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Abstract 
The problem of over-running in hard real-time systems pos-
es critical risks to the hardware under control. The imprecise 
computation technique offers an effective way of resource 
utilization in these cases. We introduce Imprecise-DEVS (I-
DEVS), a model-driven approach to develop real-time and 
embedded applications based on the DEVS (Discrete Event 
Systems Specification) formalism. This approach combines 
the dynamic advantages of the imprecise computation tech-
nique with the rigor of a formal modeling methodology. 
This framework can be used to develop embedded applica-
tions incrementally, integrating imprecise models with 
hardware components seamlessly. We have defined struc-
tural modifications to DEVS in order to allow imprecise 
model definition.  
 
1. INTRODUCTION 
Embedded real-time (RT) software construction has usually 
posed interesting challenges due to the complexity of the 
tasks executed. Formal methods have showed promising re-
sults, in terms of model design, verification, implementa-
tion, testing and maintenance. Also, model-based ap-
proaches can be used for formal verification  [1] as well as 
virtual-time simulation, which reduces both end cost and 
risk, while enhancing system capabilities and improving the 
quality of the final product. This is a useful approach, more-
over considering that testing under actual operating condi-
tions may be impractical and in some cases impossible  [2]. 
 One critical aspect of hard RT systems is the production 
of the outputs before the specified deadline. However, in 
circumstances with system overloads, it might be impossible 
to meet the deadlines. As RT and embedded systems are not 
deterministic, tasks may enter the system at any time and 
there is no prior knowledge of their occurrence times. The 
Imprecise Computation technique  [3] helps to overcome 
these high computation peaks by discarding optional com-
putations. The main idea is to separate the computation into 
mandatory and optional parts (the mandatory part affects the 
correctness of the result and the optional affects its quality). 
The optional part is executed after the mandatory part; ac-
ceptable results are guaranteed, and if resources are avail-

able, the execution of the optional part increases the preci-
sion of the result. The system can terminate the optional part 
during transient overloading, producing less precise results 
but on time.  
 Imprecise computation has been applied to different 
fields, including RT and embedded systems  [4] [5] [6], mul-
timedia processing  [7] [8] [9], planning, artificial intelligence 
 [10] [11] [12] and databases  [13] [14]. Despite this, imprecise 
computation is not yet widely used in industrial embedded 
applications. The reason might be related to strict theoretical 
assumptions and the lack of cost-effective support method 
that can be easily implemented in embedded systems.  
 In this work, we introduce Imprecise-DEVS (I-DEVS), 
a model-driven framework to develop RT and embedded 
systems based on DEVS formalism  [15], integrated with the 
imprecise computation technique to improve predictability 
under transient overloading. The approach supports rapid 
prototyping, and encourages reuse. DEVS has been ex-
tended for RT simulation and also for embedded applica-
tions  [16] [17]  [18] [19] [20] [21]. Many existing techniques 
that have been widely used for the development of RT and 
embedded systems  are also mapped to DEVS 
 [22] [23] [24] [25] [26]. I-DEVS enables model designers to 
assign priorities to the model behavior and balance the exe-
cution based on the priorities assigned. The new approach 
can be easily integrated with previous models. The main 
goal of this contribution is to develop a dynamic RT DEVS 
environment capable of managing different high processing 
conditions and integrate that with the RT DEVS engine. 
  
2. BACKGROUND AND MOTIVATION  
 Imprecise computation has been used for minimizing 
the errors caused for transient overloads in RT systems. 
Many off-line task scheduling algorithms have been pro-
posed based on the imprecise computation technique 
 [22] [28] [29]. There is no optimal algorithm that minimizes 
the total error in on-line scheduling systems, when a feasible 
schedule exists, because of the lack of a-priori knowledge of 
the occurrence time of the jobs  [30]. The mandatory-first 
algorithm assigns processing time to mandatory tasks first, 
based on statistics to reduce the total error  [31] [32].  



