchronization phase, each LP computes its lo@dkealue, which is extracted dynamically from the
model specifications, and forwards it to all oth&s. Then, the LP suspends and waits for all remote
null messages to arrive from destination LPs. Otiee null messages are received from all LPs
participating in the simulation, the destination id8umes and first computes its new LVT based en th
lookahead values it has received via the remotenmesages. Under this scheme, at any time, the LVT
of every LP is equal to the Lower-Bound-Time-Staofpany unprocessed event among all LPs. The
major issue of this protocol is the large numbenuaf messages that must be distributed at th¢ star
every synchronization phase. Each LP not only semtisnessages to its direct neighbors, but also to
every other LP participating in the simulation tesere correct computation of the LBTS value.

Figure 21 illustrates the architecture of CCD++ aetthivas built on top of the WARPED kernel.
WARPED is used just to provide services for definiprocesses (simulation objects), scheduling,
memory, file, event, communication, and time mamag® (and PCD++ uses the optimistic
synchronization services). Simulation objects ophgsical processor are grouped into an LP, and

communicate through the Message Passing InterfdBé) (

53

LVT0 @ Node 0 ™ e LVT1 @ Node 1 N

Conservative Protocol Conservative Protocol
null-msg

Simulators / \ Simulators /

WARPED

MPI

Figure 21. Conservative Architecture of CCD++

The conservative mechanism is invoked at the baginof everycollect phase at the NC. The LP
suspension also takes place duringdbkéect phase. Simulators can only communicate with tharent
FC, which means there is no direct communicatiawé&en Simulators (even the local ones), thus FCs
are always aware of the timing of state changabeif child Simulators. When a Simulator sendg,a (
t) message to its parent FC, the FC knows if thpiest is a local Simulator or a remote one (rewdi
on another LP). In case that the destination Sitoules local, it simply translates it into am,)
message and sends it to the recipient Simulataweher, if the destination is remote, the FC fodsgar
the received messagg €) to the parent NC. The NC translates it into gnt)(message and sends it
through inter-LP communication to the parent NC tloé recipient. Note that outgoing inter-LP
communication happens only during t@lect phases, whereas incoming inter-LP communication ca
occur at any phase. This implies that sioagputfunctions of imminent components are invoked atly
collect phases, at any given simulation time,eafternalmessages going to remote NCs are sent out by
the end of theollect phase. On the other hand, etternalmessage from a remote source can arrive at
the destination NC at any phase.

The NC is invoked when it receivesdane message from the FC. Tld®nemessage could be in
response to arl,(t), (@, t), or (*, t) message previously sent to the FC. On each tloed\C advances
the simulation time. The NC updates the LVT of i at the beginning of evempllect phase. The

local FC and the Simulators do not send messagbsatimestamp different from the current LVT.

54

START
NextMs¢ = @

LvT=0

[P
<

y
Simulation is Done NC c% NextMs¢ == internal
END |«
NextMs¢ ¢
. FC takes requirec
NextMs¢ == collect actions <+

NC calculates lookahead.(Formule . 4

NC sends’null (fookahead 1, to-other.LPs FC sends (done LVT
L.P.is:suspended tc NC

[4
Y
LVT == timestamp of)
remotely sent x msg LP resumes back LVT == NCBagTime
NC calculates new-LVT (Formula 2
LVT == mir (recvd lookaheads’ |
LVT == mir (fecvd lookaheads’ && _ \
i I mir (recvd Io‘ okaheads) == absoluteNexi(LVT 7= absoluteNexi(y
NextMs¢ = internal NextMs¢ = collect
NC sends sync- NC sends sync- NC sends sync- < <
- - . NC sends collect NC sends internal
done(LVT NC_ic! done(LVT NC_ic} done(LVT NC_ic! (@ LVT. tc FC ¢ LVT tc FC

Figure 22. Flow Chart of the Conservative Algorithm on ead¢h L

A) Lookahead and LVT Computations

Figure 22 illustrates a flow chart describing ttengervative mechanism. The highlighted boxes are
those implementing the algorithm. The first phafleranitialization is acollect one, where the flow
chart begins NextMsgtells what the next phase is. Initially it is detcollect @. Note that the
lookahead term in all the three conservative pa@ BTS, CMB, GLM) refers to a quantity that is
computed relative to theurrent time (LVT) value of the LP (i.e.Jookahead= lookahead_value+
current_tim@.

When the NC receives@onemessage form the FC, it checks if the next ph&seecsimulation is
collect or internal. The conservative algorithm is only invoked if thext phase to take place is a

collect If the NC decides to issue amernal phase, it first sends an, {) message to the FC. The FC

55

will then forward this message to all imminent dhBimulators. Internal transitions are triggered at
these Simulators followed Hyone messages emitted to the FC reporting their nexé $tansition time
(tn). The FC sends the closest state transition timeifhum among alty values) to the NC through a
Done message. In processinBdne t), the NC issues aollect phase and invokes the conservative
mechanism. First, it performs lookahead computai®following:

lookahead= MIN(timestamp of the x msg recently sent to a remofe LP
time of theNC Message Bagty) (1)

wherety is the closest state transition time given by Fein the done message, and time of N
Message Bags the minimum timestamp of all those unprocessetessages received from other NCs.
Considering the N®/lessage Bagme ensures that the calculated lookahead takesaotount possible
X messages that arrived when the LP was suspentiesi efisures that when other LPs receive such
lookahead, their LVT would not advance beyondrntgase the sender LP semxdsessages to them as a
result of processing those messages in itdWGSsage Bdg

The NC then propagates the lookahead value to d#@s via null messages in the form of
null(lookahead LVT) and suspends. During the suspension, the LRAllisaBle to receive messages;
however, these are only inter-LP events which #@reeremotex messages or null events. When the
NC receives all null messages it resumes anddalsulates the new LVT as following:

LVT = MIN(timestamp of x msg recently sent to a remote LP
time of theNCMessageBagminimum RemoteLookaheatl). (2)

Thus, the NC computes the new LVT as the minimutoeramong: (i) the timestamp of thxe
messages recently sent to remote LPs; (ii) the bfmde NCMessage Bag(iii) the minimum value
among the received lookaheads from remote LPs; (afdabsoluteNextwhich is the closest state
transition time of child Simulators previously givey the FC. Once the LVT is computed, one of the
following four scenarios happens:

1. LVT =timestamp of the x msg recently sent

If there were x messages sent to remote LPs dthisgecent collect phase (right before the LP was
suspended), the NC must send its current lookalaeadblock the LP again, because the remote
lookahead that was just received from the receswehe x message, was calculated before recepfion o

56

the x message. Thus, the LP must block and waitdar remote lookahead value in case the receiver of
the x message generates a smaller lookahead thaméhsent before, or sends x messages as aakesult

processing the received x messages. Not consgd#ria scenario would cause causality violations at

this LP because it has updated its LVT based oarget lookahead and when it receives the new
lookahead which happens to be smaller than befioea, the new LVT turns out to be smaller than the

old LVT and this is strictly forbidden by the ddfion of conservative synchronization mechanism.

2. LVT =time of the NC Message Bag

If there are external messages received from atRsrwith receive time equal to the new LVT, the
NC issues an internal phase and sends a (* t)ages® the FC and sets NextMsg to collect. In
processing this internal message, the FC forwdmels imessages to the local recipient Simulators.

3. LVT = minimum remote lookahead

If the new LVT is equal to the minimum of all lodi@ad values received from other LPs, there is
nothing to do and the LP must wait. Therefore,Nizrecalculates the lookahead, sends null messages,
and the LP is suspended.

4. LVT = minimum transition time of local Smulators

If there are imminent children (Simulatorsgallect phase is issued by sending@,) message to
the FC and th&lextMsgis set tanternal.

The LVT calculation scenarios explained above haeeessing priority and the NC only processes
one of them every time. Special tie-breaking idqrered when more than one case is true. An example
of a tie situation is when case (iii) and (iv) dreth true. This implies that there is a possibitiy
receiving ark messages from remote LPs exactly at the timeeo€libsest transition time, thus it is safer
to first wait for other LPs and then if there wasxmessage received from other LPs, continuing by
issuing acollect phase and processing imminent child Simulatorss Th all done by first sending
current lookahead and suspending the LP. When thasLsuspended it will receive the remate
messages (if any) as well as new remote lookah#ags when it resumes, the tie is no longer tru an
if the newly calculated LVT is still same as caigg the NC would continue accordingly.

Figure 23 illustrates the pseudocode descriptiom@®fNC functionalities when ad@ne t) message
is received from the FC. The firSbnemessage received by the NC is the response faitladization

message previously forwarded to the FC to startsthmulation on that machine. Sinoext-message-

57

typeis initialized to@, the NC follows the second half of the algorithime 6 to 48). Based on our
conservative algorithm, the NC starts the mecharbgniirst computing its lookahead according to
Formula (1) (line 7). Each NC maintains a list efnote NCs residing on those LPs that will exchange
messages with this LP. This list is initializedtla¢ beginning of the simulation and is used byNi@
when it distributes the lookahead value through mealssages (line 7 to 9). On every LP, the NC asts
the local controller of the simulation and carr@sthe event execution loop if and only if the eutr
time of the LP (i.e. LVT) is less than the simuatiStop Timewhich is set at the beginning of the
simulation by the user’'s model. To ensure this,Nizperforms a check (line 11 to 14) and only & th
condition is satisfied then the LP is suspendeldemtise the simulation is complete at this LP and i
will remain idle until the rest of LPs are finishethe simulation terminates when all the LPs ale.id
When the LP is suspended, it waits for the lookdh&faevery LP in itlRemoteNCListWhen all the
lookahead values are received, the NC resumes tbattle point it got suspended at (line 14). For a
start, the NC calculates than-timeusing formula (2) of the conservative algorithimgl15 to 16).

The resultingmin-timeis the next local simulation time (i.e. LVT of $hLP) to which the NC
should advance. Aftenin-timecalculation, thd.ookaheadinfoArrayf the NC is erased so that it can
be filled with new lookahead information round @id7). There is a special situation that might occu
on an LP (line 18 to 20) which is when the caledahin-timehappens to b&finity. This case arises
when the LP is done with the simulation and therea event to be received from other LPs because
they have all sent an infinite lookahead valuerdfoge, the LP is done with the simulation. To $imi
the simulation at the LP, the NC sets thim-timeback to the previous value which was the timestamp
of the receivedlonemessage and sendsl@nemessage to itself with.ta equal to zero, wher.ta is
the next transition time that is reported to the. M@en thisdonemessage is received at the NC (line 7)
the LP will be marked aslle and no further event execution will take placéatLP (line 9). However,
if the condition of line 18 is not met, the foursea that were mentioned in Section 4.2.1 are clecke
next (line 29 to 46). The tie-breaking mechanismmveked as follows:

1. Case 1 (line 29 to 31) is given the highest piyosih that if there was any tie between this case

and other cases, it gets executed first.

58

2. If it happened that the minimum remote lookaheddesés equal to the timestamp of the closest
transition at this LP (i.e.ty) then the priority is given to processing the
minimumRemoteLookahefthe 32 to 34).

TheDonemessages sent from the NC to itself (line 30288l 45) are for synchronization purposes
only. They are easily differentiable from the td@emessages (i.e. the ones sent form the child FC) by
just looking at the sender and receill@rof the message where in this case both are thégg@ The
D.ia value carried by these messages is a special fdnichvis calculated as the difference between the
NC'’s currentty and the LVT advancement:

D.ia =ty — (min-time—timestampf the received D m3g
whereminTimeis the new LVT, andimestampof the received D msig the previous LVT. When the

NC receives this specidbnemessage it calculates its new lookahead and seadsss and suspends
itself.

59

1.
2
3
4,
3.
6 else
7

8.

9.
10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

2C.

21.

22.

23.

24,

25.

26.

27.

28.

26,

30.

31.

32.

33.

34,

35,

36.

37.

38.

36.

4C.

41.

42.

43,

44.

43,

4¢.

47.

48. end if
49. end when

when a (D, t) is received from the child FC
t=ttx=t + D.ta
if next-message-type = * then

send (*, t) to the child FC
next-message-type = @

lookahead = MIN(timestamp of the x msg recently sent to a remote LP, time of the NC Message Bag, tx)
for each NC in the RemoteNCList do
sendNullMsg(lookahead);
end for each
if ty = Inf and minimumRemoteLookahead != Inf and NCMessageBag != Empty then
suspend this LP
else this LP is DONE
end if
min-time = MIN(timestamp of the event pointed by event-pointer, timestamp of the x msg recently sent to a
remote LP.time of the NC Message Bag, minimum RemoteLookahead, tx)
resetLookaheadInfoArray()
if min-time = Inf then
min-time = the timestamp of the received D message
send (D, 1) to this NC with D.ta = zero

else
if min-time = the timestamp of the event pointed by event-pointer then
for each x in the Event List with min-time do
send (x, t) to the child FC
move event-pointer to the next event
end for each
end if
else if an x msg was recently sent to a remote LP then
send (D, 1) to this NC with D.ta = ty — (min-time — timestamp of the received D msg)
end if
else if min-time = minimumRemoteLookahead and minimumRemoteLookahead = ty then
send (D, 1) to this NC with D.ta = ty — (min-time — timestamp of the received D msg)
end if
else if min-time = ty then
send (@, 1) to the child FC
next-message-type = *
end if
else if min-time = the time of the NC Message Bag then
for each x in the NC Message Bag with min-time do
send (X, t) to the child FC
end for each
end if
else if min-time = minimumRemoteLookahead then
send (D, 1) to this NC with D.ta = ty — (min-time — timestamp of the received D msg)
end if
end if

Figure 23.Conservative NC Algorithm fdDone Message
60

B) Scheduling

The scheduling algorithm of LBTS protocol is givienFigure 24. Each node maintains an input queue,
namely inputQ which is a simple linked list that is provided ltlye WARPED kernel. Queue
manipulation functionalities are also provided hg kernel. Since in conservative simulation catysali
violations are not allowed, theputQ follows the First-In-First-Out (FIFO) mechanismn ®very node,

all the DEVS messages as well as the null messagdseated as basic events and are insertechisto t
queue.

When the scheduler is invoked, it simply returns biead element of thaputQ and the event is
deleted after execution to reclaim its memory lmratOur modifications to the scheduling mechanism
are for the purpose of LP suspension. When the &tiids that the LP should be suspended, it sends a
special type oDone messageo itself. When the event returned by the scheduéppens to be this
Donemessage, the event is not executed until all remoll messages are received and inserted into the
LP’s inputQ As illustrated on the algorithm, tleairrentPosvariable represents the first unprocessed
element of thenputQ When a suspension event is detected (line 1ig)not returned until all required
null messages are received. The number of null agessthat must be received by an LP in order for it
to resume back is equal to the total number ofaiPsis one (line 17); since the LP does not needlla n
message from itself.

61

1. when the scheduler is invoked to return the first unprocessed element
2 if currentPos != NULL then

3 if currentPos is a null-message then

4. currentPos = currentPos->next

S. return NULL

6 end if

7 else if currentPos is a remote x message then

8. currentPos = currentPos->next

9. return NULL

10. end if

11. else if currentPos is a suspension message then
12. for each unprocessed element of inputQ de
13. if event is a null-msg then
14. event->checked = true
1. recvdNullMsg++

16. end if

17. end for

18. if recvdNullMsg = totalLLPs — 1 then

19. return currentPos

20. else return NULL

21. end if

22. end if

23. else return currentPos

24, end if

25. end when

Figure 24.Scheduler Mechanism of LBTS Protocol

C) Resuming a Blocked LP

The algorithm used by the LBTS protocol to resuntdoaked LP is presented by Figure 25. When the
event returned by the scheduler is the suspensient ¢the speciaDone messagsent from a NC to
itself), before it can be executed, two actions inesperformed. Firs, all those null messagesieae
counted to incrememecvdNullMsgmust be first executed (line 5 to 7). Seconduafirocessed remote
external messages that were sent from other N@gsd.P must be executed (line 8 to 10). Once these
null messages and remotenessages are executed, then the spBaak message is returned to the
NC.

62

1. when executeProcess() is invoked

2 event = Scheduler.getEvent()

3 if event |= NULL then

4. if event is suspension event then

s. for each null-msg with checked = true
6 receive (null-msg)

7 end for

8 for each unprocessed remote x msg
9. receive (x)

10. end for

11. receive (suspension)

12. end if

13. end if

14. end when

Figure 25. Suspension-Event Execution Algorithm

D) Null Message Handling

Figure 26 shows the null message handling mechamibioh is invoked when a null message is
received at the NC. Every NC maintains a queue,ehalbokaheadinfoArrayto store the received
lookahead value carried by the null message. Tfedithis queue is equal to the total number of LP
minus one. This is from the assumption that imautation consisting ofi LPs, every LP communicates
directly withn — 1 LPs. When a null message is received, the 8&@ssthe lookahead content into its
lookaheadInfoArrayline 3 to 5) and calculates th@nimumRemoteLookaheas the smallest element
of this queue (line 8). ThminimumRemoteLookahe&lupdated every time the NC receives a new null
message. Hence, it is always the minimum lookakead of all remote LPs.

E) Deadlock Avoidance

Since null message distribution occurs before L$psnsion, deadlock is strictly avoided. The NC only
suspends the LP after performing a lookahead caatipatand propagating it to all remote LPs via null
messages. Thus, when an LP is suspended, it le@slplforwarded its null messages, and if everyrothe
LP is suspended as well, they would all resumeusexall the required null messages have been glread
distributed among them before the LP suspensiondiasn place. Aside, a simple strategy is used to
resolve the zero-lookahead issue. When an LP resgvwemote null message carrying a lookahead of
zero, if the destination LP has an unprocessedteviéim current time stamp, then, the LP suspends fo

an additional phase, giving the sender LP the pyitw execute its scheduled events first. Thisuess
63

that the LP takes into consideration future evémas might arrive from the sender LP as a resuthef

current execution.

1. when a null-message is received

2 for i =1 to arraySize do

3 if lookaheadInfoArray[i] = NULL then

4 lookaheadInfoArray[i] = recvdLookahead
S. break

6. end if

7 end for

8 latestRemotel.ookahead = MIN (lookaheadInfoArray)

9. end when

Figure 26.NC Null Message Handling Algorithm

F) Simulation Termination

On each LP, the NC decides to terminate the simoualatccording to the algorithm presented in Figure
27. The criterion under which an LP terminates badomesddle was discussed at the end of Section
4.2.A The WARPED kernel checks the status of the &R every period that can be determined by the
user. When all participating LPs are reporteddis, then the simulation terminates and the rest of

memory clean-ups are taken care of by the kernel.

1. when the kernel checkldle() is invoked

2. allldle = true

3. for each participating LF do

4. if LP.inputQ has unprocessed event and is not a null-message then
5. allldle = false:

€ end if

7. end for

8 return allldle

G. end when

Figure 27. Simulation Termination Algorithm
According to this algorithm, an LP idle if it has no unprocessed event (excluding null sagss)
in its inputQ. The restriction that the event should not belamassage is for the case when the LP has
finished its simulation and is idle waiting for ethLPs to finish. While an LP is idle, it can sti#iceive
null messages. However, these events will not leewed. Such null message indicates the very last
event that the sender LP distributes prior to é@mgetheidle state. This type of null message carries a

lookahead value dhfinity, stating that the originating LP has completedirtsulation tasks.

