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Abstract 

 

The Discrete Event System Specification (DEVS) provides a general methodology for 

hierarchical construction of reusable models in a modular way and has been used to simulate 

complex systems in a variety of domains. This dissertation addresses software design and 

performance issues that arise in parallel simulation of large-scale DEVS-based models on 

multiprocessor cluster architecture. 

Parallel simulation of complex DEVS-based models requires a robust simulator with low 

synchronization overhead. Recent researches focused on optimistic parallel simulation of DEVS-

based systems. In this research three conservative parallel DEVS protocols (Lower-Bound-Time-

Stamp (LBTS), Chandy-Misra-Bryant (CMB), and Global-Lookahead-Management (GLM)) are 

proposed, allowing pure conservative simulation of DEVS-based systems. The protocols are 

based on the classical Chandy-Misra-Bryant synchronization mechanism, and they extend the 

DEVS abstract simulator, providing means for lookahead computation and null message 

distribution. A purely conservative simulator, called CCD++, is presented designed for running 

large-scale DEVS and Cell-DEVS models in parallel and distributed fashion. 

An extensive comparative performance analysis is presented, analyzing the performance of 

CCD++ compared to an optimistic DEVS simulator. Several DEVS-based environmental models 

with different characteristics are studied. The experiments indicate that the conservative 

simulator improves performance in terms of execution time, memory usage, operational cost, and 

system stability for large models. 
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Chapter 1: Introduction 

Recent advances in computer technology have influenced modeling and simulation (M&S) techniques to 

become an effective approach for analyzing and designing a broad array of complex systems where a 

mathematical analysis is intractable. The simulation process begins with a problem to solve. First, the 

real system is observed, its entities are identified, and a model is constructed. Then, the model is 

executed using a simulator consisting of a computer system, which executes the model’s instructions 

and generates relevant output. These outputs are compared with the real system to verify the correctness 

of the model.  

As models become larger and more complex, the problems of limited resources within a single 

processor arise. In order to improve the performance of discrete-event simulations, Parallel Discrete-

Event Simulation (PDES) techniques were proposed. These methods allow for executing a single 

discrete-event simulation program on a parallel computer with multiple processors (or nodes). A PDES 

system is typically constructed as a set of Logical Processes (LPs), each representing a different portion 

of the physical system and potentially executing on a different processor in event-driven fashion. The 

execution of an event at a LP may modify the state of the LP and generate new events that will be sent 

to other LPs. During a simulation, the LPs interact with each other solely by exchanging time-stamped 

event messages. To ensure correct simulation results, the LPs must be synchronized properly to comply 

with the local causality constraint  [26], which restricts each LP to process events in nondecreasing time 

stamp order. Errors resulting from out-of-order event execution are referred to as causality errors. 

Synchronization, as the key to parallel and distributed simulation, requires a robust mechanism to handle 

communication among concurrent processes. Synchronization techniques for PDES systems are broadly 

classified into two categories, namely conservative and optimistic. The conservative approach, as the 

first synchronization algorithm that was proposed in the late 1970s by Bryant   [16], Chandy and Misra 

  [17] and known as the Chandy-Misra-Bryant (CMB) algorithm, strictly avoids the possibility of 

processing events out of time stamp order. In contrast, the optimistic approaches, introduced by 

Jefferson’s Time Warp (TW) protocol  [15], allow causality errors to happen temporarily, but provide 

mechanisms to recover from them during execution. Both approaches have their own merits and are 

being used in different applications. An extensive survey of existing PDES techniques can be found in 

 [14]. 
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Among the existing modeling and simulation techniques, the DEVS (Discrete Event System 

Specification) formalism   [1] [2] [3] [8] is regarded as one of the most developed general-purpose M&S 

frameworks for Discrete Event Dynamic Systems (DEDS)  [10]. DEVS not only allows for hierarchical 

construction of reusable discrete-event models in a modular way, but also provides an abstract 

simulation engine architecture that can be realized on diverse computing platforms  [5]. The term 

simulation engine architecture refers to a hierarchy of simulation entities and their associated algorithms 

that can be used to execute DEVS-representable models correctly. It is considered as abstract in the 

sense that the conceptual simulation entities may not necessarily be mapped to physical processors in a 

one-to-one relation  [4]. In the past four decades of research, many extensions to DEVS have been 

proposed in the literature. For instance, the Parallel DEVS (or P-DEVS) formalism  [9] eliminates the 

serialization constraints existed in the original DEVS by allowing adequate handling of simultaneous 

events, which is needed for efficient execution of models in parallel and distributed environments. The 

Cell-DEVS  [12] formalism is an extension to DEVS that allows defining an n-dimensional cell space to 

represent complex discrete event spatial models, where each cell is a DEVS atomic model, allowing for 

specifying both temporal and spatial relations between model components. Aside from these theoretical 

developments, various DEVS-based simulation tools have been implemented, such as DEVS-C++  [6], 

RTDEVS/CORBA  [13], DEVSCluster  [73], and DEVS/SOA  [74], just to mention a few. In particular, 

the CD++ toolkit  [18] is an open-source, object-oriented M&S environment that implements both P-

DEVS and Cell-DEVS formalisms using different middleware technologies on varied platforms (see, 

e.g.,  [19] [20] [21] [22] [23] [24] [25]). 

The Parallel simulation of complex DEVS-based models requires a robust simulator with low 

synchronization overhead. This dissertation combines advanced parallel simulation algorithms for large 

scale DEVS-based simulations. The goal was to integrate the formal advantages of the DEVS formal 

modeling and simulation framework with parallel simulation techniques, specifically the conservative 

synchronization approaches. Although PCD++  [21], an optimistic simulator for DEVS and Cell-DEVS , 

improves the overhead of optimistic parallel simulation, the issue of memory consumption due to state 

savings and rollbacks still remains. In order to experiment with both the conservative and optimistic 

methods within the DEVS modeling framework, this research work introduces three conservative DEVS 

protocols and a purely conservative simulator  [9] for DEVS and Cell-DEVS. The resulting simulator, 



   

    3 

called CCD++ (Conservative CD++), incorporated various strategies and was successfully able to 

execute large Cell-DEVS models, and in many cases out-performed the optimistic PCD++ simulator. 

This dissertation also provides a comparative study of the performance of conservative versus optimistic 

simulation of DEVS-based large-scale models using a number of Cell-DEVS models. 

1.1 Research Motivations and Objectives 

This research is motivated by two complementary and interrelated objectives. The first one is to address 

the challenges of large-scale conservative parallel simulation of P-DEVS and Cell-DEVS models on 

distributed-memory multiprocessor clusters using conservative null message-based protocols. The 

second one is to achieve a thorough comparative study of optimistic versus conservative DEVS-based 

simulation by conducting extensive experiments and performing precise sensitivity analyses at both 

model- and underlying synchronization protocol-level. 

A) DEVS Simulation with Conservative Approach 

Parallel simulation of complex models requires a robust simulator with low synchronization overhead. 

There has been a number of research efforts focused on the optimistic parallel simulation of DEVS-

based models (see, e.g.,  [27] [28] [8] [29] [30] [31]). For instance, the CD++ toolkit was extended to 

support Time Warp (TW)  [15] simulation of P-DEVS and Cell-DEVS models on distributed-memory 

multiprocessors using the WARPED  [67] simulation kernel as a middleware layer  [21] [34]. The 

resulting optimistic parallel simulator, referred to as PCD++, addressed several important issues raised 

in DEVS-based TW simulations, including asynchronous state transition, messaging anomalies, and 

rollbacks at virtual time zero  [34].  

Although optimistic protocols allow higher degree of parallelism, the issue of memory consumption 

due to state savings and rollbacks still remains. This is especially apparent when the number of 

participating nodes increases; resulting in cascaded rollbacks, and further memory and computation 

overhead. In contrast, conservative approaches overcome these issues by determining when it is safe to 

process an event for all the LPs in the system. In general, conservative synchronization algorithms are 

classified into two categories, namely synchronous and asynchronous. Synchronous conservative 

algorithms use global barrier synchronization and reduction at specific points in the simulation process 
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to iteratively determine which events are safe to process (see, e.g.,  [55]  [56] [57] [58]), making them best 

suited for shared-memory computers where the overhead of global synchronization can be minimized. 

On the other hand, asynchronous conservative protocols discard the global barrier computation by 

imposing a locking mechanism where a LP is blocked when it does not have enough information to 

process its next event safely. However, deadlocks can occur if the blocked LPs form a cycle  [59], 

requiring the use of either deadlock-avoidance or deadlock-recovery techniques to ensure the progress 

of the simulation.  

With many LPs allocated on each available processor in a typical large-scale simulation, saving 

historical data in the event and state queues not only consumes an excessive amount of memory, but also 

raises the cost of queue operation, fossil collection, and dynamic process migration. More importantly, 

these problems are worse when a large number of simultaneous events (i.e., events with exactly the 

same time stamp) need to be executed at each virtual time, as commonly found in large-scale, densely-

interconnected, and highly-active DEVS-based models.  

Aside from optimistic DEVS-based protocols, a number of conservative DEVS parallel approaches 

have been proposed in the literature (see, e.g.,  [75] [76] [77] [1]). Nevertheless, most of these approaches 

are in the High Level Architecture (HLA)  [68] domain  [64] [78] [79] [80] [81] [82], leaving the challenges 

of  purely conservative DEVS-based simulations unaddressed.  

The issues related to performance, scalability, and complexity of optimistic-based parallel 

simulations and the need for a purely conservative DEVS/Cell-DEVS simulator motivated this research 

to investigate conservative approaches for efficient conservative parallel simulation of P-DEVS and 

Cell-DEVS models. 

B) Comparative Study: Conservative vs. Optimistic DEVS 

To analyze the effect of the underlying synchronization protocol on the overall simulation performance, 

a comparative study is required that carefully investigates different metrics using the same benchmark. 

Deciding whether to use a conservative simulator or an optimistic one is only possible if large number 

of experiments have been conducted under the same hardware/software infrastructure. To evaluate the 

optimistic DEVS simulator (i.e., PCD++) versus conservative versions, the DEVS or Cell-DEVS model 

has to be executed on both simulators given the exact same conditions (such as initial values, size of the 
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model, hardware system configurations, etc.,). Towards this goal, the research presented in this 

dissertation takes a comparative approach to analyze the efficiency of different parallel DEVS 

synchronization mechanisms. In addition, this dissertation also attempts to take into account several 

methods to provide a detailed analysis that could be used for further expansion and development of the 

proposed synchronization techniques.  

1.2 Organization 

The rest of this dissertation is organized as follows. Chapter 2 provides background information on 

DEVS-based simulation and also it presents a literature review of parallel synchronization techniques 

and their application to DEVS. Chapter 3 provides the contributions of this dissertation. Chapter 4 

presents three conservative DEVS protocols and discusses their implementation details in CCD++ 

simulator. Chapter 5 describes the various sensitivity analyses metrics that can be used to conduct 

experiments on PCD++ and CCD++. The experimental platform and metrics for performance evaluation 

are provided in Chapter 6, followed by the results of this dissertation and a comparative performance 

evaluation of CCD++ and PCD++ simulators in simulating DEVS-based cellular models. Finally, the 

concluding remarks and future research directions are reported in Chapter 7.  
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Chapter 2: Background 

This chapter first presents the DEVS M&S framework and its implementation in the CD++ 

environment, and then it provides the state-of-the-art research efforts in PDES field. Section 2.1 

introduces the basic concepts and the software architecture of the DEVS M&S framework. Section 2.2 

reviews the classical DEVS formalism. Section 2.3 covers the Parallel DEVS (or P-DEVS) formalism. 

The Timed Cell-DEVS and Parallel Cell-DEVS formalisms are presented in Section 2.4 and 2.5 

respectively. Section 2.6 describes the simulation algorithms and computational properties in the context 

of the CD++ environment. The literature review of various parallel synchronization algorithms and the 

DEVS-based parallel simulation techniques are presented in Section 2.7 and 2.8 respectively. 

2.1 Conceptual Modeling and Simulation Framework 

Conceptual M&S framework defines the system under study as basic entities and their relationships. 

Zeigler et al. proposed a conceptual M&S framework that strictly separates modelling from simulation 

framework by introducing four basic entities and two types of relationships  [8], as illustrated in Figure 

1. 

 

Figure 1. Entities and Relationships of a System M&S Framework  [8] 

The entities include source system, experimental frame, model, and simulator. The source system 

entity defines the real or virtual environment under analysis. This entity, which is viewed as the data 

source, together with the behavior database forms the Experimental Frame. The experimental frame 
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specifies the conditions under which the source system is observed or experimented with. A model 

entity represents an abstraction of the source system represented by a set of instructions, rules, 

mathematical equations, or a set of constraints to approximate the behavior of the real system. The 

simulator entity is a computer-based entity which is in charge of executing the model’s instructions.  

The two fundamental relationships among the entities are the modeling relation (or validity) and the 

simulation relation (or simulator correctness)  [8]. The modeling relation links the model and the source 

system to validate the results generated by the model. In general, the model is considered valid if the 

data it generates agree with the data generated by the source system in the experimental frame in use. 

On the other hand, the simulation relation lies between the simulator and the model to indicate how 

reliable is the simulator in terms of being capable to execute the model’s instructions. 

The separation between model and simulator significantly simplifies the model validation and 

simulator verification  [8]. Furthermore, it gives the opportunity to use different simulation algorithms 

within the simulator or even different simulators. In addition, the separation of concerns involved in this 

architecture allows model reusability as well as later extension of the model. 

2.2 Classical DEVS Formalism 

Based on the above M&S framework concepts, the Discrete Event System Specification (DEVS) 

formalism supports hierarchical construction of reusable discrete-event models in a modular way  [8]. In 

DEVS, a real system is decomposed into behavioral (atomic) and structural (coupled) components. 

DEVS theory provides a rigorous methodology for representing models, while presenting an abstract 

way of thinking about the world with independence of the simulation mechanisms and the underlying 

hardware and middleware. A DEVS atomic model is formally defined by  [8]: 

M = <X, Y, S, δint, δext, λ, ta>, 

where 

X = {(p,v) | p ∈ IPorts, v ∈ Xp}             is the set of input ports and values; 

Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 

S                                         is the set of sequential states; 

δint: S →→→→ S                             is the internal state transition function; 

δext: Q × X →→→→S                     is the external state transition function, where 
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         Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the time elapsed since the last state            

                                                               transition; 

λ: S →→→→Y                               is the output function; 

ta: S →→→→ R+
0,∞                          is the time advance function. 

Figure 2 shows the description of states and variables in DEVS models. At any time, a DEVS 

atomic model is in a state s ∈ S. In the absence of external events, the model stays at this state for the 

duration specified by ta(s). When the elapsed time e, is equal to ta(s), the state duration expires and the 

atomic model outputs the value give by λ(s), and changes to a new state δint(s). An atomic model that 

has a due internal state transition at the current simulation time is referred to as an imminent model 

component. Notice that output is only generated by an imminent model and occurs right before the 

scheduled internal state transition. Transitions that occur due to the expiration of ta(s) are called internal 

transitions. On the other hand, state transition can also happen due to arrival of an external event which 

places the model into a new state specified by δext(s,e,x); where s is the current state, e is the elapsed 

time, and x is the input value. Note that the life time of a state can take any real value from zero to 

infinity. A state with zero duration is called transient state, while when ta(s) is equal to infinity the state 

is said to be passive, in which the system will remain in this state until receiving an external event.  

 

Figure 2. DEVS Semantics of an Atomic Model  [8] 

The DEVS formalism provides a well-defined concept of system modularity and component 

coupling allowing for construction of hierarchical models. A DEVS coupled model is composed of 

several atomic or coupled sub-models that are connected with each other and with the external 

environment, as shown in the following formal definition  [8].   
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CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>, 

Where 

X = {(p,v) | p ∈ IPorts, v ∈ Xp}      is the set of input ports and values; 

Y = {(p,v) | p ∈ OPorts, v ∈ Yp}  is the set of output ports and values; 

D is the set of the component names; 

The following requirements are imposed on each component d that is included in D: 

Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS model with 

Xd = {(p,v) | p ∈IPortsd, v∈Xp}, and Yd = {(p,v) | p ∈ OPortsd, v∈ Yp}. 

The component couplings are subject to the following requirements: 

External input coupling (EIC) connects external inputs to component inputs,  

EIC⊆ {((N, ipN), (d, ipd)) | ipNe IPorts, d∈D, ipd∈IPortsd}; 

External output coupling (EOC) connects component outputs to external outputs, 

EOC⊆ {((d, opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd}; 

Internal coupling (IC) connects component outputs to component inputs,  

IC⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa, ipb∈IPortsb};  

Select: 2D - {} → D is the tie-breaking function for imminent components. 

Direct feedback loops are not allowed, i.e., an output port of a component may not be connected to 

an input port of the same component which can be formally specified as ((d, opd), (e, ipd)) ∈ IC implies d ≠ 

e. In addition, the values sent from a source port must follow the range inclusion constraint of a destination 

port, formally expressed as: 

∀ ((N, ipN), (d, ipd)) ∈ EIC : XipN⊆ Xipd 

∀ ((a, opa), (N, opN)) ∈ EOC : Yopa⊆ YopN 

  ∀ ((a, opa), (b, ipb)) ∈ IC : Yopa⊆ Xipb. 

From the coupled DEVS formalism it can be observed that due to the closure under coupling 

property, a coupled model is regarded as a new DEVS model  [96]. This property ensures that the overall 

behavior of a coupled model is equivalent to a basic atomic model, and therefore, allows for hierarchical 

model construction. The X and Y sets describe the input and output events of the coupled model. Upon 

reception of an input event, it has to be redirected to the corresponding atomic component. Similarly, 
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when an output is generated by a component, it must be mapped as an input to another component or 

sent out as an output of the coupled model. The mapping mechanism is defined by the Z function.  

In coupled DEVS models, when multiple imminent components are scheduled for an internal 

transition at the same time, this can lead to ambiguity. For example, let’s consider a case where we have 

two imminent components: A, and B. When component A executes its internal transition, it produces an 

output that maps to an external event for component B. However, at this moment, component B is 

already scheduled for an internal transition. This will cause an ambiguity for component B, not knowing 

which transition to execute first. The DEVS formalism suggests two alternatives for this scenario: 1) 

execute the external transition first with e being equal to ta(s) and then the internal transition, or 2) 

execute the internal transition first and then the external transition with e being equal to zero. DEVS 

resolves this ambiguity by introducing the select tie-breaking function. This function gives order to the 

imminent components of a coupled model so that only one component has e = 0. Then the rest of 

imminent components are divided into two groups: 1) a set of components that receive an external 

output from this model, 2) the rest of components. The first group will then execute their external 

transition functions with e = ta(s), and the second group will be imminent during the next simulation 

cycle which may further require the use of the select function to decide which component will be the 

first. The use of tie-breaking mechanism adds overhead to the simulation and, in addition, decreases the 

level of parallelism and forces the simulation to have a serialized manner. Since the select mechanism 

associates priorities with imminent components, it will cause a potential bottleneck in the simulation 

system when many interconnected atomic models are imminent at the same time. These problems have 

been addressed by Chow and Zeigler in a DEVS extension, known as the Parallel DEVS formalism  [11], 

which will be presented in the next section. 

2.3 Parallel DEVS Formalism 

The Parallel DEVS or P-DEVS  [11] formalism is an extension to DEVS that eliminates all the 

serialization constraints and provides an environment for executing simultaneous DEVS models in 

parallel. P-DEVS implements confluent function to deal with collision scenarios at which events are 

scheduled simultaneously  [8]. This function allows a modeler to explicitly define the collision behavior 

for individual atomic models. In addition, each atomic model maintains a bag structure to collect all 
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external events received from other model components at a given simulation time so that these events 

can be processed as a group in the state transition, combining the execution of multiple external 

transitions into a single one. As a result, many imminent components can be activated simultaneously to 

send output to other components all at the same simulation time  [9]. The receiver is responsible for 

examining the input external events and interpreting them properly. The P-DEVS formalism allows for 

increased parallelism to be exploited in a simulation  [11].  

An atomic P-DEVS model is specified by  [11]: 

M = < X M , Y M , S, δ ext , δ int, δ con, λ, ta) 

where 

X M = {(p,v)| p ∈ IPorts, v ∈ X p }  is the set of input ports and values; 

Y M = {(p,v)| p ∈ OPorts, v ∈ Y p }   is the set of output ports and values; 

S      is the set of sequential states; 

δ ext: Q x XM
b → S    is the external state transition function; 

δ int: S →  S     is the internal state transition function; 

δ con: Q x XM
b → S   is the confluent transition function; 

λ : S → YM
b     is the output function; 

ta : S → R0 
+ ∪ ∞    is the time advance function; 

           with Q := {(s, e) | s ∈ S , 0 ≤ e ≤ ta(s)} the set of total states. 

The elimination of the sequential Select function and its replacement with the confluent transition 

function gives all the imminent components equal priority and the permission to be activated and to send 

their output to other components at the same time. On the other hand, the receiver component is only 

responsible for identifying the type of the received input event and taking the required actions. A P-

DEVS coupled model is similar to DEVS, except for the omission of the Select function. Formally, a 

coupled model is defined as  [11]:  

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC> 

Therefore, the set of input and output events (X and Y), components (D and Md), and couplings 

(EIC, EOC, and IC) are identically the same as of DEVS. Since in P-DEVS there is no serialization 

among imminent components, in case of having multiple imminent components within a coupled P-
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DEVS model, firstly, all the outputs are collected and redirected to the corresponding influences, 

secondly, the transition function is executed  [8]. 

