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Abstract 

Computer-based Modeling and Simulation (M&S) is a powerful tool for cost-effective 

analysis, design, control, and optimization of complex dynamic systems. One of 

the most advanced general purpose (M&S) frameworks is the Discrete Event System 

Specification (DEVS) formalism. Cell-DEVS combines DEVS with cellular models, 

allowing complex systems to be described using simple rules. 3D visualization meth­

ods (such as virtual reality (VR) or computer games) provide support to simulation 

studies; however, at present there is no way to integrate 3D visualization for DEVS 

and Cell-DEVS (using interactive, collaborative platforms). Likewise, developing and 

modifying scenarios in existing VR environments usually requires significant efforts 

in programming and validation. 

In order to solve the aforementioned problems, this thesis focuses on the definition, 

design, and performance analysis of the visual Cell-DEVS (VCELL) framework, which 

allows different simulation models to receive real-time data to interact, collaborate, 

and adapt to simulation events (integrating 3D visualization, sensor data, DEVS, and 

Cell-DEVS modeling and simulation), which improves the models' design. 

As a proof of concept, we applied VCELL to different applications, including 

building information modeling (BIM), emergency and disaster simulation, and land 

combat simulation. 

BIM is used to generate and manage data for buildings during the project life cycle. 

Existing BIM applications include models for indoor climate, energy consumption, 
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and C02 emissions. However, they do not take into consideration other problems. 

This research shows a more generic environment for Cell-DEVS and BIM integration, 

and a prototype implementation in the form of BIM for Cell-DEVS simulation and 

visualization. 

In emergency and disaster simulations, it is usually important to consider the 

system evolution in time and space. Generally, such simulations are large-scale pro­

grams, which in turn raise the need for efficient simulation engines. However, some of 

these emergency simulations do not have real-time input data and are not adaptive. 

VCELL solves these problems, allowing the emergency simulation to be integrated 

with 3D visualization in real time. 

In the area of land combat simulation, agent-based distillation (ABD) provides 

a method for studying different land combat behaviors, which helps with decision­

making. ABD movement algorithms are used to simulate the target's movement in 

the battlefield by a large set of parameters. However, under some circumstances, 

these movement algorithms use random movements, which may result in an unpre-

dicted simulation output. We propose to use a model that integrates a cellular agent 

model and a collaborative 3D visual agent model in real time. VCELL allows the 

randomization problem to be solved, providing more stable output and reducing the 

scenario development, modification, and validation time. 

The main ideas, design, and implementation of VCELL are discussed, and the 

case studies are presented in detail. 
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Chapter 1 

Introduction 

Three-dimensional (3D) visualization methods (such as Virtual Reality (VR) or com­

puter games) have changed the military training of soldiers for successful results in 

wartime missions [1]. VR can be defined as a computer-generated surrounding, an 

interactive 3D computer graphical interface, or an immersive interactive environ­

ment [2]. Training simulation systems can be treated as games; hence, significant 

effort has recently been devoted to trainee learning and improving their skills [3]. 

Digital Game-Based Learning [4], a learning style used currently and that will also 

be used in the future, is deployed as a method of learning and training, because it 

is motivating and effective when used correctly. Simulators have become a powerful 

tool that is changing military training. Simulators are used not only to teach troops 

how to use complex equipment, but also how to work efficiently in teams. Simulation 

also gives military decision-makers a strategic overview of options before engaging in 

real combat. In addition, they can estimate the performance of new weapons systems 

under consideration [1], However, for military tactical training simulation, developing 

or modifying different scenarios in an existing virtual environment at the code level 

requires significant programming time and validation efforts. 

These 3D visualization methods are also popular in various applications ranging 

from training to construction. For instance, if 3D visualization and simulation are 
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combined with building information modeling (BIM), this could result in increased 

productivity in building design and construction [5]. BIM is a technique used to 

generate and manage building data during the life cycle of a building's construc­

tion, which allows for better and more accurate construction projects with minimized 

financial cost [6]. Because BIM facilitates the coordination, cooperation, and mainte­

nance of the building life cycle, many research studies have included simulation [7-11]. 