 RT-Frontier  [4] is a RT operating system that presents 
an imprecise computation framework. It decomposes com-
putations into mandatory, optional and wind up parts. The 
wind up part works as a termination function after the end of 
an optional part, reducing the termination cost and increas-
ing portability. It uses a novel scheduling algorithm called 
Slack Stealer for Optional Parts (SS-OP), based on the three 
segment imprecise computation model with small overhead.  
 Except for this work, no research has aimed on integrat-
ing this technique with a formal methodology to be used in 
RT and embedded system design and construction. The pro-
posed I-DEVS approach, allows the model designer to de-
ploy this technique at the design time, specifying the op-
tional and mandatory behaviors of the target system. 
 DEVS  [15] is a sound formal framework based on ge-
neric dynamic systems, including well-defined coupling of 
components, hierarchical, modular construction, support for 
discrete event approximation of continuous systems and 
support for repository reuse. A real system modeled with 
DEVS is described as a composite of sub-models, each of 
them being behavioral (atomic) or structural (coupled), that 
define a hierarchy of models. Coupled models are responsi-
ble for maintaining the structure of the hierarchy by keeping 
the internal connections between atomic and coupled mod-
els.  A DEVS atomic model is formally defined by: 

AM = < X, S, Y, δext, δint, λ, ta > 

 
Figure 1. DEVS atomic model state transition  [2] 

 
 As informally depicted in Figure 1, an atomic model 
AM is an entity which is affected by external input event X 
and which in turn generates output event Y. The state set S 
represents the set of state variables of the model. The inter-
nal transition function δint and the external transition func-
tion δext compute the next state of the model. When an ex-
ternal event arrives at elapsed time e which is less than or 
equal to ta(s), a new state s′ is computed by the external 
transition function δext. Then, a new ta(s′) is computed, and 
the elapsed time e is set to zero. Otherwise, a new state s′ is 
computed by the internal transition function δint. In this case, 
an output specified by the output function λ is produced 
based on the state s. As before, a new ta(s′) is computed, and 
the elapsed time e is set to zero.  

 A coupled model connects the basic models together in 
order to form a new model. This model can itself be em-
ployed as a component in a larger coupled model, thereby 
allowing the hierarchical construction of complex models. 
The coupled model is defined as: 
CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select> 
X: is the set of input ports and values, 
Y: is the set of output ports and values, 
D: is the set of the component names, 
EIC (External input couplings) connects the input events of 
the coupled model itself to one or more of the input events 
of its components,  
EOC (External output couplings) connects the output events 
of the components to the output events of the coupled model 
itself, 
IC (Internal coupling) connects the output events of the com-
ponents to the input events of other components, 
Select is a function used to order the processing of the si-
multaneous events for sequential events.  
 In  [19] a RT extension to DEVS formalism was pro-
posed based on the parallel DEVS (P-DEVS)  [33] formal-
ism. P-DEVS adds the confluent function δcon (and in-
put/output bags instead of sets) to the definition of atomic 
model, in order to handle simultaneous events. The Select 
function is eliminated. This RT method integrates the driver 
object presented in  [34] to the DEVS model hierarchy to al-
low embedded functionality on different hardware and soft-
ware platforms. The driver object is a user configurable 
converter of events from external environment to the DEVS 
model hierarchy and vice versa, which increases portability 
by separating modeling components from the external 
framework, allowing both virtual-time and RT simulation 
for verification and embedded execution on the target. The 
proposed methodology has been implemented on the 
ECD++  [18] toolkit, a RT extension of CD++  [35]  [2].  
 