2.4 Timed Cell-DEVS Formalism 

The Cellular Automata  (CA) theory was first introduced by John von Neumann in his study of self-

replicating systems  [97] . A cellular automaton, as presented in Figure 3, is an infinite regular n-

dimensional lattice of finite state machines interconnected locally with each other. The lattice consists of 

cells that change their states synchronously and in parallel at discrete time steps based on the states of a 

finite set of neighboring cells, referred to as the neighborhood, by evaluating a local update rule. This is 

performed by using the current cell’s state and those of a finite set of nearby cells. Despite its 

widespread application, the CA approach has two major limitations making it computationally 

inefficient  [99]. First, due to its discrete time nature, simulation precision and execution efficiency is 

greatly restricted. Secondly, at each time step, all the cells are evaluated synchronously, incurring an 

unnecessarily high computational cost when only a small fraction of the cells needs to be updated. The 

Timed Cell-DEVS formalism  [100] overcomes these issues by integrating DEVS and CA to present 

each cell as an atomic DEVS model.  

 
Figure 3. Sketch of a Cellular Automaton [Wai00] 

Cell-DEVS formalism defines n-dimensional cell spaces as discrete-event models, allowing for 

more efficient asynchronous execution using a continuous time base without losing simulation accuracy. 

Each cell is represented as a DEVS atomic model that changes state in response to the occurrence of 

events in an event-driven fashion. Moreover, Cell-DEVS allows the implementation of cellular models 

with timing delays. Two types of timing delays can be used, namely transport and inertial. When 
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transport delay is used, the future value is added to a queue sorted by output time, allowing the previous 

values that were scheduled for output but have not yet been sent to be kept. On the other hand, inertial 

delays allow a pre-emptive policy at which any previous scheduled output value will be deleted and the 

new value will be scheduled. Figure 4 illustrates a timed Cell-DEVS atomic model.  

 

Figure 4. A Timed Cell-DEVS Atomic Model  [100] 

A Cell-DEVS atomic model is defined by  [99]: 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >, 

 where 

            X  is a set of external input events; 

Y is a set of external output events; 

I represents the model's modular interface; 

S  is the set of sequential states for the cell; 

θ is the cell state definition; 

N  is the set of states for the input events; 

d  is the delay for the cell; 

δint  is the internal transition function; 

δext  is the external transition function; 

τ  is the local computation function; 

λ  is the output function; and 

D  is the state's duration function. 
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The modular interface (I) represents the input/output ports of the cell and their connection to the 

neighbor cell. Communications among cells are performed through these ports. The values inserted 

through input ports are used to compute the future state of the cell by evaluating the local computation 

function τ. Once τ  is computed, if the result is different than the current cell’s state, this new state value 

must be sent out to all neighboring cells informing the state change. Otherwise, the cell remains in its 

current state and therefore no output will be propagated to other cells. This will happen when the time 

given by the delay function expires. Finally, the internal, external transition functions and output 

functions (λ) define this behavior. Cell-DEVS improves execution performance of cellular models by 

using a discrete-event approach. It also enhances the cell’s timing definition by making it more 

expressive. Cell-DEVS coupled models represent the cell space as follows  [100]: 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >, 

where 

Xlist   is the input coupling list; 

Ylist   is the output coupling list; 

I    represents the definition of the model’s interface;  

X   is the set of external input events; 

Y            is the set of external output events; 

n    is the dimension of the cell space; 

           {t1,...,tn}   is the number of cells in each of the dimensions; 

N    is the neighborhood set; 

C     is the cell space; 

B     is the set of border cells; 

Z    is the translation function; and 

select  is the tie-breaking function for simultaneous events. 

 A coupled model is composed of an array of atomic cells (C) with given size and dimensions where 

each cell is connected through standard DEVS input/output ports to the cells defined in the 

neighborhood (N).  Since the cell space is finite, the borders of the cells are either connected to a 

different neighborhood than the rest of the space, or they are “wrapped” (i.e. B = {∅}) in which they are 

connected to those in the opposite one using the inverse neighborhood relationship. However, border 
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cells have a different behavior due to their particular locations, which result in a non-uniform 

neighborhood. The Z function defines the internal and external coupling of cells in the model. It 

translates the outputs of the ith output port in cell Ca into values for the ith input port in cell Cb. Select 

function has similar functionality as in the basic DEVS, where it is the tie-breaking function for the 

imminent components.  

As in coupled DEVS models, the use of Select function produces serialization, and therefore similar 

limitations when the Cell-DEVS models are considered to be executed in parallel. These limitations 

would lead to lack of parallelism exploitation and a probable inconsistency with the real system  [100]. 

Moreover, since the timed Cell-DEVS allows only one input from each input port, zero-delay transitions 

are not possible and also the external DEVS models are not allowed to send two simultaneous events to 

the same cell.  

2.5 Parallel Cell-DEVS Formalism 

In order to resolve transition collisions without using the Select function, a new version of the Timed 

Cell-DEVS formalism, referred to as Parallel Cell-DEVS  [98], has been proposed based on the P-

DEVS concepts. The Parallel Cell-DEVS formalism overcomes these restrictions by revising and 

extending Cell-DEVS to allow a higher degree of parallelism and allowing zero-delay transitions as well 

as multiple simultaneous events per external model. Parallel Cell-DEVS models are equivalent to 

parallel DEVS models and closure under coupling holds for parallel Cell-DEVS models as well. That is 

a coupled Cell-DEVS model is equivalent to an atomic Cell-DEVS model.  

The formal definition of a Parallel Cell-DEVS atomic model is given as follows  [98].  

PCM = < Xb, Yb, I, S, θ, N, d, δint, δext, δcon, τ, τcon, λ, D >. 

Most of the components in the definition remain unchanged as in the Timed Cell-DEVS specification. 

However, two exceptions exist: first, the external state transition function and the output function 

maintain bags of inputs and outputs (Xb and Yb) for each cell. Secondly, two additional confluent state 

transition functions (δcon and τ con) are introduced in the definition. When collisions between internal and 

external events happen at a cell, the confluent function δcon is invoked as in the P-DEVS formalism and 

it activates the confluent local transition function τcon, which in turn analyzes the current values in the 

input bags and presents a unique set of inputs for the cell to compute the next state. Hence, allowing the 
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modeler to precisely control the behavior of each cell under collision situations by implementing the 

confluent local transition function. 

By eliminating the Select function, the Parallel Cell-DEVS coupled model definition is given as follows 

 [98]: 

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z >. 

While each cell in the cell space (C) is a Parallel Cell-DEVS atomic model, all the other 

components are defined in the same way as presented in the previous section. 

The Parallel DEVS and Cell-DEVS formalisms not only provide a unified M&S framework, but 

also allow exploiting higher degree of parallelism in parallel and distributed simulations. Together, these 

two formalisms serve as the theoretical foundation for this research. 

2.6 Parallel Discrete-Event Simulation 

A Parallel Discrete-Event Simulation (PDES) consists of Logical Processes (LPs) acting as the 

simulation entities, which do not share any state variables, and interact with each other merely through 

exchanging time-stamped event messages  [14]. In general, each LP is mapped to a physical processor of 

a parallel computing system, but if the number of LPs exceeds the number of available processors, 

multiple LPs are mapped to a single physical processor. The LPs that are allocated on the same 

processor maintain a single Future Event List (FEL ) to schedule events execution in a sequential 

manner. The major challenge in PDES is being able to produce exactly the same results as in a 

sequential execution of the simulation program. This requires a precise and accurate synchronization of 

all the LPs in the system since data and computation distribution may result in different errors related to 

the concurrent processing of the simulation messages. Synchronization among these LPs is violated 

when one of the LPs receives an out of order event. This violation is referred to as causality error. Such 

a scenario is represented by Figure 5 where two LPs, each with one event in its input queue, process 

their events simultaneously. When LP1 executes event e1 (whose timestamp is = 1), it generates and 

sends a new event message e2 to LP2 (with timestamp = 2). However, at this time, LP2 has already 

processed e6 and therefore its local clock has already advanced to 6. Consequently, the arrival of e2 at 

LP2 violates causality, and an error occurs.  
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Figure 5. Causality Error Scenario 

In order to prevent causality error, there is a synchronization requirement expressed as the following 

necessary and sufficient condition  [14]. 

Local Causality Constraint:  A discrete-event simulation, consisting of LPs that interact exclusively 

by exchanging timestamped messages obeys the local causality constraint if and only if each LP 

processes events in non-decreasing timestamp order. 

To satisfy the local causality constraint, different synchronization techniques have been proposed for 

PDES systems which generally fall into two major classes of synchronization: conservative, which 

strictly avoid causality violations ;  and optimistic, which allow violations and recover from them. In the 

past three decades, numerous approaches have been proposed by different researches in this field. A 

number of surveys can be found in the literature which summarize both conservative and optimistic 

techniques  [14] [26] [117] [118] [119] [95]. The following subsections introduce the basic concepts behind 

these two approaches. 

2.6.1 Conservative Synchronization Algorithms 

As discussed in the previous section, conservative synchronization algorithms strictly avoid any 

occurrence of causality errors. To do so, the LP is blocked from further processing of events until it can 

make sure that the next event in the local Future Event List is safe from future event arrivals from other 

LPs with smaller timestamps. The basic problem for a conservative parallel simulator is how to 

determine if it is safe for a processor to execute events. To deal with this issue, several techniques have 

been proposed which are further classified into four categories: methods with deadlock avoidance, 

deadlock detection and recovery, synchronous operation, and conservative time windows. 

• Synchronous Operation 
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The first techniques developed for solving these problems proposed different centralized and 

decentralized mechanisms for implementing global clocks, and they used synchronous operations for the 

parallel discrete-event simulations. In  [49] the authors proposed a centralized mechanism with one 

dedicated processor controlling a global clock (which represents the global virtual time of the 

simulation). Under that scheme, all the LPs’ local clocks are kept at the same value at every point in real 

time, and the simulation proceeds according to this global clock, which is advanced based on the 

minimum timestamp of all possible next events. Peacock et al.  [50] introduced the distributed 

implementation of such a global clock, which was used by  [51]  [51] on a hierarchical LP structure to 

determine the minimum next event time. The min-reduction operation  [52] used a hierarchical LP 

organization. In this method, the minimum timestamp is moved to the root of a process tree, and it is 

then propagated down the tree. The Distributed Snapshot Algorithm  [53] [110] proposed a method to 

avoid the bottleneck of a centralized global clock coordinator by enabling the processes to record their 

own states and the states of the communication channels. In this way, the set of process and channel 

states recorded conform a global system state. 

Three efficient algorithms for global snapshots in large distributed systems are presented in 

 [120] [121]. The proposed algorithms (a grid-based, a tree-based, and a centralized) overcome the issue 

of scalability of other existing global snapshot algorithms. Experiments showed that the proposed 

mechanisms significantly reduce the message and space complexity of a global snapshot.      

In general, synchronous protocols decompose the simulation into two phases: (1) processing safe 

events, (2) performing global computations to determine such events. Unlike the detection and recovery 

methods that will be discussed in the following sections, synchronous mechanisms are deadlock-free. 

However, they continuously suspend and restart the simulation. In contrast, a major disadvantage of 

detection and recovery method is that during the period leading up to a deadlock, the execution may be 

largely sequential, leading to limited speedup. 

• Deadlock Avoidance 

The first existing asynchronous parallel simulation protocol was a conservative technique developed 

independently by Chandy and Misra  [17], and Bryant  [16]. In the CMB Chandy-Misra-Bryant (CMB) 

algorithm, LPs are assumed to be connected statically via directional links. LPs communicate through 

timestamped messages, also called event messages, which are transmitted from one LP to another, in 
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non-decreasing timestamp order. This guarantees that the timestamp of the last message received on an 

incoming link is a lower bound of any future event messages that will be received later. At each LP, 

there is a queue associated with each incoming link that is used to store incoming messages in FIFO 

order. Each link has its own clock which is equal to the timestamp of the first message in the queue (if 

there is one), or the timestamp of the last received message (if the queue is empty). The LP repeatedly 

selects the queue with the smallest clock and, if the queue is not empty, processes the first message 

available. If the queue is otherwise empty, the LP blocks until a message arrives at the queue, which 

updates its clock value of the incoming link. Afterwards, the LP selects a new queue with the smallest 

clock and the procedure is repeated.  

Since an LP may block on an empty link, deadlocks may occur in the case of a waiting cycle.  The 

CMB mechanism avoids deadlocks by introducing the notion of null messages, which are for 

synchronization purposes only and do not represent real activities in the model. A null message is a 

promise about the earliest message that will arrive in the future. When an LP receives such a null 

message, it advances the clock value associated with the link, and, if possible, it progresses by 

processing events that are waiting in other queues. If processing is not possible, it propagates the time 

carried by the null message and other time advancements to its successors by sending out more null 

messages through its outgoing links. The essential part of this mechanism is determining the null 

message timestamp. This lookahead value defines the degree to which LPs can look ahead and predict 

future events.  

Since each incoming link defines the lower bound for the next unprocessed event, a good measure 

for the lookahead value can be the minimum among all incoming links’ clocks plus the LP service time. 

In fact, the lookahead represents a lower bound on the timestamp of the next outgoing message. Every 

time the LP finishes processing an event, it sends a null message on each of its outgoing links to report 

this bound. When an LP receives a null message, it calculates a new bound based on the information it 

receives and passes it to its neighbors, and so on. The lookahead can also be determined by the 

programmer statically. It has been shown that the larger the lookahead, the better is the performance of 

the algorithm  [122]  [123]  [119]. In order to avoid deadlock, there is a constraint on the value of 

lookahead; it cannot be zero  [50]. This restriction implies that certain types of simulations that require 
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zero lookahead cannot be performed by the CMB algorithm (e.g. queuing networks with service time of 

zero). 

• Variations of CMB 

The CMB algorithm can produce many null messages, degrading the performance of the simulation.  

Since its original implementation, numerous approaches have been proposed aiming at reducing the 

number of null messages. Here, some of the variations on the CMB approach that deal with this issue 

are presented.  

The demand-driven null message protocol  [35] avoids the aggressive distribution of null messages 

by enforcing LPs to send null messages only when they are asked to. All synchronization messages are 

of fixed size and independent of the number of processors. When an LP needs to process an event with 

timestamp t, but cannot do it due to timing constraints, it sends a timing request, reporting the sender's id 

and the requested time t to the neighboring LPs. The receiving LPs then inform to the sender LP if they 

can guarantee that they will not emit an event at a time earlier than the requested time t. There are three 

types of replies (which can be used to avoid repeated polling in the presence of cycles). The yes message 

indicates that the receiver LP has advanced to the requested time; the no message indicates that it is still 

lagging behind (resulting in another request to be made by the sender LP), and the ryes (reflected yes) 

message indicates that the receiver LP has conditionally reached t. The ryes are used to detect possible 

cycles and minimize the number of subsequent requests sent to the neighboring LPs. 

Misra  [36] and Peacock et al.  [37] also revisited the CMB mechanism by imposing the idea of 

sending null messages on demand rather than after each event. Nicol and Reynolds  [38] used a variation 

of this approach for distributed simulations with shared resources. Su and Seitz  [39] investigated a 

family of variants of the basic CMB algorithm to speedup gate-level simulations on an Intel iPSC 

computer. They focused on reducing the volume of null messages by deferring sending outputs and 

packing the information into fewer messages. 

Other approaches to null message generation, including generation after a time-out and generation 

using stimulus nulls were introduced in  [40]. The purpose of the null message after a time-out algorithm 

is to reduce the system overhead of processing null messages by reducing the actual number of null 

messages transmitted between LPs. The null messages are transmitted only after a specified amount of 

real clock time, the time-out value. It was shown that when the time-out value increases, fewer null 
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messages are generated, thus reducing overhead. In contrast to the null message with time-out 

algorithm, the stimulus null variation added, rather than eliminated, null messages. Stimulus null 

messages are generated and transmitted after the execution of a given number of internal events, 

specified as a ratio between the events and the stimulus nulls. These nulls are in addition to any nulls 

normally generated, and they give the receiving LPs an earlier indication of time progression (when 

compared to the original CMB null message algorithm). Consequently, there is a greater potential to 

execute the simulation faster. 

Although demand-driven protocols reduce the amount of null message distribution, in return, the 

delay associated with receiving null messages increases because two messages are required. The 

carrier-null message algorithm introduced by Cai and Turner  [41] reduces the number of CMB null 

messages and it increases the lookahead ability by exploring the simulation network topology. A carrier-

null message includes extra information, in particular, the message route. This carrier information is a 

record of all LPs visited by the carrier-null message since its creation. This information allows 

individual LPs to advance their simulation clocks while keeping the null message traffic low. The 

carrier-null message scheme only supports simulations with certain communication graphs such as those 

with nested cycles. Wood and Turner  [42] extended the carrier-null message approach by proposing a 

generalized carrier-null method to support arbitrary graphs. In  [43] the null message cancellation 

protocol was investigated, and the impact of the cancellation of spare null messages was examined. 

Under this protocol, a null message is discarded before being receipt if it is overrun by a message with a 

larger timestamp. The empirical results showed how the impact of null message cancellation is affected 

by the lookahead of the LP. Porras et al.  [124] improved the CMB algorithm by using null message 

cancellation, simulation loop optimization, and multicasting techniques. Their algorithm, named 

Simloop reduces the number of null messages and improves the execution of messages by allowing 

simulation of multiple messages instead of a single message.  

The Critical Channel Traversing (CCT) algorithm  [125] extended the CMB algorithm with the 

addition of rules that determine when to schedule an LP for event execution. CCT attempts to schedule 

the LPs with the largest number of events that are ready to execute. This is accomplished through 

identifying critical channels. The CCT algorithm was implemented along with a simulation kernel called 

TasKit, designed for high performance simulation on small to medium sized shared memory multi-



   

    22 

processors. The algorithm provides multi-level scheduling by allowing scheduling large grains of 

computation even in very low granularity models. In  [126], two new versions of the CCT algorithm 

were presented. The first one, called simple sender side CCT, differs from the original in the elimination 

of busy waiting. Consequently, it avoids the performance problems that can be caused by busy waiting. 

The second algorithm, called receive side CCT, uses a different strategy for updating channel clocks and 

scheduling objects connected to critical channels. Receive side CCT reported better scaling with respect 

to the connectivity of the model, but at the cost of additional overhead for low connectivity models.     

Boukerche and Das  [127] proposed a null message algorithm that reduced the overhead of null 

messages using load balancing. The synchronization protocol is a variation of CMB null messages 

combined with a load-balancing algorithm that assumes no compile time knowledge about the workload 

parameters. The algorithm is based on a process migration mechanism, and the notion of the CPU-queue 

length, which indicates the workload at each processor. In addition, they presented two variations of the 

algorithm: a centralized, and a multi-level hierarchical method.  

Other null message reduction algorithms that have been proposed use a generic mathematical model 

to approximate the optimal values of the parameters that are directly involved in the performance of a 

time management algorithm  [128] [129]. Thomas et al.  [130] proposed another null message reduction 

algorithm based on grouping and status retrieval by determining an optimum value of the lookahead. 

There have been varied efforts trying to improve the lookahead computation. For example, in  [131] 

the authors presented a method where the compiler automatically extracted information about the 

lookahead present in the application. The lock-free algorithm  [132] is another conservative scheduling 

technique implemented for shared-memory multiprocessor machines, which uses fetch&add operations 

to avoid the inefficiencies associated with using locks. The authors show that compared with lock-based 

scheduling algorithms, the lock-free algorithm exhibits better performance when the number of logical 

processes assigned to each processor is small or when the workload becomes significant. However, due 

to the overhead spent for extra bookkeeping, only modest performance gain is achieved for a large 

number of logical processes. Solcany and Safarik  [133] presented a user-transparent conservative 

parallel simulator that allows users to build simulation models with lookahead transparently. To do so, 

they analyze the conditions for cumulating the lookahead of entities inside the same LP, and using this 

information they derived a mechanism to calculate such cumulated lookahead based on the Dijkstra's 
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shortest path first algorithm. Chung et al.  [134] proposed a scheme for the prediction of the software 

execution path in order to extend the lookahead computation for parallel multiprocessor simulation. 

They use templates for predicting the program execution path, which are generated by software analysis. 

Then, a processor model obtains the lookahead by evaluating the templates at simulation time. The 

proposed method aggressively extends the lookahead of null messages by executing the path prediction 

of the software application dynamically.  

Other studies have devised and compared variants to the CMB algorithm by evaluating the 

performance of the algorithms for inefficiencies and overhead. Park et al.  [135] compared the 

performance and scalability of a lazy null message algorithm with global reduction approaches. They 

suggested that, for scenarios simulating scaled network models with constant number of input and 

output channels per LP, the lazy null message algorithm offers better scalability than efficient global 

reduction based synchronous protocols. Bagrodia and Takai  [140] studied the performance of three 

diverse conservative algorithms implemented in Maisie: a synchronous algorithm (conditional event), an 

asynchronous algorithm (with null messages), and a hybrid algorithm (ANM - Accelerated Null 

Message) that combines features from the preceding algorithms. Maisie models were developed for 

standard queuing network benchmarks, and various configurations of the model such as model 

connectivity, computation granularity, load balance, and lookahead were executed using the three 

different algorithms. Song et al.  [141] discussed an empirical study of conservative scheduling by 

examining several heuristics that help identifying critical events. They presented a performance study 

comparing several scheduling algorithms based on LP’s next event timestamp, safe time, or local 

simulation clock. In  [142], a performance evaluation of a CMB protocol was investigated. They 

analyzed the performance and behavior of each logical process, and showed that, in the same simulation, 

different LPs can show different performance. The analyses were performed by adding software 

monitors to the simulation code. The monitors computed some metrics whose values were used to 

estimate the performance of each logical process in execution time.    