Nevertheless, most of these have focused only on thermal indoor climate, energy con­

sumption, C02 emissions, and other environmental aspects. In addition, no existing 

research has applied generic modeling and simulation (M&S) methods to BIM. Doing 

so would permit different studies to be carried out in the areas of building evacuation, 

fire spreading, and so on. Moreover, there are no reactive simulation systems that 

can interact in real time with changes to building parameters 

Another popular use of 3D visualization and simulation is analysis of emergency 

situations. This enhances training preparation, allowing decision-makers to investi­

gate different scenarios. In emergency simulation, M&S techniques play an important 

role when it is impractical to perform real-world studies due to the destructive im­

pact of emergencies. Generally, such simulations are large-scale programs, which in 

turn raise the need for efficient simulation engines. Research studies [3,12-18] state 

that some of these emergency simulations have 3D visualization, but they do not 

incorporate real input data from the field and are not adaptive in real time. 

VR is usually combined with computer-based M&S as a powerful tool for cost-

effective analysis, design, control, and optimization of complex dynamic systems. One 

of the most advanced general-purpose M&S frameworks is the Discrete Event System 

Specification formalism (DEVS) [19-22]. DEVS facilitates the reuse of tested models 

and improves the safety of the simulations. As a result, this reduces development time. 

The cellular DEVS (Cell-DEVS) [23] approach combines DEVS and cellular models, 

which allows complex systems to be described as a cell space using simple rules for 
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modeling. Existing DEVS and Cell-DEVS tools usually include 2D visualization to 

facilitate analyzing the output results on a 2D grid map, but 3D visualization and VR 

for DEVS and Cell-DEVS in real time are not available. Although surveys [3,24,25] 

show that 3D visualization can be applied to DEVS and Cell-DEVS, existing efforts 

are not interactive, collaborative, or adaptive. 

Considering these issues, the main objective of this research is to develop a frame­

work that allows different simulation models to receive real-time external parameters 

so that they can be interactive, collaborative, and adaptive to simulation events by 

integrating the DEVS, Cell-DEVS, and 3D VR with different modeling techniques. 

1.1 Thesis Contributions 

The central theme of this thesis is to develop a framework that allows different simu­

lation models to receive real-time external parameters so that they can be interactive, 

collaborative, and adaptive to simulation events by integrating the DEVS, Cell-DEVS, 

and 3D visualizations with different modeling techniques, which improves simulation 

i n t e r o p e r a b i l i t y  a t  t h e  s o f t w a r e  l e v e l ,  w h i c h  e n h a n c e s  t h e  s i m u l a t i o n  r e s u l t s .  O u r  

objective is to develop a generic framework to be applied to simulation environments 

and applications. This thesis presents a simulation adaptation and interoperability 

methods using DEVS, Cell-DEVS, and 3D visualization. We use BIM simulation, 

emergency simulation, and land combat simulation as case studies. The key contri­

butions are summarized below: 

• The design and development of the framework, which is the first existing frame­

work to be based on DEVS, Cell-DEVS, and 3D visualization simulation prin­

ciples. The framework's key features are summarized as follows: 

— The framework serves as a container to hold different software components 
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without being specific to any implementation, which allows new compo­

nents to be added without making changes at the code level or in the 

framework architecture. 

- Using the framework for adding various hardware devices allows hardware-

in-the-loop, which enhances the simulation results by achieving more ac­

curate results than when simulated hardware is used, and also improves 

training in different domains (such as in military training) by allowing the 

use of real equipment. 

- The framework can be used not only for real-time simulation, but also 

in virtual time, which allows for the enhancing of the simulation results 

by comparing the real-time and virtual-time output results, and hence 

modifying the simulation rules. 

- The framework can use predefined inputs, actual inputs from the simulated 

system, or a combination of both predefined and actual inputs, which gives 

flexibility for modifying the simulated system to get accurate results. 

The framework combines a Cell-DEVS cellular model, a DEVS-based con­

troller, and VR visualization. This component-oriented approach provides 

model reusability and interoperability, allowing any of the components to be 

integrated or replaced. 