64

G) Simulation Scenario in CCD++ with LBTS Protocol

In this section, a simulation scenario is presemtbith is based on the conservative LBTS mechanism
of CCD++, its flat architecture and the messagingchmanism was introduced in Section 2.6. As
illustrated in Figure 28, the simulation is carriga with two participating nodes. The simulatioarts
with messagel() at the NC at time 0. This initialization phasegnvhen the two local Simulators (S1
and S2) send badkone messaged)s, Dg) to the FC, which causes forwarding mess&y o the NC.
Every time the NC receivesonemessage from its FC, it starts the next phase dratedy. However,

a lookahead computation and null message distabuis performed at every collect phase. After
computing the lookahead, the NC sends a messagjg) (o the remote NC and blocks (shaded area).
The NC remains blocked until all remote lookahe@adsried by remote null messages) are received at
the LP. During suspension the LP can still recenessages; however these messages are only inter-LP
events which are either remotanessages or null messages. When the NC receivesllamessages
(nully) it resumes and calculates the new LVT, whichdsat to the state transition time that was
reported by the FC vi®one messagell;). At this time, all Simulators are imminent. Thilse NC
starts the firstollectphase by sending@llect message (@ to the FC where it further distributes this

message as two collect messagesg, (@) to each of the Simulators.

0 AN : ~ i
i nully null, “|x: Xa1 X22 i null; nully fnulls jnullg
* i b4 Py %
A A g
a S 2 B £ 1
o =
#
‘ > % d S
A
I N=]
LE Collect Transition LP Collect LE
pPUshendes Phase Phase Susperided Phase Suspended
I 1 i

Figure 28.Sample Simulation Scenario in CCD++
Upon receiving theollect message, imminent Simulators execute their outmdtions and send
outputmessages to their parent FC. S1 procegsdast and sends an output message) to the FC. If

65

it must be sent to S1, S2 (as well as to remoteulaiiors), FC translates it into axternalmessage and
sends one copy to each local Simulatas, (x;3). For the remote Simulators, the FC then forwahes
output messageyss) to the NC, which translates the message int@xdarnalone k;s) and sends it
remotely to all destination NCs. Similar action® grerformed when the FC processes the output
messagey(,) from S2 Kis, X9, Vo0, %1). During these steps, the remote external message received

at the NC, which inserts it into the NC’s MessaggyBWhen the FC receives the correspondinge
messagesis D23) from S1 and S2, it sendsDxone messagel¥zs) to the NC, reporting the end of
output operations at the local Simulators. Thane message triggers the next phase at the NC, tleus th
first transition phase starts immediately by sendingraarnal message*¢s) to the FC. This message is
then forwarded to imminent Simulators S1 and $2%27). Internal transitions are triggered at these
Simulators followed byponemessages emitted to the A4, Dog). The FC then sends the closest state
transition time to the NC through @one message O@z0). When processindps,, the NC performs
lookahead computation, sends the new value thraulihto all remote NCs, and blocks. When the only
remote null messag@ll,) is received at the NC, the suspensions endstrenbC calculates the new
LVT. This LVT turns out to be equal to the timesfawf the external message, recently received
from a remote NC and added to the NC Message Bagelore, the NC sends it to the FC, followed by
another internal messagei(*s2). When FC execute',, it flushesxs; to S1 followed by ;4. External
message 3 is added into S1's message bag, accepting the yakviously transmitted by, from a
remote sender. After that, the internal messagévokes S1's external transition, which consunines t
value wrapped ins. The resultingDone messagel¥ss) is sent to the FC. When NC execui2s,
another lookahead computation takes placel5 is sent out, and the LP is blocked. After recavin
nulls, NC calculates the new LVT. In this case thereaasmessage in itSIC Message Bagand the
remote lookahead reported hulls is larger than the closest state transition (tit@3, therefore, the
NC advances the local simulation time from O to 40@ sends to the FC a collect mess&@g)(that
has a send time of 0 and a receive time of 10@eltyestarting a new cycle of simulation similarthat
initiated by@s.

66

4.3The CMB DEVS Protocol

The second conservative DEVS protocol is the CMBtqmol, which is a variation of the LBTS
protocol aiming at reducing the number of null nagges. The CMB protocol changes the way
conservative synchronization is maintained by iistmg the null messages only among the
neighboring LPs, in contrast to broadcasting tgatticipant LPs as in LBTS protocol. An LP forward
null messages to only its direct neighbors as ddfihy the DEVS translation function. Under this
scheme, at the start of every synchronization phthseLP computes its lookahead as in LBTS (using
Formula (1)of Section 4.2), but the null message is only seiits neighbors. Then the LP blocks and it
waits for its neighboring LPs to send their lookatheralue via null messages. Once all neighbor null
messages are received, the LP computes its new dagéd on the received lookahead values as in
Formula (2 of Section 4.2, and it starts another lookaheadputation and null message distribution
round. This process continues until it is guaramtdeat no smaller lookahead value will arrive from
neighbor LPs later in time. Once the LP has recktiie smallest possible lookahead value, it congpute
the new LVT and resumes the simulation. Other d@spaficthe CMB protocol are very similar to those
of the LBTS protocol. The only difference is themher of neighboring LPs, where with LBTS protocol
each LP has — 1neighbors, while in CMB protocol each LP has either 2 neighbors (depending on
the partitioning of the DEVS model).

With the CMB protocol, the overall number of nulessages is reduced, but the multiple lookahead
computation and null message redistribution roundsld have a negative effect on the overall

simulation performance. These effects will be anadlythoroughly in Chapter 6.

4.4 The Global Lookahead Management Protocol

In order to reduce the overhead of the LBTS prdtode Global Lookahead Management (GLM)
protocol is proposed. GLM is based on the Conseevatime Window algorithm[55] and the
Distributed Snapshot mechanigb8]. The GLM mechanism dramatically reduces thenber of null
messages by organizing the conservative executi@uch a way that every LP reports its lookahead
only to the global manager rather than to everghgoring LP. The GLM protocol implements an
asynchronous strated46] in the sense that there is no global cloclkefg\process maintains its own
local clock), and the GVT approximation is perfothi®msed on the LPs’ lookahead information.

67

A) Phase-Based Simulation with GLM Protocol

The GLM protocol borrows the idea of safe processitiervals from the Conservative Time Window
algorithm, and it maintains global synchronizationa similar fashion as the Distributed Snapshot
technique. Under the GLM scheme, a centbakahead manage(LM) exists on LPO, which is in
charge of three main tasks: 1) receiving every UBtkahead, 2) identifying thglobal minimum
lookaheadof the system, and 3) broadcasting it via null sages to all LPs. This implies that the LPs
are no longer required to send their lookaheadrim&dion directly to each other as in the LBTS
protocol; rather, they now send their lookahead nud messages to the LM only. In fact, the sole
function of the LM is to detect suspension phase iatiate the resume phase by broadcasting the
global minimum lookahead he entire algorithm works using the followingjgence of computations:
(i)Parallel phase LPs run simulation until suspension.

(if) Broadcast phase LM broadcasts global minimum lookahead allowirgslto advance their LVTSs.

The key characteristic of the GLM protocol is tltats asynchronous and the central LM is not
expected to be a bottleneck since the only messagsmissions involving it take place at the end of
Parallel andBroadcastphase. In fact, the LM does not carry out any oatiaijion.

In the LBTS algorithm, each LP had to send a n@ssage to every LP and block until all LPs send
back their null messages accordingly, resultingoial null messages of (n — 1) per synchronization
cycle (wheren is the number of LPs). With the GLM protocol eddh sends one null message to the
LM and blocks until the LM sends back a null messegrrying the global minimum lookahead value.
Thus, leading to a total number af Bull messages for every synchronization cycle. Gh&1 not only
attempts to reduce the total number of null messagat theoretically it could also reduce the béxtk
time of LPs since they now wait for only a singldinmessage (as opposedrte- 1 messages) before
they can resume. As the number of participating iteseases, the performance achieved with GLM
may increase, merely because the total number of hd3 a direct impact on the synchronization
overhead. However, communication overhead could plaegative effect on the overall performance of
the protocol. These criteria are investigated aqulagned in details in Chapter 6 by conducting vasi

experiments comparing the GLM versus the LBTS antB(rotocols.

68

B) Lookahead and LVT Computation Strategy

Both the lookahead and the LVT of the GLM protoa# computed, in a similar fashion to the LBTS
protocol, based on Formula (1) and (2) of Sectigh At the start of every synchronization phase, th
NC performs the lookahead computation, and it se¢he<alculated value to the LM via a single null
message, then, it suspends the LP. Upon receiiegdsponse null message from the LM, the LP
resumes by first calculating the new LVT as the imum value among four quantities: (i) the
timestamp of thexternalmessage recently sent to a remote LP; (ii) the twihtheNC Message Bag
which is the minimum timestamp among unprocesspdtiavents; (iii) the closest state transition time
of the local child processors previously given bg £C in theDone message; and (iv) the neylobal
lookaheadvalue received from LM via a null message.

Similar to the LBTS protocol, the NC is the locghshronizer at the LP and invokes the GLM
protocol at the beginning of evecpllect phase. The NC issues the collect phase by firdoimeing
lookahead computation according to Formula (1)nthesends the calculated value via a single null
message to the LM and blocks the LP. Upon receithegresponse null message form the LM, the LP
resumes and the NC performs a LVT computation whwdhtake into account the newly received

minimum global lookaheaflom the LM.

C) Null Message Distribution

Based on the strategy used to partition a DEVS/BENS model, each LP can only send/receive event
messagesekternal messageso/from those defined by neighboring DEVS modeélsat is, according to
the DEVS-neighborhood specified at the model, ifatmmic component (represented bgiaulator
processor) on an LP is a neighbor of another atmmioponent residing on a different LP, then these
two LPs are neighbors and they can communicateath @ther through inter-LP communication.
Therefore, it is possible that some LPs are natctlineighbors of each other, because the model’s
partitions they hold are not DEVS-neighbors of anether. The GLM neighboring strategy is based on
this mechanism, where an LP is only connected tahan LP if it happens to be its direct neighbor as
specified by the DEVS model neighboring.

69

D) LP Block and Resume Mechanism

The GLM block and resume mechanism is slightlyedéht from the LBTS algorithm in the sense that
LPs are no longer distributing null messages tcheaber, neither they wait for reception of null

messages from every participant LP. In return, é&tlsends a single null message at the start af/eve
collect phase to the LM only, and it stays blockedil the single null message reporting the new

globally minimum lookahead is received from the LM.

E) Deadlock Avoidance

Since the null message distribution of LPs to té d&ccurs before LPs are suspended, deadlock is
strictly avoided. NC only suspends the LP aftefqrening a lookahead computation, and reporting it t
the LM via a null message. Thus, when an LP iseud@d, it has already forwarded its null message,
and if every other LP gets suspended as well, theyld all resume because all the required null
messages have been already sent to the LM befspeission has taken place. The strategy for handling
zero-lookahead is the same as the one discuss#tkfaBTS protocol in Section 4.2.5.

F) 1/0O Operation

The only messages an LP sends out arexternaland null messages. Tleaternalmessages are sent
out to neighbor LPs defined by DEVS neighboring,levimull messages are sent out to the LM on
node0 Similarly, an LP can only receivexternal messages from its DEVS neighbor LPs, and null
messages from the LM.

G) Termination

The simulation terminates 8top Timds reached or all LPs are idle and have no ungsezkevent in
their input queues. The NC sets the LRdle when: 1) the LM sends a null message repoiitifigity
as the global lookahead value, 2) all local chilchiBators have next transition time iofinity, and 3)

there is no unprocessed event inli@ Message Bag

70

4.5 Comparison of the Protocols

The three conservative protocols differ in the wayl messages are distributed and thus the total
number of null messages that must be propagatedghout the simulation. Figure 29 illustrates the
null message distribution strategy of LBTS, CMBdaBLM protocols. Figure 29-A illustrates the
partitioning of an 8 by 8 Cell-DEVS model on fouP4. The partitioning mechanism divides the cell
space into four equal portions (8x2 cells per LPijgure 29-B represents the LBTS neighboring of LPs
where each LP sends and receives null message=lthaan every other LP. With CMB mechanism
(Figure 29-C), every LP only forwards null messatge#s direct neighbors as defined by the DEVS
translation function. On the other hand, the GLMtpcol resolves this tight coupling of LPs by
assigning a simple LP connectivity strategy whexehelLP is only coupled with the LP for which the

LM resides on (i.e. LP0). Hence, the null messageildution is configured as in Figure 29-D.

<+—» inter-LP messaging

LFC <«—p» intra-LP messaging
LE1 LFC - - LF3
R — HHHHH HHHH
A - v y
LF2 - T A
LF2 LP1 I L LFZ
HHHHHH
A. Partitioning of an §x& Cell-DEVS model B. LBTS null message distribution
LFC LF2 LEC ' LF2
HHHHH B | O HHHH
A y
GLV
\
LF1 > LFZ LP1 LFZ
HHHH HHHHH HHHHH
C. CMB null message distribution D. GLM null message distribution

Figure 29.Null Message Distribution Strategy in LBTS, CMB, and GBExbtocol
Aside from the null message distribution mechananich is different in LBTS, CMB, and GLM
protocol), the lookahead and LVT computations adgomed dynamically based on the model’s data,
and the computation formulas are the same for hheetprotocols (Formula 1 and 2). Moreover, the

three conservative protocols share the followingiewn characteristics:

71

- NC-Driven Synchronization: the protocols are implemented at the NC; the oth&VS
processors are unaware of the underlying synchaboiz mechanism. The NC is the local controller
and drives the simulation on that node. It is resgde for lookahead and LVT computation, LP
suspension and resumption, and null message distniband reception.

- Dynamic Lookahead: Lookahead computation is performed after each k¥mputation; hence, it
is updated and distributed to the destination LP{)r to the LP suspension phase. This strategy
ensures that the lookahead value of an LP repiedkatlatest LVT update, as there is at least one
lookahead computation per LVT update. The dynaromkdhead mechanism of our conservative
algorithms states that lookahead value is not fixed every lookahead computation could result in a
different value than of the previous stage. Unbkleer existing conservative algorithms, the modider
not required to specify the lookahead of the systather it is dynamically extracted from the mdslel
specifications.

-Low-Cost Lookahead Computation: The lookahead computation is a fast, efficient, kve-cost
method that involves a simple comparison betweéstieg parameters. In fact, there is neither analct
computation nor a significant computation time tieggh to calculate the lookahead. Rather, the
lookahead is extracted from already computed dethexisted in the simulator before the consereativ
protocol was integrated with it. Compared to otle&isting conservative mechanisms, this benefit
reduces the overhead of the algorithm.

- Deadlock Avoidance: Since the null message distribution occurs beftwe tP suspension,
deadlock is strictly avoided. A NC only suspends L after performing the lookahead computation
and propagating it to the destination LPs (or thMeih case of GLM protocol) via null messages. Thus,
when an LP is suspended, it has already forwartkeahull messages, and if every other LP gets
suspended as well, they would all resume becaughealrequired null messages have already been

distributed before suspension takes place.

4.6 The Classical P-DEVS Protocol
The LBTS, CMB, and GLM protocols extend the CD++gtlal DEVS/Cell-DEVS framework to allow

running the same model with different synchronmatmechanisms. The synchronization protocols are

separate layers and can be replaced with one aneathi®ving to run the same model in sequential,

72

optimistic (using the LTW protocol) or conservati(€BTS,GLM,CMB) versions. These three
conservative protocols are comparative to the idasB-DEVS protocol of Choyl 1] and Zeiglelet al.

[8]. The classical P-DEVS protocol can be viewedasxtreme form ofisk-free optimisni{not even
local rollback occurs) without incurring the ovealds of conservative and optimistic schemes. Idstea
of trying to overlap processing of input eventshadifferent time-stamps, it seeks to exploit paiagm

in the simultaneous occurrence bfternal events among many components. There is a global

coordinator synchronizing the simulation entitielvidg the phases of the DEVS simulation cycle.

1 next tN c o
— Coordinator | &zz;
3 get Out
%

5 apply Delt
= 7
/ 4 get Out

Simulator 2 out N Simulator Simulator
tN tN tN

Component Component Component
Nt tN L IN L
After each transitior

IN=t+ta() tL=t

Figure 30.Parallel DEVS Simulation Protocf82]
As shown in Figure 30, the Parallel DEVS schemtdiffrom the LP-based schemes in that there

is acoordinatorto synchronize the simulation cycle through iegpst The coordinator collects all times
of next event from the component simulators. Itdsethe minimum of these times back to the
components, thereby allowing them to determine hdrethey are imminent, and if so, to generate
outputs. More than one component may be imminedtthe outputs of all such imminents are sorted
and distributed to others according to the couplinigs. The transition functions of the imminent
components, as well as all other recipients of ispare applied. Depending on the state and infpat o
component a transition takes place — imminents withinputs apply internal transition functions,
imminents with inputs apply confluent transitiométions, and non-imminent components with input
apply external transition functions. The resulticltanges in states may cause new values for time
advances and these are sent to the coordinatat tithes new global minimum time. The simulation

cycle is outlined as following:

73

1. Set the current global timeF the minimum of the componentg’s (initially ty andt, of all

components are set to zero)

2. Sendt to each component

3. Each componenC, then comparesswith itsty, if t =ty, this component is said to be imminent

and

» Cgenerates its output (if any) stamped with time

» C executes its internal transition function

e Csetst =t andty =ty + time advance of the new state

4. The collected outputs move, as dictated by the loogippecification, to the input ports of other

components

5. Each component examines its input ports and:

« ifit receives an input, it applies its externartsition function with this input, using the
elapsed timet, - t,.

e setst; =t andty =ty + time advance of the new state (if no input wexeived it does
nothing)

6. If not at the end of the run, return to 1.

To compare the three conservative DEVS protocoBT@, CMB, and GLM) to the classical
Parallel DEVS algorithm, recall their lookahead qutation strategy. Formula (1) reveals that the
lookahead is always a value in the intenalrfent time t\]. That is,ty (minus the current time) would
be the best lookahead that can be obtained. Thyhtniie reduced to the current time if there are
unprocessedexternal messages Under such circumstances, the protocols explaimes level of
parallelism as in the classical Parallel DEVS dtbon. However, these protocols do not have a global
time synchronizer, neither simultaneous outputemtibn mechanism, nor a single centralized schedule
(Root Coordinatoy which is proven to be a major bottleneck. Morepuwbe underlying flattened
architecture requires smaller number of messages whlculating the next time advance, i.e.,ftae
coordinatoris the final destination df values of all childSimulatorswhile in Parallel DEVS protocol,
there is an extra level of hierarchRqot Coordinatoy where thety values must be propagated to.
Moreover, the P-DEVS simulation protocol is onlylealbo exploit parallelism in the simultaneous

occurrence ointernal events among many components.

74

4.7 Zero-Lookahead in P-DEVS

Usually general DEVS/P-DEVS models have a lookalodéaro. External events can arrive at any time
and the time advance function can be zero. Thisnméaat for computing a lookahead, all the time
advance values in regards to the potential arovaxternal messages need to be checked per atomic
model. There have been a number of studies inwastgythe zero-lookahead problem in DEVS-HLA.
Fujimoto [194] introduced zero-lookahead into HLA by extarglithe original time management
services to allow reproducibility in the presendesimultaneous events and zero-delay event§82i

an approach is given that uses Next Message Request AvailabNMRA(t)service provided by HLA
instead ofNext Message Request - NMR()allow zero or negligible value of HLA lookaheé&af
federates. The conservative protocols presentdddrdissertation deal with zero-lookahead by engur
that all possible future input events are considlevben computing the lookahead value. This is dpne
performing a sanity check such that whenever tlsea® unprocessed input event in the LP’s quews, th
lookahead of the LP is reduced to the time stamguoh event. This avoids the case where execution o
such event causes output generation wihaller than previously computed time advancedidition,
external input events could also arrive from theiremment. In a DEVS-based simulation, such
messages are known to the system prior to the @macurhe lookahead and the LVT computation
mechanisms of the conservative DEVS protocols ptegein this dissertation also take such messages
into account. A special type of DEVS processorecdatheRoot Coordinatorexists on LPO, which is in
charge of flushing the external input events framirgout file into the destination NC’s input queue.
Thus, when a NC invokes the LVT or the lookaheadnmatation mechanism, by checking its
inputQueue(as stated by Formula 1 and 2 of Section 4.2)ake$ into consideration such external

events.