• Deadlock Detection and Recovery 

Another approach for conservative synchronization is to allow deadlocks to occur, and to provide a 

mechanism to detect and recover from them. This approach eliminates the use of null messages and the 

overhead associated with their communication traffic. Deadlock is broken by allowing to processing the 
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event with the smallest timestamp. Chandy and Misra  [46] proposed an asynchronous distributed 

simulation approach via a sequence of parallel computations. Their approach did not use a global clock 

nor did they use a single process to drive the simulation. Rather, to avoid bottlenecks, they use a special 

process, called the controller, which synchronizes the LPs when the simulation deadlocks. Under that 

scheme, the simulation is divided into a sequence of computations: the parallel phase and the phase 

interface. The controller is only responsible for detecting the termination of one phase and initiating the 

next one. Other seminal deadlock detection mechanisms were discussed in  [44] [45] [36]. 

One approach to determine safe events is to perform a set of distributed computations across all the 

LPs. The Critical Path Analysis algorithm (CPA)  [143] [144] generates an acyclic event-dependency 

graph by tracing the events in the simulation. The critical path is calculated as the longest event path in 

the event graph, and its related time is considered as the lower bound on the execution time of the 

simulation. Srinivasan and Reynolds  [146] mention that the conservatism of the CPA is relaxed in the 

sense that it only considers the dependency among events, requiring each LP to know exactly what the 

next event is, and when does it arrive. This is not ideal since events in a parallel simulation are 

unpredictable at runtime. The State Causality Analysis algorithm (SCA)  [149] overcomes the limitation 

of CPA by focusing on the dependency of the logical process states, rather than on unpredictable events. 

This technique takes into consideration the effect of many algorithm independent factors, such as 

lookahead, I/O overhead, physical transfer delay, processor speed, and event distribution.  

Groselj and Tropper  [47] proposed the time-of-next-event (TNE) algorithm for situations where 

multiple LPs reside on a single processor. TNE relies upon a shortest-path algorithm and increases 

parallelism by computing the largest lower bound of all LPs independently on every processor. The 

advantage of this approach is that it does not rely on message passing to distribute the lookahead 

information; rather, the algorithm is executed on each LP independently. A deadlock recovery algorithm 

is used to resolve inter-process deadlocks. Boukerche and Tropper  [48] presented an extension to TNE, 

namely SGTNE (Semi Global TNE), whose goal was to exploit lookahead information from both the 

local and the neighbor LPs (unlike TNE where only LPs within a process are used to unblock an LP). 

Consequently, SGTNE outperforms TNE, as it allows a higher degree of parallelism as well as avoiding 

inter-process deadlocks.  
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In order to increase the set of safe events, a global reduction computation can be used to derive a 

Lower Bound on the Timestamp (LBTS) among the events that can be received by a LP in the future 

(i.e., the minimum timestamp of the next future event in the entire simulation system). With such 

information, each LP can safely process any pending events with a timestamp smaller than the LBTS 

value  [150] [118] [152] [151]. Curry et al.  [153] studied the performance of asynchronous conservative 

PDES algorithms by examining the performance of systems based on a sequential Centralized Event 

List (CEL) and compared those with that of CMB. In their experiments the performance of a CMB-

based system was compared with three CEL implementations namely the heap, splay tree, and calendar 

queue for a particular workload model. The results showed that both the number of instructions executed 

and the cache behavior have significant impact on the performance, and the superior cache performance 

was able to make up for a larger number of instructions executed. 

• Conservative Time Windows 

Lubachevsky  [55] was the first to introduce the idea of a moving time window to determine the set of 

safe events that can be executed in parallel. Using this approach, a lower edge is defined for the 

window, based on the minimum timestamp of all the unprocessed events, and a window size. Any event 

whose timestamp is within the window size is eligible for processing. Although this mechanism 

eliminates the overhead associated to the search for safe events, an important success factor is the 

window size. A small window size would decrease parallelism while a large window size would result 

as if there was no time window at all. An appropriate window size can be obtained either from the 

programmer, the compiler, or at runtime by monitoring the simulation  [14]. The Moving Time Windows 

(MTW) protocol  [63] is a relaxed version of Lubachevsky’s approach where global windows are 

adjusted dynamically and the events within a window are assumed to be parallel. When an event with a 

timestamp earlier than the LP’s clock is received, an anomaly occurs. Ayani and Rajaei  [64] show that 

better parallelism can be achieved using the Conservative Time Window (CTW), where the global 

ceiling of the window is eliminated, and allowing different windows to have different sizes.  

Lemeire and Dirkx  [154] proposed a hybrid synchronization technique that combined the 

asynchronous CMB algorithm with CTW to maximize the lookahead capabilities of a model by using 

lookahead accumulation. The algorithm tries to maximize the performance by optimally tuning two 

attributes of the model: granularity and lookahead. Granularity is defined as the amount of computations 
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between two synchronization points. The mechanism tried to improve the performance by maximizing 

granularity and thus reducing the communication overhead. This is done aggregating all the dedicated 

LPs in a processor, and forming a multiprocess, which can be simulated sequentially on each processor. 

The algorithm exploits maximum performance by accumulating lookahead information, and computing 

and using the global lookahead of the multiprocess. Lin et al.  [148] presented a method called micro-

synchronization to exploit the parallelism inside each LP. Unlike the methods of lookahead 

accumulation  [154] and local time warp  [155] [156], this technique keeps the traditional use of 

lookahead among LPs unchanged, while imposing a relaxed sequential event scheduling inside each LP, 

which can statistically increase the lookahead.  

• Other Conservative Protocols 

Numerous conservative protocols have been proposed, and some of them are presented here. Several 

of these protocols were defined as a combination of synchronous approaches with event-driven clock 

progression. The idea is to divide the computation into cycles, in which one first determines the safe 

events, and then processes all those events. Ayani  [54] used the concept of distance between LPs to 

determine the safe events. Under this scheme, the distance gives the minimum time it takes for an event 

in one LP to directly or indirectly affect another LP (similar to a shortest-path algorithm). This draws a 

bound on when should an LP expect an event from its neighbors. Likewise, Lubachevsky’s bounded-lag 

algorithm  [55] took advantage of the propagation delay between LPs to exploit lookahead  [60]. The 

algorithm uses a time interval (called the time lag) in order to compute a set of LPs that can affect a 

given LP within the lag interval. 

The conditional event protocol  [61] categorized events into two types: definite, and conditional. 

Definite events are scheduled locally, while conditional events require communication among all LPs to 

determine the earliest conditional event globally (which is then converted into a definite event). Nicol 

 [62] used a similar idea based on synchronization barriers and introducing time windows with the 

restriction that all events within a window are safe to process. Similar to the conditional event approach, 

global computations are conducted to determine the time of next synchronization point.  

Nicol and Liu  [157] proposed a composition strategy by combining the synchronous barrier 

synchronization (global) with channel scanning (local) synchronization protocols to allow tailoring the 

synchronization mechanism to the model being simulated. Their attempt to combining synchronous and 
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asynchronous approaches allows using one method in part of the model where the other method is weak. 

Using this approach, the effect of high connectivity is limited by making most of a node's channels 

synchronous. On the other hand, by making channels with low lookahead asynchronous, the effect of 

unusually low lookahead is limited. 

The success of all the conservative synchronization algorithms presented in this section largely 

depends upon the ability to predict the future, in terms of the lookahead or LBTS  [14] [117]. In order to 

achieve acceptable performance, this, in turn, requires an effective use of application-specific 

information such as the topological structure of the network of LPs, the characteristics of the 

communication network, and the underlying model behavior. A side effect of this requirement is that a 

seemingly minor changes to the model could affect the simulation performance dramatically, hindering 

the robustness of the application  [26]. Perhaps the most prominent drawback of conservative approaches 

is that they often cannot fully exploit the potential parallelism available in a simulation  [26], especially 

when the estimated lookahead or LBTS values are overly pessimistic and when global synchronizations 

are performed too frequently in the synchronous execution mode. The optimistic synchronization 

algorithms introduced in the following sections do not have any of these problems. Nonetheless, when 

the application characteristics are favourable, conservative approaches can reduce the execution time 

significantly with moderate memory consumption (see, e.g.,  [158] [159] [160] [134]). 

2.6.2 Optimistic Synchronization Algorithms 

Jefferson’s Time Warp (TW) mechanism  [15] was the first (and remains the best known) optimistic 

synchronization protocol. A TW simulation uses virtual time to model the passage of time in a 

simulation, and it is driven by a set of Time Warp Logical Processes (TWLPs), each of which has its 

own Local Virtual Time (LVT) and processes events autonomously without explicit synchronization. 

Aside from LVT, another fundamental synchronization concept in optimistic simulations is the notion of 

Global Virtual Time (GVT) which is defined as the earliest time tag within the set of unprocessed 

pending event in the entire simulation. TWLPs differ from ordinary LPs, (such as those used in 

sequential and conservative simulations), in the way in which the states and events are managed. 

Specifically, an ordinary LP maintains only one copy of its state (i.e., its current state), which is updated 

repeatedly during the event execution. Furthermore, an ordinary LP does not need to keep a record of 



   

    28 

past input and output events, allowing the events to be reclaimed immediately after execution. In 

contrast, each TWLP needs to manage a history of its past events (both input and output) and states. 

This includes three data structures: an input queue that contains the recently arrived input events (sorted 

in receive timestamp order), an output queue that holds anti-messages that are negative copies of the 

recently sent output events (sorted in send timestamp order), and a state queue that stores the recent 

states of the TWLP. The data of these queues are kept until it is guaranteed that no event with a smaller 

timestamp can ever be received by any TWLP in the system.  

A causality error is detected when an event with a timestamp earlier than the LVT of the receiving 

TWLP is received. Such an event is referred to as a straggler event. TWLP recovers from the causality 

error by undoing the effects caused by a straggler event. This recovery operation is known as rollback. 

As a result, the state of the TWLP is restored to the last one that was saved prior to the arrival of the 

straggler event. Since incorrect messages may have spread to other TWLPs, they must be cancelled as 

well. Cancellation of such messages is performed by sending anti-messages, which are negative copies 

of those output messages that were saved in the output queue. Arrival of anti-messages at a TWLP 

causes further rollback if the timestamp of the anti-message is less than the LP’s LVT. Therefore, anti-

messages (just as positive stragglers) would cause rollbacks and further propagation of anti-messages. 

These are referred to as secondary rollbacks which result in cascaded rollbacks flooding the simulation 

system with anti-messages.  

Jefferson’s original Time Warp has been revised and optimized several times to reduce operational 

overhead and improve performance of optimistic simulations. A wide variety of techniques and 

optimization strategies have been proposed in the literature to deal with the well-known challenges of 

optimistic TW-based PDES. Issues like memory management, fossil collection, memory stall recovery, 

checkpointing, cascaded rollback, and event cancellation remain to be top challenges of this field. In the 

following points, a brief state-of-the-art is presented for each category to summarize the most relevant 

previous contributions made towards tackling these challenges.     

• Memory Management 

Due to date and state saving and rollback operations, optimistic parallel simulation requires much 

higher memory space compared to sequential simulation. Different memory-conserving techniques have 

been proposed to reduce memory consumption in optimistic simulations  [14] [161] [162] [163] [164]. 
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• Fossil Collection 

Fossil collection frees up memory occupied by historical data (input/output events, LP states), thus 

reducing memory stalls in optimistic simulations. Memory stall occurs when the simulation is halted due 

to memory exhaustion. Different techniques to achieve efficient fossil collection have been proposed. In 

 [165] [166] an optimistic mechanism is introduced where fossil collection decisions are made based on 

locally predicted information without estimating the global state of the simulation. Chetlur and Wilsey 

 [167]  propose a fossil identification mechanism that uses an extended time stamp structure, known as 

plausible total clock, instead of using the global time of the simulation. The PAL fossil collector 

technique is an enhanced mechanism that reduces the fossil collection cost by prioritizing the LPs based 

on the amount of fossil they carry  [168]. 

• Memory Stall Recovery 

Different approaches have been explored aiming at recovering from memory stalls. Among these, 

techniques such as cancelback  [161] [169] [170], artificial rollback  [163] [171], and pruneback  [172] 

have shown promising results. Both cancelback and artificial rollback require a globally shared pool of 

memory that is accessible by all LPS in the system. However, they differ in the way they deal with 

situations where the pool runs out of memory. With cancelback mechanism, memory-acquiring requests 

are returned to their originating senders, thus forcing sender LPs to rollback and release memory. In 

artificial rollback, those LPs with the greatest LVTs are forced to artificially rollback, releasing 

memory. Under the pruneback mechanism, memory reclamation occurs by targeting past states, thus 

forcing LPs to release portions of memory occupied by the state queues. 

• Checkpointing 

An alternative approach to memory stalls is checkpointing. Such techniques reduce state-saving 

overhead by enforcing LPs to save fewer historical data. There are two major types  of checkpointing 

algorithms: infrequent state-saving or periodic state-saving techniques 

 [173] [174] [175] [176] [177] [178] [179], which focus on reducing the number of states saved in a 

simulation  [180] [181] [182] [183]; and incremental state-saving techniques, which attempt to reduce the 

amount of data that need to be saved in each state (see, e.g., ). Techniques that combine different state-

saving mechanisms are proposed as well  [184] [185]. 
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• Event Cancellation 

Rollback operation significantly affects the performance of optimistic simulations. An efficient 

cancellation mechanism can improve rollback overhead. The original TW protocol adapts an aggressive 

cancellation scheme where anti-messages are sent immediately when a LP rolls back. The lazy 

cancellation technique  [186] [187] improves rollback efficiency by reducing the communication 

overhead of event cancellation. Under such mechanism, anti-messages are only sent when the necessity 

is verified by the LP. Another technique, referred to as throttled lazy cancellation  [188], slows down the 

spread of potentially incorrect computation resulted from re-evaluation during lazy cancellation 

operations. On the other hand, the early cancellation scheme  [189] cancels false messages in place in 

the buffer of a programmable network interface controller, which in return would require a specialized 

hardware. The proactive cancellation and the batch-based cancellation algorithms  [190] [191] [192] 

improve cancellation performance by capturing the causal relationship between events. 

2.6.3 Parallel and Distributed Environments  

A number of environments have been developed in the past, which provide numerous services to 

building parallel/distributed simulation systems by supporting optimistic, conservative, or hybrid 

synchronization strategies. Examples of such environments are: YADDES (Yet Another Distributed 

Discrete Event Simulator)  [65], SPEEDES (Synchronous Parallel Environment for Emulation and 

Discrete Event Simulation)  [66], WARPED  [67], HLA  (High-Level Architecture)  [67], WarpIV   [69], 

and µsik  [70]. Park and Fujimoto [2006] proposed a Master/Worker  (MW) paradigm for executing 

large-scale parallel discrete event simulation programs over network enabled computational resources. 

The MW depicts a client/server architecture where clients repeatedly download state vectors of logical 

processes and associated message data from a server (master), perform simulation computations locally 

at the client, and then return the results back to the server. The advantages of such approach over 

conventional PDES include support for execution over heterogeneous distributed computing platforms, 

load balancing, efficient execution on shared platforms, easy addition or removal of client machines 

during execution, simpler fault tolerance, and improved portability. The Aurora Parallel and 

Distributed Simulation System (Aurora)  [136] is a prototype implementation of the MW. Several 

extensions and improvements to Aurora were presented later on including a scalable version for parallel 
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discrete event simulations on desktop girds  [137], an optimistic time management compliant for public-

resource computing infrastructures and desktop grids  [138], and a version implemented for 

metacomputing systems  [139].  

2.7 Parallel DEVS and Cell-DEVS Simulation in CD++ 

CD++ [Wai02], a M&S toolkit originally developed by Wainer  [101], is an open-source, object-oriented 

environment that implements both P-DEVS and Cell-DEVS theories in C++. The tool includes facilities 

to build DEVS and Cell-DEVS models. DEVS atomic models can be programmed and incorporated into 

a class hierarchy. Furthermore, coupled models can be defined using a built-in specification language. 

Therefore, coupled and Cell-DEVS models need not to be programmed, rather the tool provides a 

specification language that defines the model’s coupling, the initial values, the external events, and the 

local transition rules for Cell-DEVS models. CD++ also includes an interpreter for Cell-DEVS models. 

The language is based on the formal specifications of Cell-DEVS. The model specification includes the 

definition of the size and dimension of the cell space, the shape of the neighborhood and the border. The 

cell’s local computing function is defined using a set of rules with the form POSTCONDITION   

DELAY  { PRECONDITION }. These indicate that when the PRECONDITION is met, the state of the 

cell changes to the designated POSTCONDITION after the duration specified by DELAY. If the 

precondition is not met, then the next rule is evaluated until a rule is satisfied or there are no more rules. 

Over years, CD++ has been evolved and extended using different middleware technologies to 

support simulation on varied platforms  [19]  [109]  [20]  [21] [34] [22] [23] [24] [25]  [12]. In particular, 

Parallel CD++ (or PCD++ for short) simulation engine allows optimistic TW simulation of P-DEVS 

and Cell-DEVS models on Linux-based distributed-memory multiprocessor cluster systems  [21]. It is 

built on top of the WARPED simulation kernel  [67]  [111] and relies on the Message Passing Interface 

(MPI) libraries  [112] for inter-node communication. The optimistic synchronization protocol of PCD++ 

was revised in  [34] and a new protocol, namely, Lightweight Time Warp  (LTW ) was integrated into 

the tool which significantly improved the performance  [32]. In PCD++, a model is partitioned at the 

atomic level, and each abstract DEVS processor is implemented as a LP. The resulting LPs are then 

mapped to a set of physical processors (or nodes) for parallel execution  [21]. The optimistic 

synchronization of PCD++ simulator was replaced with the conservative protocols proposed in this 
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research resulting in a purely conservative simulator, called Conservative CD++ (CCD++ for short) 

 [87] addressing several important issues arising in DEVS-based conservative simulations, providing a 

testbed for the research presented in this dissertation. 

CCD++ consists of a layered architecture where each layer only depends on the layers below it, as 

illustrated in Figure 6.  

 

Figure 6. Layered Architecture of CCD++ Simulator  [21] 

The operating system resides on the bottom of the architecture. CCD++ uses Linux Operating 

System as the underlying platform for high-performance parallel and distributed computing. Above the 

Operating System lays the MPI, the standard specification of message-passing library for high-

performance communications on parallel machines and workstations clusters. The Operating System 

with the use of MPI provides the communication infrastructure for the CCD++ simulator. The WARPED 

 [67] [111] kernel serves as a configuration middleware that provides services for defining different types 

of processes (simulation objects), memory management, I/O, and file handling. Simulation objects 

mapped on a physical processor are grouped by an LP. On top of the WARPED kernel resides the CCD++ 

simulation engine source code. Finally, the top most layer is the DEVS or Cell-DEVS model created in 

CD++.  

To reduce communication overhead  [73]  [109], similar to PCD++, CCD++ adopts a flat structure 

that creates three types of DEVS processors on each node: a Node Coordinator (NC), a Flat 

Coordinator (FC), and a set of Simulators. Doing so eliminates intermediate Coordinators in the LP 

hierarchy, reducing the communication cost. The Simulator represents an atomic DEVS model, where 

the Coordinator is paired with a coupled model. The Simulator is in charge of invoking the atomic 

model’s transition and external event functions. On the other hand, the Coordinator has the 
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responsibility of translating its children’s output events and estimating the time of the next imminent 

dependent(s). At the beginning of the simulation, one LP is created on each machine (physical process). 

Then, each LP will host one or more DEVS processors. Only one NC is created on each machine and 

acts as the local controller on its hosting LP. The NC is the parent coordinator for the FC and routes 

remote messages received from other remote NCs to the FC. The Simulators are the child processors of 

the local FC representing the atomic components of DEVS and Cell-DEVS models. The NC is a local 

central controller and the final destination of inter-node messages, whereas the FC routes messages 

between its child Simulators and the parent NC. The DEVS processors exchange two categories of 

messages: content and control. The first category includes the external (x) and the output (y) messages, 

and the second includes the initialization (I), collect (@), internal (* ), and done (D) messages. External 

and output messages exchange simulation data between the models, collect and internal messages 

trigger the output and the state transition functions respectively (in atomic DEVS models), and done 

messages handle scheduling by carrying the model timing information. The simulation is executed in a 

message-driven manner. Figure 7 illustrates CCD++ processors and the messaging paradigm. 

 

Figure 7. CCD++ Flat Architecture and Message-Passing Paradigm 

The simulation starts by NCs sending an (I, t) message to their child FCs. At any virtual time, the 

message flow among the LPs is organized into a multi-phased structure that includes an optional collect 

phase and a mandatory transition phase, which in turn may involve multiple rounds of computation to 

execute state transitions incrementally. The collect phase starts with a collect message sent from the NC 

to the FC and ends with the following done message received by the NC. The transition phase begins 

with the first internal message sent from the NC to the FC and ends at the last done message received by 
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the NC at that time. The transition phase is mandatory for each individual simulation time. The output 

functions in the imminent atomic models are invoked during collect phases, while the state transitions 

for the atomic models are performed in the transition phases (as defined in P-DEVS formalism). 

2.7.1 Event-Processing Algorithms 

Based on the flat LP structure, this section briefly describes the parallel CD++ event-processing 

algorithms defined for the Simulators, the FC, and the NC respectively. In the following discussion, the 

form (type, t) is used to denote a message of type that has a receive time of t.  The send time stamp of an 

event is by default the current virtual time. 

• Simulator event-processing algorithm 

The Simulator algorithm for initialization message is defined as follows: 

 

Figure 8. Simulator Algorithm for (I, 0) 

As defined in DEVS formalism, two variables are used in the simulator to record its current 

simulation time (tL) and the value of sigma (ta). Using these two values, the value of absolute next time 

(denoted as tN) is calculated as tL + ta. Upon receiving the initialization message, (I, 0), the Simulator 

resets tL to the timestamp of the message, therefore the Simulator’s virtual time now is equal to zero. 