• The RT cellular simulation is an on-demand data source of the scenario that is 

to be used by the DEVS model. A hardware-in-the-loop can be used to update 

the Cell-DEVS simulation data with a real situation and the information on 

the simulation space area. 

• An interface is developed between DEVS, Cell-DEVS, and 3D visualization sim­

ulations so that various instances of each domain can cooperate with each other 

to simulate the same simulation session. In this case, the required simulation 

is performed within the framework. This means that the simulation can be 
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manipulated in real time. 

As discussed earlier, the framework proposed in this research was applied to BIM 

simulation, emergency simulation, and land combat simulation. These applications 

are described below. 

a) BIM Simulation 

Most current BIM simulations do not cover our requirements, not only with regard 

to the prediction of the construction and building life cycle but also in the mainte­

nance cycle. In this research, we focus on generalizing BIM simulations to overcome 

these limitations. We also focus on developing a simulation-driven architecture for 

integrating Cell-DEVS simulation with BIM on the simulated building in real time. A 

3D visualization sub-system is then developed to present the output simulated results 

of Cell-DEVS on a BIM model. 

b) Emergency Simulation 

Since emergencies are processes that are distributed over both time and space, 

emergency and disaster simulations should take into consideration the system evolu­

tion in both time and space. In this research, we propose an integrated emergency 

management system based on DEVS and Cell-DEVS to develop new classes of mod­

els for emergency response applications. Cell-DEVS allows models to receive external 

information, and the simulation parameters can be updated at any time due to the 

continuous-time nature of the discrete-event specifications. The proposed emergency 

simulation integrated with emergency management is based on the collaboration of 

DEVS, Cell-DEVS real-time simulations with hardware-in-the-loop, and 3D real-time 

visual simulation. The emergency simulation is based on Cell-DEVS, and the emer­

gency management uses a robotic agent controlled by a DEVS model to respond to 

the emergency in real time. We also use a 3D visualization engine that takes the 

results of the emergency simulation and the emergency management to be visualized 

in 3D in real time. Moreover, we propose a method to integrate Google Earth free 
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virtual reality web services with the visualization engine injecting the terrain data 

into the Cell-DEVS engine in real time. 

c) Land Combat Simulation 

Defense analysts have studied different behaviors of land combat battlefields based 

on agent-based distillations (ABD), which provide them with a useful tool for decision­

making. ABDs are the most popular method and can be used to explore different 

aspects of land combat operations and help to quickly investigate different scenarios 

in real battle conditions. Although ABDs' movement algorithms are used to simulate 

the target's movement in the battlefield by a large set of parameters related to the 

battlefield, they move randomly, which may result in unpredicted simulation outputs. 

In addition, most existing ABDs include only 2D visualization facilities (with no 3D 

visualization scene). Although VR and computer games are used for military tactical 

training simulation, it requires significant programming time and validation efforts to 

develop or modify different scenarios in an existing virtual environment at the code 

level. In this research, we propose to deal with these problems using our framework, 

which integrates a cellular agent model and a collaborative 3D visual agent model 

in real time to solve the randomization problem of the ABDs' movement algorithms 

and also reduce the development time required for programming different scenarios. 

We also propose to integrate a hardware interface for our model, which facilitates the 

building of training simulators based on human-in-the-loop. The proposed human-

in-the-loop training simulator will be designed, built, and used to train a tank crew 

in a virtual simulation environment. This will provide reality in training, by using 

real equipment, or a manufactured replica of it. 

Parts of the thesis have appeared in the following publications: 

• Ahmed Sayed Ahmed, Gabriel A. Wainer, and Samy Mahmoud. "Integrating 

Building Information Modeling & Cell-DEVS Simulation". Proceedings of 2010 

Spring Simulation Conference (SpringSimlO), Orlando, USA. April 2010. 
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• M. Moallemi, S. Jafer, A. Sayed Ahmed, and G. A. Wainer. "Interfacing DEVS 

and Visualization Models for Emergency Management". Proceedings of 2011 

Spring Simulation Conference (SpringSimll), Boston, USA. April 2011. 