75

Chapter 5: Comparative Study: Optimistic VS. Conservative
Simulation

One of the objectives of this research is to penfaa comparative study of optimistic versus
conservative DEVS-based simulation by conductinteresive experiments. To achieve this goal,
sensitivity analyses at both model- and underlygggchronization protocol-levels were studied. The
analyses were carried on both the conservativelatorf CCD++, implementing the three conservative
protocols: LBTS, CMB, and GLM) and the optimistineo(PCD++, implementing the LTW protocol).

The results obtained from this part of the reseaiohto be a significant recommendation reporthe t

parallel DEVS community to help to decide on chogsconservative or optimistic simulators for a

particular model.

5.1 Model-based Sensitivity Analysis

The purpose of model-based sensitivity analysiw ianalyze performance by investigating different
model’s characteristics, such as the following.

e Size

To analyze the scalability of both CCD++ and PCDeach model is executed at different sizes.
For Cell-DEVS models, the size of the model careasily increased by altering the dimension of the
cell space.

e Type

Two types of models are considered: communicatib@risive, and computation-intensive. For the
first type, models with high communication amongnaic components were considered. For the latter
type, models with high computations are investidatEhe main reason behind testing models with
different natures is to observe whether the modsf®e affects the performance of the underlying
synchronization protocol (i.e. conservative verspsmistic).

e Complexity

For those models that are computation-intensivantanesting behaviour to analyze is to increase

the complexity of the model by introducing addisbromputations. For instance, the complexity of a
76

Cell-DEVS model can be increased by introducingettonnsuming computations into the cells state
transitions.

e Activity

The activity of a Cell-DEVS model is defined as firepagation pattern under which cells’ values
evolve. Once cells are initialized, the simulatgtarts when one or more cells’ rules evaluate ue tr
resulting in a propagation pattern that might evally cover the entire cell space. Figure 31 ilatgs
sample activity patterns that could appear duringimulation. The activity pattern is affected by

different parameters such as cells’ initial valueighborhood, and evaluation rules.

5 e
o8 ks
K
o] &
S o b
o &
s]
%2%% b
K o LRA)]] B
s A R
55 S = REERERRREREERR £ < LS
a8 KA %
: %
<5 e < e b
[RK 55 R s &8

Figure 31.Sample Activity Patterns in Cell-DEVS Models
e Partitioning
Different partitioning strategies could result iffefent performance. Two partitioning mechanisms
are used during the experiments: horizontal, wiieeecell space is divided into even columns, and

vertical, which divides the cell space into evewsoThese two strategies are shown in Figure 32.

i

nodeO|node1|nodeﬂ node3
[

node0

node1

node2

node3

A B

Figure 32.A: Horizontal, B: Vertical Partitioning of an 8x8@-DEVS Model on Four Nodes

e Connectivity

In a Cell-DEVS model, cell neighboring defines tannectivity of the model by identifying how
tight different partitions of the cell space arenmected to each other. When in a model, a large
neighborhood is defined for cells, the frequencwhich cells communicate with each other increases,
leading to high inter-LP communications if neighlsells happen to be on different LPs. By alterimg t
size of cell’'s neighborhood, the effect of cell®noectivity on the overall performance can be
investigated. Examples of loose and tight connégtare illustrated in Figure 33-A and Figure 33-B
respectively, where the shaded cells represemeighboring cells for the cell in the middle (ndibat

the same neighborhood pattern applies for evehotéhe lattice).

A B

Figure 33.A: Small, and B: Large Cell Neighborhood
e Initial-Load Distribution
Various initial parallelism can be achieved by pigcinitial values at different points of the cell
space as opposed to a single start-up point. Thawor significantly reduces LPs’ initial idle &nby

allowing more parallelism among LPs especially ls# beginning of the simulation. Conducting

78

experiments under these circumstances enablesiaggagre LPs throughout different stages of the
simulation as opposed to keeping some LPs busyam@ other waiting for cells propagation to reach
their cell partitioning. Figure 34-A illustratessaenario at which only a single initial value laged on

the gird which happens to be the partition assigoaabdel Thus, for some simulation stages, only
nodelwill be busy while the rest of the nodes remaie.iéFigure 34-B shows the scenario where there

IS a starting point on every node’s partition, ailog full parallelism from the initial stage of the

simulation.

nodeC nodeC Y

node1 node1 o

— _ s _
nodez nodez :

__ _ __ _
nodel node?l @

A B

Figure 34. Initial-Load Distribution by Setting Multiple In#il Points

5.2 Protocol-based Sensitivity Analysis

The optimistic simulator, PCD+{21], is based on Lightweight Time Warp (LTW34], a novel
TW-based protocol. The protocol includes a ruleebasvent-scheduling mechanism using two types of
event queues, an aggregated state-saving techfugogtimal risk-free state management, and a new
rollback algorithm that recovers lightweight LPerfr causality errors without sending anti-messages.

Identifying the key metrics for a decent sensighanalysis is a complex task, especially for a TW
simulator that can be optimized in so many differeays. Aside from the model-based parameters,
there are many options at the simulator level tiaat be combined to conduct various experiments.
Some of these analyses, which are the characteristithe TW algorithms, include GVT computation
frequency, state-saving interval, event queue diperafficiency, etc.

The conservative simulator, CCD++, is tested unttex three conservative synchronization
protocols: LBTS, CMB, and GLM. All of the experintsrwill be conducted with these conservative
protocols to provide a solid performance evaluataralyzing the effect of the underlying consemeti

protocol on the simulation performance.
79

Sensitivity analysis is a complex task that reqgiimany experiments to identify those factors that
significantly affect the performance. The next deawill present a thorough sensitivity analysis by

conducting various tests addressing different stem#hat were mentioned in this chapter.

80

Chapter 6: Performance Analysis

This chapter analyzes the performance of the ceatee protocols (LBTS, CMB, and GLM) and the
optimistic LTW protocol. Section 6.1 introduces tienchmark models used in the experiments. Section
6.2 summarizes the experimental configurations padormance metrics. Section 6.3 presents a
comparative performance evaluation of the LBTS, Glld the LTW protocols on distributed-memory
multiprocessor clusters using CCD++ and PCD++ saou, while Section 6.4 evaluates the three
conservative protocols in terms of protocol efficg and effect of null message distribution strateg

the overall performance. Finally, Section 6.5 pdes detailed analyses of the three conservative

protocols by evaluating some of the sensitivitynastthat were presented in Chapter 5.

6.1 Introduction to Benchmark Models

The clear separation of model and simulator corsciepthe CD++ M&S framework offers a number of
advantages. The tool provides a modelling and sitianl environment that allows easily constructing
and modifying any DEVS and Cell-DEVS model. Moregube same model can be used on different
environments (PCD++ with LTW protocol and CCD++witBTS, CMB, or GLM protocols) without
the need to make any changes.

Two environmental models with varied workload cloéeastics were tested in the experiments,
namely awildfire spread modehnd awatershed modellThese models have been studied extensively in
the DEVS research community (see, e.g., wildfirmudation [195][196][197][198] and watershed
simulation[5][199][200][112]). In [116], the wildfire and watershed models have bemtefined as
executable Cell-DEVS models in the CD++ specifmatianguage, as briefly described in this section.
In addition, a third model was also used in theeexpents, theSynthmodel, which is a synthetic Cell-
DEVS model consisting of a grid where cells argially set to zero, then throughout the simulation,
they toggle between the value of 0 and 1. The mepd this model is to analyze the performance of

parallel execution of communication-intensive msdel

81

6.1.1Definition of a Wildfire Model

Two versions of the wildfire model were evaluatadhe experiments, includingsamplified version,
referred to asirel, which uses predetermined fire spread rates atcegtiruntime computational cost;
and acomputational-basedersion, referred to asire2, which computes fire spread rates dynamically
based on environmental parameters obtained atmantiesulting in higher computational intensity.
Both versions simulate fire propagation scenarias @0 virtual hours in a 2D cell space.

* The Firel model

TheFirel model[116] uses the Rothermel methdd 4] to obtain the spread rate in every direction
prior to the simulation based on a specific setrofironmental parameters (a fuel model type vafu® o
a southwest wind at a speed of 24.135 km/h, andllasize of 15.24x15.24 ¥ as summarized in
Figure 35.

Wind direction = 225.00 (bearing) Wind speed = 24.135 km/h Fuel model type = 9
Cell width = 15.24 m (E-W) Cell height = 15.24 m (N-S)

Max spread rate = 17.967136

0° rate = 5.106976 distance = 15.24 45° rate = 17.967136 distance = 21.552615
90° rate = 5.106976 distance = 15.24 135° rate = 1.872060 distance = 21.552615
180° rate = 1.146091 distance = 15.24 225° rate = 0.987474 distance = 21.552615
270° rate = 1.146091 distance = 15.24 315° rate = 1.872060 distance = 21.552615

Figure 35.Predetermined Spread Rates forFrel Model [116]

Figure 36 gives a skeleton of tk@el model definition. A cell’s value stands for thetual time
when the cell is ignited (zero for a non-burnindl)c&he precondition of a transition rule is usid
detect the presence of fire in a specific neighigpgell. For example, the first rule will be triggd if
the current cell (0,0) is non-burning and the saat$t neighbor (1,-1) has already been ignited. Eenc
the fire will spread to the current cell at virtdiahe (1,-1) + (21.552615/17.967136), which becothes
new value of the current cell. This value will bens to the neighboring cells after a delay of
(21.552615/17.967136) * 60000 ms, the interval leetwthe current virtual time and the expected
ignition time at the cell.

82

type : cell dim : (1024,1024) delay: inertial border : nowrapped

neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (O0,1) (1,-1) (1,0) (1,1)
localtransition : FireBehavior
[FireBehavior]

rule : {(1,-1)+(21.552615/17.967136)} {(21.552615/17.967136)*60000} {(0,0)=0 and 0<(1,-1)}
rule : {(1,0)+(15.24/5.106976)} {(15.24/5.106976)*60000} {(0,0)=0 and 0<(1,0)}
rule : {(0,-1)+(15.24/5.106976)} {(15.24/5.106976)*60000} {(0,0)=0 and 0<(0,-1)}

Figure 36.A Skeleton of thd=irel Model Definition in CD++116]
* The Fire2 model
TheFirel model has been generalized32] to allow for determination of fire spread ratey changing
environmental parametefg3]. Specifically, the CD++ specification languagas been extended to
include a new syntax node, referred tofas [32], which calculates the spread rate in any given
direction at runtime by invoking tHd r eLi b library [115].
Figure 37 shows a skeleton of the generalifé2 model when defined under the same

environmental conditions as shown in Figure 35.

type : cell dim : (1024,1024) delay: inertial border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
localtransition : FireBehavior

[FireBehavior]

rule : {(1,-1)+(21.552615/fsr(225,9,273.4,225))} {(21.552615/fsr(225,9,273.4,225))*60000}

{(0,0)=0 and 0<(1,-1)}
rule : {(1,0)+(15.24/£sr(180,9,273.4,225))} {(15.24/£sr(180,9,273.4,225))*60000}

{(0,0)=0 and 0<(1,0)}
rule : {(0,-1)+(15.24/£fsr(270,9,273.4,225))} {(15.24/£fsr(270,9,273.4,225))*60000}

{(0,0)=0 and 0<(0,-1)}

Figure 37.A Skeleton of thd-ire2 Model Definition in CD++
Comparing Figure 37 with Figure 36, the spread mtea given direction is no longer a fixed
constant in théire2 model. Instead, it is the computation result offtse syntax node based on a set
of four parameters (i.e., azimuth, fuel type, wspeed, and wind direction), which are providedHhey t
runtime environment of an application. This alloafstaining highly dynamic and realistic simulation
results by feeding real-time environmental data e model. As expected, the time for processing a
(*, t) event at the Simulators becomes 6.68 tinmgér than what is required in tiérel model

(calibrated on a 3.2GHz Intel Xeon processor)gaiicant increase in computational intensity.

83

6.1.2Definition of a Watershed Model

The Watershednodel [116] uses a 3D cell space to simulate water acttion in a drainage basin
over 30 virtual minutes under constant rain coodit(7.62 mm/h) based on a set of hydrological
equationg7]. In addition, different types of ground soilrégs and stones) are also considered in the
Watershednodel by defining zones with different local trarsi functions within the cell space. Figure

38 shows a skeleton of théatershednodel definition in the CD++ environment.

type : cell dim : (320,320,2) delay: inertial border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (o0,0,0) (0,1,0) (1,0,0) (-1,0,1) (O,-1,1) (0,0,1) (O0,1,1) (1,0,1)
zone : grass {(0,0,0)..(319,50,0)} stones { (0,270,0)..(319,319,0) }

localtransition : hydrology

[grass]

rule : {0.07 + (0,0,0) - i£(((((0,0,1) + (0,0,0))>((-1,0,1) + (-1,0,0)))), (((((0,0,0) + (0,0,1)
- (-1,0,0) - (-1,0,1))/1000) * (0,0,0))/1000),0) - i£(((((0,0,1) + (0,0,0))>((1,0,1) +
(1,0,0)))), (((((0,0,0) + (0,0,1) - (1,0,0) - (1,0,1))/1000) * (0,0,0))/1000),0) - i£(((((0,0,1)
+ (0,0,0))>((0,-1,1)+(0,-1,0)))), (((((0,0,0) + (0,0,1) - (0,-1,0) - (0,-1,1))/1000) * (0,0,0))/
1000),0) - if(((((0,0,1) + (0,0,0))>((0,1,1) + (0,1,0)))), (((((0,0,0) + (0,0,1) - (0,1,0) -
(0,1,1))/1000) * (0,0,0))/1000),0) + if(((((-1,0,1) + (-1,0,0))>((0,0,1) + (0,0,0)))), ((((~
1,0,0) + (-1,0,1) - (0,0,0) - (0,0,1)) * (-1,0,0))/1000),0) + if(((((1,0,1) + (1,0,0))>((0,0,1)
+ (0,0,0)))), ((((,0,0) + (1,0,1) - (0,0,0) - (0,0,1)) * (1,0,0))/1000),0) + i£(((((0,-1,1) +
(0,-1,0))>((0,0,1) + (0,0,0)))), ((((0,-1,0) + (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-1,0))/
1000),0) + if(((((0,1,1) + (0,1,0))>((0,0,1) + (0,0,0)))), ((((0,1,0) + (0,1,1) - (0,0,0) -
(0,0,1)) * (0,1,0))/1000),0) } 1000 { cellpos(2)=0 }

rule : { (0,0,0) } 1000 { t }

*= //local transition functions for [stones] and [hydrology] are omitted here

Figure 38.A Skeleton of th&Vatershedviodel Definition in CD++ [Wai06]

In the model, the height of accumulated water atla depends on the rain intensity, the water
exchanged with the neighboring cells (both inflamsl outflows), and the amount of water absorbed by
ground soil of different types. A local transititmction thus computes future height values fordbks
at each virtual time, taking into account the alitivater level, the cumulative rain precipitatidhe
dynamic water flow between the cells, and the $gesnil condition. The 3D cell space is composéd o
two planesplane Q for representing the ever-changing heights afined water at different cells; and
plane 1 for defining the topographical configuration bétterrain which remains unchanged throughout

a simulation.

6.1.3Definition of the Synthetic Model

The Synthmodel defines a 2D cell space that is initialllefi with zeros. Each cell of the gird defines
eight neighbors and evaluates two simple rulesnging its value from zero to one and vice versa

throughout the simulation. Figure 39 shows a skelatf the Synthmodel definition in the CD++
84

environment. The large cell's neighborhood and #imple low-computation rules create dense
communication allowing analyzing parallelism witbnemunication-intensive models. The simulation

scenarios for this model are conducted over 100setonds.

type : cell dim : (10C,10C) delay : inertial defaultDelayTime : 0 border : nowrapped
neighbors : synth(-1,-1) synth(-1,0) synth(-1,1) synth(0,-1) synth (0, 0) synth(0,1) synth(1l,-1)
synth(1l,0) synth(1,1)

initialvalue : 0 localtransition : modelBehavior
[modelBehavior:

rule : 1 1 1 (0,0) = 0)

rule : 0 1 4 (0,0) = 1)

rule : {(0,0))] 1 { t)

Figure 39. A Skeleton of the&SynthetiaViodel Definition in CD++

6.2 Experimental Configurations and Performance Metrics

The performance of the conservative protocols (LBTMB, and GLM) and the optimistic LTW
protocol were studied in the experiments using CEand PCD++ simulators respectively. The
performance results presented in the followingisestnot only depend on the degree of parallelism
available in the tested models, but also depentherspecific experimental configurations summarized
here. Consequently, they should be viewed as itatic®af potential performance gain that is achiéxab
by the proposed protocol. Experiments were conduoctea cluster of 28 HP Proliant DL140 servers
running on Linux WS 2.4.21 and communicating ovégaBit Ethernet using MPICH 1.2.7 [Gro09],
which is a portable implementation of the MPI sta112]. Each cluster node features dual 3.2GHz
Intel Xeon processors with 1GB 266MHz main memangd 2GB disk swap space. Note that severe
memory-swapping activities will occur if the maximuspace requirement of a simulation approaches
(or goes beyond) the physical limit of 1:GB on a@ddoreover, a simulation will fail to complete whe
the memory usage cannot be contained within thermar allowable virtual memory space of 3GB
(i.e., the accumulated size of physical memory@iskl swap space).

To ensure a fair comparison, the two simulators&€ and PCD++) were configured the same
way. Table 2 shows a list of 6 performance metdakected in the experiments through extensive
measurement. Among them, tioéal execution timéT) and themaximum memory consumptiMEM)
are the two primary metrics used to compare theadhv@mulation performance of optimistic simulatio

versus the conservative versions.

85

Table 2.Performance Metrics

Metrics Description

T Total execution time of the simulation (sed

N

BT Total blocked time during the simulation (4

MEM | Maximum memory consumption (MB)

PEV | Total number of positive events executed

NEV | Total number of null events executed

NMR | Null message ratio

To demonstrate the absolute performance of bothopots, the benchmark models were also
executed using a sequential CD++ simulator on glesioluster node, with the corresponding metrics
(denoted as skgand MEMeg collected in the experiments. Using teequentialsimulation as the
baseline case, thwverall speedupf a parallel simulation on N cluster nodes is taBned as follows.

;I'seq, where N>1 (2)
T(N)

Overall Speedup

The other metrics in Table 2 (i.e., BT, PEV, NEMWIR) provide additional insight into the impact
of the three conservative protocols, allowing for @bjective assessment of the effectiveness of the
proposed synchronization protocol. The experimemsults for each test case were conducted based on
95% confidence interval for all the test cases.tRertest cases on multiple nodes, the results alsce
averaged over the participating nodes to obtgieranodeevaluation (i.e. BT, MEM, PEV, and NEV
represent the corresponding results per one ndthe) PEV values present the total number of DEVS
messages executed during the simulation. The neksage ratio (NMR) is a commonly used
performance metric for null message-based conseevatrotocols. It is defined as the ratio of the
number of null messages to the number of regul@sages during the simulation as follows.

NMR -NEV)
PEV

6.3 Evaluation of the Conservative and Optimistic Prot@ols

This section analyzes the performance of the LB&EBM, and LTW protocols using the benchmark

models introduced in Section 6.1. Using the logd #re generated during the simulation, these rsodel

86

have been verified prior to the actual performaeséing to ensure that the parallel simulations=gate
the same results as the corresponding sequemhalations. Later, the event-logging capability loé t
simulators was turned off in all test cases to miré the impact of file I/O operations on simulatio
performance. A simple partition strategy was uséickvevenly divided the cell space into horizontal
rectangles. As will be presented in Section 6.5l partitioning mechanism was also used to elser
the effect of partitioning scheme on the overalffgrenance. Therirel andFire2 models were tested
using cell spaces of 100x100, 200x200, 300x300, 50@k500, and th&/atershedmodel was tested
with 25x25x2, 30x30x2, 50x50x2, and 100x100x2 céli¢hile the Syntheticmodel was tested with
100x100, 200x200, and 400x400 cells.