3. IMPRECISE DEVS 
Despite the theoretical advances in imprecise computation, 
there are few practical projects aiming at producing effec-
tive RT tools based on this technique. The main goal of this 
work is to integrate imprecise computation technique with 
the DEVS modeling approach to construct a formal method 
capable of modeling RT systems, and to build a toolkit 
based on this approach. The objective is to provide an im-
precise framework for applications where the job arrival 
times are not known a-priori. The approach tries to balance 
the computation when the system is busy and on the other 
hand not reducing its performance, while keeping the run-
time overhead of the implementation as low as possible.  
 Imprecise DEVS (I-DEVS) is built on top of RT DEVS 
presented in  [19]. The P-DEVS atomic model definition is 
modified by adding a deadline and a mandatory or optional 
condition for each state, as follows:  



AM = < X, S, Y, δext, δint, δcon, λ, ta, d > 
Where X, Y, δext, δint, δcon, λ and ta are the same as in RT 
DEVS  [19], 
S: {(s, c) | s∈Z+

0 and c ∈ {mandatory | optional} }.  
d: S → R+

0,∞, is the relative deadline of each state for output 
production.  
 To prove the closure under coupling for I-DEVS, the 
same process is followed as P-DEVS  [33], the only addition 
is the d(s) of the resultant I-DEVS coupled model, defined 
as follows: 
 d(s) = minimum{σi|i∈D}, where s∈S and σi=d(s) – ei .  
 
3.1. DEVS Task System  
The main computations in DEVS occur during state transi-
tions and message transfers. We use this information to map 
the DEVS functions run by abstract algorithms into a RT 
tasking system. In this way, we obtain a platform where im-
precise computation can be applied. Figure 2 shows the 
processing tasks in a DEVS-based system.  

 
Figure 2. Processing carried for a state transition. 

 
 The external transition (X) is mapped into a task that in-
itiates the state S. The task release time is equal to the arri-
val of the input to the model (from the external environment 
in the case of the topmost coupled model, or when the out-
put generated on an output port is received in the atomic 
model input port). We assume no deadline for the X task. 
The output (λ) and internal transition tasks (I) are considered 
to execute together (task λI, as outputs in DEVS are always 
followed by an internal transition). The release time of task 
λI is equal to the end of the state S and specified by ta(s) 
(indicator T). Its deadline is specified by the function d(s) 
(indicator d) that we added to the atomic model definition.  

 
Figure 3. Overload scenario 

 
 Figure 3 shows an overload scenario where four inputs 
are injected, starting external transitions on different atomic 
models. As we can see, λ1, λ2 and λ4 meet their deadlines; 
however, λ3 and λ2 (second instance at time 18) do not. The 
internal transition I2 produces a new state with ta(s) equal to 
4 time units, which exceeds its deadline at time 17.  
 In order to execute these models, we extended the 
DEVS atomic model definition by dividing the above-
mentioned tasks into mandatory and optional parts, incorpo-

rating the imprecise computation concept. We assume that 
tasks X are always mandatory but λ1 tasks can be optional. 
The λ subtask of an optional λ1 task can be terminated under 
transient overloads. For multiple consecutive optional λ1 
tasks, the entire task can be discarded, except for the last 
one (from which we only discard the λ portion), as the last 1 
task needs to perform the internal transition. In other words, 
during overloads, the model skips optional internal transi-
tions and their output functions to save time and resources 
for the mandatory ones. For instance, an autonomous robot 
in a bumpy road with obstacles (flooded with obstacle re-
connaissance inputs) can discard unnecessary tasks (e.g. re-
porting). A similar scenario can occur in any RT system 
where a sequence of optional outputs can be skipped to alle-
viate the overload situation by keeping the necessary out-
puts produced on-time. Schedulability analysis can be ap-
plied to this model, based on various available methods 
 [38],  [39].  
 
3.2. Execution Algorithm  
Figure 4 shows the execution algorithm of the Imprecise 
DEVS. The main algorithm is performed in the Root coor-
dinator (the top coordinator in the DEVS abstract runtime 
hierarchy), which takes care of the RT discrepancy in the 
execution of external or internal events.  
 