Then, the simulator initializes the variables defined in its associated atomic model, and after that, it 

informs its parent FC of the value of ta by sending a done message stamped with time 0. 
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Figure 9. Simulator Algorithm for (@, t) 

When a (@, t) message is received, the Simulator invokes the output function (λ) of the atomic 

model and as a result an output message (y, t) is sent to the FC. After this, the Simulator will send (D, t) 

to the FC with ta = 0 to indicate that it is imminent. 

 

Figure 10. Simulator Algorithm for (* , t) 
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Following the collect message, a (*, t) will arrive to trigger internal/external/confluent function of 

the atomic model depending on the timing of the message and the status of the Simulator’s message bag. 

 

Figure 11. Simulator Algorithm for (x, t) 

The last message that may arrive at the Simulator is (x, t) which is simply inserted into the 

Simulator’s message bag. Note that, only external messages with identical timestamp can be inserted 

into the message bag at a given simulation time. Before adding further messages with a different 

timestamp, the existing messages must be processed and the bag be cleared in the receive function for 

internal message. In other words, an internal message will always arrive in between two consecutive 

batches of external messages. 

 

• Flat coordinator event-processing algorithm 

The FC, sitting in between the NC and the Simulators, performs three tasks: synchronizing the 

execution of all child Simulators, routing messages exchanged among its children, and delivering to its 

parent NC those messages that are sent from its children to the environment or to other remote 

Simulators. To accomplish the first task, the FC finds its imminent children with the minimum absolute 

next time and records them in a structure called synchronize set. It also uses a variable, doneCount, to 

keep track of the number of done messages it should receive from its children. This variable is used to 

implement a simple barrier. The FC only passes control to its parent NC after these children (the number 

is given by doneCount) have finished their previous computation. The other two tasks rely on the model 

coupling information that is loaded into the main administrator of the simulation administration facility 

during the bootstrap operation.  
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Figure 12. FC Algorithm for (I, t) 

When (I, 0) is received, the FC records the total number of its children in a variable named as 

doneCount then forwards the (I, 0) message to each child. After this, the FC waits for all its children to 

respond to this initialization by sending back a (D, 0). The FC will only pass the control over to the NC 

if all its children have finished their previous computation and have sent done messages as notification 

messages. 

 

Figure 13. FC Algorithm for (@, t) 

Upon receiving a (@, t) message, the FC forwards it to all imminent Simulators and will keep a 

record of this for later use (to know which children need to do state transitions when (*, t) is received). 
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Figure 14. FC Algorithm for (y, t) 

Moreover, when (y, t) is received, the FC searches the model coupling information to find out the 

correct destination. The destination is either an input port on an atomic model, or an output port on the 

topmost coupled model. 

 

Figure 15. FC Algorithm for (x, t) 

In case of receiving (x, t) message, the FC will simply insert the message into its message bag. 

 



   

    39 

FC childObject1
child

alt

(*, t)

[ doneCount = 0] tL = t

send (x, t)

[else]

cacheSyncSet(i)

clearSyncSet()

send(*, t)

* for each x in bag

*for each Ci of x

*for each i in Sync set
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Figure 16. FC Algorithm for (* , t) 

Upon receiving (*, t) message, the external messages inside the FC’s message bag are flushed to the 

local receiving Simulators. This will trigger the imminent Simulators to perform a state transition. 

 

Figure 17. FC algorithm for (D, t) 
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Finally, when a (D, t) message is received from a child Simulator, the FC updates the child’s tN to 

the sum of the current simulation time and the sigma value carried by the received (D, t) message. 

 

• Node coordinator event-processing algorithm 

Each LP has one NC that acts as the local central controller in charge of the sequential simulation 

on the hosting machine. It has a single child, the FC underneath. The NC plays a very important role in 

the simulation as summarized below: 

1) It takes care of the inter-LP communication among the Simulators. The messages exchanged 

between the NCs is handled using a special structure, the NC Message Bag. 

2) It is responsible for handling the external events from the environment that are known prior 

to the start of the simulation and are scheduled by the modeler using a text file, namely EV 

file.  These external events are loaded into the NCs during the bootstrap operations by the 

main administrator. Each NC uses a structure called Event List to hold those external 

events it needs to handle during the simulation. Events in the structure are sorted so that 

they can be processed in increasing timestamp order. The NC uses a pointer called event-

pointer to reference the first event that has not yet been sent out. Initially, this pointer 

points to the first event in the list. 

3) It synchronizes the activities of all local processors and drives the simulation on the hosting 

LP. The local simulation time is advanced by the NC based on three factors: the external 

events in its Event List, the external messages received in its NC Message Bag, and the 

closest state transition time provided by the FC. 

4) It manages the flow of control messages for the local Simulators in line with the Parallel 

DEVS formalism. For example, the formalism requires that the output operation must take 

place just before the state transition in imminent Simulators. Hence, the NC must ensure 

that the collect message, which triggers the output operation, will be received by imminent 

Simulators before the internal message, which results in the state transition. The correct 

sequence of these control messages is manipulated using a flag, namely next-message-type, 

which is defined in the state of the NC. It may have a value of collect (@) or internal (*), 
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corresponding to the type of the control message that will be sent out by the NC in the next 

simulation cycle. The initial value of the flag is set to @. 

 

Figure 18. NC algorithm for (I, 0) 

Upon receiving (I, 0), the NC simply forwards it to the child FC.  

 

Figure 19. NC algorithm for (x, t) 

In case of receiving (x, t), NC will insert this message into the NC Message Bag. These external 

messages contain values sent from remote Simulators to local ones. 

 

Figure 20. NC algorithm for (y, t) 



   

    42 

When (y, t) is received, the NC simply forward it to the destination processor which happens to be a 

remote NC. Finally, reception of a (D, t) message by the NC from a child FC indicates that this is a 

response to a control message that was previously sent out by the NC.  

2.8 DEVS-based Parallel and Distributed Simulation 

A number of studies have been devoted to DEVS-based parallel simulations including: DEVS-C++  [71], 

DEVS/CORBA  [72], DEVSCluster  [73], DEVS/P2P  [75], DEVS/RMI  [76], DEVSim++  [77], and P-

DEVSim++  [78]. In  [79] a distributed simulation strategy for DEVS is presented which combines 

conservative and risk-free optimistic strategies. Nutaro  [80] presented an implementation of the parallel 

DEVS simulation protocol that uses a modified Time Warp optimistic algorithm for a shared memory 

multiprocessor  [81]. In terms of conservative DEVS-based simulations, there has been a large body of 

work proposed in the literature by integrating DEVS with HLA  [68], allowing DEVS tools to use the 

synchronization services provided by HLA. Based on the specifications of HLA, DEVS atomic 

components are defined as HLA federates communicating by exchanging messages through the Run 

Time Infrastructure (RTI). In  [82] the first integrating algorithm of DEVS models into a HLA-compliant 

environment was proposed, which was based on the classical CMB synchronization mechanism using 

the conservative algorithm provided by HLA. However, this approach was prone to deadlock which was 

later resolved in  [103]. Zacharewicz et al. investigated several approaches to improve lookahead 

computation in the G-DEVS/HLA environment. In  [104] [105], they developed an algorithm for G-

DEVS federation execution with a conservative synchronization mechanism using a positive lookahead 

value gained from the HLA Least Incoming Time Stamp (LITS) value. In  [106], they present a new 

HLA lookahead computation algorithm which uses the Dijkstra path search in a graph to compute the 

different values of state variables and mathematical function analysis to determine the lookahead for the 

model states.  

HLA requires complex system’s configuration which needs considerable efforts. In order to fully 

benefit from HLA, the user needs to have an invasive knowledge which requires a considerable amount 

of time. More importantly, one of the major issues of HLA-based parallel simulation is the extensive 

performance overheads incurred due to the runtime infrastructure (RTI) software that links the 

simulators, especially for DEVS-based simulators that have fine-grained event computations. These 
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issues and the many advantages of WARPED kernel (such as ease of use, simple configuration, light-

weight oriented middleware, and many more) were the motivation to use WARPED as the middleware 

in both PCD++ (optimistic CD++) and CCD++  (conservative CD++) simulators. 

There has been some research done outside the HLA domain. For instance, Zeigler  [8] introduced 

conservative parallel simulation of DEVS models based on the classical CMB approach with deadlock 

avoidance and the Yaddes  [108] algorithm. The principal idea behind this method is to maintain a 

network of correlated Earliest Output Time (EOT) and Earliest Input Time (EIT) estimates, which 

matches the output-to-input coupling structure of the DEVS coupled model. The EOT/EIT estimates 

represent the time information distributed via null messages. Under this scheme, the lookahead 

calculation is performed at each DEVS Simulator, by looking at input and output ports. However, there 

are two limitations associated with this technique: a) a large number of EIT and EOT computations are 

required (since the algorithm is implemented at the Simulator level, the overhead increases as the model 

size grows; one Simulator is needed per atomic component); b) a large number of null messages are sent 

among processors, since both EIT and EOT must be distributed, as opposed to sending only one type of 

information (i.e. only lookahead). Besides, Himmelspach et al.  [193] introduced a different conservative 

simulation algorithm for efficient distributed simulation of P-DEVS models. The algorithm makes use 

of Java threads and performs sequential execution among the entities on each computing node while the 

simulation is distributed over remote nodes.   

There are three approaches to mapping the DEVS formalism into PDES protocols as illustrated in 

Table 1.  Two of these approaches are specializations of the more generic protocols (i.e., conservative 

and optimistic schemes). The third is the direct mapping into a simulation algorithm (e.g., the original 

DEVS  [8]  and the classical P-DEVS protocols  [11]) . 
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Table 1. Comparison of PDES Approaches for DEVS 

Scheme Approach Overhead Advantages Disadvantages 

Chandy-Misra 
Conservative 
(LBTS, GLM, and 
CMB protocols 
implemented in 
CCD++) 

- Process events 
in strict time 
stamped order  

- Causality 
preservation 
with deadlock 
avoidance 

- Null Messages 

 

- Relatively simple 
to implement 

- Dynamic and 
low-cost 
lookahead and 
LVT computation 

- Low memory 
usage 

- Does not 
exploit all 
parallelism 
- Not 
intrinsically 
load balancing 

Original DEVS - Propagation 
delay for 
lookahead 

- Global 
Minimum time 
synchronization 

- Easy to 
implement 

Simultaneous 
Events are 
Problematic 

Time Warp 
Optimistic (LTW 
protocol 
implemented in 
PCD++) 

- Permits 
Causality 
Violation  

- Detects 
violations and 
recovers using 
rollback 

- State, Message 
Saving, Fossil 
Collection 

-Anti-messages 
-GVT 
Computation 

- Can exploit 
higher level of 
parallelism 

- Complex 
logic is 
difficult to 
implement 
and verify 

- High memory 
consumption 

P-DEVS  Riskfree and 
strict causality 
adherence 

- Global 
Minimum time 
synchronization 

- Simultaneous 
output 
collection 

- Easy to 
implement 
- Exploits  
Simultaneous 
Events 

- Does not 
exploit all 
parallelism 

- Not 
intrinsically 
load 
balancing 

2.9 Performance Evaluation of PDES Environments 

Performance evaluation of PDES protocols is a complex task. PDES environments are commonly tested 

and compared using synthetic or real models. There have been many empirical and analytical studies on 

the performance of PDES algorithms. Most of them generally try to evaluate a particular algorithm or an 

implementation of it. For instance, conservative time synchronization protocols have been evaluated 

using synthetic application benchmarks simulating a variety of topics including: queuing networks 

 [140] [14] [202], communication networks  [201], or electronic circuits  [203] [201]. Similarly, parallel 

discrete event simulation performance evaluations using an optimistic synchronization protocol have 
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been conducted using synthetic benchmarks simulating communication networks  [201] [204], or 

electronic circuits  [201].  

Parallel DEVS-based simulators also mostly use synthetic models by conducting some experiments. 

For instance, the work presented in  [71] used a number of benchmarking models to analyze the total 

execution time and speed up. In  [72] the performance of the DEVS/CORBA environment was evaluated 

by testing a number of Supply Chain Models. The simulator was also tested by conducting a benchmark 

simulation for a large-scale logistics system  [73]. A distributed DEVS simulator was proposed in  [75] 

which measured the performances of the peer-to-peer network systems. The DEVS/RMI system used a 

test case of a large-scale dynamic 2D-Cell space model to analyze the performance of the simulator in 

terms of dynamic re-configuration capabilities  [76]. Zacharewicz et al.  [107] used an example of a 

microelectronic production workflow to test the performance of the G-DEVS/HLA environment. 

From the above discussion it is clear that most of the PDES research efforts analyze their simulator 

by investigating only a few real or synthetic models. Moreover, performance evaluation studies for both 

conservative and optimistic time synchronization have been limited to an evaluation of parameters 

specific to the simulation model. In contrast, the performance analyses presented in this dissertation 

(Chapter 6) analyze the impact of more general discrete event simulation parameters such as total 

number of null messages, null message ratio, blocked time, and memory consumption. In addition, the 

performance evaluation conducted in this research uses not only synthetic models, but also various real-

world scenarios. The performance results of this research quantify the impact of various simulation 

model parameters on the attained speedup. As such, the results can be used to assess to what extent a 

particular simulation can benefit from parallel execution under a conservative or optimistic time 

synchronization protocol.  
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Chapter 3: Contributions 

The central themes of this dissertation are to tackle DEVS-based conservative simulation on distributed-

memory multiprocessor clusters and to provide a comparative study analyzing the effect of different 

parallel synchronization strategies on the simulation performance. This section summarizes the key 

contributions made in pursuit of each of these two research objectives.  

As the first contribution of this research, three conservative DEVS protocols were proposed, based 

on the classical Chandy-Misra-Bryant synchronization mechanism with deadlock avoidance, extending 

DEVS abstract simulator to provide means for lookahead computation and null message distribution. 

These protocols have been integrated into the CD++ simulation toolkit, providing a purely conservative 

simulator, called CCD++, for running large-scale DEVS and Cell-DEVS models. The three algorithms 

were implemented on a revised DEVS abstract simulator to reduce the frequency of lookahead 

computation. They also replace time information estimations with a single lookahead computation, 

reducing the number of null messages. The dynamic lookahead values of the proposed algorithms are 

extracted directly from the model specification, obviating the need for the modeler in providing 

predefined values. In addition, the low-cost lookahead computation feature of the algorithms provides a 

fast and efficient method and reduces the underlying protocol’s overhead. 

The first protocol is referred to as the Lower Bound Time Stamp mechanism (LBTS), the way used 

to compute the next global virtual time. Under LBTS, processes communicate only through messages 

with their neighbors; there are no shared variables and no central process for message routing or process 

scheduling. Although each LP has its own Local Virtual Time (LVT), no event is received at the virtual 

past time. The null messages carry lookahead information. The protocol is deadlock-free, as null 

message cycles cannot occur. At the start of every synchronization phase, each LP computes its 

lookahead value, which is extracted dynamically from the model specifications, and forwards it to all 

other LPs. Then, the LP suspends and waits for all remote null messages to arrive from other LPs.  

The main issue of the LBTS protocol is the large number of null messages that are distributed 

throughout the simulation. Each LP not only sends null messages to its direct neighbors, but also to 

every other LP to ensure correct computation of the LBTS value. This limitation degrades the 
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performance when the processors are fully connected, overloading the simulation with excessive 

synchronization messages. In order to reduce the overhead of the LBTS conservative DEVS algorithm, 

the Global Lookahead Management (GLM) protocol was proposed. The GLM mechanism 

significantly reduces the number of null messages by organizing the conservative execution in such a 

way that every LP reports its lookahead only to the global manager rather than to every neighboring LP. 

The proposed protocol implemented an asynchronous strategy in the sense that there is no global clock 

(every process maintains its own local clock).  A central lookahead manager is in charge of receiving 

every LP’s lookahead, identifying the global minimum lookahead of the system, and broadcasting it via 

null messages to all LPs. The sole function of the central manager is to detect the suspension phase, and 

to initiate the resume phase by broadcasting the global minimum lookahead. The simulation is divided 

into cycles of two phases: parallel and broadcast. 

The third protocol, referred to as Chandy-Misra-Bryant  (CMB) DEVS, is a variation of the LBTS 

mechanism aiming to reduce the number of null messages by introducing multiple rounds of null 

messages. The protocol changes the way conservative synchronization is maintained by focusing on null 

message distribution among the neighboring LPs. An LP only forwards null messages to its direct 

neighbors as defined by the DEVS translation function. Under this scheme, at the start of every 

synchronization phase, the LP computes its lookahead similarly to the way it is calculated in LBTS, but 

the null message is only sent to its direct neighbors. Each null message distribution and reception 

continues in multiple rounds until there is a guarantee that no smaller lookahead value can be received 

from neighboring LPs later in time. Once the LP has received the smallest possible lookahead value, it 

computes the new LVT and resumes the simulation. With the CMB protocol, the overall number of null 

messages is reduced, but the multiple-round of lookahead computation and null message distribution 

could have a negative effect on the overall performance of the simulation. 

The conservative DEVS algorithms presented in this dissertation overcome the limitations of the 

original conservative Parallel DEVS  [11] by: (i) implementing the mechanism at the top most level of 

the DEVS abstract simulator hierarchy (i.e. the Coordinator), thus reducing the frequency of 

information computation, and (ii) performing a single lookahead computation rather than two types of 

calculations (i.e. EIT and EOT), which results in a significant reduction of number of null messages. 
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The key focus of these approaches is on how to compute lookahead values and distribute them via null 

messages, and when to suspend/resume a processor.  

The second contribution of this research is a comparative study of optimistic versus conservative 

DEVS-based simulation by conducting experiments with variety of Cell-DEVS models. To achieve this 

goal, precise sensitivity analyses at both model- and underlying synchronization protocol-level were 

carried out on both of the conservative simulator (CCD++) and the optimistic one (PCD++), studying 

the performance in terms of execution time, memory usage, operational cost, and system stability for 

very large models.  

3.1 Research Publications 

Some of the results derived from this research have been already published thus far, including those 

directly related to the two central research themes and those relevant to DEVS-based M&S in general. 

Following is a list of manuscripts that have been published or submitted awaiting acceptance. 

• Jafer, S., Wainer, G. “Conservative Synchronization Methods for Parallel DEVS and Cell-

DEVS”. Proceedings of Summersim’11, Netherlands. 2011  [83]. This paper evaluates the 

performance of the three conservative protocols by presenting the results of running three Cell-

DEVS models on a cluster of 12 nodes. The metrics used to evaluate these protocols are based 

on the synchronization protocol and the nature of the model. 

• Jafer, S., Wainer, G. “A Performance Evaluation of the Conservative DEVS Protocol in Parallel 

Simulation of DEVS-based Models “. Proceedings of Springsim’11, 2011  [84]. This paper 

provides the performance gained using the LBTS protocol in running large-scale Cell-DEVS 

environmental models on a cluster of 26 machines. 

• Jafer, S., Wainer, G. “Global Lookahead Management (GLM) Protocol for Conservative DEVS 

Simulation”. Proceedings of DS-RT 2010, Virginia, USA. 2010  [86]. This paper proposes the 

GLM protocol by outlining the implementation details and the integration of the protocol into 

CD++. Several Cell-DEVS models are examined to evaluate the performance of the protocol. 

• Jafer, S., Wainer, G. “Conservative DEVS - A Novel Protocol for Parallel Conservative 

Simulation of DEVS and Cell-DEVS Models “, Proceedings of SpringSim’10, Orlando, USA. 
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2010  [87]. This paper introduces the LBTS protocol and discusses the challenges with regards to 

computing lookahead and LVT for DEVS-based parallel simulation. 

• Jafer, S., Wainer, G. “Conservative vs. Optimistic Parallel Simulation of DEVS and Cell-DEVS: 

A Comparative Study “, SummerSim’10, Canada. 2010  [88]. This paper provides a comparative 

study by conducting thorough experiments running large-scale Cell-DEVS model on a 

conservative CD++ and an optimistic version of the tool. Performance analyses are performed 

highlighting the strength of each protocol under varied scenarios. 

• Wainer, G., Liu, Q., and Jafer, S. “Parallel Simulation of DEVS and Cell-DEVS models in 

CD++”, In Discrete-Event Modeling and Simulation: Theory and Applications, Boca Raton, FL: 

CRC Press, pp. 226-272, 2010  [89]. This book chapter presents optimistic and hybrid 

synchronization approaches for running large-scale DEVS and Cell-DEVS models by evaluating 

the protocols through performance analyses of environmental Cell-DEVS models. 

• Jafer, S., Wainer, G. “Flattened Conservative Parallel Simulator for DEVS and CELL-DEVS”, 

Proceedings of International Conferences on Computational Science and Engineering, 

Vancouver, 2009  [90]. This paper proposes flat architecture for conservative simulation of 

parallel DEVS and Cell-DEVS using WARPED as a simulation middleware. 

• Jafer, S., Wainer, G. “Advanced Parallel/Distributed Simulation Benchmark for Cellular 

Models”. Poster Proceedings of AI/ GI/ CRV/ IS Annual Conference, Windsor, May 2008  [93]. 

This poster-paper outlines different simulation approaches for running cellular models in parallel 

and distributed fashion. 

• Jafer, S., Wainer, G. “Synchronization Strategies for Parallel Simulation of Large-Scale DEVS-

based Models “. Submitted to SIMULATION:  Transactions of the Society for Modeling and 

Simulation International, 2011  [94]. This journal paper summarizes the thesis and discusses the 

different conservative protocols that are proposed in this research. It also provides a thorough 

performance analysis of these protocols and compares their performance in terms of a sent of 

metrics. 

• Jafer, S., Liu, Q., and Wainer, G. “Synchronization Methods in Parallel Discrete-Event 

Simulation “. In-preparation for Journal of SIMULATION: Transactions of the Society for 

Modeling and Simulation International, 2011  [95]. This journal paper is a literature survey of 
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existing synchronization methods in parallel discrete-event simulation. It surveys different 

approaches that have been proposed in the last three decades.  