Figure 40 illustrates the total execution time oro126 nodes folFirel model with 100x100,
200x200, 300x300, and 500x500 cells respectivehe graphs also show the min and max values for
each scenario which happened to be in the 5% mitéio avoid cluttering the graphs, the resultstfer
other models will only include the averaged valu€nsidering the two conservative protocols (GLM
and LBTS) it can be seen that for each differené,sthe GLM protocol reduces the execution time
compared to LBTS for every given number of nodesaMng that, for the four mentioned sizes, the
smallest execution time is always achieved by th& @rotocol compared to LBTS. It is also shown
that for any given number of nodes, the executiore talways increases with the size of the model.
While the LBTS protocol increases the executioretiafter it reaches the smallest execution time for
that size, the GLM keeps reducing the executiom @® the number of nodes increase in most cases. In
fact, the GLM protocol shows much better perfornreamompared to the LBTS algorithm for all
scenarios. This is due to the significant null raggsreduction that the GLM provides as shown on the

null message ratio graphs in Figure 42.

87

Firel Model (100x100) Total Execution Results Firel Model (200x200) Total Execution Results
80

| 1/!_ 2000
70

1800

|
o \ A

1200 / \

1000 ¥
800
600

60

50

40

T (sec)

T (sec)

30 1

-

20 {

400 L £ PE r= e o= o=
200
0 0

1 2 4 6 8 10 12 14 16 18 20 22 24 26

10

2 4 6 8 10 12 14 16 18 20 22 24 26

1
Number ofmachine{_._ LBTS (T) —=— OPTIM (T) GLM (T) Numberofn{—Q— LBTS (T) —=— OPTIM (T) GLM (T)

Firel Model (300x300) Total Execution Results Firel Model (500x500) Total Execution Results
10000 , \ 26000
9000 24000
8000 4 | ;:.
7000 22000
6000 20000
g so00 8 18000 \
T 4000 F1000| =
3000 4= -—
2000 7t 7‘*J‘L"A"-L"——"—"—"’¥"d.—_7:‘ 140001 Tz ¢ o - 3z FFF1
1000 \/ \/ 12000 1 e
l y V
0 0000 bio——— - @ o
12 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Numb: f hi
umber ot mae mﬁ—‘— LBTS (T) —— OPTIM (T) GLM (T) Number of machines ‘ —+—LBTS (T) GLM (T)

Figure 40. Firel Results for Various Sizes

By comparing the GLM protocol with the optimistioe (OPTIM) different results are observed.
For each size of the model, the optimistic protaedperforms the conservative ones only after tacer
number of nodes. That is, the OPTIM protocol shamsaller execution time compared to the
conservative protocols only after 4, 14, and 24 esofbr 100x100, 200x200, and 300x300 sizes
respectively. This is due to the high overheadhefdptimistic protocol caused by numerous rollbacks
state savings, and memory consumption, which maelsimulator unable to run any simulation for the
500x500 size of the model, and also failed to rue simulations on 1, 2, 6, and 10 nodes for the
300x300 size. Moreover, at some cases (e.g., siimlan 1 to 8 nodes for the 200x200 size) it was
observed that the performance of the optimisticutation is even worse than that of the sequential
execution (with a speedup of less than 1), mairdgaoise of the excessive communication and
operational overhead incurred in the optimisticaial simulation.

In terms of speedups, the GLM protocol always tesuin better speedup compared to the LBTS
algorithm. It is also observed that the GLM protopoovides higher speedups compared to the

88

optimistic one as the size of the model increaldlesvever, at smaller sizes of the model (i.e. 10@x10
and 200x200) the overhead of both of the consemairotocols (GLM and LBTS), which is the null
message distribution plus the total blocking tim¢he LPs, were much higher than the benefit thad w
gained by executing the model in parallel. Thatken the model is relatively small, the overhefd o
the optimistic simulator tends to be smaller tHawst of the conservative ones.

A general trend reflected in the experimental mssiglthat the reduction in the total executionetim
and maximum memory consumption is greater for n®aeeth larger sizes, indicating an improved
scalability of the synchronization algorithms.

Moreover, the blocked time (BT) and null messag® I&MR) of the conservative protocols were
also conducted to investigate their performanceetails. As shown in Figure 41, the average blocked
time values associated with the LBTS protocol atelmlarger compared to the GLM protocol. This is
more clear as the number of participating nodeeases. However, there are scenarios at whichThe B
values of the GLM were slightly higher than thodethee LBTS algorithm (e.g. 2 nodes scenario of
200x200, 300x300, and 500x500 sizes). This carxpki@ed by the nature of the GLM protocol where
the overhead it produced at 2 nodes is slightlhé&idghan what was produced by LBTS (under the GLM
scheme, the two nodes must send their null mesagiee central manager and then wait for the
response null message from it, while with the LBW&f®, nodes directly send to each other). Howewer, a
the number of nodes increases this behavior isongelr observed and the overhead of GLM stars to
decrease compared to that of the LBTS because ulhenessage distribution strategy of the GLM
protocol causes less overhead. On the other hhed\MR results shown in Figure 42 clearly explain
how the GLM outperforms the LBTS protocol by sigrantly reducing the number of null messages,
thus, markedly improving the NMR.

89

Firel Model (100x100) BT Results

Firel Model (200x200) BT Results

Number of machines | @LBTS (BT) @GLM (BT)

50
200
40
I 150
[—~
&%
> L
£ 20 2100
= [=
10 50
0 0
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines mLBTS (BT) mGLM (BT) Number of machines mLBTS (BT) @mGLM (BT)
Firel Model (300x300) BT Results Firel Model (500x500) BT Results
500.00 3000
2500 A
400.00 A
R __ 2000
g 300.00 1 g
2 < 1500
g g
£]
F 20000 = 1000 -
100.00 - 500 -
0.00 - 0
1 2 4 6 8 10 12 14 16 18 20 22 24 26 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines ‘.LBTS (BT) @GLM (BT)

Figure 41.BT Results oFirel

8.00

Fire Model (100x100) Null Message Ratio

Fire Model (200x200) Null Message Ratio

7.00

e

“,_44_,_/

8 10 12 14 16 18 20 22 24 26

2 4
Number of machines ‘ — o LBTS

GLM |

7.00 »
6.00 /
6.00 /
5.00 5.00
@
24.00 £.001
3.00 | %00
2.00 2.00
1.00 { / 1.00 1
0.00 +—o——t=—=lm=t T T T T T T T T 0.00 +—p—r—t=—e= T T T T T T T T T
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines ‘ +—LBTS GLM ‘ Number of machines ——LBTS GLM ‘
Fire Model (300x300) Null Message Ratio Fire Model (500x500) Null Message Ratio
7.00 7.00
6.00 - / 6.00 1 /
5.00 5.00 /
o 400 // z 4.00
g 3.00 Z 3.00

2.00

1.00 4

-
=SS

0.00

1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines ‘ +—LBTS GLM

Looking at the memory consumption of the three quols as illustrated in Figure 43, it is shown
that the average maximum memory consumption pee rdetreased in the same manner for both
conservative protocols. However, the memory consiom@ssociated with the optimistic protocol was
much higher compared with the other two protocdhictv is as expected. At some cases, the maximum
memory required per node under the optimistic seéheras so high that the simulation could not be
completed due to memory exhaustion. In additiohapgpened that memory consumption did not follow
a steady reduction pattern, as shown for the chgdenodes running the 200x200 model, the average
memory consumption is lower than the case whendg@sare participating. This is very dependent on
the specific rollback and state savings that oecliin these two scenarios, causing the average mpemo

consumption per node to be lower than when thexealy 4 nodes compared to the 6 nodes scenario.

Figure 42.NMR Results ofirel

Similar behavior was noticed for the 300x300 siz#h\8 nodes scenario.

91

Fire Model (100x100) MEM Fire Model (200x200) MEM
400 - 2500 -
350
9 © 2000 |
o 300 A]
o =4
5 250 5 1500 -
> @ 200 oa
2 1501 gélOOO—
[[
100 +
£ 0 ; 500 |
3
= o = o
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines mELBTS mOPTIM @ GLM Number of machines ELBTS mOPTIM @ GLM
Fire Model (300x300) MEM Fire Model (500x500) MEM
2000 1400
1800 200
1600 3 1
S 1400 S 1000
=4
5 1200 =
3 § 800
< & 1000 S 3
‘g 2 800 5 =600
) 600 g 400
& 400 E
g 200 é 200
0 0+
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines |ELBTS mOPTIM @GLM Number of machines mLBTS mGLM

Figure 43.Memory Consumption fdfirel Model

Similarly, Figure 44 illustrates the total execuatiime forFire2 model at various sizes for the three
protocols. As irFirel, on each different size, the GLM protocol reduttezglexecution time and the total
number of null messages significantly. The perfarogaachieved by the GLM protocol stayed high as
the number of nodes increased which was not the foasthe LBTS protocol where the performance
started to drop down as more nodes were engagedndihmessage reductions results are presented in
Figure 46. A different performance was observethatlargest size (the 500x500 model), where the
LBTS outperformed the GLM with 4, 6, 8, 10, 12, dtinodes. However at 1, 2, and above 14 nodes,
the GLM provided smaller execution times. This d¢mnexplained by considering the nature of the
model which is computation-intensive, thus, as riiedel size is larger the computation phases take
longer, and specifically within the GLM scheme krgverhead is introduced into the simulation
because the LM had to wait for all LPs to sendrttemkahead before it could distribute the globally
minimum lookahead value and thus resume the blotksd Now, considering the optimistic protocol,
it was observed that when the size of the modamasll, the best performance is achieved by this

protocol, but as the size of the model increasedG@hM protocol outperformed the optimistic one,
92

specifically when fewer nodes were engaged. Thdbisthe 100x100 size, the GLM protocol resulted
in smaller execution time with 1 and 2 nodes. Intast, as the size grew (e.g., the 300x300 moitthed),

GLM continued to perform better than the optimigiree until 20 nodes. This was while the optimistic
simulator could not carry out the simulations &110 nodes for the 300x300 size, and similarly not
able to run any simulation even with the maximurmbar of available nodes for the largest size (i.e.

500x500) due to high memory consumption.

Fire2 (100x100) Total Execution Results Fire2 (200x200) Total Execution Results
250 ~
200 1400 l/ \
1200
5150 | 1000 \
2 3 800 *
\:/100 1. \E] 600 | N A_A\\\ M
400 kkﬂ:l:l:l:H_r
%0 M 200
0 1 2 4 6 8 10 12 14 16 18 20 22 24 26

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines|—— LBTS (T) —#— OPTIM(T) —+— GLM (T) Number of machi_, | BTS (T) —a— OPTIM(T) —+— GLM (T)
Fire2 (300x300) Total Execution Results Fire2 (500x500) Total Execution Results
8000
23500
7000 F/I\
6000 / \ 21500 -

5000 \
519500

4000 | 3
. i)

00997 W 17500 1

2000 i s ol

1000 1 15500 ‘\\HN e

! —
0 13500 +——"r"—"7""-"—""—"-m+—"-+—-"r————

1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number OfmﬁChi”eS‘+LBTS(T)+OPTIM(T) GLM (17‘ Number of machines ‘ ——LBTS (T) GLM (T)

T (sec)

Figure 44.Fire2 Results for Various Sizes
The average blocked time for the two conservatixgtqgols for two sizes of the model (i.e.
100x100 and 500x500) are presented in Figure 45exjsected, with the smallest size model, the
blocked time values for both of the conservativat@eols increased as more nodes were engaged due to
the overhead of the protocols which nullified tregfprmance gain of parallel simulation. However, it
can be seen that the BT associated with GLM is namcéller compared to that of LBTS. On the other
hand, when the model was much larger, differentabein was observed. The GLM caused much
smaller BT values, and at the same time, as thebaumwf nodes increased, the BT values decreased

linearly. This shows that when the model is largel @omplex, the benefits gained from the GLM
93

protocol overcome the overhead issues of the pobtadile this statement was not true for the LBTS
protocol. That is, for the LBTS protocol when theglation was conducted over 10 nodes, the BT
values started to increase as more nodes were ehg@bis shows that the overhead of the LBTS
protocol starts to have a negative impact on thopwance after the number of nodes reaches a
specific range mainly due to the significant inseaf the total number of null messages that got

distributed among the LPs.

Fire2 (100x100) BT Results Fire2 (500x500) BT Results
100 4000
901 3500
891 3000
70
é 60 é 2500
< 50 ~ 2000 -
€ 40| g
i w0 i 1500 +
1000 -
20
10 | 500 |
0 04
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines ‘ mLBTS (BT) o GLM (BT) Number of machines ‘. LBTS (BT) @ GLM (BT)

Figure 45. BT Results ofire2
The NMR results oFire2 model are given in Figure 46. For the variousssiziethe model, similar
NMR results were obtained, thus only the resultstieo of the sizes (100x100 and 500x500) are
illustrated. Similar ta~irel model, for various sizes of the model, the NMRueasl at different nodes
configuration were significantly lowered by the GLpftotocol. The memory consumption results
illustrated in Figure 47 show the significant megnaronsumption reduction of the conservative

protocols compared to the optimistic protocol.

Fire Model (100x100) Null Message Ratio Fire Model (500x500) Null Message Ratio
8.00 7.00

7.00 » 6.00

6.00 / 500 /

5.00 /
4.00

4.00 /
3.00

3.00 1 /

2.00 2.00 /

1.00 - / 1.00

0.00 +o— —_——_— e — 0.00 _A_,__{ﬁ“_,_/’/./

1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26

Numberofmachi”%\ —+—LBTS GLM \ Number of machines \ —+—LBTS GLM

NMR
NMR

Figure 46.NMR Results ofire2

94

Fire2 (200x200) MEM Fire2 (200x200) MEM

60 2500
50 |
40
30 |
20 -
10 {

2000

1500 A

1000 -

500 -

Max. memory per node
(MB)

Max. memory per node
(MB)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines mLBTS OGLM Number of machines mEOPTIM
Fire2 (300x300) MEM Fire2 (300x300) MEM
2500
450 A
[9) 400 A [9) 2000
8 3501 3
c o
g 300 4 o 1500
Sg 250 2o
s = 200 S 21000
5 150 - g
£ 100 E 500
?Eé 50 | 3
0 = 0 —
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines mLBTS OGLM Number of machines mOPTIM

Figure 47. Memory Consumption fdfire2 Model
Figure 48 presents the execution results of threl timodel,watershed As was mentioned earlier,

this model is three dimensional and communicatidaarsive, thus most of the execution time is spent
on messaging rather than computation. From thé éatzcution time values it is observed that overall
the GLM conservative protocol outperformed the otia® mechanisms at small number of nodes, but
as the number of participating nodes increased,(R&IM protocol outperformed the conservative
ones. However, with less number of nodes (e.g.,2andl 6) the GLM protocol gave the smallest
execution time, and after this, by increasing thenber of nodes the optimistic protocol provided the
best results. Although the GLM protocol resultediémy similar execution time values, however, i ca
be concluded that the impact of the optimistic @cot is most evident in th&/atershedsimulations,
where the number of simultaneous events executexh@t virtual time grew with the model sizes,
making the optimistic protocol the synchronizatiohthe choice when executing communication-

intensive models.

95

With regards to the two conservative protocols, &lev protocol outperformed the LBTS for
nearly all cases indicating that the null messageilution mechanism of this protocol produces muc

smaller overhead compared to the LBTS mechanism.

Watershed Model (25x25x2) Total Execution Results Watershed Model (30x30x2) Total Execution Results
700 | 1000 {1
600 - 800
500
400 u\ 600 n

T (sec)

\ = s
\ [
) \
300 1 ~n F 400 \ ‘
200 S

100 - ===
0 T T T T T T T T T T T T 0 i i i i S i i i i . . .
1 2 4 6 8 10 12 14 16 18 20 22 24 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines| —— LBTS (T) —s— OPTIM (T) GLM (T)| |Number of machineq —#— LBTS (T) —=— OPTIM(T) GLM (T)|
Watershed Model (50x50x2) Total Execution Results Watershed Model (100x100x2) Total Execution Results

3000

n
2500 12000
\ 10000 | \
2000
\ 8000
1500

6000

o M 20
500 — - 2000 -

= [

T (sec)

T (sec)

0

1 2 4 6 8 10 12 14 16 18 20 22 24 26
1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines
Number of machines ‘ —— LBTS (T) —=— OPTIM(T) GLM (T)‘

\ —+— LBTS (T) —=— OPTIM GLM (T)

Figure 48. WatershedResults for Various Sizes

It is shown that much higher speedups are achiewrtbared to the two fire models because of the
nature of the model, which involved numerous cegltates (large number of simultaneous events
executed at each virtual time), thus, allowing ¢éadfit from parallel simulation much better. For,BE
shown in Figure 49, with the first three sizesle# thodel, the BT values associated with GLM were
smaller for nearly all cases. In addition, for eatlhese sizes, as there were more nodes, trereliite
between the BT values of the GLM and the LBTS pok® increased more. A different behavior was
seen at the 100x100x2 size, where the GLM causedetoBT at most cases compared to LBTS.
Although, the total execution time results showwat the GLM protocol outperforms the LBTS for this
size of the model, however, due to the nature eftiodel which is 3D highly-communicative, and the

tight neighboring that existed among the cells,dlerall synchronization phases tended to take much

96

longer under the GLM scheme. That is, since eadle ftad more atomic components (i.e. cells)

assigned to it, and thus longer time to finish wprg computation/communication phase, the central

synchronizer was required to wait longer for aldes to broadcast their null messages. As a result,
longer waiting times (i.e. blocked times for eadP) lwere associated with each synchronization phase
compared to the LBTS scheme.

However, this did not affect the overall performarim terms of the execution time), because the
GLM protocol keeps the event queue of each nodenrsborter (at any time, at most one null message
is kept in the input queue) compared to LBTS (wlagrany time, there are at maosf null messages in
the queue, whera is the total number of participating nodes). Thog,keeping the message queues

shorter, the queue operations which are perforneeg aften took shorter.

Watershed Model (25x25x2) BT Results Watershed Model (30x30x2) BT Results
100 140
120
801 100
3 60 3 80
L L
) 3] m
60
E 40 £
[[
40
20 A
20
0+ 04
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines | @LBTS (BT) mGLM (BT) Number of machines mLBTS (BT) mGLM (BT)
Watershed Model (50x50x2) BT Results Watershed Model (100x100x2) BT Results
200 350
300 7
150 250 | |
’a —
g 8 200
100 e
g 2 150
& =
100
50
50
0 0
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines ‘ ELBTS (BT) @GLM (BT) Number of machines ‘.LBTS (BT) @GLM (BT)

Figure 49.BT Results oWatershed

97

Watershed Model (any size) Average NEV per Node Watershed Model (100x100x2) Null Message Ratio

180000 0.0200

160000 | 0.0180 1 /
0.0160

140000 -
0.0140 /

120000
100000 1 0.0120 1
0.0100 |

80000 0.0080 -
60000 -

0.0060
40000 | 00040 |
20000 ~ 0.0020 1

0 0.0000 o=t

1 2 4 6 8 1012 14 16 18 20 22 24 26 L 2 4 6 8 10 12 14 16 18 20 22 24 26
Numberofmachines‘ ELBTS EGLM Number of machines ‘ —+—LBTS GLM

NMR

Number of NEV

Figure 50.NMR Results ofWVatershed
The average number of null messages per node andMR results for th&Vatershednodel are
presented in Figure 50. The NEV results were tmeestor the different sizes of the model since the
simulation was run for the same virtual-time duwmatin every case. The NEV values were significantly
higher with the LBTS mechanism showing how sucegssés the GLM protocol in reducing the total
number of null messages. The NMR results showedhthge performance gain by comparing the null

events to the positive events and calculating dtie.r

Watershed Model (25x25x2) MEM Watershed Model (50x50x2) MEM
160
450 A
g 140 ° 400
S 1201 8 350
c =
g 100 5 300
Sg sof = 57250 1
S = 60 S 2200 |
cu 5 150
E 404 € 100
3 20 1]]
0 0
1 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines @mLBTS mOPTIM @ GLM Number of machines mLBTS mOPTIM @ GLM

Figure 51.Memory consumption fowatershednodel
Considering the maximum memory consumption, Fidikallustrates that average memory used
per node decreased as the number of nodes incré¢dsegver this was only true for the conservative
protocols. The optimist protocol showed fluctuatiegults at smaller sizes of the model which ig/ver
dependent to how the model is partitioned, whichy ead to larger rollbacks and state saving

overheads. When the largest size of the model ested, the given partitioning mechanism was well

98

suited for the optimistic protocol resulting in mem reduction as the number of participating nodes

increased.