1. main()  
2. Send I msg to all atomic models 
3. tN = closest internal or eventfile event  
4. forever for each RT-DEVS Atomic model  
5.    wait for tN 
6.    if a RT external input event  
7.        send x msg;  
8.        send * msg; //P-DEVS formalism 
9.    else if tN time out  
10.        send @ msg  
11.        send * msg  
12.     end if  
13.     update tN 
14. end forever 
15. end main 

Figure 4. Execution Algorithm of Root Coordinator 
 
 We start first by sending an initialization message (I) 
and collecting done messages from each of them (which re-
port the next internal event for each component). Whenever 
there is an external input, the Root coordinator routes it 
through an external message (x) to the destination atomic 
model (which triggers the δext function). Otherwise, it waits 
for the closest internal event (λ1) to send collect (@) and in-
ternal messages (*) to the target atomic model. The collect 
message executes the λ function on the atomic model and 
the internal message executes δint. The atomic model re-
sponds to the @ message by executing the λ function and re-



turning the output value through an output (y) message. The 
atomic model also executes δint in response to a * message, 
and returns its next internal event time by a done message. 
 
1. Receive X msg(s, e, x) 
2.   push x in the Qext // PDEVS formalism 
3. end external 
 
4. Receive * msg(s) 
5.   if (internal event) 
6.     while (s is optional AND ta(s) <= now) 
7.        Run δint function 
8.     end while 
9.     if (s is mandatory) 
10.            Run δint function 
11.     end if 
12.   else if (external input in Qext) 
13.      Run δext function 
14.   else if (both external and internal events) 
15.      Run δcon function 
16.   end if 
17.   send done msg 
18. end internal 
 
19. Receive @ msg(s) 
20.   if (s is optional AND ta(s) < now OR d(s)<now) 
21.      send done msg 
22.   else 
23.      Run λ function 
24.      send y msg 
25.      send done msg 
26.   end if 
27. end collect 

Figure 5. Execution Algorithm of the Atomic Model 
   
 Whenever there is more than one internal event to be 
serviced, the mandatory ones have priority over the optional 
events. If an optional internal event is to be serviced later 
than its release time, its output will be discarded. This strat-
egy helps us save time for later mandatory events that have 
not been released yet. Whenever a sequence of optional 
events in an atomic model is delayed, the atomic model 
jumps to the most recent one by executing multiple state 
changes in one δint (line 6). This way, we reduce the multi-
ple internal messages transmitted between the Root coordi-
nator and the atomic model and also multiple δint executions. 
Figure 5 shows the execution algorithm for atomic model.  
 Figure 6.a) shows a simple Imprecise DEVS model hi-
erarchy where two atomic models B and C are coupled into 
D, which is itself coupled with atomic model A. Various in-
put/output ports are used to connect the various models in 
the figure. Figure 6.b) shows the description of model A us-
ing DEVS Graph  [36]. Note that continuous lines indicate 
external transitions and dashed lines indicate internal transi-

tions. As we can see, the model is initially in state A1 (with 
time advance = infinity) until an input xa is received on port 
InA. In that case, the external transition produces a state 
change to A2. The model stays in this state for 1t and its 
deadline is 4t. When the time is consumed, it produces the 
output y2a and transitions to A3 (internal transition). A simi-
lar scenario can be seen in states A3, A4 and A5, with out-
puts y3a, y4a and y5a produced respectively. Figure 6.c) 
and d) show the DEVS Graphs for atomic models B and C, 
respectively.    
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 We can map the DEVS Graph of atomic model C 
(shown in Figure 6.d) as follows:  

 
C=< X, S, Y, δext, δint, δcon, λ, ta, d >, where: 

 
X= {(InC, xc)}, 
S={(C1,mandatory), (C2, mandatory), (C3, optional)}, and 
S0 = C1,  
Y={(OutC, y2c), (OutC, y3c)}, 
δext (C1, e, < InC, xc >) = C2,  
δint(C2) = C3, δint(C3) = C1, 
δcon = δext has priority over δint 
λ(C2) = <OutC, y2c>, 
λ(C3) = <OutC, y3c>, 
ta(C1) = ∞, ta(C2) = 1t, ta(C3) = 2t, 
d(C1) = ∞, d(C2) = 4t, d(C3) = 5t, 
 The mapping of atomic models A and B are similar and 
straightforward.  
 In this example, the state durations are considered very 
small; however, in reality they are usually longer, compared 
to the execution time of the X, λ and 1 tasks. In a system 
with large number of atomic models, similar overload con-
ditions can happen at different points of time, when multiple 
X, λ and 1 tasks from different atomic models are very close 