Other contributions published during this research include: 

• Moallemi, M., Jafer, S., Seyed, A., and Wainer, G. “Interfacing DEVS and Visualization Models 

for Emergency Management”. Proceedings of Springsim’11, 2011  [85]. This paper proposes a 

collaborative framework for integrating real-time DEVS simulation with real-time 3D 

visualization in an emergency planning scenario using robotic agents. 

• Sanz, V., Jafer, S., Wainer, G., Nicolescu, G., Urquia, A., and Dormido, S. “Hybrid Modeling of 

OptoElectrical Interfaces Using DEVS and Modelica”. Proceedings of the DEVS Integrative 

M&S Symposium, Springsim’09. San Diego, CA, USA. 2009  [91]. This paper provides 

implementations of opto-electrical interfaces, their characteristics and functionalities using a 

hybrid M&S approach based on CD++ and Modelica. 

• Jafer, S., Wainer, G. “Event Behavior of Discrete Event Simulations in CD++ Vs. NS-2”. Poster 

Proceedings of Spring Simulation Multiconference, SpringSim, Ottawa, April 2008  [92]. This 

paper analyzes Future Event Set data structures of two discrete event simulators: CD++ and NS-

2. Varied simulations are conducted on each simulator to describe a real event behavior by 

observing event timestamps, life times into the FES and event execution time. 
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Chapter 4: Conservative DEVS Protocols 

This chapter proposes three conservative DEVS protocols (Lower-Bound-Time-Stamp (LBTS) 

DEVS, Global Lookahead Management (GLM ), and Chandy-Misra-Bryant  (CMB ) DEVS) for 

efficient conservative simulation of P-DEVS and Cell-DEVS models on distributed-memory 

multiprocessor clusters. Section 4.1 outlines the research problem and the underlying design rationales. 

Section 4.2 introduces the LBTS protocol and the lookahead and LVT computation mechanism that is 

commonly used by the three protocols. . Section 4.3 describes the CMB DEVS protocol. Section 4.4 

covers the GLM mechanism, while Section 4.5 compares the three protocols. The classical P-DEVS 

protocol is investigated in Section 4.6, while the zero-lookahead issue in P-DEVS is explained in 

Section 4.7. 

4.1 Problem Statement and Design Methodologies 

This chapter aims to tackle the various challenges of DEVS-based conservative simulation on 

distributed-memory multiprocessors by exploiting the core computational properties of DEVS. 

Specifically, the research attempts to address the issues of conservative DEVS-based simulation 

systematically, improving the simulation performance (in terms of both execution time and memory 

consumption) without complicating the synchronization mechanism. The first proposed mechanism, 

referred to as the Lower-Bound-Time-Stamp (LBTS) Conservative DEVS protocol, is developed 

based on the following rationale. 

• Pure conservative synchronization 

The proposed protocols take a purely conservative approach to simulation synchronization, using the 

Chandy-Misra-Bryant null message strategy with deadlock avoidance. The protocols make use of the 

underlying simulation parameters to exploit increased degree of parallelism. That is, for lookahead 

calculation and LVT computation, the protocols use existing parameters that are extracted from the 

model automatically, reducing the overhead of the underlying synchronization protocol significantly. 

Doing so makes the system less reliant on the knowledge of model behaviour, resulting in general-

purpose DEVS-based simulations. 
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• Coordinator-centered optimization 

As discussed in Section 2.6, CCD++ employs a flat LP structure that consists of only two 

coordinators (i.e., one NC and one FC) on each node, while many Simulators are created in a typical 

large-scale simulation. Hence, by implementing the conservative protocols at the NC level, a substantial 

reduction in the operational overhead occurs resulting in a significant improvement in the overall 

simulation performance. The adoption of the NC-centered strategy drops the cost of null message 

distribution and the lookahead computation significantly. 

• Simultaneous reduction of memory consumption and execution time 

In general, the optimistic synchronization mechanisms make a trade-off between the execution time 

and the memory usage. In contrast, the conservative protocols like the ones proposed in this research try 

to achieve both objectives simultaneously by maintaining shorter data lists (there is no need to keep 

historic data as in optimistic protocols), while, at the same time they attempt to reduce the number of 

null messages and the cost of the lookahead computation as much as possible. Moreover, the proposed 

conservative protocols also try to speed up memory reclamation by performing it more frequent, without 

incurring negative impact on the overall simulation performance. 

• Event-queue management 

The protocols use a simple Least-Time-Stamp-First (LTSF) queuing mechanism to facilitate event 

queue operations, instead of using advanced data structures and algorithms. Although the simulation 

performance can be improved further using such data structures, by keeping the LTSF event queues 

relatively short throughout the simulation considerable speedups can be achieved. This is done by 

deleting the input queues’ events as soon as they are executed (unlike optimistic protocols where 

historic data are kept in case rollback occurs). In addition, the protocols are specifically tailored for 

efficient execution of a large number of simultaneous events at each virtual time, directly addressing the 

computational property of large-scale, densely-interconnected, and highly-active DEVS-based models. 

4.2 The Lower-Bound-Time-Stamp Protocol  

In this section, the LBTS conservative DEVS protocol is presented, which serves as the base for the 

other two protocols (i.e., CMB and GLM) that will be presented next. The LBTS protocol (named after 

Lower-Bound-Time-Stamp concept  [150], due to the way used to compute the next safe time) is 
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mainly based on the original Chandy-Misra-Bryant approach with deadlock avoidance. The protocol is 

implemented at the NC and extends the DEVS abstract simulator to provide means for lookahead 

computation and null message distribution. Processes communicate only through messaging with their 

neighbors; there are no shared variables and no central process for message routing or scheduling. 

Although each LP has its own Local Virtual Time (LVT), no events are received at virtual past time. 

Moreover, synchronization is maintained through null messages carrying lookahead information. The 

NC on each LP is the central synchronizer for driving the simulation on that node. The NC is 

responsible for lookahead calculation, null message distribution, suspending the LP, receiving null 

messages from other LPs while the LP is blocked, and resuming the LP when all remote null messages 

are received. That is, the NC drives the simulation at the LP, while other DEVS processors (FC and 

Simulators) are unaware of the underlying synchronization mechanism. 

 The LBTS protocol is deadlock-free, since null message cycles cannot occur. At the start of every 

synchronization phase, each LP computes its lookahead value, which is extracted dynamically from the 

model specifications, and forwards it to all other LPs. Then, the LP suspends and waits for all remote 

null messages to arrive from destination LPs. Once the null messages are received from all LPs 

participating in the simulation, the destination LP resumes and first computes its new LVT based on the 

lookahead values it has received via the remote null messages. Under this scheme, at any time, the LVT 

of every LP is equal to the Lower-Bound-Time-Stamp of any unprocessed event among all LPs. The 

major issue of this protocol is the large number of null messages that must be distributed at the start of 

every synchronization phase. Each LP not only sends null messages to its direct neighbors, but also to 

every other LP participating in the simulation to ensure correct computation of the LBTS value.  

Figure 21 illustrates the architecture of CCD++ which was built on top of the WARPED kernel. 

WARPED is used just to provide services for defining processes (simulation objects), scheduling, 

memory, file, event, communication, and time management (and PCD++ uses the optimistic 

synchronization services). Simulation objects on a physical processor are grouped into an LP, and 

communicate through the Message Passing Interface (MPI). 
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Figure 21. Conservative Architecture of CCD++ 

The conservative mechanism is invoked at the beginning of every collect phase at the NC. The LP 

suspension also takes place during the collect phase. Simulators can only communicate with their parent 

FC, which means there is no direct communication between Simulators (even the local ones), thus FCs 

are always aware of the timing of state changes of their child Simulators. When a Simulator sends a (y, 

t) message to its parent FC, the FC knows if the recipient is a local Simulator or a remote one (residing 

on another LP). In case that the destination Simulator is local, it simply translates it into an (x, t) 

message and sends it to the recipient Simulator.  However, if the destination is remote, the FC forwards 

the received message (y, t) to the parent NC. The NC translates it into an (x, t) message and sends it 

through inter-LP communication to the parent NC of the recipient. Note that outgoing inter-LP 

communication happens only during the collect phases, whereas incoming inter-LP communication can 

occur at any phase. This implies that since output functions of imminent components are invoked only at 

collect phases, at any given simulation time, all external messages going to remote NCs are sent out by 

the end of the collect phase. On the other hand, an external message from a remote source can arrive at 

the destination NC at any phase.  

The NC is invoked when it receives a done message from the FC. The done message could be in 

response to an (I, t), (@, t), or (* , t) message previously sent to the FC. On each node, the NC advances 

the simulation time. The NC updates the LVT of the LP at the beginning of every collect phase. The 

local FC and the Simulators do not send messages with a timestamp different from the current LVT.  
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Figure 22. Flow Chart of the Conservative Algorithm on each LP 

A) Lookahead and LVT Computations 

Figure 22 illustrates a flow chart describing the conservative mechanism. The highlighted boxes are 

those implementing the algorithm. The first phase after initialization is a collect one, where the flow 

chart begins (NextMsg tells what the next phase is. Initially it is set to collect @). Note that the 

lookahead term in all the three conservative protocols (LBTS, CMB, GLM) refers to a quantity that is 

computed relative to the current_time (LVT) value of the LP (i.e., lookahead = lookahead_value + 

current_time).  

When the NC receives a Done message form the FC, it checks if the next phase of the simulation is 

collect or internal. The conservative algorithm is only invoked if the next phase to take place is a 

collect. If the NC decides to issue an internal phase, it first sends an (* , t) message to the FC. The FC 
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will then forward this message to all imminent child Simulators. Internal transitions are triggered at 

these Simulators followed by Done messages emitted to the FC reporting their next state transition time 

(tN). The FC sends the closest state transition time (minimum among all tN values) to the NC through a 

Done message. In processing (Done, t), the NC issues a collect phase and invokes the conservative 

mechanism. First, it performs lookahead computation as following:  

 
lookahead = MIN(timestamp of the x msg recently sent to a remote LP,   

time of the NC Message Bag,  tN)                         (1) 
 

where tN is the closest state transition time given by the FC in the done message, and time of the NC 

Message Bag is the minimum timestamp of all those unprocessed x messages received from other NCs. 

Considering the NC Message Bag time ensures that the calculated lookahead takes into account possible 

x messages that arrived when the LP was suspended. This ensures that when other LPs receive such 

lookahead, their LVT would not advance beyond it (in case the sender LP sends x messages to them as a 

result of processing those messages in its NC Message Bag).  

The NC then propagates the lookahead value to other NCs via null messages in the form of 

null(lookahead, LVT) and suspends. During the suspension, the LP is still able to receive messages; 

however, these are only inter-LP events which are either remote x messages or null events. When the 

NC receives all null messages it resumes and first calculates the new LVT as following:  

 
LVT = MIN(timestamp of x msg recently sent to a remote LP, 

time of the NCMessageBag, minimum RemoteLookahead,  tN).  (2) 
 

Thus, the NC computes the new LVT as the minimum value among: (i) the timestamp of the x 

messages recently sent to remote LPs; (ii) the time of the NC Message Bag; (iii) the minimum value 

among the received lookaheads from remote LPs; and (iv) absoluteNext which is the closest state 

transition time of child Simulators previously given by the FC. Once the LVT is computed, one of the 

following four scenarios happens: 

1. LVT = timestamp of the x msg recently sent 

If there were x messages sent to remote LPs during the recent collect phase (right before the LP was 

suspended), the NC must send its current lookahead and block the LP again, because the remote 

lookahead that was just received from the receiver of the x message, was calculated before reception of 
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the x message. Thus, the LP must block and wait for new remote lookahead value in case the receiver of 

the x message generates a smaller lookahead than the one sent before, or sends x messages as a result of 

processing the received x messages.  Not considering this scenario would cause causality violations at 

this LP because it has updated its LVT based on a larger lookahead and when it receives the new 

lookahead which happens to be smaller than before, then, the new LVT turns out to be smaller than the 

old LVT and this is strictly forbidden by the definition of conservative synchronization mechanism. 

2. LVT = time of the NC Message Bag 

If there are external messages received from other LPs with receive time equal to the new LVT, the 

NC issues an internal phase and sends a (*, t) message to the FC and sets NextMsg to collect. In 

processing this internal message, the FC forwards the x messages to the local recipient Simulators. 

3. LVT = minimum remote lookahead 

If the new LVT is equal to the minimum of all lookahead values received from other LPs, there is 

nothing to do and the LP must wait. Therefore, the NC recalculates the lookahead, sends null messages, 

and the LP is suspended. 

4. LVT = minimum transition time of local Simulators 

If there are imminent children (Simulators) a collect phase is issued by sending a (@, t) message to 

the FC and the NextMsg is set to internal.  

The LVT calculation scenarios explained above have processing priority and the NC only processes 

one of them every time. Special tie-breaking is performed when more than one case is true. An example 

of a tie situation is when case (iii) and (iv) are both true. This implies that there is a possibility of 

receiving an x messages from remote LPs exactly at the time of the closest transition time, thus it is safer 

to first wait for other LPs and then if there was no x message received from other LPs, continuing by 

issuing a collect phase and processing imminent child Simulators. This is all done by first sending 

current lookahead and suspending the LP. When the LP is suspended it will receive the remote x 

messages (if any) as well as new remote lookaheads, thus when it resumes, the tie is no longer true and 

if the newly calculated LVT is still same as case (iii), the NC would continue accordingly.  

Figure 23 illustrates the pseudocode description of the NC functionalities when a (done, t) message 

is received from the FC.  The first Done message received by the NC is the response to the initialization 

message previously forwarded to the FC to start the simulation on that machine. Since next-message-
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type is initialized to @, the NC follows the second half of the algorithm (line 6 to 48). Based on our 

conservative algorithm, the NC starts the mechanism by first computing its lookahead according to 

Formula (1) (line 7). Each NC maintains a list of remote NCs residing on those LPs that will exchange 

messages with this LP. This list is initialized at the beginning of the simulation and is used by the NC 

when it distributes the lookahead value through null messages (line 7 to 9). On every LP, the NC acts as 

the local controller of the simulation and carries on the event execution loop if and only if the current 

time of the LP (i.e. LVT) is less than the simulation Stop Time which is set at the beginning of the 

simulation by the user’s model. To ensure this, the NC performs a check (line 11 to 14) and only if the 

condition is satisfied then the LP is suspended, otherwise the simulation is complete at this LP and it 

will remain idle until the rest of LPs are finished. The simulation terminates when all the LPs are idle. 

When the LP is suspended, it waits for the lookahead of every LP in its RemoteNCList. When all the 

lookahead values are received, the NC resumes back to the point it got suspended at (line 14). For a 

start, the NC calculates the min-time using formula (2) of the conservative algorithm (line 15 to 16).  

The resulting min-time is the next local simulation time (i.e. LVT of this LP) to which the NC 

should advance. After min-time calculation, the LookaheadInfoArray of the NC is erased so that it can 

be filled with new lookahead information round (line 17). There is a special situation that might occur 

on an LP (line 18 to 20) which is when the calculated min-time happens to be Infinity. This case arises 

when the LP is done with the simulation and there is no event to be received from other LPs because 

they have all sent an infinite lookahead value, therefore, the LP is done with the simulation. To finish 

the simulation at the LP, the NC sets the min-time back to the previous value which was the timestamp 

of the received done message and sends a done message to itself with D.ta equal to zero, where D.ta is 

the next transition time that is reported to the NC. When this done message is received at the NC (line 7) 

the LP will be marked as idle and no further event execution will take place at the LP (line 9). However, 

if the condition of line 18 is not met, the four cases that were mentioned in Section 4.2.1 are checked 

next (line 29 to 46). The tie-breaking mechanism is invoked as follows: 

1. Case 1 (line 29 to 31) is given the highest priority so that if there was any tie between this case 

and other cases, it gets executed first. 
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2. If it happened that the minimum remote lookahead value is equal to the timestamp of the closest 

transition at this LP (i.e. tN) then the priority is given to processing the 

minimumRemoteLookahead (line 32 to 34).  

The Done messages sent from the NC to itself (line 30, 33, and 45) are for synchronization purposes 

only. They are easily differentiable from the true done messages (i.e. the ones sent form the child FC) by 

just looking at the sender and receiver ID of the message where in this case both are the NC itself. The 

D.ta value carried by these messages is a special form which is calculated as the difference between the 

NC’s current tN and the LVT advancement: 

D.ta = tN  – (min-time – timestamp of the received D msg), 

where minTime is the new LVT, and timestamp of the received D msg is the previous LVT. When the 

NC receives this special done message it calculates its new lookahead and sends it across and suspends 

itself. 

 



   

    60 

 

Figure 23. Conservative NC Algorithm for Done Message 
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B) Scheduling 

The scheduling algorithm of LBTS protocol is given in Figure 24. Each node maintains an input queue, 

namely inputQ which is a simple linked list that is provided by the WARPED kernel. Queue 

manipulation functionalities are also provided by the kernel. Since in conservative simulation causality 

violations are not allowed, the inputQ follows the First-In-First-Out (FIFO) mechanism. On every node, 

all the DEVS messages as well as the null messages are treated as basic events and are inserted into this 

queue.  

When the scheduler is invoked, it simply returns the head element of the inputQ and the event is 

deleted after execution to reclaim its memory location. Our modifications to the scheduling mechanism 

are for the purpose of LP suspension. When the NC decides that the LP should be suspended, it sends a 

special type of Done message to itself. When the event returned by the scheduler happens to be this 

Done message, the event is not executed until all remote null messages are received and inserted into the 

LP’s inputQ. As illustrated on the algorithm, the currentPos variable represents the first unprocessed 

element of the inputQ. When a suspension event is detected (line 11) it is not returned until all required 

null messages are received. The number of null messages that must be received by an LP in order for it 

to resume back is equal to the total number of LPs minus one (line 17); since the LP does not need a null 

message from itself.  
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Figure 24. Scheduler Mechanism of LBTS Protocol 

C) Resuming a Blocked LP 

The algorithm used by the LBTS protocol to resume a blocked LP is presented by Figure 25. When the 

event returned by the scheduler is the suspension event (the special Done message sent from a NC to 

itself), before it can be executed, two actions must be performed. Firs, all those null messages that were 

counted to increment recvdNullMsg must be first executed (line 5 to 7). Second, all unprocessed remote 

external messages that were sent from other NCs to this LP must be executed (line 8 to 10). Once these 

null messages and remote x messages are executed, then the special Done message is returned to the 

NC.  
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Figure 25. Suspension-Event Execution Algorithm 

D) Null Message Handling 

Figure 26 shows the null message handling mechanism which is invoked when a null message is 

received at the NC. Every NC maintains a queue, namely lookaheadInfoArray to store the received 

lookahead value carried by the null message. The size of this queue is equal to the total number of LPs 

minus one. This is from the assumption that in a simulation consisting of n LPs, every LP communicates 

directly with n – 1 LPs. When a null message is received, the NC saves the lookahead content into its 

lookaheadInfoArray (line 3 to 5) and calculates the minimumRemoteLookahead as the smallest element 

of this queue (line 8). The minimumRemoteLookahead is updated every time the NC receives a new null 

message. Hence, it is always the minimum lookahead value of all remote LPs.  

E) Deadlock Avoidance 

Since null message distribution occurs before LP suspension, deadlock is strictly avoided. The NC only 

suspends the LP after performing a lookahead computation and propagating it to all remote LPs via null 

messages. Thus, when an LP is suspended, it has already forwarded its null messages, and if every other 

LP is suspended as well, they would all resume because all the required null messages have been already 

distributed among them before the LP suspension has taken place. Aside, a simple strategy is used to 

resolve the zero-lookahead issue. When an LP receives a remote null message carrying a lookahead of 

zero, if the destination LP has an unprocessed event with current time stamp, then, the LP suspends for 

an additional phase, giving the sender LP the priority to execute its scheduled events first. This ensures 
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that the LP takes into consideration future events that might arrive from the sender LP as a result of the 

current execution. 

 

Figure 26. NC Null Message Handling Algorithm 

F) Simulation Termination 

On each LP, the NC decides to terminate the simulation according to the algorithm presented in Figure 

27. The criterion under which an LP terminates and becomes idle was discussed at the end of Section 

4.2.A The WARPED kernel checks the status of the LPs on every period that can be determined by the 

user. When all participating LPs are reported as idle, then the simulation terminates and the rest of 

memory clean-ups are taken care of by the kernel.  

 

Figure 27. Simulation Termination Algorithm 

According to this algorithm, an LP is idle if it has no unprocessed event (excluding null messages) 

in its inputQ. The restriction that the event should not be a null message is for the case when the LP has 

finished its simulation and is idle waiting for other LPs to finish. While an LP is idle, it can still receive 

null messages. However, these events will not be executed. Such null message indicates the very last 

event that the sender LP distributes prior to entering the idle state. This type of null message carries a 

lookahead value of Infinity, stating that the originating LP has completed its simulation tasks. 
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G) Simulation Scenario in CCD++ with LBTS Protocol 

In this section, a simulation scenario is presented which is based on the conservative LBTS mechanism 

of CCD++, its flat architecture and the messaging mechanism was introduced in Section 2.6. As 

illustrated in Figure 28, the simulation is carried on with two participating nodes. The simulation starts 

with message (I1) at the NC at time 0. This initialization phase ends when the two local Simulators (S1 

and S2) send back Done messages (D5, D6) to the FC, which causes forwarding message (D7) to the NC. 

Every time the NC receives a Done message from its FC, it starts the next phase immediately. However, 

a lookahead computation and null message distribution is performed at every collect phase. After 

computing the lookahead, the NC sends a message (null1) to the remote NC and blocks (shaded area). 