6.4 Evaluation of the Conservative Protocols

This section evaluates the performance of the LBCBIB, and GLM protocols by presenting the
results obtained from running tik@rel, Watershedand Synthmodels under different scenarios. The
protocols are analyzed in terms of the total exenutime, maximum memory consumption, total
number of null messages, and the null message ratio

Figure 52 illustrates the T and BT results Farel model. The LBTS and GLM protocols reduced
the execution time when more nodes were particigatHowever, this was only true until a certain
point, where after that adding more nodes did aeduce the execution time. This is due to the owthe
of the protocol, where the increased number of makssages and blocked times started to have a
negative impact on the overall performance. In seahthe BT, GLM produced the smallest results in
all cases, while CMB resulted in the largest blackiene values. Although CMB produces less null
messages per synchronization phase, but it leatisdger total number of null messages and blocked
periods compared to the LBTS protocol (becausstitgdegy consists of multiple rounds of null messag

distribution).

99

Fire Model (100x100) T and BT Results

Fire Model (200x200) T and BT Results

4 .
Number of machines

50 700
40 600 -
5 PN <::::;:7' i |
30 - 7 20 _
= 9 400 . —n— ————— ———
£20 Py
[~ £ 300
10 = 200 -
1 2 4 6 8 10 12 0+
Number of machines 1 2 Num4ber ofmsachines8 10 12
== LBTS (BT) mmmm CMB EBD == GLM gﬂ = LBTS (BT) mmmm CMB (BT) === GLM (BT)
—+—LBTS —a—CMB (T) GLM —e—LBTS ET) = CMB ET) GLM §T)
Fire Model (300x300) T and BT Results Fire Model (500x500) T and BT Results
3500 25000
3000 e 20000 "\
2500 —
(3) Q
& 2000 1 \ —n n ”n " @lSOOO T
2 1500 £10000
i~ 1000 =
500 | 5000
ol [T FlD ol mills Sl S ol [l PEY pln cEe e e |
1 2 6 8 10 12 1

=== LBTS (BT) mmm CMB (BT) === GLM (BT)
+LBTS§ —-—CMBET) GLM §17

4 6 8 10 12
Number of machines

== LBTS (BT) mmm CMB (BT) == GLM (BT)
%r) +CMBET) GLM §17

—+—LBTS

Figure 52.Firel Model T and BT Results

Fire Model (100x100) MEM
60

50
40

30
20
10 +

Max. memory per node
(MB)

1 2 4 6 8 10 12
BLBTS mCMB mGLM

Number of machines

Fire Model (500x500) MEM
1400

1200
1000
800 |
S 600 |
400 |
200

Max. memory per node

1 2 4 6 8 10 12
BLBTS mCMB mGLM

Number of machines

Figure 53.Firel Model Memory Consumption Results

Memory consumption per node reduced at the saradoatlifferent sizes as seen in Figure 53. The

maximum memory consumption per node dropped corahbtieas more nodes were engaged, for all the

three protocols.

The results of th&Vatershedmodel are given in Figure 54. Since the modelosmunication-

intensive it was noticed that for all the proto¢dlse execution time reduced as more nodes were

100

engaged. The performance improved even with smail models (compared tirel). The GLM
protocol provided the best performance in all cases the worst performance belonged to the CMB
protocol. In most cases, only the BT of the CMBtpeool was even larger than the T value of GLM and
LBTS protocols. In all cases, with 2 nodes parttipg, the CMB protocol caused longer execution
times compared to the results obtained from theiesgtipl simulator. The large overhead of the CMB
protocol overcomes the benefits of parallelizatidowever, as the number of processors increased, th
execution time and the blocked period of CMB sthtie drop. For BT results, the tests showed that
similar to theFirel model, GLM produced the lowest blocked time; thenLBTS protocol, and finally
the CMB mechanism. For th&atershednodel, execution time and BT reduction rate fatious sizes

of the model were very close. The three protocal$ the same performance gain regardless of the size
of the model, which was due to the numerous evédrats were distributed throughout the simulation

(this 3D model includes a large number of neighltieas must be updated more often).

Watershed Model (25x25x2)T and BT Results Watershed Model (30x30x2)T and BT Results
1000 1400

1200
800 -
(4 1000 H
600 \ 800 A
400 i 000 .
e |5 o ‘B pi—
| — .
200 200 -
0 - 0

Time (sec)
Time (sec)

1 2 8 10 12 1 2 8 10 12
Number ofmachlnes Number ofmachlnes
=== LBTS (BT) smmm CMB (BT) === GLM (BT) = LBTS (BT) -CMB BT) = GLM BT)
—+—LBTS (T) —a—CMB (T) GLM —+—LBTS —a—C GLM
Watershed Model (50x50x2) T and BT Results Watershed Model (100x100x2) T and BT Results
3500 14000
3000 - 12000 4
2500 | 10000 \
2 2000 & 8000
& \‘l_l &
@ 1500 - \'\"\.\. g 6000
£ 1000 = 4000
500 A 2000
0 0
! 2 Nur#ber ofm6a<:hines8 10 12 Number ofm6a<:h|nes8 10 12
== LBTS (BT) - CMB (BT) |:|GLM BT) === LBTS (BT) mmmm CMB EBT) |:|GLM ST)T)
—+—LBTS CMB (T) —+—LBTS —sa—CMB

Figure 54.WatershedMlodel T and BT Results

101

Watershed Model (25x25x2) Memory Consum ption Watershed Model (100x100x2) Memory Consumption
100 1600
2 S 1400
S 80 2 1200
2 o0 g _ 100,
> m >m 800
s 240 s 2 600 -
§ o § 400 |
E E 200 |
g o 3 0
= =
1 2 4 6 8 10 12 1 2 4 6 8 10 12
Number of machines @LBTS mCMB mGLM Number of machines | BLBTS mCMB @mGLM

Figure 55. Watershedviodel Memory Consumption Results
The MEM results are given in Figure 55. AdHine model, memory consumption per node dropped
as the number of machines increased. All the tpreéocols resulted in very similar MEM values,

showing that the three protocols performed the sarterms of memory consumption.

Synth Model (100x100) T and BT Results Synth Model (200x200) T and BT Results
250 1200
200 M 1000 - /-\
B \'\-\ < 800 |—B<_
@150 —L\ -— . § ~—~ \-\.\.\-;
2100 i~ g 600 T h——p———— o o
= 50 | I I I I I I £ 400
200 A I I I I I l
O 4
1 2 4 6 8 10 12 0 -
Number of machines 1 2 Nurﬁber ofn§|achinesg 10 12
=== LBTS EBU = CMB EBU = GLM EBU == LBTS (BT) mmm CMB (BT) ==1GLM (B
—+—LBTS (T) —=—CMB (T) GLM (T) o—LBTS ET)T) s CM ET)T) GLM E N
Synth Model (400x400) T and BT Results Synthetic Model (200x200) Memory Consum ption
9000
1000
8000
7000 — 3
2 800 -
5 6000 - — ?\'\\,'—_zzw 2
& 5000 - g 600
© 4000 - > o
E 3000 | S 400
2000 g 200 |
1000 I . m .
0 - é 04
1 2 4 6 8 10 12
Number of machines 1 2 4 6 8 10 12
== LBTS 5BD mmm CMB 581) == GLM 581) Number of machines | @LBTS mCMB @mGLM
——LBTS () —=—CMB (T) GLM (T)

Figure 56.SynthModel Results
The T, BT, and MEM for th&ynthmodel are shown in Figure 56. This model allowalyrng the

performance of each of the protocols when full jpeliam takes place. As can be observed from the

102

execution results, for all the protocols, the semiohs benefited from the full parallelism suchtttie
performance continued to improve as the numbepdés increased.

For GLM and LBTS, the BT value was considerably lmmpared to the T value in each case. The
BT values were still too high with the CMB protocobmpared to the other two protocols. As in
previous models, the GLM resulted in best perforceanvhile the CMB protocol had the worst results
in every scenario. However, due to the nature efrttodel, overall the results were better than those
obtained from thé&Vatershedor Fire model executions. As shown by the memory consumpgraph
(for the 200x200 size) memory usage per node inggtaemarkably with the increase of the number of
machines. All the three protocols reported veryilsimesults for memory consumption.

The results of the three protocols in terms oftttal number of null messages and the null message
ratio were also collected. Figure 57 shows the N& NEV/PEV) results for various sizes of the
Firel model. Looking at the GLM graphs, it is shown tthas protocol produced the smallest NMR at
all cases.

Fire Model (100x100) Null Message Ratio Fire Model (200x200) Null Message Ratio
2.50 2.00

2.00

/’ 150 -
1.50

/ 1.00
1.00

- / 0.50 1
0.00 +—"+—— - - - - - 0.00 +—=

1 2 4 6 8 10 12 1 2 4 6 8 10 12

NMR
NMR

Number of machines ’ gla_-ll\-/ls —=—CMB Number of machines | ~— ¥ g?:,l\-/ls —=—CMB
Fire Model (300x300) Null Message Ratio Fire Model (500x500) Null Message Ratio
2.00 2.00

150 // 1.50 1
1.00 /

N

1.00

NMR
NMR

0.50 | 0.50 |
0.00 +—m——+— : : : T T 0.00 +—n—= : : T . .
1 2 4 6 8 10 12 1 2 4 6 8 10 12
. —+—LBTS —=—CMB : —+—LBTS —=—CMB
Number of machines GLM Number of machines GLM

Figure 57.Firel Model NMR Results
The CMB protocol, compared to the LBTS protocofhduced smaller NMR values after a certain
number of participating nodes, which was 4, 6,18 8 nodes for 100x100, 200x200, 300x300, and
103

500x500 sizes respectively. This behavior is exygldiby the fact that as the number of machines
increased, the synchronization overhead assocratedCMB got smaller than that of produced by the
LBTS protocol. Meaning, with smaller number of miaes, the total null messages produced by the
LBTS protocol were less than the number of null sage distribution rounds in CMB, thus resulting in
lower NMR compared to the CMB protocol. On the othend, when more nodes were participating,
the total number of null messages that were digieib by the LBTS protocol were much higher than
those produced by the CMB protocol, although theBOddotocol causes more synchronization rounds

per each synchronization phase when more nodesngsged.

Watershed Model (25x25x2) Null Message Ratio Watershed Model (30x30x2) Null Message Ratio
0.055 0.045
0.050 - 0.040
0.045 0.035
0.040 -

0.035 4 0.030 -
0.025

0.030 A
0.025 A 0.020 A

0.020 - /./././. 0.015
o0t |
0.005 / 0.005
0.000 +—m—= - - - . . 0.000 -

1 2 4 6 8 10 12 1 2 4 6 8 10 12

NMR
NMR

.4 —e—LBTS —=— CMB ; ——LBTS —a—CMB
Number of machineg GLM Number of machines GLM
Watershed Model (50x50x2) Null Message Ratio Watershed Model (100x100x2) Null Message Ratio
0.020 0.0050

0.0045
» 0.0040 -
0.015 0.0035 -
0.0030
0.010 0.0025 /
0.0020
//./' 0.0015 —

0.00 0.0010 A
0.0005 A
0.000 +—= T T T T T 0.0000 +— T T " ;

1 2 4 6 8 10 12 1 2 4 6 8 10 12

NMR
NMR

Number of machineg ~—* IéBL-’[/IS —=—CMB Number of machines +IéBL-'I\—AS —=—CMB

Figure 58. Watershedviodel NMR Results
As expected, the GLM protocol resulted in the sesilhumber of null messages (average NEV per
node) in all cases. Similar to the NMR results, @B outperformed the LBTS protocol after a certain
point, while with smaller number of machines it ledthe worse results compared to LBTS. The NMR
results for theWatershedmodel are illustrated in Figure 58. Similar Foel model, the best results
were obtained with GLM, and the CMB protocol oufpened the LBTS when more nodes were

engaged.

104

Finally, the results foBynthmodel are presented in Figure 59. The performandtieis model was
similar to the Watershedmodel. The only performance difference betweers tmodel and the
Watershedmodel is that much smaller NMR and NEV were praljdecause the model was designed
in such a way that at every step, all the cellsi\gearalues and update their neighbors, which redurlt
higher PEV values. On the other hand, the simulatias only conducted over 100 milliseconds (virtual

time), which caused much fewer synchronization pbathus, smaller NEV and NMR values were
produced.

Synthetic Model (100x100) Null Message Ratio Synthetic Model (400x400) Null Message Ratio
0.00350

0.00300 pal
0.00025
0.00250 1
0.00020 ad
0.00200

0.00150 1 / 0.00015
0.00100 "

NMR

NMR

0.00010

0.00050 // 0.00005 %
0.00000 L—# ‘ : : : : 0.00000 L—= ‘ : : : :

1 2 4 6 8 10 12 1 2 4 6 8 10 12

— gﬂ—ﬂs —=—CMB Number of maching +él|3_"l\'/|8 —=—CMB

Number of machine

Synthetic Model (400x400) Null Message Ratio
0.00025

0.00020 1 / 5000

0.00015 4000
3000 -

0.00010 | /

0.00005 1000

0.00000 —1‘4;‘"/'/./ : : 0

Synthetic Model (any size) Average NEV per Node

NMR

2000 -

Number of NEV

1 2 4 6 8 10 12 1 2 4 6 8 10 12
Number of machines +Ié?_-|l\-/|s —=—CMB Number of machines ELBTS mCMB @GLM

Figure 59.SynthModel NMR and NEV Results

6.5 Sensitivity Analysis of the Conservative Protocols

» Initial-Load Distribution Analysis

To study the effect of initial state values on pleeformance of the conservative protocols,Rhiel
model was tested under three different scenariosdoh given size as following:

» Scenario 1 Placing an initial value at position (3, 78) bétcell space;

» Scenario 2 Placing an initial value at the middle of thel sgace;

105

» Scenario 3 Placing an initial value at each partition of tedl space.

Figure 60 to Figure 62 illustrate the different slation runs forFirel model with three different
sizes of cell space. Looking at the smallest m@d=l 100x100 cells), it was observed that changjirey
initial states from scenario 1 to scenario 2 daasimpact the performance of the protocols and very
similar results were obtained. However, on thedtlscenario different behavior was noticed. The GLM
protocol was affected significantly such that itmparformed the optimistic protocol for any numbér o
nodes. While the results obtained from the LBTSqwol remained almost unchanged, the performance
of the optimistic protocol degraded noticeably. STt because the simulation of scenario 3 resitted
much higher overall cells’ activities, thus, theéatonumber of state changes and rollbacks increased
leading to higher execution times. In another wpsilsce scenario 3 initialized an active cell onhea
partition at the initialization stage of the sintiga, this caused more cells to be active at thgnmeng
of the simulation, compared to the other two sdesawhere only one cell was initialized at the
beginning of the simulation on the entire cell spac

For the 300x300 cells case, only the optimistictgrol was affected. For instance, while under
scenario 1, the optimistic protocol failed to rtwe simulation on 1, 2, 6, and 10 nodes, in scerfatie
simulation could not be carried out even with 12lee» However, as more nodes were added the
performance got better and the optimistic simula¢gluced the execution time compared to scenario 1
experiments. The best performance for this sizh thié optimistic protocol was observed at scendrio
reaching the execution times that were obtainedhbyGLM protocol as the number of participating
nodes increased beyond 14. Compared to scenaridh& enodel at 100x100 cells, this scenario (i.e.,
scenario 3 at 300x300 cells) due to the large sfzthe model (i.e., 3 times larger) the simulation
benefits from the parallel execution much largemtthe drawbacks caused by numerous rollbacks and
state savings. In another words, the advantaggsalel execution overcame the overhead of the
synchronization protocol while this could not béieged at smaller sizes of the model (e.g. 100x100)

Increasing the size of the model to 500x500 cetid eunning the simulations under the three
different initial states scenarios was only possibdr the conservative protocols. The optimistic
simulator failed to run any simulation for the giveize due to memory exhaustion. The three scenario
had very similar effect on the two conservativetgeols while at most cases the best performance was

achieved with the GLM protocol due to reasons arplhin Section 6.3.

106

Scenario 2- (100x100) Total Execution Results

80 Scenario 1 - (100x100) Total Execution Results

70 \
60

) k
4
3

A
(\,,/0
= Oiw
20 | \'\'~—I—I—H—-_.._-l—|—l
10 A
1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines | —e— LBTS (T) —a— OPTIM (T) GLM (

Number of machi

1 2 4 6 8 10 12 14 16 18 20 22 24 26

——LBTS (T —®— OPTIM (T)
—1 A

80
70
60
50
40

30 1

20
10
0

Number of macmne{ —o— LBTS (T) —=— OPTIM (T)

Scenario 3 - (100x100) Total Execution Results

1 2 4 6 8 0 2 14 1 1B 20 22 24 26

GLM (T)

Scenario 1 - (300x300) Total Execution Results
10000 -

Figure 60.Initial States Analysis dfirel Model (100x100)

9000

8000

7000

[
[
[
[

— 6000
® 5000

g |
= 4000 |

3000 -

[MM
2000 - - / P - 1

1000 ‘l ‘y‘ \/

0 += T

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines‘ —+—LBTS (T) —=— OPTIM(T) GLM (T)

Number of machine% —&—LBTS (T) —=— OPTIM (T)

Scenario 2 - (300x300) Total Execution Results

'/ .

1 2 4 6 8 10 12 14 16 18 20 22 24 26

GLM (rj

5

4
o3
@
'_2

1

Number of machine# —— LBTS (T) —=— OPTIM(T)

Scenario 3 - (300x300) Total Execution Results

000 A A

000

000 A \/

000 <+

n
000 A
o+ 17—

1 2 4 6 8 10 12 14 16 18 20 22 24 26

GLM (d

Figure 61.Initial States Analysis dfirel Model (300x300)

Scenario 1 - (500x500) Total Execution Results

22000 1\
20000

18000 H

16000

T (sec)

14000 1 0

W

12000 H

10000

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines ‘+LBTS ©) GLM (T)

Scenario 2 - (500x500) Total Execution Results
19000 <

>
18000 A

17000 1
16000 -

515000 -

Q

£ 14000 -

[
13000 1
12000 {

11000 A

10000 T T T T T T T T

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines ‘AogfLBTS(T) GLM (T)

—~
(s}
Q
u

~
[

Scenario 3 - (500x500) Total Execution Results
20000
19000

18000 -
17000 -
16000

15000 bt
14000 |
13000 ™~
12000
11000 |
10000

1 2 4 6 8 10 12 14 16 18 20 22 24 26
—+—LBTS(T) GLM (T)

Number of machines

Figure 62.Initial StatesAnalysis ofFirel Model (500x500)

» Partitioning Analysis

Different partitioning strategies may result infdient simulation performance. Two partitioning
mechanisms were used to analyze the effect on teeald execution performance of three of the
models,Firel, Fire2, and Watershed The first partitioning strategy divided the cspace into equal
horizontal rectangles, while the second strategyl wertical partitioning by dividing the cell spacéo
even columns. These specific partitioning strategiere chosen because based on the nature of these
three models and the behaviour of cells’ valuespagation, they result in different degree of
parallelism especially at the initial stages of tmulation, allowing investigating how partitiogin
mechanisms affect the overall performance.