to each other. For instance, Figure 7 shows a possible over-
load scenario for the DEVS model presented in Figure 6 
without considering imprecise computation technique. An 
input Xa enters the system from input port In at time zero. 
Assuming the X task takes 1t, at time 1 (i.e. 1t) the atomic 
model A moves from the initial state A1 to A2. The ta(s) of 
state A2 is 1t, thus at time 2, we run task λ212, producing 
the output y2a (for simplicity reasons we do not show the 
outputs) and the internal transition from A2 to A3, (as speci-

fied in Figure 6.b). The output produced by the atomic 
model A (y2a) is translated to an input for the atomic model 
B. Thus, the task Xb is executed right after λ212, causing the 
atomic model B to change from B1 to B2. The models ad-
vance according to the specifications (provided in Figure 6) 
until t=18. At this point, the tasks λ414 of A, λ313 of C and 
λ212 (of A, B and C, shown in red) miss their deadlines be-
cause of the overload condition in the system.  

 
Figure 7. Example transient overload scenario 

 
 On Figure 6.b), c) and d), we marked the mandatory 
and optional states with an M or an O, respectively. By ap-
plying the proposed imprecise DEVS technique, λ3 of A is 
skipped (because state A3 is optional and λ3I3 is executed 
after its release time, T3a), causing λ4I4 to be shifted to time 

16 and saved from lateness. The same condition happens for 
λ3 of B and C. Hence, by discarding three optional λ tasks 
we save the four mandatory tasks and their associated out-
puts.  

 
Figure 8. Applying imprecise computation to the sample scenario 

 
4. IMPLEMENTATION AND RESULTS 
We implemented the proposed imprecise DEVS formalism 
on E-CD++  [18], a toolkit that implements RT DEVS for-
malism proposed in  [19] on the Xenomai RT framework 
 [37]. Xenomai provides a RT kernel resting between the 
hardware and Linux OS, and offers several pervasive hard 
RT services to user space applications and is seamlessly in-
tegrated with GNU/Linux environment. We made X tasks 
user configurable (i.e. periodic or aperiodic), and their main 
job is to run user-defined input driver programs as soon as 
they are spawned. A main RT task implements the DEVS 
run-time abstract algorithm and takes care of λI tasks. This 
task is also responsible to implement and verify the impre-
cise DEVS formalism and its execution. The implementa-
tion of the imprecise computation on E-CD++ is seamless 
and backward compatible (i.e. the previous models also can 
be executed and are considered as precise models). 

 The proposed implementation of imprecise DEVS on 
E-CD++ has been tested with variety of modeling scenarios 
and several criteria has been applied for verification of the 
final implementation. For instance, we used a synthetic ro-
botic model with 20 atomic models, each of them connected 
to an external input port, connected to a sonar distance sen-
sor and an output port connected to an electrical motor. To 
ensure that the same scenario runs every time, the values 
coming from the sensors were the same in all tests. All the 
atomic models follow the DEVS Graph diagram in Figure 9. 
The model is a synthetical representation of a robot control-
ler, which receives inputs from sensors and based on the in-
puts, instructs the motors. We used 20 atomic models to 
make it a computation intensive model where overrun situa-
tion happens frequently. The DEVS Graph diagram in 
Figure 9 is composed of three optional states and three 
mandatory states. Whenever there is an input in states C, D, 
E, and F the model transitions to state B. We use this model 



to perform comprehensive performance tests, and compare 
the results of the imprecise execution and precise execution. 
In the case of precise execution, all the states are assumed 
mandatory.  