The NC remains blocked until all remote lookaheads (carried by remote null messages) are received at 

the LP. During suspension the LP can still receive messages; however these messages are only inter-LP 

events which are either remote x messages or null messages. When the NC receives all null messages 

(null2) it resumes and calculates the new LVT, which is equal to the state transition time that was 

reported by the FC via Done message (D7). At this time, all Simulators are imminent. Thus, the NC 

starts the first collect phase by sending a collect message (@8) to the FC where it further distributes this 

message as two collect messages (@9, @10) to each of the Simulators. 

 

Figure 28. Sample Simulation Scenario in CCD++ 

Upon receiving the collect message, imminent Simulators execute their output functions and send 

output messages to their parent FC. S1 processes @9 first and sends an output message (y11) to the FC. If 
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it must be sent to S1, S2 (as well as to remote Simulators), FC translates it into an external message and 

sends one copy to each local Simulator (x12, x13). For the remote Simulators, the FC then forwards the 

output message (y14) to the NC, which translates the message into an external one (x15) and sends it 

remotely to all destination NCs. Similar actions are performed when the FC processes the output 

message (y17) from S2 (x18, x19, y20, x21). During these steps, the remote external message x22 is received 

at the NC, which inserts it into the NC’s Message Bag. When the FC receives the corresponding Done 

messages (D16, D23) from S1 and S2, it sends a Done message (D24) to the NC, reporting the end of 

output operations at the local Simulators. This Done message triggers the next phase at the NC, thus the 

first transition phase starts immediately by sending an internal message (* 25) to the FC. This message is 

then forwarded to imminent Simulators S1 and S2 (*26,*27). Internal transitions are triggered at these 

Simulators followed by Done messages emitted to the FC (D28, D29). The FC then sends the closest state 

transition time to the NC through a done message (D30). When processing D30, the NC performs 

lookahead computation, sends the new value through null3 to all remote NCs, and blocks. When the only 

remote null message (null4) is received at the NC, the suspensions ends, and the NC calculates the new 

LVT. This LVT turns out to be equal to the timestamp of the external message x22 recently received 

from a remote NC and added to the NC Message Bag. Therefore, the NC sends it to the FC, followed by 

another internal message (x31, *32). When FC executes * 32, it flushes x31 to S1 followed by * 34. External 

message x33 is added into S1’s message bag, accepting the value previously transmitted by x22 from a 

remote sender. After that, the internal message *34 invokes S1’s external transition, which consumes the 

value wrapped in x33. The resulting Done message (D35) is sent to the FC. When NC executes D36, 

another lookahead computation takes place, null5 is sent out, and the LP is blocked. After receiving 

null6, NC calculates the new LVT. In this case there is no message in its NC Message Bag, and the 

remote lookahead reported by null6 is larger than the closest state transition (time=100), therefore, the 

NC advances the local simulation time from 0 to 100 and sends to the FC a collect message (@37) that 

has a send time of 0 and a receive time of 100, thereby starting a new cycle of simulation similar to that 

initiated by @8.  
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4.3 The CMB DEVS Protocol  

The second conservative DEVS protocol is the CMB protocol, which is a variation of the LBTS 

protocol aiming at reducing the number of null messages. The CMB protocol changes the way 

conservative synchronization is maintained by distributing the null messages only among the 

neighboring LPs, in contrast to broadcasting to all participant LPs as in LBTS protocol. An LP forwards 

null messages to only its direct neighbors as defined by the DEVS translation function. Under this 

scheme, at the start of every synchronization phase, the LP computes its lookahead as in LBTS (using 

Formula (1) of Section 4.2), but the null message is only sent to its neighbors. Then the LP blocks and it 

waits for its neighboring LPs to send their lookahead value via null messages. Once all neighbor null 

messages are received, the LP computes its new LVT based on the received lookahead values as in 

Formula (2) of Section 4.2, and it starts another lookahead computation and null message distribution 

round. This process continues until it is guaranteed that no smaller lookahead value will arrive from 

neighbor LPs later in time. Once the LP has received the smallest possible lookahead value, it computes 

the new LVT and resumes the simulation. Other aspects of the CMB protocol are very similar to those 

of the LBTS protocol. The only difference is the number of neighboring LPs, where with LBTS protocol 

each LP has n – 1 neighbors, while in CMB protocol each LP has either 1 or 2 neighbors (depending on 

the partitioning of the DEVS model). 

With the CMB protocol, the overall number of null messages is reduced, but the multiple lookahead 

computation and null message redistribution rounds could have a negative effect on the overall 

simulation performance. These effects will be analyzed thoroughly in Chapter 6. 

4.4 The Global Lookahead Management Protocol  

In order to reduce the overhead of the LBTS protocol, the Global Lookahead Management (GLM) 

protocol is proposed. GLM is based on the Conservative Time Window algorithm  [55] and the 

Distributed Snapshot mechanism  [53]. The GLM mechanism dramatically reduces the number of null 

messages by organizing the conservative execution in such a way that every LP reports its lookahead 

only to the global manager rather than to every neighboring LP. The GLM protocol implements an 

asynchronous strategy  [46] in the sense that there is no global clock (every process maintains its own 

local clock), and the GVT approximation is performed based on the LPs’ lookahead information.  



   

    68 

A) Phase-Based Simulation with GLM Protocol 

The GLM protocol borrows the idea of safe processing intervals from the Conservative Time Window 

algorithm, and it maintains global synchronization in a similar fashion as the Distributed Snapshot 

technique. Under the GLM scheme, a central lookahead manager (LM) exists on LP0, which is in 

charge of three main tasks: 1) receiving every LP’s lookahead, 2) identifying the global minimum 

lookahead of the system, and 3) broadcasting it via null messages to all LPs. This implies that the LPs 

are no longer required to send their lookahead information directly to each other as in the LBTS 

protocol; rather, they now send their lookahead via null messages to the LM only. In fact, the sole 

function of the LM is to detect suspension phase and initiate the resume phase by broadcasting the 

global minimum lookahead. The entire algorithm works using the following sequence of computations: 

(i)Parallel phase: LPs run simulation until suspension. 

(ii)Broadcast phase: LM broadcasts global minimum lookahead allowing LPs to advance their LVTs. 

The key characteristic of the GLM protocol is that it is asynchronous and the central LM is not 

expected to be a bottleneck since the only message transmissions involving it take place at the end of 

Parallel and Broadcast phase. In fact, the LM does not carry out any computation.  

In the LBTS algorithm, each LP had to send a null message to every LP and block until all LPs send 

back their null messages accordingly, resulting in total null messages of n (n – 1) per synchronization 

cycle (where n is the number of LPs). With the GLM protocol each LP sends one null message to the 

LM and blocks until the LM sends back a null message carrying the global minimum lookahead value. 

Thus, leading to a total number of 2n null messages for every synchronization cycle. The GLM not only 

attempts to reduce the total number of null messages, but theoretically it could also reduce the blocked 

time of LPs since they now wait for only a single null message (as opposed to n – 1 messages) before 

they can resume. As the number of participating LPs increases, the performance achieved with GLM 

may increase, merely because the total number of LPs has a direct impact on the synchronization 

overhead. However, communication overhead could play a negative effect on the overall performance of 

the protocol. These criteria are investigated and explained in details in Chapter 6 by conducting various 

experiments comparing the GLM versus the LBTS and CMB protocols. 
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B) Lookahead and LVT Computation Strategy 

Both the lookahead and the LVT of the GLM protocol are computed, in a similar fashion to the LBTS 

protocol, based on Formula (1) and (2) of Section 4.2. At the start of every synchronization phase, the 

NC performs the lookahead computation, and it sends the calculated value to the LM via a single null 

message, then, it suspends the LP. Upon receiving the response null message from the LM, the LP 

resumes by first calculating the new LVT as the minimum value among four quantities: (i) the 

timestamp of the external message recently sent to a remote LP; (ii) the time of the NC Message Bag 

which is the minimum timestamp among unprocessed input events; (iii) the closest state transition time 

of the local child processors previously given by the FC in the Done message; and (iv) the new global 

lookahead value received from LM via a null message. 

Similar to the LBTS protocol, the NC is the local synchronizer at the LP and invokes the GLM 

protocol at the beginning of every collect phase. The NC issues the collect phase by first performing 

lookahead computation according to Formula (1), then, it sends the calculated value via a single null 

message to the LM and blocks the LP. Upon receiving the response null message form the LM, the LP 

resumes and the NC performs a LVT computation which will take into account the newly received 

minimum global lookahead from the LM.  

C) Null Message Distribution 

Based on the strategy used to partition a DEVS/Cell-DEVS model, each LP can only send/receive event 

messages (external messages) to/from those defined by neighboring DEVS models. That is, according to 

the DEVS-neighborhood specified at the model, if an atomic component (represented by a Simulator 

processor) on an LP is a neighbor of another atomic component residing on a different LP, then these 

two LPs are neighbors and they can communicate to each other through inter-LP communication. 

Therefore, it is possible that some LPs are not direct neighbors of each other, because the model’s 

partitions they hold are not DEVS-neighbors of one another. The GLM neighboring strategy is based on 

this mechanism, where an LP is only connected to another LP if it happens to be its direct neighbor as 

specified by the DEVS model neighboring. 
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D) LP Block and Resume Mechanism 

The GLM block and resume mechanism is slightly different from the LBTS algorithm in the sense that 

LPs are no longer distributing null messages to each other, neither they wait for reception of null 

messages from every participant LP. In return, each LP sends a single null message at the start of every 

collect phase to the LM only, and it stays blocked until the single null message reporting the new 

globally minimum lookahead is received from the LM.   

E) Deadlock Avoidance 

Since the null message distribution of LPs to the LM occurs before LPs are suspended, deadlock is 

strictly avoided. NC only suspends the LP after performing a lookahead computation, and reporting it to 

the LM via a null message. Thus, when an LP is suspended, it has already forwarded its null message, 

and if every other LP gets suspended as well, they would all resume because all the required null 

messages have been already sent to the LM before suspension has taken place. The strategy for handling 

zero-lookahead is the same as the one discussed for the LBTS protocol in Section 4.2.5. 

F) I/O Operation 

The only messages an LP sends out are the external and null messages. The external messages are sent 

out to neighbor LPs defined by DEVS neighboring, while null messages are sent out to the LM on 

node0. Similarly, an LP can only receive external messages from its DEVS neighbor LPs, and null 

messages from the LM. 

G) Termination 

The simulation terminates if Stop Time is reached or all LPs are idle and have no unprocessed event in 

their input queues. The NC sets the LP to idle when: 1) the LM sends a null message reporting infinity 

as the global lookahead value, 2) all local child Simulators have next transition time of infinity, and 3) 

there is no unprocessed event in the NC Message Bag.  
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4.5 Comparison of the Protocols 

The three conservative protocols differ in the way null messages are distributed and thus the total 

number of null messages that must be propagated throughout the simulation. Figure 29 illustrates the 

null message distribution strategy of LBTS, CMB, and GLM protocols. Figure 29-A illustrates the 

partitioning of an 8 by 8 Cell-DEVS model on four LPs. The partitioning mechanism divides the cell 

space into four equal portions (8x2 cells per LP).  Figure 29-B represents the LBTS neighboring of LPs 

where each LP sends and receives null messages to and from every other LP. With CMB mechanism 

(Figure 29-C), every LP only forwards null messages to its direct neighbors as defined by the DEVS 

translation function. On the other hand, the GLM protocol resolves this tight coupling of LPs by 

assigning a simple LP connectivity strategy where each LP is only coupled with the LP for which the 

LM resides on (i.e. LP0). Hence, the null message distribution is configured as in Figure 29-D. 

 

Figure 29. Null Message Distribution Strategy in LBTS, CMB, and GLM Protocol 

Aside from the null message distribution mechanism (which is different in LBTS, CMB, and GLM 

protocol), the lookahead and LVT computations are performed dynamically based on the model’s data, 

and the computation formulas are the same for the three protocols (Formula 1 and 2). Moreover, the 

three conservative protocols share the following common characteristics: 
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- NC-Driven Synchronization: the protocols are implemented at the NC; the other DEVS 

processors are unaware of the underlying synchronization mechanism. The NC is the local controller 

and drives the simulation on that node. It is responsible for lookahead and LVT computation, LP 

suspension and resumption, and null message distribution and reception. 

- Dynamic Lookahead: Lookahead computation is performed after each LVT computation; hence, it 

is updated and distributed to the destination LP(s) prior to the LP suspension phase. This strategy 

ensures that the lookahead value of an LP represents the latest LVT update, as there is at least one 

lookahead computation per LVT update. The dynamic lookahead mechanism of our conservative 

algorithms states that lookahead value is not fixed, and every lookahead computation could result in a 

different value than of the previous stage. Unlike other existing conservative algorithms, the modeler is 

not required to specify the lookahead of the system; rather it is dynamically extracted from the model’s 

specifications. 

-Low-Cost Lookahead Computation: The lookahead computation is a fast, efficient, and low-cost 

method that involves a simple comparison between existing parameters. In fact, there is neither an actual 

computation nor a significant computation time required to calculate the lookahead. Rather, the 

lookahead is extracted from already computed data that existed in the simulator before the conservative 

protocol was integrated with it. Compared to other existing conservative mechanisms, this benefit 

reduces the overhead of the algorithm. 

- Deadlock Avoidance: Since the null message distribution occurs before the LP suspension, 

deadlock is strictly avoided. A NC only suspends the LP after performing the lookahead computation 

and propagating it to the destination LPs (or the LM in case of GLM protocol) via null messages. Thus, 

when an LP is suspended, it has already forwarded its null messages, and if every other LP gets 

suspended as well, they would all resume because all the required null messages have already been 

distributed before suspension takes place. 

4.6 The Classical P-DEVS Protocol 

The LBTS, CMB, and GLM protocols extend the CD++ parallel DEVS/Cell-DEVS framework to allow 

running the same model with different synchronization mechanisms. The synchronization protocols are 

separate layers and can be replaced with one another, allowing to run the same model in sequential, 
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optimistic (using the LTW protocol) or conservative (LBTS,GLM,CMB) versions. These three 

conservative protocols are comparative to the classical P-DEVS protocol of Chow  [11] and Zeigler et al. 

 [8]. The classical P-DEVS protocol can be viewed as an extreme form of risk-free optimism (not even 

local rollback occurs) without incurring the overheads of conservative and optimistic schemes.  Instead 

of trying to overlap processing of input events with different time-stamps, it seeks to exploit parallelism 

in the simultaneous occurrence of internal events among many components. There is a global 

coordinator synchronizing the simulation entities driving the phases of the DEVS simulation cycle. 

 

Figure 30. Parallel DEVS Simulation Protocol  [82] 

As shown in Figure 30, the Parallel DEVS scheme differs from the LP-based schemes in that there 

is a coordinator to synchronize the simulation cycle through its steps.  The coordinator collects all times 

of next event from the component simulators. It sends the minimum of these times back to the 

components, thereby allowing them to determine whether they are imminent, and if so, to generate 

outputs. More than one component may be imminent and the outputs of all such imminents are sorted 

and distributed to others according to the coupling rules. The transition functions of the imminent 

components, as well as all other recipients of inputs, are applied. Depending on the state and input of a 

component a transition takes place – imminents with no inputs apply internal transition functions, 

imminents with inputs apply confluent transition functions, and non-imminent components with input 

apply external transition functions. The resulting changes in states may cause new values for time 

advances and these are sent to the coordinator to set the new global minimum time.  The simulation 

cycle is outlined as following: 
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1. Set the current global time, t =  the minimum of the components’ tN’s (initially tN and tL of all 

components are set to zero) 

2. Send t to each component  

3. Each component, C, then compares t with its tN, if t = tN, this component is said to be imminent 

and  

• C generates its output (if any) stamped with time t 

• C executes its internal transition function 

• C sets tL = t and tN  = tN + time advance of the new state 

4. The collected outputs move, as dictated by the coupling specification, to the input ports of other 

components 

5. Each component examines its input ports and: 

• if it receives an input, it applies its external transition function with this input, using the 

elapsed time, t - tL  

• sets tL = t and tN  = tN + time advance of the new state (if no input was received it does 

nothing) 

6. If not at the end of the run, return to 1. 

To compare the three conservative DEVS protocols (LBTS, CMB, and GLM) to the classical 

Parallel DEVS algorithm, recall their lookahead computation strategy. Formula (1) reveals that the 

lookahead is always a value in the interval [current time, tN]. That is, tN (minus the current time) would 

be the best lookahead that can be obtained. This might be reduced to the current time if there are 

unprocessed external messages. Under such circumstances, the protocols exploit same level of 

parallelism as in the classical Parallel DEVS algorithm. However, these protocols do not have a global 

time synchronizer, neither simultaneous output collection mechanism, nor a single centralized scheduler 

(Root Coordinator) which is proven to be a major bottleneck. Moreover, the underlying flattened 

architecture requires smaller number of messages when calculating the next time advance, i.e., the flat 

coordinator is the final destination of tN values of all child Simulators while in Parallel DEVS protocol, 

there is an extra level of hierarchy (Root Coordinator) where the tN values must be propagated to. 

Moreover, the P-DEVS simulation protocol is only able to exploit parallelism in the simultaneous 

occurrence of internal events among many components. 



   

    75 

4.7 Zero-Lookahead in P-DEVS 

Usually general DEVS/P-DEVS models have a lookahead of zero. External events can arrive at any time 

and the time advance function can be zero. This means that for computing a lookahead, all the time 

advance values in regards to the potential arrival of external messages need to be checked per atomic 

model. There have been a number of studies investigating the zero-lookahead problem in DEVS-HLA. 

Fujimoto  [194] introduced zero-lookahead into HLA by extending the original time management 

services to allow reproducibility in the presence of simultaneous events and zero-delay events. In  [82], 

an approach is given that uses the Next Message Request Available - NMRA(t) service provided by HLA 

instead of Next Message Request - NMR(t) to allow zero or negligible value of HLA lookahead for 

federates. The conservative protocols presented in this dissertation deal with zero-lookahead by ensuring 

that all possible future input events are considered when computing the lookahead value. This is done by 

performing a sanity check such that whenever there is an unprocessed input event in the LP’s queue, the 

lookahead of the LP is reduced to the time stamp of such event. This avoids the case where execution of 

such event causes output generation with t smaller than previously computed time advance. In addition, 

external input events could also arrive from the environment. In a DEVS-based simulation, such 

messages are known to the system prior to the execution. The lookahead and the LVT computation 

mechanisms of the conservative DEVS protocols presented in this dissertation also take such messages 

into account. A special type of DEVS processor, called the Root Coordinator exists on LP0, which is in 

charge of flushing the external input events from an input file into the destination NC’s input queue. 

Thus, when a NC invokes the LVT or the lookahead computation mechanism, by checking its 

inputQueue (as stated by Formula 1 and 2 of Section 4.2), it takes into consideration such external 

events.  
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Chapter 5: Comparative Study: Optimistic VS. Conservative 
Simulation 

One of the objectives of this research is to perform a comparative study of optimistic versus 

conservative DEVS-based simulation by conducting extensive experiments. To achieve this goal, 

sensitivity analyses at both model- and underlying synchronization protocol-levels were studied. The 

analyses were carried on both the conservative simulator (CCD++, implementing the three conservative 

protocols: LBTS, CMB, and GLM) and the optimistic one (PCD++, implementing the LTW protocol). 

The results obtained from this part of the research aim to be a significant recommendation report to the 

parallel DEVS community to help to decide on choosing conservative or optimistic simulators for a 

particular model.  

5.1 Model-based Sensitivity Analysis  

The purpose of model-based sensitivity analysis is to analyze performance by investigating different 

model’s characteristics, such as the following. 

•••• Size 

To analyze the scalability of both CCD++ and PCD++, each model is executed at different sizes. 

For Cell-DEVS models, the size of the model can be easily increased by altering the dimension of the 

cell space.  

•••• Type 

Two types of models are considered: communication-intensive, and computation-intensive. For the 

first type, models with high communication among atomic components were considered. For the latter 

type, models with high computations are investigated. The main reason behind testing models with 

different natures is to observe whether the model’s type affects the performance of the underlying 

synchronization protocol (i.e. conservative versus optimistic).    

•••• Complexity 

For those models that are computation-intensive, an interesting behaviour to analyze is to increase 

the complexity of the model by introducing additional computations. For instance, the complexity of a 
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Cell-DEVS model can be increased by introducing time-consuming computations into the cells state 

transitions.   

•••• Activity 

The activity of a Cell-DEVS model is defined as the propagation pattern under which cells’ values 

evolve. Once cells are initialized, the simulation starts when one or more cells’ rules evaluate to true 

resulting in a propagation pattern that might eventually cover the entire cell space. Figure 31 illustrates 

sample activity patterns that could appear during a simulation. The activity pattern is affected by 

different parameters such as cells’ initial value, neighborhood, and evaluation rules. 

 

Figure 31. Sample Activity Patterns in Cell-DEVS Models 

•••• Partitioning 

Different partitioning strategies could result in different performance. Two partitioning mechanisms 

are used during the experiments: horizontal, where the cell space is divided into even columns, and 

vertical, which divides the cell space into even rows. These two strategies are shown in Figure 32. 
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Figure 32. A: Horizontal, B: Vertical Partitioning of an 8x8 Cell-DEVS Model on Four Nodes 

•••• Connectivity 

In a Cell-DEVS model, cell neighboring defines the connectivity of the model by identifying how 

tight different partitions of the cell space are connected to each other. When in a model, a large 

neighborhood is defined for cells, the frequency at which cells communicate with each other increases, 

leading to high inter-LP communications if neighbor cells happen to be on different LPs. By altering the 

size of cell’s neighborhood, the effect of cells’ connectivity on the overall performance can be 

investigated. Examples of loose and tight connectivity are illustrated in Figure 33-A and Figure 33-B 

respectively, where the shaded cells represent the neighboring cells for the cell in the middle (note that 

the same neighborhood pattern applies for every cell of the lattice).  