Figure 63 to Figure 65 illustrate the executiosuits obtained for different partitioning strategie
for Firel model with various sizes. The experiments with xX1@D cells were not affected by the
partitioning strategies. Almost identical executiimes were conducted for all the protocols. On the
other hand, the experiments for the 300x300 size= \skghtly affected by modifying the partitioning
mechanism. The impact was great on the optimisttopol which resulted in much lower execution
times with 14 nodes and beyond, when vertical fpaming was used. This showed that this specific
partitioning mechanism improved the performancehaf optimistic protocol by arranging the cells’
neighboring in such a way that most of the neighlmfra cell were within the same partition, thus
reducing the number of rollbacks and other assediafptimistic synchronization overheads. For the
largest size of the model (i.e., 500x500 cells)jlevkhe optimistic simulator was unable to run any
experiment due to memory limitation, the two comaéwve protocols provided similar results in both
cases of partitioning.

Similar behavior was observed fBire2 model. Figure 66 to Figure 68 present the redattshis
model with various sizes for each scenario. Ag-irel, the different partitioning mechanism vyield
similar results for the 100x100 and 500x500 si&miilarly, the results for 300x300 size showed that
the experiments using the conservative protocol® wet affected by altering the partitioning scheme
mainly because independent of what partitioningded, the conservative synchronization phases are
invoked in the same manner and at the same freguétfmvever, the optimistic simulator showed

better performance using the vertical partitionstigategy, thus, lower execution times were obtained

108

Moreover, the simulation could be carried out vdtAnd 10 nodes as well, while this was not possible
with the horizontal partitioning scheme.

Finally, the experiments were also repeated foMladershednodel under various sizes (Figure 69
to Figure 71). Interesting results were observexhatg that this model was not affected by alteting
partitioning strategies for neither of the simutatgneither the conservative ones nor the optimisti
version). This is due to the nature of the modekttviwas a 3D cell space with initial values disitdx
all over the grid layers such that using differpattitioning did not have any noticeable impacttioa
performance of the simulations. Meaning that, therall distribution of the initial values and the
neighboring of the cells followed very similar gatt on each partition when the model was divided

vertically or horizontally.

109

Horizontal Partition (100x100) Total Execution Results
80

70 \ /
e

60 \

50
40 1
30 ——

T (sec)

20 _w

10

1 2 4 6 8 10 12 14 16 18 20 22 24 26

GLM (W

Number of machines‘ ——LBTS (T) —a— OPTIM(T)

Vertical Partition (100x100) Total Execution Results
80 {

70 |
60 |
50 |
40 |
30 |
20 |
10
o — :

T (sec)

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines‘ —o— LBTS (T) —=— OPTIM (T)

GLM (rj

Figure 63.Partitioning Experiments dfirel Model (100x100)

Horizontal Partition (300x300) Total Execution Results
10000 —
9000 I \
8000 II \\
7000 , \
—~ 6000
2 5000 [T S\
O A .
3000 . ||/ \]
2000 4 \(fé\ﬁ%WM——m;“’_\ﬁ
1000
ole o4 ¥
1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines‘+ LBTS (T) —=— OPTIM (T) GLM (T)

Vertical Partition (300x300) Total Execution Results
3000 +—
2500 A
2000 —
81500 // T
F1000
500 A
0O+e—r—= a8 88 8- T T T T T T
1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machine# —o—LBTS (T) —=— OPTIM(T) GLM (T){

Figure 64.Partitioning Experiments dfirel Model (300x300)

Horizontal Partition (500x500) Total Execution Results
24000

22000 {1\

20000 \

518000 |
[}
216000 | &
-

14000 »
\'\' (\M Q"W

12000

10000 — T T T

16 18 20 22

1 2 4 6 8 10 12 14 24 26

Number of machines ‘—Q—LBTS m GLM (T)

Vertical Partition (500x500) Total Execution Results
22000 ’\
20000
~18000
[$]
; 1\
£16000
- \,\
14000 SR ———
12000
10000
1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines ‘+LBTS(T) GLM (T)

Figure 65.Partitioning Experiments dfirel Model (500x500)

110

Horizontal Partition (100x100) Total Execution Results
250 +

200

150 A

T (sec)

100 A

50

0 ——————T—T—T—T——
1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines‘ ——LBTS (T) —=— OPTIM (T) GLM (T)

Vertical Partition (100x100) Total Execution Results
250 \
200 \
~150
(S
o}
2 00 M
'_l
LA VM
50 1 ‘\Hﬂ‘—.\l———.-—l—l—.—.—.
0 —— T
1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines‘ —— LBTS (T) —a— OPTIM (T) GLM (T)

Figure 66.Partitioning Experiments dfire2 Model (100x100)

Horizontal Partition (300x300) Total Execution Results
8000

7000

6000 -

5000

T (sec)

4000
3000 4= /

2000 /
1000

N PR

1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines‘ —o— LBTS (T) —=— OPTIM(T) GLM (‘d

Vertical Partition (300x300) Total Execution Results

7000

6000

5000
S 4000
% o | [\
= 3000 —_

2000 L

1000 A

0 T T T T T T T T T .
1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number ofmachines‘+LBTS (T) —=— OPTIM(T) GLM O’i

Figure 67.Partitioning Experiments dfire2 Model (300x300)

Horizontal Partition (500x500) Total Execution Results

23500 -

\

21500

519500 \\
8 \

<L
17500

15500 -

13500 T T T T T T T T T T

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines ‘ ——LBTS(T) GLM (T)

Vertical Partition (500x500) Total Execution Results
23500 -
21500 -
519500 -
3]
& Py
17500 \
15500 \\ ’W
13500 — — — .
1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines ‘ —e—LBTS(T) GLM (T)

Figure 68.Partitioning Experiments dfire2 Model (500x500)

111

Horizontal Partition (25x25x2) Total Execution Results

700 {7
600 |
500 |
400 -
300 |
200 |
100

T (sec)

0 ————————T—— T
1 2 4 6 8 10 12 14 16 18 20 22 24

Number of machines‘ —+— LBTS (T) —=— OPTIM(T) GLM (T)

Vertical Partition (25x25x2) Total Execution Results

700 {7
600
500
400
300
200
100

T (sec)

1 2 4 6 8 10 12 14 16 18 20 22 24
Number of machines| —s— LBTS (T) —s— OPTIM (T) GLM (T)

Figure 69.Partitioning Experiments alVatershedModel (25x25x2)

Horizontal Partition (50x50x2) Total Execution Results
3000

n

2500

2000 +

1500

T (sec)

1000 -

500 -

0 T T T T T T T T T T T T T

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines ‘ —&— LBTS (T) —=— OPTIM(T) GLM ﬂ

Vertical Partition (50x50x2) Total Execution Results
)

2500 \
2000

1 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of machines | —#— LBTS (T) —=— OPTIM (T) GLM (1)

Figure 70.Partitioning Experiments dVatershedviodel (50x50x2)

Horizontal Partition (100x100x2)Total Execution Results
12000

10000 A

8000 -

6000

T (sec)

4000 ~ o

2000 —3—2—2—2

0+ T T T T T T T T T T T T

1 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of machines ‘ —+—LBTS (T) —a— OPTIM GLM (T)

Vertical Partition (100x100x2) Total Execution Results

12000 .\
10000

8000

6000 -

T (sec)

4000

2000 H

/w

10 12 14 16 18 20 22 24 26

Number of machines

\ —+ LBTS (T) —a— OPTIM GLM (T)

Figure 71.Partitioning Experiments dVatershedviodel (100x100x2)

112

Chapter 7: Conclusion and Future Work

This dissertation addressed software developmedt panformance issues that arise in large-scale
parallel simulation of P-DEVS and Cell-DEVS moddis.particular, this dissertation was primarily
concerned with improving the performance of DEVSdih conservative simulation on distributed-
memory multiprocessor clusters and performing coatpae analyses versus optimistic simulations. To
fulfill these objectives, three conservative DEV®tpcols, Lower-Bound-Time-Stamp (LBTS),
Chandy-Misra-Bryant (CMB), and Global-Lookahead-Management(GLM) have been proposed,
and their effectiveness has been evaluated quareliain the CD++ environment using different
benchmark models with varied characteristics.

The LBTS protocol87], which serves as the base for the other twaiggols, is the first purely
conservative synchronization mechanism for runn@el-DEVS parallel simulations. The protocol
attempts to reduce the communication overhead pjeimenting the mechanism at the NC (the highest
level of the DEVS abstract simulator hierarchy)eTtvo major challenges of conservative simulations
i.e., the lookahead computation and null messagfeilalition are handled by the NC at each LP. Thus,
the NC is the central synchronizer on each nodefanglards the simulation by issuing lookahead
computation and LVT advancing phases. Communicaioang processes is performed merely through
message distribution; there are no shared variadmhels no central process for message routing or
scheduling. The LBTS protocol avoids cycles by iempénting a deadlock-free mechanism which
requires each LP to compute its lookahead valuetanfdrward it to all participating LPs prior to
blocking. When an LP receives all remote null mgesait resumes and calculates a new LVT based on
the remote lookahead values it just received froneoLPs. This scheme ensures that at any time, the
LVT of every LP is equal to the Lower-Bound-TimeBip of any unprocessed event among all LPs.
The major challenge of the LBTS protocol is thgénumber of null messages that must be distributed
at the start of every synchronization phase.

The CMB protoco[83] overcomes the issues of large number of nebsage of the LBTS protocol
by adopting the original Chandy-Misra-Bryant dea#tlavoidance mechanism where null message are

only sent among direct neighbors and in multipkendas. Although each LP would be required to send
113

its lookahead value to less LPs, but the multimands of null message distribution degrade the
performance of the CMB protocol raising the neetbtaa protocol that manages such issues in a more
efficient way.

The issue of large number of null messages ofleecbnservative DEVS protocols (i.e., LBTS and
CMB) motivated proposing the GLM protocf86]. The GLM mechanism proposed a phase-based
simulation by introducing a centrabokahead ManagefLM) which is in charge of receiving every
LP’s lookahead, identifying the global minimum ladlead of the system, and broadcasting this value
via null messages to all LPs. Under this scheme, ihd longer distribute their null messages to each
other, rather, they send their lookahead infornmatiorectly to the LM. The LM responsibility is to
detect the suspension phases, and to initiateetheme phases by broadcasting the globally computed
minimum lookahead value. The asynchronous chaistiterof the LM ensures that it is not a
bottleneck, since the only message transmissiondvimg it take place at the end of the block and
resume phases.

This research also provided a comparative studyasfservative (LBTS, CMB, GLM) versus
optimistic (LTW) DEVS-based parallel simulation bgnducting thorough experiments and analyzing
different sensitivity metric§84][88]. Detailed discussions were presented invetitigahe performance
efficiency of each of the protocols and the prosl aons of using each particular mechanism for

different types of DEVS models.

7.1 Review of Key Contributions

The three conservative protocols presented in igsearch, namely LBTS, CMB, and GLM take

proactive approaches to addressing the challengp&dS-based conservative simulations, improving

performance without complicating the synchronizatiayer unnecessarily, sacrificing potential

parallelism, or introducing a noticeable extra agienal overhead. The key contributions of this

dissertation are summarized as follows.

* Implementedcoordinator-centeredynchronization approach by implementing the coratiere

protocols at the NC level which led to a substdntluction in the operational overhead
resulting in a significant improvement in the ovesamulation performance. By keeping other

DEVS processors (i.e., FCs and child Simulatorgware of the underlying synchronization

114

mechanism, the NC-centered strategy dropped thé @oswll message distribution and
lookahead computation significantly.

Developed a simplevent schedulinghechanism that maintains a FIFO input queue foh é#&

to simplify queue manipulation, thus reducing tesaziated queue management costs resulting
in higher overall performance.

Introducedlow-costand efficientlookahead and LVT computation strategies that madee of
information that already exist in the simulation.

Proposeddynamic lookaheadomputation mechanism that dynamically extraces|tdokahead
information from the model's specifications resuitiin ageneral-purposemodel-independent
parallel simulation.

Implementeddeadlock-avoidancstrategy where LPs only block if they have alrediyributed
their lookahead information, strictly avoiding deauk cycles.

Proposed variousull message distributiomechanisms and studied their effect on the overall
performance by implementing each of the conserggtnotocols with a different null message
distribution strategy.

Proposedbhase-based simulatiowith GLM protocol by dividing the simulation intparallel
and broadcastphase while maintaining a global synchronizer, elgnhookahead Manager to
deal with organizing and issuing these phases.

Performed a comparative study to evaluate optimiB#/-based simulation versus conservative
approaches by conducting various tests on the gimsimulator (PCD++ implementing the
LTW protocol) and the conservative simulator (CCDitiplementing LBTS, CMB, and GLM
protocol).

Studied the conservative protocols under variousiosesuch as total number of null messages,
total blocked time, and null message ratio.

Investigated various sensitivity analyses both atlehlevel and protocol-level to address issues
such as memory consumption and execution timedtr bonservative and optimistic simulators

using various Cell-DEVS benchmark models.

115

7.2 Suggestions for Future Research

There are a number of interesting topics for fur@gearch on DEVS-based high performance parallel
simulation with various extensions of the work r@ed in this dissertation. The following summasize
a list of issues that warrant further investigatiothe context of the DEVS-based parallel simolati

* Integration of the LBTS, CMB, and GLM protocols wibther conservative optimization
strategies to further improve the performance obBE¥S and Cell-DEVS simulation on
distributed memory multiprocessor cluster systehtss would include incorporating enhanced
lookahead computations, reducing the number ofmasages, and minimizing the overhead of
null message distribution.

* Incorporation of hybrid synchronization mechanism teducing the conservatism of the
protocols and engaging some levels of optimism euthntroducing additional overhead into
the protocol. For instance, investigating a hylpidtocol that allows only local rollbacks to
limit the overhead of optimistic approaches.

* Incorporation of dynamic load balancing algorithtmsupport migration of LPS in DEVS-based
simulations, taking advantage of the reduced owether transferring the LPs across cluster
nodes. This would require investigating various na@isms for dynamic creation and deletion
of LPs to support runtime structural changes inseovative/optimistic DEVS systems.

» Performance evaluation using an extended set ofelagdhoth DEVS and Cell-DEVS) with
different categories of sensitivity analysis sushsamulator configurations (e.g., event and state
sizes, optimistic global time estimation and fossillection frequency, checkpointing interval),
and system parameters (e.g., size of available merspace, inter-node communication
characteristics, and background load fluctuati@®sides, additional performance metrics could
be collected in the experiments to evaluate otlspeets of the simulation performance. For
instance, analyzing the degree of parallelism bydoeting the number of active nodes (or LPS)

at each virtual time and the percentage of usefukwerformed by the LPs.

116

References

[1] Zeigler, B. P. “Theory of Modeling and SimulatiorI' Edition, New York: Wiley-Interscience,
1976.

[2] Zeigler, B. P. “Multifacetted Modelling and DisceeEvent Simulation”. Orlando: Academic Press,
1984.

[3] Zeigler, B. P. “Object-Oriented Simulation with kaechical, Modular Models: Intelligent Agents
and Endomorphic Systems”. Orlando: Academic PrE3S0.

[4] Zeigler, B. P., Zhang, G. “Mapping Hierarchical Erste Event Models to Multiprocessor Systems:
Concepts, Algorithm, and Simulation”. Journal ofréliel and Distributed Computing, 9(3), pp.
271-281, 1990.

[5] Zeigler, B. P., Vahie, S. "DEVS Formalism and Methlmgy: Unity of Conception/Diversity of
Application”. Proceedings of the 1993 Winter Sintida Conference, Los Angeles, CA, pp. 573-
579, 1993.

[6] Zeigler, B. P., Moon, Y., Kim, D., Kim, J. G. “DEVS++: A High Performance Modelling and
Simulation Environment”. Proceedings of the 29thnAal Hawaii International Conference on
System Sciences, Maui, HI, pp. 350-359, 1996.

[7] Zeigler, B. P., Moon, Y. Kim, D., Ball, G. “The DEY Environment for High-Performance
Modeling and Simulation”, IEEE Computational Scier& Engineering, 4(3), pp. 61-71, 1997.

[8] Zeigler, B. P., Praehofer, H., Kim, T. G. “TheorlyModeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic System¥"Eglition, London: Academic Press, 2000.

[9] Zeigler, B. P., “DEVS Today: Recent Advances inddé$e Event-Based Information Technology”.
Proceedings of the 11th IEEE/ACM International Sysipm on Modeling, Analysis and
Simulation of Computer Telecommunications Systedr&ando, FL, pp. 148-161, 2003.

[10] Page, E., “Simulation Modeling Methodology: Prides and Etiology of Decision Support”.
PhD Dissertation, Virgina Polytechnic Institute éBtate University, 1994.

[11] Chow, A. C., Zeigler. B. “Parallel DEVS: A parallehierarchical, modular modeling
formalism”. Proceedings of the Winter Computer Sation Conference, Orlando, FL. 1994.

[12] Wainer, G. “Discrete-Event Modeling and Simulati@anPractitioner’'s approach”. CRC Press.
Taylor and Francis. 2009.

[13] Cho, Y. K., Hu, X., Zeigler, B. “The RTDEVS/CORBAnEironment for Simulation-Based
Design of Distributed Real-Time Systems”. SIMULATNOQ79(4), pp. 197-210, 2003.

[14] Fujimoto, R. M. “Parallel and distributed simulatisystems”. New York: Wiley. 2000.

[15] Jefferson, D. R. “Virtual time”. ACM Trans. Prograirang. Syst. 7(3), pp. 404-425. 1985.

[16] Bryant, R. E. “Simulation of packet communicaticarchitecture computer systems”.
Massachusetts Institute of Technology. Cambridgg, MSA. 1977.

[17] Chandy, K. M., Misra, J. “Distributed simulation: édase study in design and verification of
distributed programs”. IEEE Transactions on SofeMangineering. pp.440-452. 1978.

[18] Wainer, G. “CD++: A toolkit to develop DEVS modelsSoftware — Practice and Experience,
32:1261-1306. 2002.

117

[19] Troccoli, A., Wainer, G. “Implementing Parallel GBIEVS”, Proceedings of the 36th Annual
Simulation Symposium, Orlando, FL, pp. 273-280,200

[20] Chidisiuc, C., Wainer, G. “CD++Builder: An Eclipdased IDE for DEVS Modeling”,
Proceedings of the 2007 Spring Simulation Multiesahce, Norfolk, VA, pp. 235-240, 2007.

[21] Liu, Q., Wainer, G. “Parallel Environment for DE\#d Cell-DEVS Models”, SIMULATION,
83(6), pp- 449-471, 2007.

[22] Feng, B., Liu, Q., Wainer, G. “Parallel Simulatiai DEVS and Cell-DEVS Models on
Windows-based PC Cluster Systems”, Proceedingseo008 Spring Simulation Multiconference:
High Performance Computing Symposium, Ottawa, Canpg. 439-446, 2008.

[23] Harzallah, Y., Michel, V., Liu, Q., Wainer, G. “Ortbuted Simulation and Web Map Mash-Up
for Forest Fire Spread”, Proceedings of the 20@BHE ongress on Services — Part |, Honolulu, HlI,
pp. 176-183, 2008.

[24] Wainer, G., Liu, Q., Chazal, J., Quinet, L., Tradve K. “Performance Analysis of Web-based
Distributed Simulation in DCD++: A Case Study acrdbe Atlantic Ocean”, Proceedings of the
2008 Spring Simulation Multiconference: High Penfiance Computing Symposium, Ottawa,
Canada, pp. 413-420, 2008.