• Ahmed Sayed Ahmed, M. Moallemi, Gabriel A. Wainer, and Samy Mahmoud. 

"VCELL: A 3D Real-Time Visual Simulation in Support of Combat". Proceed­

ings of 2011 Summer Computer Simulation Conference (SCSC11), The Hague, 

Netherlands. June 2010 

The last publication was awarded the second place Best Paper Award in recogni­

tion of its quality, originality and significance in modeling and simulation. 

1.2 Thesis Organization 

This thesis is organized as follows: 

Chapter 2 provides detailed background on DEVS and Cell-DEVS formalism, 

BIM, complex adaptive systems (CAS) and ABD, and 3D real-time visualization. 

Chapter 3 gives an overview of the VCELL framework and presents its archi­

tecture. It focuses on integrating DEVS, Cell-DEVS, and 3D real-time visualization 

simulation in virtual and real time. 

Chapter 4 focuses on integrating Cell-DEVS simulation with the BIM model 

based on a collaboration of Cell-DEVS and BIM simulation in virtual time. We 

present the development of an Interactive Environment System (IES_Revit). It shows 

a Cell-DEVS/BIM integration system and describes a prototype implementation in 

the form of a BIM add-in tab for Cell-DEVS simulation, and then visualizes the output 

simulation of Cell-DEVS on the BIM model. The diffusion limited aggregation (DLA) 

model example is used to verify the feasibility of combining these two technologies 

using IES. 
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Chapter 5 focuses on integrating emergency simulation with emergency manage­

ment based on the collaboration of DEVS, Cell-DEVS, and 3D real-time visualization 

simulation in real time. It discusses the modifications made to the CD++ simula­

tion engine to enable real-time execution. We present the emergency management 

mechanism using a DEVS-based robotic agent and explain the visualization of the 

simulation. The message structure transferred between the three components is pre­

sented. 

Chapter 6 describes a collaborative 3D real-time visual cellular agent model 

(VCELL) and a cellular agent simulation in real time. The architecture of the visual 

CELL-DEVS agent model is presented. This chapter also discusses the implementa­

tion of Cell Agent and the 3D real-time visual simulation sub-models of land combat. 

The global message structure is illustrated. 

Chapter 7 concludes this thesis by outlining major findings. Some future work 

is also suggested. 
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Chapter 2 

Literature Review 

This chapter presents a literature review of the proposed work. Section 2.1 gives 

background on VR and simulation. Section 2.2 describes the DEVS and Cell-DEVS 

M&S framework and its implementation in the CD++ environment. Section 2.3 

introduces BIM. Emergency simulation is reviewed in Section 2.4. ABD for combat 

is presented in Section 2.5. 

2.1 Virtual Reality and Simulation 

In the past, simulators and other simulation applications were only available to indus­

trial and military systems, due to the system requirements of high technology, which 

were expensive [26]. In recent years, the rapidly expanding technology in computer 

processing, storage, communications, and display capability has made it possible to 

run simulators and other simulation applications on personal computer hardware [27] 

because PCs now have advanced computational capabilities at very low cost [28]. 

This can be seen in the hardware of the current generation of video game consoles, 

such as Sony's PlayStation 3, Nintendo's GameBox, and Microsoft's Xbox [29-31]. 

In recent years, serious games, simulation games, training simulators, and VR 

have gained popularity in computer game technology. Serious games are the result of 

9 



applying simulation technology for training purposes [32], while simulation games are 

the result of applying simulation technology for entertainment purposes [33]. Training 

simulators, such as combat marksmanship simulators, flight simulators, and driving 

simulators [34-36], are designed to develop the skills or experience of the trainees who 

use them and to maximize their performance. VR technologies are used to enhance 

the immersiveness and interactivity of the training simulator [36]. 