 

Figure 33. A: Small, and B: Large Cell Neighborhood 

•••• Initial-Load Distribution 

Various initial parallelism can be achieved by placing initial values at different points of the cell 

space as opposed to a single start-up point. This behavior significantly reduces LPs’ initial idle time by 

allowing more parallelism among LPs especially at the beginning of the simulation.  Conducting 
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experiments under these circumstances enables engaging more LPs throughout different stages of the 

simulation as opposed to keeping some LPs busy and some other waiting for cells propagation to reach 

their cell partitioning.  Figure 34-A illustrates a scenario at which only a single initial value is placed on 

the gird which happens to be the partition assigned to node1. Thus, for some simulation stages, only 

node1 will be busy while the rest of the nodes remain idle. Figure 34-B shows the scenario where there 

is a starting point on every node’s partition, allowing full parallelism from the initial stage of the 

simulation.  

 

Figure 34.  Initial-Load Distribution by Setting Multiple Initial Points 

5.2 Protocol-based Sensitivity Analysis 

The optimistic simulator, PCD++  [21], is based on Lightweight Time Warp (LTW)  [34], a novel 

TW-based protocol. The protocol includes a rule-based event-scheduling mechanism using two types of 

event queues, an aggregated state-saving technique for optimal risk-free state management, and a new 

rollback algorithm that recovers lightweight LPs from causality errors without sending anti-messages. 

Identifying the key metrics for a decent sensitivity analysis is a complex task, especially for a TW 

simulator that can be optimized in so many different ways. Aside from the model-based parameters, 

there are many options at the simulator level that can be combined to conduct various experiments. 

Some of these analyses, which are the characteristics of the TW algorithms, include GVT computation 

frequency, state-saving interval, event queue operation efficiency, etc.  

The conservative simulator, CCD++, is tested under the three conservative synchronization 

protocols: LBTS, CMB, and GLM. All of the experiments will be conducted with these conservative 

protocols to provide a solid performance evaluation, analyzing the effect of the underlying conservative 

protocol on the simulation performance.  
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Sensitivity analysis is a complex task that requires many experiments to identify those factors that 

significantly affect the performance. The next chapter will present a thorough sensitivity analysis by 

conducting various tests addressing different scenarios that were mentioned in this chapter.  
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Chapter 6: Performance Analysis 

This chapter analyzes the performance of the conservative protocols (LBTS, CMB, and GLM) and the 

optimistic LTW protocol. Section 6.1 introduces the benchmark models used in the experiments. Section 

6.2 summarizes the experimental configurations and performance metrics. Section 6.3 presents a 

comparative performance evaluation of the LBTS, GLM, and the LTW protocols on distributed-memory 

multiprocessor clusters using CCD++ and PCD++ simulators, while Section 6.4 evaluates the three 

conservative protocols in terms of protocol efficiency and effect of null message distribution strategy on 

the overall performance. Finally, Section 6.5 provides detailed analyses of the three conservative 

protocols by evaluating some of the sensitivity metrics that were presented in Chapter 5. 

6.1 Introduction to Benchmark Models 

The clear separation of model and simulator concepts in the CD++ M&S framework offers a number of 

advantages. The tool provides a modelling and simulation environment that allows easily constructing 

and modifying any DEVS and Cell-DEVS model. Moreover, the same model can be used on different 

environments (PCD++ with LTW protocol and CCD++ with LBTS, CMB, or GLM protocols) without 

the need to make any changes.  

Two environmental models with varied workload characteristics were tested in the experiments, 

namely a wildfire spread model and a watershed model. These models have been studied extensively in 

the DEVS research community (see, e.g., wildfire simulation  [195] [196] [197] [198] and watershed 

simulation  [5] [199] [200] [112]). In  [116], the wildfire and watershed models have been redefined as 

executable Cell-DEVS models in the CD++ specification language, as briefly described in this section. 

In addition, a third model was also used in the experiments, the Synth model, which is a synthetic Cell-

DEVS model consisting of a grid where cells are initially set to zero, then throughout the simulation, 

they toggle between the value of 0 and 1. The purpose of this model is to analyze the performance of 

parallel execution of communication-intensive models. 
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6.1.1 Definition of a Wildfire Model 

Two versions of the wildfire model were evaluated in the experiments, including a simplified version, 

referred to as Fire1, which uses predetermined fire spread rates at reduced runtime computational cost; 

and a computational-based version, referred to as Fire2, which computes fire spread rates dynamically 

based on environmental parameters obtained at runtime, resulting in higher computational intensity. 

Both versions simulate fire propagation scenarios over 90 virtual hours in a 2D cell space. 

• The Fire1 model 

The Fire1 model  [116] uses the Rothermel method  [114] to obtain the spread rate in every direction 

prior to the simulation based on a specific set of environmental parameters (a fuel model type value of 9, 

a southwest wind at a speed of 24.135 km/h, and a cell size of 15.24×15.24 m2), as summarized in 

Figure 35. 

 

Figure 35. Predetermined Spread Rates for the Fire1 Model  [116] 

Figure 36 gives a skeleton of the Fire1 model definition. A cell’s value stands for the virtual time 

when the cell is ignited (zero for a non-burning cell). The precondition of a transition rule is used to 

detect the presence of fire in a specific neighboring cell. For example, the first rule will be triggered if 

the current cell (0,0) is non-burning and the southwest neighbor (1,-1) has already been ignited. Hence, 

the fire will spread to the current cell at virtual time (1,-1) + (21.552615/17.967136), which becomes the 

new value of the current cell. This value will be sent to the neighboring cells after a delay of 

(21.552615/17.967136) * 60000 ms, the interval between the current virtual time and the expected 

ignition time at the cell. 
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Figure 36. A Skeleton of the Fire1 Model Definition in CD++  [116] 

• The Fire2 model 

The Fire1 model has been generalized in  [32] to allow for determination of fire spread rates by changing 

environmental parameters  [23]. Specifically, the CD++ specification language has been extended to 

include a new syntax node, referred to as fsr  [32], which calculates the spread rate in any given 

direction at runtime by invoking the fireLib library  [115].  

Figure 37 shows a skeleton of the generalized Fire2 model when defined under the same 

environmental conditions as shown in Figure 35. 

 

Figure 37. A Skeleton of the Fire2 Model Definition in CD++ 

Comparing Figure 37 with Figure 36, the spread rate in a given direction is no longer a fixed 

constant in the Fire2 model. Instead, it is the computation result of the fsr syntax node based on a set 

of four parameters (i.e., azimuth, fuel type, wind speed, and wind direction), which are provided by the 

runtime environment of an application. This allows obtaining highly dynamic and realistic simulation 

results by feeding real-time environmental data into the model. As expected, the time for processing a 

(*, t) event at the Simulators becomes 6.68 times longer than what is required in the Fire1 model 

(calibrated on a 3.2GHz Intel Xeon processor), a significant increase in computational intensity. 
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6.1.2 Definition of a Watershed Model 

The Watershed model  [116] uses a 3D cell space to simulate water accumulation in a drainage basin 

over 30 virtual minutes under constant rain condition (7.62 mm/h) based on a set of hydrological 

equations  [7]. In addition, different types of ground soil (grass and stones) are also considered in the 

Watershed model by defining zones with different local transition functions within the cell space. Figure 

38 shows a skeleton of the Watershed model definition in the CD++ environment. 

 

Figure 38. A Skeleton of the Watershed Model Definition in CD++ [Wai06] 

In the model, the height of accumulated water at a cell depends on the rain intensity, the water 

exchanged with the neighboring cells (both inflows and outflows), and the amount of water absorbed by 

ground soil of different types. A local transition function thus computes future height values for the cells 

at each virtual time, taking into account the initial water level, the cumulative rain precipitation, the 

dynamic water flow between the cells, and the specific soil condition. The 3D cell space is composed of 

two planes: plane 0, for representing the ever-changing heights of retained water at different cells; and 

plane 1, for defining the topographical configuration of the terrain which remains unchanged throughout 

a simulation. 

6.1.3 Definition of the Synthetic Model 

The Synth model defines a 2D cell space that is initially filled with zeros. Each cell of the gird defines 

eight neighbors and evaluates two simple rules, changing its value from zero to one and vice versa 

throughout the simulation. Figure 39 shows a skeleton of the Synth model definition in the CD++ 
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environment. The large cell’s neighborhood and the simple low-computation rules create dense 

communication allowing analyzing parallelism with communication-intensive models.  The simulation 

scenarios for this model are conducted over 100 milliseconds.  

 

Figure 39. A Skeleton of the Synthetic Model Definition in CD++ 

6.2 Experimental Configurations and Performance Metrics 

The performance of the conservative protocols (LBTS, CMB, and GLM) and the optimistic LTW 

protocol were studied in the experiments using CCD++ and PCD++ simulators respectively. The 

performance results presented in the following sections not only depend on the degree of parallelism 

available in the tested models, but also depend on the specific experimental configurations summarized 

here. Consequently, they should be viewed as indicators of potential performance gain that is achievable 

by the proposed protocol. Experiments were conducted on a cluster of 28 HP Proliant DL140 servers 

running on Linux WS 2.4.21 and communicating over Gigabit Ethernet using MPICH 1.2.7 [Gro09], 

which is a portable implementation of the MPI standard  [112]. Each cluster node features dual 3.2GHz 

Intel Xeon processors with 1GB 266MHz main memory and 2GB disk swap space. Note that severe 

memory-swapping activities will occur if the maximum space requirement of a simulation approaches 

(or goes beyond) the physical limit of 1GB on a node. Moreover, a simulation will fail to complete when 

the memory usage cannot be contained within the maximum allowable virtual memory space of 3GB 

(i.e., the accumulated size of physical memory and disk swap space).  

To ensure a fair comparison, the two simulators (CCD++ and PCD++) were configured the same 

way. Table 2 shows a list of 6 performance metrics collected in the experiments through extensive 

measurement. Among them, the total execution time (T) and the maximum memory consumption (MEM) 

are the two primary metrics used to compare the overall simulation performance of optimistic simulation 

versus the conservative versions. 
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Table 2. Performance Metrics 

Metrics                       Description 

T Total execution time of the simulation (sec) 

BT Total blocked time during the simulation (sec)

MEM Maximum memory consumption (MB) 

PEV Total number of positive events executed  

NEV Total number of null events executed  

NMR Null message ratio 

To demonstrate the absolute performance of both protocols, the benchmark models were also 

executed using a sequential CD++ simulator on a single cluster node, with the corresponding metrics 

(denoted as Tseq and MEMseq) collected in the experiments. Using the sequential simulation as the 

baseline case, the overall speedup of a parallel simulation on N cluster nodes is thus defined as follows. 

Overall Speedup =
)(NT

Tseq
, where N>1           (1) 

The other metrics in Table 2 (i.e., BT, PEV, NEV, NMR) provide additional insight into the impact 

of the three conservative protocols, allowing for an objective assessment of the effectiveness of the 

proposed synchronization protocol. The experimental results for each test case were conducted based on 

95% confidence interval for all the test cases. For the test cases on multiple nodes, the results were also 

averaged over the participating nodes to obtain a per-node evaluation (i.e. BT, MEM, PEV, and NEV 

represent the corresponding results per one node). The PEV values present the total number of DEVS 

messages executed during the simulation. The null message ratio (NMR) is a commonly used 

performance metric for null message-based conservative protocols. It is defined as the ratio of the 

number of null messages to the number of regular messages during the simulation as follows. 

NMR =
PEV

NEV
                                           (2) 

6.3 Evaluation of the Conservative and Optimistic Protocols 

This section analyzes the performance of the LBTS, GLM, and LTW protocols using the benchmark 

models introduced in Section 6.1. Using the logs that are generated during the simulation, these models 
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have been verified prior to the actual performance testing to ensure that the parallel simulations generate 

the same results as the corresponding sequential simulations. Later, the event-logging capability of the 

simulators was turned off in all test cases to minimize the impact of file I/O operations on simulation 

performance. A simple partition strategy was used which evenly divided the cell space into horizontal 

rectangles. As will be presented in Section 6.5, another partitioning mechanism was also used to observe 

the effect of partitioning scheme on the overall performance. The Fire1 and Fire2 models were tested 

using cell spaces of 100x100, 200x200, 300x300, and 500x500, and the Watershed model was tested 

with 25x25x2, 30x30x2, 50x50x2, and 100x100x2 cells. While the Synthetic model was tested with 

100x100, 200x200, and 400x400 cells. 

Figure 40 illustrates the total execution time on 1 to 26 nodes for Fire1 model with 100x100, 

200x200, 300x300, and 500x500 cells respectively. The graphs also show the min and max values for 

each scenario which happened to be in the 5% interval (to avoid cluttering the graphs, the results for the 

other models will only include the averaged values). Considering the two conservative protocols (GLM 

and LBTS) it can be seen that for each different size, the GLM protocol reduces the execution time 

compared to LBTS for every given number of nodes. Meaning that, for the four mentioned sizes, the 

smallest execution time is always achieved by the GLM protocol compared to LBTS. It is also shown 

that for any given number of nodes, the execution time always increases with the size of the model. 

While the LBTS protocol increases the execution time after it reaches the smallest execution time for 

that size, the GLM keeps reducing the execution time as the number of nodes increase in most cases. In 

fact, the GLM protocol shows much better performance compared to the LBTS algorithm for all 

scenarios. This is due to the significant null message reduction that the GLM provides as shown on the 

null message ratio graphs in Figure 42.  
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Figure 40. Fire1 Results for Various Sizes 

By comparing the GLM protocol with the optimistic one (OPTIM) different results are observed. 

For each size of the model, the optimistic protocol outperforms the conservative ones only after a certain 

number of nodes. That is, the OPTIM protocol shows smaller execution time compared to the 

conservative protocols only after 4, 14, and 24 nodes for 100x100, 200x200, and 300x300 sizes 

respectively. This is due to the high overhead of the optimistic protocol caused by numerous rollbacks, 

state savings, and memory consumption, which made the simulator unable to run any simulation for the 

500x500 size of the model, and also failed to run the simulations on 1, 2, 6, and 10 nodes for the 

300x300 size. Moreover, at some cases (e.g., simulation on 1 to 8 nodes for the 200x200 size) it was 

observed that the performance of the optimistic simulation is even worse than that of the sequential 

execution (with a speedup of less than 1), mainly because of the excessive communication and 

operational overhead incurred in the optimistic parallel simulation. 

In terms of speedups, the GLM protocol always resulted in better speedup compared to the LBTS 

algorithm. It is also observed that the GLM protocol provides higher speedups compared to the 



   

    89 

optimistic one as the size of the model increases. However, at smaller sizes of the model (i.e. 100x100 

and 200x200) the overhead of both of the conservative protocols (GLM and LBTS), which is the null 

message distribution plus the total blocking time of the LPs, were much higher than the benefit that was 

gained by executing the model in parallel. That is, when the model is relatively small, the overhead of 

the optimistic simulator tends to be smaller than those of the conservative ones.  

A general trend reflected in the experimental results is that the reduction in the total execution time 

and maximum memory consumption is greater for models with larger sizes, indicating an improved 

scalability of the synchronization algorithms. 

Moreover, the blocked time (BT) and null message ratio (NMR) of the conservative protocols were 

also conducted to investigate their performance in details. As shown in Figure 41, the average blocked 

time values associated with the LBTS protocol are much larger compared to the GLM protocol. This is 

more clear as the number of participating nodes increases. However, there are scenarios at which the BT 

values of the GLM were slightly higher than those of the LBTS algorithm (e.g. 2 nodes scenario of 

200x200, 300x300, and 500x500 sizes). This can be explained by the nature of the GLM protocol where 

the overhead it produced at 2 nodes is slightly higher than what was produced by LBTS (under the GLM 

scheme, the two nodes must send their null message to the central manager and then wait for the 

response null message from it, while with the LBTS, the nodes directly send to each other). However, as 

the number of nodes increases this behavior is no longer observed and the overhead of GLM stars to 

decrease compared to that of the LBTS because the null message distribution strategy of the GLM 

protocol causes less overhead. On the other hand, the NMR results shown in Figure 42 clearly explain 

how the GLM outperforms the LBTS protocol by significantly reducing the number of null messages, 

thus, markedly improving the NMR. 
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Figure 41. BT Results of Fire1 
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Figure 42. NMR Results of Fire1 

Looking at the memory consumption of the three protocols as illustrated in Figure 43, it is shown 

that the average maximum memory consumption per node decreased in the same manner for both 

conservative protocols. However, the memory consumption associated with the optimistic protocol was 

much higher compared with the other two protocols which is as expected. At some cases, the maximum 

memory required per node under the optimistic scheme was so high that the simulation could not be 

completed due to memory exhaustion. In addition, it happened that memory consumption did not follow 

a steady reduction pattern, as shown for the case of 4 nodes running the 200x200 model, the average 

memory consumption is lower than the case when 6 nodes are participating. This is very dependent on 

the specific rollback and state savings that occurred in these two scenarios, causing the average memory 

consumption per node to be lower than when there are only 4 nodes compared to the 6 nodes scenario. 

Similar behavior was noticed for the 300x300 size with 8 nodes scenario. 
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Figure 43. Memory Consumption for Fire1 Model 

Similarly, Figure 44 illustrates the total execution time for Fire2 model at various sizes for the three 

protocols. As in Fire1, on each different size, the GLM protocol reduced the execution time and the total 

number of null messages significantly. The performance achieved by the GLM protocol stayed high as 

the number of nodes increased which was not the case for the LBTS protocol where the performance 

started to drop down as more nodes were engaged. The null message reductions results are presented in 

Figure 46. A different performance was observed at the largest size (the 500x500 model), where the 

LBTS outperformed the GLM with 4, 6, 8, 10, 12, and 14 nodes. However at 1, 2, and above 14 nodes, 

the GLM provided smaller execution times. This can be explained by considering the nature of the 

model which is computation-intensive, thus, as the model size is larger the computation phases take 

longer, and specifically within the GLM scheme larger overhead is introduced into the simulation 

because the LM had to wait for all LPs to send their lookahead before it could distribute the globally 

minimum lookahead value and thus resume the blocked LPs. Now, considering the optimistic protocol, 

it was observed that when the size of the model is small, the best performance is achieved by this 

protocol, but as the size of the model increased the GLM protocol outperformed the optimistic one, 
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specifically when fewer nodes were engaged. That is, for the 100x100 size, the GLM protocol resulted 

in smaller execution time with 1 and 2 nodes. In contrast, as the size grew (e.g., the 300x300 model), the 

GLM continued to perform better than the optimistic one until 20 nodes. This was while the optimistic 

simulator could not carry out the simulations at 1 to 10 nodes for the 300x300 size, and similarly not 

able to run any simulation even with the maximum number of available nodes for the largest size (i.e. 

500x500) due to high memory consumption.  
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Figure 44. Fire2 Results for Various Sizes 

The average blocked time for the two conservative protocols for two sizes of the model (i.e. 

100x100 and 500x500) are presented in Figure 45. As expected, with the smallest size model, the 

blocked time values for both of the conservative protocols increased as more nodes were engaged due to 

the overhead of the protocols which nullified the performance gain of parallel simulation. However, it 

can be seen that the BT associated with GLM is much smaller compared to that of LBTS. On the other 

hand, when the model was much larger, different behavior was observed. The GLM caused much 

smaller BT values, and at the same time, as the number of nodes increased, the BT values decreased 

linearly. This shows that when the model is large and complex, the benefits gained from the GLM 
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protocol overcome the overhead issues of the protocol, while this statement was not true for the LBTS 

protocol. That is, for the LBTS protocol when the simulation was conducted over 10 nodes, the BT 

values started to increase as more nodes were engaged. This shows that the overhead of the LBTS 

protocol starts to have a negative impact on the performance after the number of nodes reaches a 

specific range mainly due to the significant increase of the total number of null messages that got 

distributed among the LPs.   
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Figure 45.  BT Results of Fire2 

The NMR results of Fire2 model are given in Figure 46. For the various sizes of the model, similar 

NMR results were obtained, thus only the results for two of the sizes (100x100 and 500x500) are 

illustrated. Similar to Fire1 model, for various sizes of the model, the NMR values at different nodes 

configuration were significantly lowered by the GLM protocol. The memory consumption results 

illustrated in Figure 47 show the significant memory consumption reduction of the conservative 

protocols compared to the optimistic protocol. 
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Figure 46. NMR Results of Fire2 
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Figure 47. Memory Consumption for Fire2 Model 

Figure 48 presents the execution results of the third model, watershed. As was mentioned earlier, 

this model is three dimensional and communication-intensive, thus most of the execution time is spent 

on messaging rather than computation. From the total execution time values it is observed that overall, 

the GLM conservative protocol outperformed the other two mechanisms at small number of nodes, but 

as the number of participating nodes increased, the OPTIM protocol outperformed the conservative 

ones. However, with less number of nodes (e.g. 2, 4, and 6) the GLM protocol gave the smallest 

execution time, and after this, by increasing the number of nodes the optimistic protocol provided the 

best results. Although the GLM protocol resulted in very similar execution time values, however, it can 

be concluded that the impact of the optimistic protocol is most evident in the Watershed simulations, 

where the number of simultaneous events executed at each virtual time grew with the model sizes, 

making the optimistic protocol the synchronization of the choice when executing communication-

intensive models. 
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With regards to the two conservative protocols, the GLM protocol outperformed the LBTS for 

nearly all cases indicating that the null message distribution mechanism of this protocol produces much 

smaller overhead compared to the LBTS mechanism.  
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Figure 48. Watershed Results for Various Sizes 

It is shown that much higher speedups are achieved compared to the two fire models because of the 

nature of the model, which involved numerous cell updates (large number of simultaneous events 

executed at each virtual time), thus, allowing to benefit from parallel simulation much better. For BT, as 

shown in Figure 49, with the first three sizes of the model, the BT values associated with GLM were 

smaller for nearly all cases. In addition, for each of these sizes, as there were more nodes, the difference 

between the BT values of the GLM and the LBTS protocols increased more. A different behavior was 

seen at the 100x100x2 size, where the GLM caused longer BT at most cases compared to LBTS. 