[25] Wainer, G., Madhoun, R., Al-Zoubi, K. “Distribute8imulation of DEVS and Cell-DEVS
Models in CD++ using Web-Services”, Simulation Mitidg Practice and Theory, 16(9), pp. 1266-
1292, 2008.

[26] Fujimoto, R. M. “Parallel Discrete Event Simulatip@ommunications of the ACM, 33(10), pp.
30-53, 1990.

[27] Christensen, E. R. “Hierarchical Optimistic Distribd Simulation: Combining DEVS and Time
Warp”. PhD Dissertation, University of Arizona, Baon, AZ, 1990.

[28] Kim, K. H., Kim, T. G., Park, K. H. “Hierarchical detitioning Algorithm for Optimistic
Distributed Simulation of DEVS Models”, Journal 8fstems Architecture, 44(6-7), pp. 433-455,
1998.

[29] Nutaro, J., “Risk-Free Optimistic Simulation of DEVModels”, Proceedings of the 2004
Advanced Simulation Technologies Conference — Btyit Government, and Aerospace Simulation,
Arlington, VA, 2004.

[30] Nutaro, J., “On Constructing Optimistic Simulatidtgorithms for the Discrete Event System
Specification”, ACM Transactions on Modeling andn@muter Simulatiuon, 19(1), Article 1, 2008.

[31] Sun, Y., Nutaro, J. “Performance Improvement Udieggallel Simulation Protocol and Time
Warp for DEVS Based Applications”, Proceedingstaf 12" IEEE/ACM International Symposium
on Distributed Simulation and Real-Time ApplicagpWancouver, Canada, pp. 277-284, 2008.

[32] Liu, Q., Wainer, G. “A Performance Evaluation okthight-weight Time Warp Protocol in
Optimistic Parallel Simulation of DEVS-based Enwineental Models”, Proceedings of the 23rd
ACM/IEEE/SCS Workshop on Principles of Advanced d@idtributed Simulation (PADS), Lake
Placid, New York, USA - June 20089.

[33] Wainer, G.; Giambiasi, N. “Specification, modelire;d simulation of timed Cell-DEVS
spaces”. Technical Report n.: 98-007. DepartamdatG@omputacion. Facultad de Ciencias Exactas
y Naturales. Universidad de Buenos Aires. Argentiré®8.

[34] Liu, Q., Wainer, G. “Lightweight Time Warp — A ndve@rotocol for parallel optimistic
simulation of large-scale DEVS and Cell-DEVS motel®roceedings of the 12th IEEE

118

International Symposium on Distributed Simulatiod &eal Time Applications (DS-RT 2008), pp.
131-138, Vancouver, BC, Canada. 2008.

[35] Bain, W.L. Scott, D.S. “An Algorithm for Time Synamization in Distributed Discrete Event
Simulation.” In Distributed Simulation: 30-33. Sety for Computer Simulation. 1988.

[36] Misra, J. “Distributed Discrete-Event Simulatiol€pmputing Surveys, Vol 18, No 1, pp.39-65.
1986.

[37] Peacock, J. K., Wong, J. W., Manning, E., “Synciration of Distributed Simulation Using
Broadcast Algorithms”. Computer Networks, Vol.4, 8pl0, 1980.

[38] Nicol, D.M., Reynolds, P.F. “Problem oriented pmib design”. Proceedings of the 1984
Winter Simulation Conference. Dec. 1984. 471-474.

[39] Su, W. K., Seitz, C. L."Variants of the Chandy-Mid8ryant distributed discrete event
simulation algorithm”. Proceedings of the SCS Mudtiference on Distributed Simulation. Vol. 21,
1989.

[40] Davis, N. J., Mannix, D. L., Shaw, W. H., Hartrurmi, C., “Distributed Discrete-Event
Simulation Using Null Message Algorithms on HypédyeuArchitectures”. Journal of Parallel and
Distributed Computing, Vol. 8, No. 4, pp. 349-33pril 1990.

[41] Cai W., Turner, S.J. “An Algorithm for Distributediscrete-Event Simulation - The “Carrier
Null Message' Approach”, Proceedings of the SCStiktutference on Distributed Simulation, SCS,
1990, Vol. 22 (1), pp. 3-8.

[42] Wood, K. R., Turner, S. J., “A Generalized Cariarl Method for Conservative Parallel
Simulation”, Proceedings of the 8th Workshop onaRalrand Distributed Simulation (PADS94),
SCS, July 1994, pp. 50-57.

[43] Preiss, B. R., Loucks, W. M., Macintyre, J. D., |&je]J. A. “Null Message Cancellation in
Conservative Distributed Simulation”. Distributedim@lation 91 Proceedings of the SCS
Multiconference on Advances in Parallel and Distréal Simulation, 1991.

[44] Dijkstra, E.W., Scholten, C.S. “Termination deteatifor diffusing computations”. Inf. Proc.
Lett. Il 1 (August 1980), I-4.

[45] Groselj, B., and Tropper, C. “A deadlock resolutisnoheme for distributed simulation”.
Proceedings of the SCS Multiconference on Distatdu@imulation 21, 2, pp. 108-1 12. 1989.

[46] Chandy, K., and Misra, J. “Asynchronous Distributgidnulation Via a Sequence of Parallel
Computations”. Comm. of the ACM 24, 2, 198-205. 1.98

[47] Groselj, B., Tropper, C. “The time of next evengalthm”. Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, 19(3):29, July 1988.

[48] Boukerche, A., Tropper, C. “SGTNE: Semi-Global Timé the Next Event Algorithm”.
Proceedings of 9th Workshop on Parallel and Distetl Simulation, Lake Placid, pp. 68-77. 1995.

[49] Venkatesh, K., Radhakrishnan, T., Li, H. F. “DideréEvent Simulation in a Distributed
System”. IEEE COMPSAC. IEEE Computer Society Pr&986.

[50] Peacock, J.K., Wong, J.W., Manning, E. "Distributstmulation using a network of
microcomputers”. Computer Networks 3, pp. 44-379

[51] Concepcion, A. “Mapping Distributed Simulators ontthe Hierarchical Multi-bus
Multiprocessor Architecture”. Distributed Simulatid985, Jan. 24-26, 1985, pp. 8-13.

[52] Baik, D.K., Zeigler, B.P. “Performance evaluatiohhserarchical distributed simulators”. In:
Proc. Winter Simulation Conference (1985).

119

[53] Chandy, K.M. Lamport, L. “Distributed snapshots:t®enining global states of distributed
systems”. ACM Transactions on Computer System9:&+75. 1985.

[54] Avyani, R. “A parallel simulation scheme based oa distance between objects”. Proceedings of
the SCS Multiconference on Distributed Simulatidn 2 (March 1989), pp. 113-118.

[55] Lubachevsky, B.D. “Efficient distributed event-dgiv simulations of multiple-loop networks”.
Commun. ACM 32, (January 1989), 111-123.

[56] Nicol, D. M., “The Cost of Conservative Synchroriiga in Parallel Discrete Event
Simulations”, Journal of the ACM, 40(2), pp. 304333993.

[57] Nicol, D. M., “Noncommittal Barrier SynchronizatigrParallel Computing, 21(4), pp. 529-549,
1995.

[58] Legedza, U., Weihl, W. E. “Reducing Synchronizati@verhead in Parallel Simulation”,
Proceedings of the 10th International Workshop oaralel and Distributed Simulation,
Philadelphia, PA, pp. 86-95, 1996.

[59] Chandy, K. M., Misra, J. “Distributed Deadlock Detien”, ACM Transactions on Computer
Systems, 1(2), pp. 144-156, 1983.

[60] Lubachevsky, B. D. “Bounded lag distributed diseretent simulation”.Proceedings of the 1988
SCS Multiconference on Distributed Simulation,19(83-191, July 1988.

[61] Chandy, K.M., Sherman, R. “The conditional evenprapch to distributed simulation”.
Proceedings of the SCS Multiconference on Distadiu®imulation 21, 2 (March 1989), pp. 93-99.

[62] Nicol, D.M. “The cost of conservative synchronipatiin parallel discrete event simulations”.
Tech. Rep. 90-20, ICASE, June 1989.

[63] Sokol, L., Weissman, J. B., Mutchler, P. A. “MTWh ampirical performance study”. Winter
Simulation Conference 1991: 557-563.

[64] Ayani, R., Rajae, H. “Parallel Simulation Using Gervative Time Windows”, Proceedings of
the Winter Simulation Conference, pp. 709-717, 1992

[65] Preiss, B. R. “The Yaddes Distributed Discrete Ev@imulation Specification Language and
Execution Environments”. Proc. SCS Eastern Multicen Distributed Simulation, Vol. 21, No. 2,
Society for Computer Simulation. pp. 139-144. 1989.

[66] Steinman, J. S. “"SPEEDES: A Unified Approach toaRalr Simulation. Proceedings of the 6th
workshop on Parallel and Distributed Simulatior892. pp. 75-83.

[67] Radhakrishnan, R., Martin, D. E., Chetlur, M., RBo,M., Wilsey. P. A. “An object-oriented
time warp simulation kernel”. Proceedings of theetnational Symposium on Computing in Object-
Oriented Parallel Environments, LNCS 1505, pp. 331898.

[68] sIEEE std 1516.2-2000. IEEE Standard for Modelimgl &imulation (M&S) High Level
Architecture (HLA) - Federate Interface Specifioati Institute of Electrical and Electronic
Engineers, New York, NY, 2001.

[69] Steinman, J. “The WarplV Simulation Kernel”. Prodegs of the 2005 Workshop on Principles
of Advanced and Distributed Simulation (PADS). 2005

[70] Perumalla, K. S. “usik - A Micro-Kernel for PardiRistributed Simulation Systems”.
Proceedings of the 19th Workshop on Principles d¥akced and Distributed Simulation (PADS).
2005.

[71] Zeigler, B., Moon, Y., Kim, D., Kim, J. G. “DEVS-G+ A high performance modeling and
simulation environment”. The 29th Hawaii Internaiéb Conference on System Sciences. 1996.

120

[72] Zeigler, B., Kim, D., Buckley, S. “Distributed sugpchain simulation in a DEVS/CORBA
execution environment”. Proceedings of the 1999t@viSimulation Conference. 1999.

[73] Kim, K., Kang, W. “CORBA-based, Multi-threaded Disuuted Simulation of Hierarchical
DEVS Models: Transforming Model Structure into a rNderarchical One”. International
Conference on Computational Science and Its Apjodica (ICCSA).Assisi, Italy. 2004.

[74] Mittal, S., Risco-Matrtin, J. L., Zeigler, B. P. “DIS/SOA: A Cross-Platform Framework for
Net-centric Modeling and Simulation in DEVS Unifi€@tocess”, SIMULATION, 85(7), pp. 419-
450, 20009.

[75] Cheon, S., Seo, C., Park, S., Zeigler, B. “Desigd anplementation of distributed DEVS
simulation in a peer to peer network system”. Ademh Simulation Technologies Conference —
Design, Analysis, and Simulation of Distributed ®yss Symposium. Arlington, USA. 2004.

[76] Zhang, M., Zeigler, B., Hammonds, P. “DEVS/RMI — Asto-adaptive and reconfigurable
distributed simulation environment for engineerstgdies”. DEVS Integrative M&S Symposium
(DEVS’06). Huntsville, Alabama, USA. 2006.

[77] Kim, T.G., Park, S.B. “The DEVS formalism: Hierarchl modular systems specification in
C++". Proceedings of European Simulation Multicoafee. 1992.

[78] Seong, Y.R., Jung, S.H., Kim, T.G., Park, K.H. ‘& simulation of hierarchical modular
DEVS models: A modified Time Warp approach”. Imt&r J. Comput. Simulation 5 (3), 1995,
pp.263-285.

[79] Praehofer, H., Reisinger, G. “Distributed Simulatiof DEVS-based Multiformalism Models”.
AIS '94, Gainesville, FL, IEEE/CS Press, Dec. 1983,150-156.

[80] Nutaro, J. J. “On constructing optimistic simulatialgorithms for the discrete event system
specification”. 2008. Transactions on Modeling &wamputer Simulation.

[81] Sun, Y, Nutaro, J. “Performance Improvement Usirggalfel Simulation Protocol and Time
Warp for DEVS Based Applications”. Distributed Silaion and Real-Time Applications, 2008.
DS-RT 2008. 12th IEEE/ACM International Symposil#@08. Page(s):277 — 284.

[82] Zeigler, B.P., Ball, G., Cho, H.J., Lee, J.S. “Ilmplentation of the DEVS formalism over the
HLA/RTI: Problems and solutions”, In Simulation énbperation Workshop (SIW), number 99S-
SIW-065, Orlando, FL, 1999.

[83] Jafer, S., Wainer, G. “Conservative SynchronizatMethods for Parallel DEVS and Cell-
DEVS". Proceedings of Summersim’l1l, Netherland4.120

[84] Jafer, S., Wainer, G. “A Performance Evaluationhaf Conservative DEVS Protocol in Parallel
Simulation of DEVS-based Models “. Proceedingspfirgysim’11, 2011.

[85] Moallemi, M., Jafer, S., Seyed, A., Wainer, G. #driacing DEVS and Visualization Models for
Emergency Management”. Proceedings of Springsin201].

[86] Jafer, S., Wainer, G. “Global Lookahead Manageni@hiV) Protocol for Conservative DEVS
Simulation”. Proceedings of DS-RT 2010, VirginigSA. 2010.

[87] Jafer, S., Wainer, G. “Conservative DEVS - A Nowiotocol for Parallel Conservative
Simulation of DEVS and Cell-DEVS Models “, Procaggh of SpringSim’10, Orlando, USA. 2010.

[88] Jafer, S., Wainer, G. “Conservative vs. Optimigtarallel Simulation of DEVS and Cell-DEVS:
A Comparative Study “, SummerSim’10, Canada. 2010.

121

[89] Wainer, G., Liu, Q., Jafer, S. “Parallel SimulatiohDEVS and Cell-DEVS models in CD++".
In Discrete-Event Modeling and Simulation: Theong&pplications, Boca Raton, FL: CRC Press,
pp. 226-272, 2010.

[90] Jafer, S., Wainer, G. “Flattened Conservative Rar8imulator for DEVS and CELL-DEVS”,
Proceedings of International Conferences on Contiput Science and Engineering, Vancouver,
2009.

[91] Sanz, V., Jafer, S., Wainer, G., Nicolescu, G.,uirgA., Dormido, S. “Hybrid Modeling of
OptoElectrical Interfaces Using DEVS and ModelicBfoceedings of the DEVS Integrative M&S
Symposium, Springsim’09. San Diego, CA, USA. 2009.

[92] Jafer, S., Wainer, G. “Event Behavior of Discreteelit Simulations in CD++ Vs. NS-2”. Poster
Proceedings of Spring Simulation Multiconferenga;iigySim, Ottawa, April 2008.

[93] Jafer, S., Wainer, G. “Advanced Parallel/Distrilsut&imulation Benchmark for Cellular
Models”. Poster Proceedings of Al/ GI/ CRV/ IS AmhConference, Windsor, May 2008.

[94] Jafer, S., Wainer, G. “Synchronization Strategm@sHarallel Simulation of Large-Scale DEVS-
based Models “. Submitted to SIMULATION: Transaos of the Society for Modeling and
Simulation International, 2011.

[95] Jafer, S., Liu, Q., Wainer, G. “Synchronization Neds in Parallel Discrete-Event Simulation “.
Submitted to ACM Computing Surveys Journal, 2010.

[96] Praehofer, H., Zeigler, B. P. “On the Expressipildf Discrete Event Specified Systems”,
Proceedings of the 4th International Workshop om@uater Aided Systems Theory, LNCS 1105,
Ottawa, Canada, pp. 65-79, 1994.

[97] Neumann, J. V., Burks, A. W. “Theory of Self-Repuothg Automata”. Champaign: University
of lllinois Press, 1966.

[98] Wainer, G., “Improved Cellular Models with Paral@ell-DEVS”, Transactions of the Society
for Computer Simulation International, 17(2), pB-88, 2000.

[99] Wainer, G., Giambiasi, N. “Application of the CEBEVS Paradigm for Cell Spaces Modelling
and Simulation”, SIMULATION, 76(1), pp. 22-39, 2001

[100] Wainer, G., Giambiasi, N. “N-dimensional Cell-DEV8odels”, Discrete Event Dynamic
Systems, 12(2), pp. 135-157, 2002.

[101] Wainer, G., “CD++: A Toolkit to Develop DEVS Modé&|sSoftware — Practice and Experience,
32(13), pp- 1261-1306, 2002.

[102] Wainer, G., “Applying Cell-DEVS Methodology for Meting the Environment”,
SIMULATION, 82(10), pp. 635-660. 2006.

[103] Lake, T., Zeigler, B.P., Sarjoughian, H.S., Nutalo;DEVS Simulation and HLA Lookahead”
In Simulation Interoperability Work-shop (SIW), nber 00S-SIW-160,0rlando, FL, 2000.

[104] Zacharewicz, G., Giambiasi, N., Frydman, C. “Impngvthe DEVS/HLA Environment”, In
DEVS Integrative M&S Symposium, DEVS'05, Part ofett2005 SCS Spring Simulation
Multiconference, SpringSim'05, San Diego, CA, U4yil 3-7 2005.

[105] Zacharewicz, G., Giambiasi, N., Frydman, C. “A Neégorithm for the HLA Lookahead
Computing in the DEVS/HLA Environment”, In Europeamulation Interoperability Workshop
(EU-ROSIW), Toulouse, France, 2005.

122

[106] Zacharewicz, G., Giambiasi, N., Frydman, C. “Lookath Computation in G-DEVS/HLA
Environment”. Simulation News Europe Journal (SN#pgcial issue 1 ‘Parallel and Distributed
Simulation Methods and Environments’ 16(2), 15-Z0D6.

[107] Zacharewicz, G., Giambiasi, N., Frydman, C. “G-DENBA Environment for Distributed
Simulations of Workflows”. SIMULATION, May 2008, M084, No. 5, 197-213.

[108] DeBenedictus, E., S Ghosh, M.-L- Yu. “A Novel Algbm for Discrete Event Simulation”.
IEEE Computer, June 1991, pp. 21-33.

[109] Glinsky, E., Wainer. G. “New parallel simulationchmiques of DEVS and Cell-DEVS in
CD++". Proceedings of the 39th Annual Simulatiom®psium, 2006, 244-251.

[110] Mattern, F. “Efficient algorithms for distributed napshots and global virtual time
approximation.” Journal of Parallel and Distributedmput. 18: 423—-434. 1993.

[111] Martin, D. E., Wilsey, P. A., Hoekstra, R. J., KejtE. R., Hutchinson, S. A., Russo, T. V.,
Waters, L. J. “Redesigning the WARPED Simulationrié for Analysis and Application
Development”, Proceedings of the 36th Annual SittaSymposium, Orlando, FL, pp. 216-223,
2003.

[112] Gropp, W., Lusk, E., Ashton, D., Balaji, P., Bumts D., Butler, R., Chan, A., Goodell, D.,
Krishna, J., Mercier, G., Ross, R., Thakur, R., f@g B. MPICH2 User’s Guide, 2009, Available
at:http://www.mcs.anl.gov/research/projects/mpido2lmentation/files/mpich2-1.2.userguide.pdf.

[113] Ameghino, J., Troccoli, A., Wainer, G. “Models ofo@plex Physical Systems Using Cell-
DEVS”. The 34th IEEE/SCS Annual Simulation Sympasi2001.

[114] Rothermel, R. “A Mathematical Model for Predictirge Spread in Wild-land Fuels”. Research
Paper INT-115. Ogden, UT: U.S. Department of Adtime, Forest Service, Intermountain Forest
and Range Experiment Station. 1972.

[115] Bevins, C. D. “fireLib User Manual and Technicalf&ence”. http://www.fire.org/, accessed in
March 2010.

[116] Wainer, G. “Applying Cell-DEVS methodology for mditey the environment”. SIMULATION
82(10), 2006, pp.635-660.