 
Figure 9. Synthetic robotic model used for verification 

 The timing for the component models varied for the dif-
ferent tests, performed. The first test discussed in this sec-
tion compared the number of discarded λ and I tasks versus 
processor utilization. The diagram in Figure 10 shows the 
results of this test, for a total execution time of 20 seconds.  
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Figure 10. Discarded tasks vs. processor utilization  

 The test was performed for input period intervals of 1.1, 
0.5, 0.1 and 0.001 s. As it is observed from the chart, by in-
creasing the number of discarded tasks (which happens by 
tightening the state durations and period of the inputs) the 
processor utilization increases linearly. The result demon-
strates the integrity and persistency of the implementation in 
a medium load scenario. In addition, as the system gets bus-
ier the number of discarded tasks also increases. The slope 
of the diagram for different period configurations stays the 
same, showing the integrity of the functionality of the algo-
rithm for different levels of load on the processor. 
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Figure 11. Response time vs. execution time-heavy load 

 
 Figure 11 shows the average response time of all the 
mandatory λI jobs versus the execution time for the same 
model using imprecise and precise modes. In this case, the 
input period of all X jobs was fixed (2 ms). The test was 
performed five times for each instance and the average re-
sult has been considered. As the chart shows, the average 
response time of the mandatory λ jobs drops dramatically in 
imprecise mode. In this example, there is a heavy load that 
the system must respond to, which required longer time for 
mandatory λ jobs to complete in precise mode. Imprecise 
computation discards the optional tasks, thus the response 
time of the mandatory tasks shortens.   
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Figure 12. Number of discarded tasks versus average re-

sponse time in medium load 
 
 Figure 12 shows the average response time of the 
model versus the number of discarded tasks for 20 seconds 
of execution time. The period of inputs is set to 50 millisec-
onds, and by varying the state durations, we obtain different 
number of discarded tasks in imprecise mode. For each in-



stance of the imprecise test, the same configuration was 
used to run in precise mode and find the average response 
time of the corresponding number of discarded tasks in pre-
cise mode. We can see that the average response time of the 
corresponding precise execution for each instance is slightly 
higher than the imprecise one in medium load scenario. The 
chart shows that by increasing the number of discarded tasks 
(i.e. tighter state durations) the average response time also 
increases. However, that this increase is not smooth as the 
situations change for different state durations. 
 Figure 13 depicts the processor utilization versus the 
number of discarded tasks in a heavy load scenario with the 
input period of 2 milliseconds and 20 seconds execution 
time. The chart shows steady but higher processor utiliza-
tion for precise execution. The processor utilization for pre-
cise execution in all instances of the test is almost full, 
therefore as the load increases; the utilization remains al-
most the same. However, the imprecise processor utilization 
is instable and decreases as the number of discarded tasks 
increases. This is due to the instable and varying conditions 
that occur in a very heavy load scenario in imprecise mode. 
As the number of the discarded tasks increases, less proces-
sor usage is required. This decrease is not smooth neither 
linear, because of the change in conditions in each run, and 
admission of more mandatory jobs.  
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Figure 13. Discarded tasks vs. CPU utilization-heavy 

load 
 
5. CONCLUSIONS 
 The development of embedded RT systems with RT 
constraints has been studied by the software engineering 
community in the last 20 years. The novel Imprecise DEVS 
(I-DEVS) formalism we proposed enables model designers 
to assign priority to the model’s behavior and balance the 
execution burden based on the priorities assigned. The new 
approach can be easily integrated with previous models pro-
viding RT DEVS environment capable of managing differ-
ent high processing conditions and integrate that with the 

RT DEVS engine. The approach provides flexibility to the 
user by prioritizing different behaviors of the system under 
control, while achieving the maximum throughput from the 
processor. The implementation and results of different tests 
have been presented.  
 The future work for this research includes incorporation 
of Dynamic DEVS formalism with the proposed I-DEVS 
formalism to introduce a new imprecise DEVS capable of 
prioritizing different components of the model besides the 
behaviors. Schedulability analysis will be applied to the 
proposed implementation to measure the possibility of the 
execution of the model on an specific hardware platform.   
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