Although, the total execution time results showed that the GLM protocol outperforms the LBTS for this 

size of the model, however, due to the nature of the model which is 3D highly-communicative, and the 

tight neighboring that existed among the cells, the overall synchronization phases tended to take much 
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longer under the GLM scheme. That is, since each node had more atomic components (i.e. cells) 

assigned to it, and thus longer time to finish up every computation/communication phase, the central 

synchronizer was required to wait longer for all nodes to broadcast their null messages. As a result, 

longer waiting times (i.e. blocked times for each LP) were associated with each synchronization phase 

compared to the LBTS scheme.  

However, this did not affect the overall performance (in terms of the execution time), because the 

GLM protocol keeps the event queue of each node much shorter (at any time, at most one null message 

is kept in the input queue) compared to LBTS (where at any time, there are at most n-1 null messages in 

the queue, where n is the total number of participating nodes). Thus, by keeping the message queues 

shorter, the queue operations which are performed very often took shorter. 
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Figure 49. BT Results of Watershed 
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Figure 50. NMR Results of Watershed 

The average number of null messages per node and the NMR results for the Watershed model are 

presented in Figure 50. The NEV results were the same for the different sizes of the model since the 

simulation was run for the same virtual-time duration in every case. The NEV values were significantly 

higher with the LBTS mechanism showing how successful was the GLM protocol in reducing the total 

number of null messages. The NMR results showed this huge performance gain by comparing the null 

events to the positive events and calculating the ratio.  
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Figure 51. Memory consumption for Watershed model 

Considering the maximum memory consumption, Figure 51 illustrates that average memory used 

per node decreased as the number of nodes increased. However this was only true for the conservative 

protocols. The optimist protocol showed fluctuating results at smaller sizes of the model which is very 

dependent to how the model is partitioned, which may lead to larger rollbacks and state saving 

overheads. When the largest size of the model was tested, the given partitioning mechanism was well 
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suited for the optimistic protocol resulting in memory reduction as the number of participating nodes 

increased. 

6.4 Evaluation of the Conservative Protocols 

This section evaluates the performance of the LBTS, CMB, and GLM protocols by presenting the 

results obtained from running the Fire1, Watershed, and Synth models under different scenarios. The 

protocols are analyzed in terms of the total execution time, maximum memory consumption, total 

number of null messages, and the null message ratio. 

Figure 52 illustrates the T and BT results for Fire1 model. The LBTS and GLM protocols reduced 

the execution time when more nodes were participating. However, this was only true until a certain 

point, where after that adding more nodes did not reduce the execution time. This is due to the overhead 

of the protocol, where the increased number of null messages and blocked times started to have a 

negative impact on the overall performance. In terms of the BT, GLM produced the smallest results in 

all cases, while CMB resulted in the largest blocked time values. Although CMB produces less null 

messages per synchronization phase, but it leads to larger total number of null messages and blocked 

periods compared to the LBTS protocol (because its strategy consists of multiple rounds of null message 

distribution). 
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Figure 52. Fire1 Model T and BT Results 
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Figure 53. Fire1 Model Memory Consumption Results 

Memory consumption per node reduced at the same rate for different sizes as seen in Figure 53. The 

maximum memory consumption per node dropped considerably as more nodes were engaged, for all the 

three protocols. 

The results of the Watershed model are given in Figure 54. Since the model is communication-

intensive it was noticed that for all the protocols, the execution time reduced as more nodes were 
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engaged. The performance improved even with smaller size models (compared to Fire1). The GLM 

protocol provided the best performance in all cases, and the worst performance belonged to the CMB 

protocol. In most cases, only the BT of the CMB protocol was even larger than the T value of GLM and 

LBTS protocols. In all cases, with 2 nodes participating, the CMB protocol caused longer execution 

times compared to the results obtained from the sequential simulator. The large overhead of the CMB 

protocol overcomes the benefits of parallelization. However, as the number of processors increased, the 

execution time and the blocked period of CMB started to drop. For BT results, the tests showed that 

similar to the Fire1 model, GLM produced the lowest blocked time; then the LBTS protocol, and finally 

the CMB mechanism. For the Watershed model, execution time and BT reduction rate for various sizes 

of the model were very close. The three protocols had the same performance gain regardless of the size 

of the model, which was due to the numerous events that were distributed throughout the simulation 

(this 3D model includes a large number of neighbors that must be updated more often).  
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Figure 54. Watershed Model T and BT Results 
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Figure 55. Watershed Model Memory Consumption Results 

The MEM results are given in Figure 55. As in Fire model, memory consumption per node dropped 

as the number of machines increased. All the three protocols resulted in very similar MEM values, 

showing that the three protocols performed the same in terms of memory consumption. 
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Figure 56. Synth Model Results 

The T, BT, and MEM for the Synth model are shown in Figure 56. This model allows analyzing the 

performance of each of the protocols when full parallelism takes place. As can be observed from the 
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execution results, for all the protocols, the simulations benefited from the full parallelism such that the 

performance continued to improve as the number of nodes increased. 

For GLM and LBTS, the BT value was considerably low compared to the T value in each case. The 

BT values were still too high with the CMB protocol compared to the other two protocols. As in 

previous models, the GLM resulted in best performance, while the CMB protocol had the worst results 

in every scenario. However, due to the nature of the model, overall the results were better than those 

obtained from the Watershed or Fire model executions. As shown by the memory consumption graph 

(for the 200x200 size) memory usage per node improved remarkably with the increase of the number of 

machines. All the three protocols reported very similar results for memory consumption. 

The results of the three protocols in terms of the total number of null messages and the null message 

ratio were also collected. Figure 57  shows the NMR (i.e. NEV/PEV) results for various sizes of the 

Fire1 model. Looking at the GLM graphs, it is shown that this protocol produced the smallest NMR at 

all cases. 
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Figure 57. Fire1 Model NMR Results 

The CMB protocol, compared to the LBTS protocol, produced smaller NMR values after a certain 

number of participating nodes, which was 4, 6, 6, and 8 nodes for 100x100, 200x200, 300x300, and 
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500x500 sizes respectively. This behavior is explained by the fact that as the number of machines 

increased, the synchronization overhead associated with CMB got smaller than that of produced by the 

LBTS protocol. Meaning, with smaller number of machines, the total null messages produced by the 

LBTS protocol were less than the number of null message distribution rounds in CMB, thus resulting in 

lower NMR compared to the CMB protocol. On the other hand, when more nodes were participating, 

the total number of null messages that were distributed by the LBTS protocol were much higher than 

those produced by the CMB protocol, although the CMB protocol causes more synchronization rounds 

per each synchronization phase when more nodes are engaged.  
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Figure 58. Watershed Model NMR Results 

As expected, the GLM protocol resulted in the smallest number of null messages (average NEV per 

node) in all cases. Similar to the NMR results, the CMB outperformed the LBTS protocol after a certain 

point, while with smaller number of machines it led to the worse results compared to LBTS. The NMR 

results for the Watershed model are illustrated in Figure 58. Similar to Fire1 model, the best results 

were obtained with GLM, and the CMB protocol outperformed the LBTS when more nodes were 

engaged.  
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Finally, the results for Synth model are presented in Figure 59. The performance of this model was 

similar to the Watershed model. The only performance difference between this model and the 

Watershed model is that much smaller NMR and NEV were produced, because the model was designed 

in such a way that at every step, all the cells change values and update their neighbors, which resulted in 

higher PEV values. On the other hand, the simulation was only conducted over 100 milliseconds (virtual 

time), which caused much fewer synchronization phases, thus, smaller NEV and NMR values were 

produced.  

Synthetic Model (100x100)  Null Message Ratio

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

0.00300

0.00350

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Synthetic Model (400x400) Null Message Ratio

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

Synthetic Model (any size)  Average NEV per Node

0

1000

2000

3000

4000

5000

1 2 4 6 8 10 12

Number of machines

N
u

m
b

er
 o

f 
N

E
V

LBTS CMB GLM

Synthetic Model (400x400) Null Message Ratio

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

1 2 4 6 8 10 12

Number of machines

N
M

R

LBTS CMB
GLM

 

Figure 59. Synth Model NMR and NEV Results 

6.5 Sensitivity Analysis of the Conservative Protocols 

• Initial-Load Distribution Analysis 

To study the effect of initial state values on the performance of the conservative protocols, the Fire1 

model was tested under three different scenarios for each given size as following: 

• Scenario 1: Placing an initial value at position (3, 78) of the cell space; 

• Scenario 2: Placing an initial value at the middle of the cell space; 
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• Scenario 3: Placing an initial value at each partition of the cell space. 

Figure 60 to Figure 62 illustrate the different simulation runs for Fire1 model with three different 

sizes of cell space. Looking at the smallest model (i.e. 100x100 cells), it was observed that changing the 

initial states from scenario 1 to scenario 2 does not impact the performance of the protocols and very 

similar results were obtained. However, on the third scenario different behavior was noticed. The GLM 

protocol was affected significantly such that it outperformed the optimistic protocol for any number of 

nodes. While the results obtained from the LBTS protocol remained almost unchanged, the performance 

of the optimistic protocol degraded noticeably. This is because the simulation of scenario 3 resulted in 

much higher overall cells’ activities, thus, the total number of state changes and rollbacks increased 

leading to higher execution times. In another words, since scenario 3 initialized an active cell on each 

partition at the initialization stage of the simulation, this caused more cells to be active at the beginning 

of the simulation, compared to the other two scenarios where only one cell was initialized at the 

beginning of the simulation on the entire cell space.  

For the 300x300 cells case, only the optimistic protocol was affected. For instance, while under 

scenario 1, the optimistic protocol failed to run the simulation on 1, 2, 6, and 10 nodes, in scenario 2 the 

simulation could not be carried out even with 12 nodes. However, as more nodes were added the 

performance got better and the optimistic simulator reduced the execution time compared to scenario 1 

experiments. The best performance for this size with the optimistic protocol was observed at scenario 3, 

reaching the execution times that were obtained by the GLM protocol as the number of participating 

nodes increased beyond 14. Compared to scenario 3 of the model at 100x100 cells, this scenario (i.e., 

scenario 3 at 300x300 cells) due to the large size of the model (i.e., 3 times larger) the simulation 

benefits from the parallel execution much larger than the drawbacks caused by numerous rollbacks and 

state savings. In another words, the advantages of parallel execution overcame the overhead of the 

synchronization protocol while this could not be achieved at smaller sizes of the model (e.g. 100x100). 

Increasing the size of the model to 500x500 cells and running the simulations under the three 

different initial states scenarios was only possible for the conservative protocols. The optimistic 

simulator failed to run any simulation for the given size due to memory exhaustion. The three scenarios 

had very similar effect on the two conservative protocols while at most cases the best performance was 

achieved with the GLM protocol due to reasons explained in Section 6.3. 
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Figure 60. Initial States Analysis of Fire1 Model (100x100) 
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Figure 61. Initial States Analysis of Fire1 Model (300x300) 
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Figure 62. Initial States Analysis of Fire1 Model (500x500) 
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• Partitioning Analysis 

Different partitioning strategies may result in different simulation performance. Two partitioning 

mechanisms were used to analyze the effect on the overall execution performance of three of the 

models, Fire1, Fire2, and Watershed. The first partitioning strategy divided the cell space into equal 

horizontal rectangles, while the second strategy used vertical partitioning by dividing the cell space into 

even columns. These specific partitioning strategies were chosen because based on the nature of these 

three models and the behaviour of cells’ values propagation, they result in different degree of 

parallelism especially at the initial stages of the simulation, allowing investigating how partitioning 

mechanisms affect the overall performance. 

Figure 63 to Figure 65  illustrate the execution results obtained for different partitioning strategies 

for Fire1 model with various sizes. The experiments with 100x100 cells were not affected by the 

partitioning strategies. Almost identical execution times were conducted for all the protocols. On the 

other hand, the experiments for the 300x300 size were slightly affected by modifying the partitioning 

mechanism. The impact was great on the optimistic protocol which resulted in much lower execution 

times with 14 nodes and beyond, when vertical partitioning was used. This showed that this specific 

partitioning mechanism improved the performance of the optimistic protocol by arranging the cells’ 

neighboring in such a way that most of the neighbors of a cell were within the same partition, thus 

reducing the number of rollbacks and other associated optimistic synchronization overheads. For the 

largest size of the model (i.e., 500x500 cells), while the optimistic simulator was unable to run any 

experiment due to memory limitation, the two conservative protocols provided similar results in both 

cases of partitioning. 

Similar behavior was observed for Fire2 model. Figure 66 to Figure 68 present the results for this 

model with various sizes for each scenario. As in Fire1, the different partitioning mechanism yield 

similar results for the 100x100 and 500x500 sizes. Similarly, the results for 300x300 size showed that 

the experiments using the conservative protocols were not affected by altering the partitioning scheme 

mainly because independent of what partitioning is used, the conservative synchronization phases are 

invoked in the same manner and at the same frequency. However, the optimistic simulator showed 

better performance using the vertical partitioning strategy, thus, lower execution times were obtained. 
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Moreover, the simulation could be carried out with 8 and 10 nodes as well, while this was not possible 

with the horizontal partitioning scheme. 

Finally, the experiments were also repeated for the Watershed model under various sizes (Figure 69 

to Figure 71). Interesting results were observed showing that this model was not affected by altering the 

partitioning strategies for neither of the simulators (neither the conservative ones nor the optimistic 

version). This is due to the nature of the model which was a 3D cell space with initial values distributed 

all over the grid layers such that using different partitioning did not have any noticeable impact on the 

performance of the simulations. Meaning that, the overall distribution of the initial values and the 

neighboring of the cells followed very similar pattern on each partition when the model was divided 

vertically or horizontally. 
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Vertical Partition (100x100) Total Execution Results
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Figure 63. Partitioning Experiments of Fire1 Model (100x100) 
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Figure 64. Partitioning Experiments of Fire1 Model (300x300) 
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Figure 65. Partitioning Experiments of Fire1 Model (500x500) 
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Figure 66. Partitioning Experiments of Fire2 Model (100x100) 
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Figure 67. Partitioning Experiments of Fire2 Model (300x300) 
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Figure 68. Partitioning Experiments of Fire2 Model (500x500) 
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Figure 69. Partitioning Experiments of Watershed Model (25x25x2) 
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Figure 70. Partitioning Experiments of Watershed Model (50x50x2) 
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Figure 71. Partitioning Experiments of Watershed Model (100x100x2) 

 

 

 



   

    113 

Chapter 7: Conclusion and Future Work 

This dissertation addressed software development and performance issues that arise in large-scale 

parallel simulation of P-DEVS and Cell-DEVS models. In particular, this dissertation was primarily 

concerned with improving the performance of DEVS-based conservative simulation on distributed-

memory multiprocessor clusters and performing comparative analyses versus optimistic simulations. To 

fulfill these objectives, three conservative DEVS protocols, Lower-Bound-Time-Stamp (LBTS), 

Chandy-Misra-Bryant  (CMB ), and Global-Lookahead-Management (GLM ) have been proposed, 

and their effectiveness has been evaluated quantitatively in the CD++ environment using different 

benchmark models with varied characteristics.  

The LBTS protocol  [87], which serves as the base for the other two protocols, is the first purely 

conservative synchronization mechanism for running Cell-DEVS parallel simulations. The protocol 

attempts to reduce the communication overhead by implementing the mechanism at the NC (the highest 

level of the DEVS abstract simulator hierarchy). The two major challenges of conservative simulations 

i.e., the lookahead computation and null message distribution are handled by the NC at each LP. Thus, 

the NC is the central synchronizer on each node and forwards the simulation by issuing lookahead 

computation and LVT advancing phases. Communication among processes is performed merely through 

message distribution; there are no shared variables and no central process for message routing or 

scheduling. The LBTS protocol avoids cycles by implementing a deadlock-free mechanism which 

requires each LP to compute its lookahead value and to forward it to all participating LPs prior to 

blocking. When an LP receives all remote null messages, it resumes and calculates a new LVT based on 

the remote lookahead values it just received from other LPs. This scheme ensures that at any time, the 

LVT of every LP is equal to the Lower-Bound-Time-Stamp of any unprocessed event among all LPs. 

The major challenge of the LBTS protocol is the large number of null messages that must be distributed 

at the start of every synchronization phase.  

The CMB protocol  [83] overcomes the issues of large number of null message of the LBTS protocol 

by adopting the original Chandy-Misra-Bryant deadlock avoidance mechanism where null message are 

only sent among direct neighbors and in multiple rounds. Although each LP would be required to send 
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its lookahead value to less LPs, but the multiple rounds of null message distribution degrade the 

performance of the CMB protocol raising the need to for a protocol that manages such issues in a more 

efficient way. 

The issue of large number of null messages of the two conservative DEVS protocols (i.e., LBTS and 

CMB) motivated proposing the GLM protocol  [86]. The GLM mechanism proposed a phase-based 

simulation by introducing a central Lookahead Manager (LM) which is in charge of receiving every 

LP’s lookahead, identifying the global minimum lookahead of the system, and broadcasting this value 

via null messages to all LPs. Under this scheme, LPs no longer distribute their null messages to each 

other, rather, they send their lookahead information directly to the LM. The LM responsibility is to 

detect the suspension phases, and to initiate the resume phases by broadcasting the globally computed 

minimum lookahead value. The asynchronous characteristic of the LM ensures that it is not a 

bottleneck, since the only message transmissions involving it take place at the end of the block and 

resume phases.  

This research also provided a comparative study of conservative (LBTS, CMB, GLM) versus 

optimistic (LTW) DEVS-based parallel simulation by conducting thorough experiments and analyzing 

different sensitivity metrics  [84] [88]. Detailed discussions were presented investigating the performance 

efficiency of each of the protocols and the pros and cons of using each particular mechanism for 

different types of DEVS models.  

7.1 Review of Key Contributions 

The three conservative protocols presented in this research, namely LBTS, CMB, and GLM take 

proactive approaches to addressing the challenges of DEVS-based conservative simulations, improving 

performance without complicating the synchronization layer unnecessarily, sacrificing potential 

parallelism, or introducing a noticeable extra operational overhead. The key contributions of this 

dissertation are summarized as follows. 

• Implemented coordinator-centered synchronization approach by implementing the conservative 

protocols at the NC level which led to a substantial reduction in the operational overhead 

resulting in a significant improvement in the overall simulation performance. By keeping other 

DEVS processors (i.e., FCs and child Simulators) unaware of the underlying synchronization 
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mechanism, the NC-centered strategy dropped the cost of null message distribution and 

lookahead computation significantly. 

• Developed a simple event scheduling mechanism that maintains a FIFO input queue for each LP 

to simplify queue manipulation, thus reducing the associated queue management costs resulting 

in higher overall performance. 

• Introduced low-cost and efficient lookahead and LVT computation strategies that make use of 

information that already exist in the simulation. 

• Proposed dynamic lookahead computation mechanism that dynamically extracts the lookahead 

information from the model’s specifications resulting in a general-purpose, model-independent 

parallel simulation. 

• Implemented deadlock-avoidance strategy where LPs only block if they have already distributed 

their lookahead information, strictly avoiding deadlock cycles.  

• Proposed various null message distribution mechanisms and studied their effect on the overall 

performance by implementing each of the conservative protocols with a different null message 

distribution strategy.  

• Proposed phase-based simulation with GLM protocol by dividing the simulation into parallel 

and broadcast phase while maintaining a global synchronizer, namely Lookahead Manager to 

deal with organizing and issuing these phases.  

• Performed a comparative study to evaluate optimistic TW-based simulation versus conservative 

approaches by conducting various tests on the optimistic simulator (PCD++ implementing the 

LTW protocol) and the conservative simulator (CCD++ implementing LBTS, CMB, and GLM 

protocol). 

• Studied the conservative protocols under various metrics such as total number of null messages, 

total blocked time, and null message ratio. 

• Investigated various sensitivity analyses both at model-level and protocol-level to address issues 

such as memory consumption and execution time for both conservative and optimistic simulators 

using various Cell-DEVS benchmark models. 
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7.2 Suggestions for Future Research 

There are a number of interesting topics for future research on DEVS-based high performance parallel 

simulation with various extensions of the work presented in this dissertation. The following summarizes 

a list of issues that warrant further investigation in the context of the DEVS-based parallel simulation. 

• Integration of the LBTS, CMB, and GLM protocols with other conservative optimization 

strategies to further improve the performance of P-DEVS and Cell-DEVS simulation on 

distributed memory multiprocessor cluster systems. This would include incorporating enhanced 

lookahead computations, reducing the number of null messages, and minimizing the overhead of 

null message distribution. 

• Incorporation of hybrid synchronization mechanism by reducing the conservatism of the 

protocols and engaging some levels of optimism without introducing additional overhead into 

the protocol. For instance, investigating a hybrid protocol that allows only local rollbacks to 

limit the overhead of optimistic approaches. 

• Incorporation of dynamic load balancing algorithms to support migration of LPS in DEVS-based 

simulations, taking advantage of the reduced overhead for transferring the LPs across cluster 

nodes. This would require investigating various mechanisms for dynamic creation and deletion 

of LPs to support runtime structural changes in conservative/optimistic DEVS systems. 

• Performance evaluation using an extended set of models (both DEVS and Cell-DEVS) with 

different categories of sensitivity analysis such as: simulator configurations (e.g., event and state 

sizes, optimistic global time estimation and fossil collection frequency, checkpointing interval), 

and system parameters (e.g., size of available memory space, inter-node communication 

characteristics, and background load fluctuation). Besides, additional performance metrics could 

be collected in the experiments to evaluate other aspects of the simulation performance. For 

instance, analyzing the degree of parallelism by conducting the number of active nodes (or LPs) 

at each virtual time and the percentage of useful work performed by the LPs. 
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