[117] Tropper, C. “Parallel Discrete-Event Simulation Apations”. Journal of Parallel and
Distributed Computing, 62(2), 327-335. 2002.

[118] Perumalla, K. S., Fujimoto, R. M. “Virtual Time Sgmronization over Unreliable Network
Transport”. Proceedings of the 15th Internationalrkghop on Parallel and Distributed Simulation,
Lake Arrowhead, CA, 129-136. 2001.

[119] Perumalla, K. S. “Parallel and Distributed Simuati Traditional Techniques and Recent
Advances”. Proceedings of the 2006 Winter Simuta@onference, Monterey, CA, 84-95, 2006.
[120] Garg, R., Garg, V.K., Sabharwal, Y. “Scalable Alguns for Global Snapshots in Distributed

Systems”. Proceedings of the 20th Ann. Int’l C@tipercomputing (ICS '06), 269-277. 2006.

[121] Garg, R., Garg, V.K., Sabharwal, Y. “Efficient Algihms for Global Snapshots in Large
Distributed Systems”. IEEE Transactions on Paralted Distributed Systems, vol. 21, no. 5, May
2010, 620-630. 2010.

[122] Lin, Y. B., Fishwick, P. A. “Asynchronous Parall®iscrete Event Simulation”. |EEE
Transactions on Systems, Man, and Cybernetics +-A2&@ystems and Humans, 26(4), 397-412.
1996.

123

[123] Nketsa, A., Khalifa, N. B. “Timed Petri Nets andeBiction to Improve the Chandy-Misra
Conservative Distributed Simulation”. Applied Mathatics and Computation, 120(1-3), 235-254.
2001.

[124] Porras, J., Hara, V., Jarju, J., and lkonen, Jptbuing the Performance of the Chandy-Misra
Parallel Simulation Algorithm in a Distributed Wathktion Environment”. Proceedings of the
SCSC'97, 657-662. 1997.

[125] Xiao, Z., Unger, B., Simmonds, R., and Cleary,StHeduling Critical Channels in Conservative
Parallel Discrete Event Simulation”. Proceedingshef13th International Workshop on Parallel and
Distributed Simulation, Atlanta, GA, 20-28. 1999.

[126] Simmonds, R., Kiddle, C., and Unger, B. “Addresdahacking and scalability in critical channel
traversing”. Proceedings of the sixteenth worksbogParallel and distributed simulation, May 12-
15, 2002, Washington, D.C. 2002.

[127] Boukerche, A., and Das, S. “Reducing null messameshead through load balancing in
conservative distributed simulation systems”. Jalraf Parallel and Distributed Computing,
64(3):330-344. 2004.

[128] Rizvi, S., Elleithy, K.M., and Riasat, A. “Minimiag the Null Message Exchange in
Conservative Distributed Simulation”. Internatiorlint Conferences on Computer, Information,
and Systems Sciences, and Engineering, CISSE, &g CT, 443-448. 2006.

[129] Rizvi, S., Elleithy, K.M., and Riasat, A. “A new th@matical model for optimizing the
performance of parallel and discrete event simutagystems”. Proceedings of the 2008 Spring
Simulation Multiconference, Ottawa, Canada, 2008.

[130] Thomas, B., and Rizvi, S., and Elleithy, K.M. “Rethg Null Messages Using Grouping and
Status Retrieval for a Conservative Discrete-Ev@mulation System”. Proceedings of the 2008
Spring Simulation Multiconference. 2008.

[131] Deelman, E., Bagrodia, R., Sakellariou, R., and éddv. “Improving Lookahead in Parallel
Discrete Event Simulations of Large-scale Applicas using Compiler Analysis”. Proceedings of
PADS’01, 5-13. 2001.

[132] Liu, J., Tan, K., and Nicol, D. “Lock-Free Scheadgjiof Logical Processes in Parallel Discrete-
Event Simulation”. Proceedings of PADS’01. 2001.

[133] V. Solcany, J. Safarik. “The Lookahead in a UsaarBparent Conservative Parallel Simulator”.
Proceedings of PADS’02. 2002.

[134] Chung, M. K., and Kyung, C. M. “Improving LookaheadParallel Multiprocessor Simulation
Using Dynamic Execution Path Prediction” ProceedioajPADS'06. 2006.

[135] Park, A., Fujimoto, R. M., and Perumalla, K. S. fServative Synchronization of Large-Scale
Network Simulations”. Proceedings of the 18th Intgional Workshop on Parallel and Distributed
Simulation, Kufstein, Austria, 153-161. 2004.

[136] Park, A., Fujimoto, R.M. “Aurora: An Approach to ¢hi Throughput Parallel Simulation”.
Proceedings of the 20th Workshop on Principles fahaced and Distributed Simulation. 2006.
[137] Park, A., Fujimoto, R.M. “A scalable framework fparallel discrete event simulations on
desktop grids”. The'8IEEE/ACM International Conference on Grid Compgtii85-192. 2007.
[138] Park, A., Fujimoto, R.M. “Optimistic Parallel Sinaslon over Public Resource-Computing
Infrastructures and Desktop Grids”. Proceedings 18f IEEE International Symposium on

Distributed Simulation and Real Time Applicationgncouver, BC, Canada. 2008.

124

[139] Park, A., Fujimoto, R.M. “Efficient Master/Worker aRallel Discrete Event Simulation”.
Proceedings of the 23rd Workshop on Principlesafafced and Distributed Simulation. 2009.
[140] Bagrodia, R. L., and Takai, M. “Performance Evalmabf Conservative Algorithms in Parallel
Simulation Languages”. IEEE Transactions on Pdraltel Distributed Systems, 11(4), 395-411.

2000.

[141] Song, H.Y., Meyer, R.A., and Bagrodia, R. “An Enngat Study of conservative Scheduling”.
Proceedings of the f4Workshop on Parallel and Distributed SimulatiofA[RS’00), Bologna,
Italy. 2000.

[142] Kawabata. C., Santana, R., Santana, M., Bruschiar®l Castelo Branco, K. “Performance
evaluation of a CMB protocol”. Proceedings of thet&r Simulation Conference (WSC’06), 1012-
1019. 2006.

[143] Berry, O., and Jefferson, D. “Critical path anadysf distributed simulation”. Proceedings of the
SCS Conference on Distributed Simulation, 57-6@519

[144] Jha, V., and Bagrodia, R. “A Performance EvaluatMethodology for Parallel Simulation
Protocols”. Proceedings of the 10th workshop oralRa and distributed simulation (PADS’96),
180-185. 1996.

[145] Jha, V., and Bagrodia, R. “Simultaneous Eventslavakahead in Simulation Protocols”. ACM
Transactions on Modeling and Computer Simulati@{3), 241-267. 2000.

[146] Srinivasan, S., and Reynolds, P. “On Critical Pathalysis of Parallel Discrete Event
Simulations”. Technical Report No.CS-93-29. 1993.

[147] Srinivasan, S, and Reynolds P. “Elastic time”. ACKns. Modeling Comput. Simulation 8(2),
103-139. 1998.

[148] Lin, S., Cheng, X., and Lv, J. “Micro-Synchronizati in Conservative Parallel Network
Simulation”. Proceedings of the ®2Workshop on Principles of Advanced and Distributed
Simulation, 195-202. 2008.

[149] Lin, S., Cheng, X., and Lv, J. “State Causality Ases of Conservative Parallel Network
Simulation”. Proceedings of #Annual Simulation Symposium. 2008.

[150] Fujimoto, R. M. “Parallel and Distributed Simulati®ystems”. Proceedings of the 2001 Winter
Simulation Conference, Arlington, VA, 147-157. 200

[151] Fujimoto, R. M. “Distributed Simulation Systemstoeeedings of the 2003 Winter Simulation
Conference, New Orleans, LA, 124-134. 2003.

[152] Mclean, T., And Fujimoto, R. M. “Predictable Timeaklagement for Real-Time Distributed
Simulation”. Proceedings of the "l Tnternational Workshop on Parallel and Distribugithulation,
San Diego, CA, 89-96. 2003.

[153] Curry, R., Kiddle, C., Simmonds, R., and Unger,'8equential Performance of Asynchronous
Conservative PDES Algorithms”. Proceedings of tB8 Workshop on Principles of Advanced and
Distributed Simulation. 2005.

[154] Lemeire, J., and Dirkx, E. “Lookahead AccumulationConservative Parallel Discrete Event
Simulation”. Proceedings of the l&uropean Simulation Multiconference, SCS Europ@42

[155] Rajaei, H., Ayani, R., and Thorelli, L. E. “The lalicTime Warp Approach to Parallel
Simulation”. ACM SIGSIM Simulation Digest, 23(1)19-126. 1993.

125

[156] Rajaei, H. “Local Time Warp: An Implementation aRdrformance Analysis”. Proceedings of
the 2£' International Workshop on Principles of Advanced ®istributed Simulation, San Diego,
CA, 163-170. 2007.

[157] Nicol, D., and Liu, J. “Composite SynchronizationRarallel Discrete-Event Simulation”. IEEE
Transactions on Parallel and Distributed Systerls,\8, No. 5, 433-446, May 2002.

[158] Meyer, R. A., and Bargrodia, R. L. “Path LookaheadData Flow View of PDES Models”.
Proceedings of the f'dnternational Workshop on Parallel and DistribuSthulation, Atlanta, GA,
12-19. 1999.

[159] Boukerche, A. “Conservative Circuit Simulation orultfprocessor Machines”. Proceedings of
the 7th International Conference on High PerforreaBomputing, Bangalore, India, LNCS 1970,
415-424. 2000.

[160] Liu, J., and Nicol, D. M. “Lookahead Revisited inirdless Network Simulations”. Proceedings
of the 18" International Workshop on Parallel and DistribuSthulation, Washington, D.C., 79-88.
2002.

[161] Jefferson, D. R., “Virtual Time Il: Storage Managamhin Distributed Simulation”, Proceedings
of the 9th Annual ACM Symposium on Principles os@ibuted Computing, Quebec City, Canada,
pp. 75-89, 1990.

[162] Groselj, B., and C. Tropper, “The Distributed Siatidn of Clustered Processes”, Distributed
Computing, 4(3), pp- 111-121, 1991.

[163] Lin, Y. B., and Preiss, B. R. “Optimal Memory Mamamgent for Time Warp Parallel
Simulation”, ACM Transactions on Modeling and CortggiSimulation, 1(4), pp. 283-307, 1991.
[164] Preiss, B. R., Loucks, W. M. “Memory ManagementAreques for Time Warp on a Distributed
Memory Machine”, Proceedings of the 9th InternagiobVorkshop on Parallel and Distributed

Simulation, Lake Placid, NY, pp. 30-39, 1995.

[165] Young, C. H., Wilsey, P. A. “A Distributed Method Bound Rollback Lengths for Fossil
Collection in Time Warp Simulators”, Informationdeessing Letters, 59(4), pp. 191-196, 1996.

[166] Young, C. H., Abu-Ghazaleh, N. B., Wilsey, P. A.FO: A Distributed Fossil Collection
Algorithm for Time Warp”, Proceedings of the 12thtdrnational Symposium on Distributed
Computing, Andros, Greece, LNCS 1499, pp. 408-4988.

[167] Chetlur, M., Wilsey, P. A. “Causality Informationné Fossil Collection in Time Warp
Simulations”, Proceedings of the 2006 Winter SirtialaConference, Monterey, CA, pp. 987-994,
2006.

[168] Vee, V. Y., Hsu, W. J. “Pal: A New Fossil Collectimr Time Warp”, Proceedings of the"16
International Workshop on Parallel and DistribuEuchulation, Washington, DC, pp. 35-42, 2002.

[169] Das, S. R., Fujimoto, R. M. “A Performance Studytte# Cancelback Protocol for Time Warp”,
Proceedings of the 7th International Workshop oralRd and Distributed Simulation, San Diego,
CA, pp. 135-142, 1993.

[170] Akyildiz, I. F., Chen, L., Das, S. R., Fujimoto, RL, Serfozo, R. F. “The Effect of Memory
Capacity on Time Warp Performance”, Journal of Rarand Distributed Computing, 18(4), pp.
411-422, 1993.

[171] Lin, Y. B., “Memory Management Algorithms for Optistic Parallel Simulation”, Information
Sciences, 77(1-2), pp. 119-140, 1994.

126

[172] Preiss, B. R., Loucks, W. M. “Memory ManagementAreques for Time Warp on a Distributed
Memory Machine”, Proceedings of the 9th InternaiobVorkshop on Parallel and Distributed
Simulation, Lake Placid, NY, pp. 30-39, 1995.

[173] Lin, Y. B., Preiss, B. R., Loucks, W. M., and Lazka, E. D. “Selecting the Checkpoint
Interval in Time Warp Simulation”, ACM SIGSIM Simation Digest, 23(1), pp. 3-10, 1993.

[174] Preiss, B. R., Loucks, W. M., Macintyre, |. D. “Efts of the Checkpoint Interval on Time and
Space in Time Warp”, ACM Transactions on Modelingl &Computer Simulation, 4(3), pp. 223-
253, 1994.

[175] Ronngren, R., Ayani, R. “Adaptive Checkpointing Time Warp”, Proceedings of the 8th
International Workshop on Parallel and Distribu&uohulation, Edinburgh, UK, pp. 110-117, 1994.

[176] Fleischmann, J., and Wilsey, P. A. “Comparative lg§sia of Periodic State Saving Techniques
in Time Warp Simulations”, Proceedings of the Otitetnational Workshop on Parallel and
Distributed Simulation, Lake Placid, NY, pp. 50-3895.

[177] Skold, S., and Ronngren, R. “Event Sentitive S&seing in Time Warp Parallel Discrete Event
Simulations”, Proceedings of the 1996 Winter SirtiataConference, Coronado, CA, pp. 653-660,
1996.

[178] Quaglia, F., “Event History Based Sparse State rfspun Time Warp”, ACM SIGSIM
Simulation Digest, 28(1), pp. 72-79, 1998.

[179] Quaglia, F., “A Cost Model for Selecting CheckpoiRbsitions in Time Warp Parallel
Simulation”, IEEE Transactions on Parallel and fistted Systems, 12(4), pp. 346-362, 2001.
[180] Bauer, H., and Sporrer, C. “Reducing Rollback Oearhin Time-Warp Based Distributed
Simulation with Optimized Incremental State SavinBfoceedings of the 26th Annual Simulation

Symposium, Arlington, VA, pp. 12-20, 1993.

[181] West, D., and Panesar, K. “Automatic IncrementalteStSaving”, ACM SIGSIM Simulation
Digest, 26(1), pp. 78-85, 1996.

[182] Ronngren, R., Liljenstam, M., Ayani, R., and Montag J. “Transparent Incremental State
Saving in Time Warp Parallel Discrete Event Simoldt, ACM SIGSIM Simulation Digest, 26(1),
pp. 70-77, 1996.

[183] Feng, T. H., and Lee, E. A. “Incremental Checkgagnivith Application to Distributed Discrete
Event Simulation”, Proceedings of the 2006 Winteém8ation Conference, Monterey, CA, pp.
1004-1011, 2006.

[184] Gomes, F., Unger, B., Cleary, J., and Franks, SultiMexed State Saving for Bounded
Rollback”, Proceedings of the 1997 Winter Simulati@onference, Atlanta, GA, pp. 460-467, 1997.

[185] Tay, S. C., and Teo, Y. M. “Probabilistic Checkgoig in Time Warp Parallel Simulation”,
Proceedings of the 8th IEEE International SymposarmModeling, Analysis, and Simulation of
Computer and Telecommunications Systems, San B@MCA, pp. 366-373, 2000.

[186] Gafni, A., “Rollback Mechanisms for Optimistic Diktuted Simulation Systems”, Proceedings
of the SCS Multiconference on Distributed Simulati8an Diego, CA, pp. 61-67, 1988.

[187] Lin, Y. B., and Lazowska, E. D. “A Study of Time WgaRollback Mechanisms”, ACM
Transactions on Modeling and Computer Simulatig¢h),Jpp. 51-72, 1991.

[188] Soliman, H. M., “Throttled Lazy Cancellation in Tem Warp Parallel Simulation”,
SIMULATION, 84(2-3), pp. 149-160, 2008.

127

[189] Noronha, R., and Abu-Ghazaleh, N. B. “Early Caratedh: An Active NIC Optimization for
Time-Warp”, Proceedings of the 16th Internationaloréhop on Parallel and Distributed
Simulation, Washington, DC, pp. 43-50, 2002.

[190] Chetlur, M., and Wilsey, P. A. “Causality Represg¢ion and Cancellation Mechanisms in Time
Warp Simulations”, Proceedings of the 15th Inteoratl Workshop on Parallel and Distributed
Simulation, Lake Arrowhead, CA, pp. 165-172, 2001.

[191] Chetlur, M., and Wilsey, P. A. “Causality Informati and Proactive Cancellation Mechanisms”,
Concurrency and Computation: Practice and Expegieit(11), pp. 1483-2503, 2009.

[192] Zeng, Y., Cai, W., and Turner, S. J. “Batch Basednc@llation: A Rollback Optimal
Cancellation Scheme in Time Warp Simulations”, Bemstings of the 8International Workshop
on Principles of Advanced and Distributed Simulatigufstein, Austria, pp. 78-86, 2004.

[193] Himmelspach, J., Ewald, R., Leye, S., and Uhrmacker M. “Parallel and Distributed
Simulation of Parallel DEVS Models”. Proceedingstlué SpringSim '07, DEVS Integrative M&S
Symposium, 249-256: SCS. 2007.

[194] Fujimoto, R.M. “Zero Lookahead and RepeatabilityHigh Level Architecture”. Proceedings of
Spring Simulation Interoperability Workshop. 19@#lando, FL.

[195] Ntaimo, L., Zeigler, B. P., Vasconcelos, M. J., dldargharia, B. “Forest Fire Spread and
Suppression in DEVS”, SIMULATION, 80(10), pp. 4796, 2004.

[196] Hu, X., and Sun, Y. “Agent-Based Modeling and Siatian of Wildland Fire Suppression”,
Proceedings of the 2007 Winter Simulation Confegei®an Diego, CA, pp. 1275-1283, 2007.

[197] Ntaimo, L., Hu, X., and Sun, Y. “DEVS-FIRE: Towarda Integrated Simulation Environment
for Surface Wildfire Spread and Containment”, SIMAILON, 84(4), pp. 137-155, 2008.

[198] Filippi, J. B., Morandini, F., Balbi, J. H., andIHD. “Discrete Event Front-Tracking Simulation
of a Physical Fire-Spread Model”, SIMULATION, 2009.

[199] Moon, Y., Zeigler, B. P., Ball, G., and Guertin, B., “DEVS Representation of Spatially
Distributed Systems: Validity, Complexity ReductiohEEE Transactions on Systems, Man and
Cybernetics, pp. 288-296, 1996.

[200] Broutin, E., Paul, B., and Santucci, J. “SimulatadrHeterogeneous DEVS Models: Application
to the Study of Natural Systems”, Proceedings ef2609 Spring Simulation Multiconference, San
Diego, CA, Article No. 148, 2009.

[201] Bagrodia, R., Meyer, R., Takai, M., Chen, Y., ZeKg, Martin, J., and Song, H. Y. “Parsec: A
parallel simulation environment for complex syster@mputer, 31(10):77-85, 1998.

[202] Weingartner, E., Lehn, H., and Wehrle, K. “A perfance comparison of recent network
simulators”. In ICC 2009: IEEE International Corgiace on Communications, 2009

[203] Processes, N. O., Naroska, E., and SchwiegelshdhtConservative parallel simulation of a
large number of processes”. SIMULATION 72:3, 15@16999.

[204] Y.-M. Teo, Y. M., and Tay, S. C. “Performance ewion of a parallel simulation
environment”. In SS '99: Proceedings of the Thisigeond Annual Simulation Symposium, page
86, Washington, DC, USA, 1999. IEEE Computer Sgciet

128