Most military simulators are based on various types of military equipment, such 

as aircraft simulators, tank simulators, and Marine simulators. These simulators not 

only improve and enhance military training but also reduce training costs and save 

trainees' lives by giving them training in situations that would be too dangerous 

to execute in reality. Due to the cost-effectiveness of computer game technology, it 

is used in various armed-forces simulators. 3D games and serious games use these 

simulation games for military purposes, such as America's Army [37]. Also, several 

commercial off-the-shelf games, such as Delta Force 2 and Steel Beasts [38,39], are 

used by armed forces to improve military training [40]. 

Burdea and Coiffet define VR as 3D, immersive, and real time simulations of 

an environment that can be interactive with users via multiple sensorial channels 

[41]. A VR application is based on various components: the scene and the objects, 

behaviors, interaction, communication, and sound [42], With regard to the scene 

and the objects: the scene presents the environment that contains 3D objects, which 

represent various 3D models such as terrain, vehicles, or trees. It also includes lighting, 

observers, collision detection, and environmental and special effects. Behaviors are 

the properties of the objects, such as moving, rotating, and scaling. Interaction can 

be defined as the action and reaction between the user and the virtual world, carried 

out through various hardware devices such as mouse, keyboard, 3D mouse, data 

gloves, or head-mounted devices. Communication means that the VR applications 

are collaborative environments in which remote users can interact with each other. 
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Sound represents various sound effects in the VR application of the scene and objects. 

The use of immersive displays and desktop displays for various tasks in VR offer 

difficulties with regard to making a choice for specific tasks [43]. A great deal of 

research has been done to compare the usability of immersive and desktop displays 

[44-46] but immersive displays have been shown to be more advantageous. 

Many VR software systems and VR toolkits have been proposed for the develop­

ment of VR applications. These software tools are classified as follows: 

• Authoring tools have a graphical user interface (GUI) which is used for cre­

ating the scene and objects using various scripting languages. The developers 

should have some knowledge of VR. The most frequently used authoring tools 

are Autodesk 3dMax [11], Autodesk Maya [47], MilkShape 3D [48], Planlt 

3D [49], AC3D [50], and Blender [51]. 

• Software Programming Libraries: in these, we can programme a VR appli­

cation from scratch using a programming library for VR, such as Java3D [52], 

VRML [53], OpenGL [54], and X3D [55]. To use such a library, the developers 

should have a good knowledge of programming, VR, and computer graphics. 

2.1.1 Virtual Reality Simulation in the Military 

VR can be defined as a computer-generated surrounding, an interactive 3D computer 

graphical interface, or an immersive, interactive environment [2]. VR and computer 

games are modifying military preparation for war to an extreme degree [1]. The use of 

simulators has become a powerful tool that has changed military training. Simulators 

are used not only to teach troops how to use complex equipment, but also teach them 

how to work efficiently in teams. Simulation also gives military decision-makers a 

strategic overview of options before starting real combat. They can also evaluate the 

performance of new weapons systems under consideration [1], 
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The rapidly expanding technology in computer processing, storage, communica­

tions, and display capability has resulted in the rapid growth of software modeling and 

visual simulation [56]. Interactive 3D simulation is used in combat simulation, where 

it is necessary during peacetime to train soldiers for successful results in wartime mis­

sions [57]. Training simulation systems can be treated as games; hence, significant 

effort has recently been devoted to trainees' learning and improving their skills [58]. 

Digital Game-Based Learning [4], a learning style used currently and in the future, is 

deployed as a method of learning and training, because it is motivating and effective 

when used correctly. 

The components used in a visual simulation are: 

• A real-time application program, which controls the graphical scene, model dy­

namics, collision detection, and various special effects. A real-time virtual en­

vironment development uses a computer graphics library/application program­

ming interface (API)/language such as OpenGL, Java3D, and VRML, which 

can be used with a common programming language, such as C++, Java, or 

Python. 

• An image generator (IG), which is the graphical hardware responsible for draw­

ing the scene on PCs and gaming consoles. 

• The visual database is the data that describe what, when, and how to draw the 

scene. 

• A modeling package, which creates visual databases that represent different 3D 

objects in the scene. 

Many VR software systems and VR toolkits have been developed for VR appli­

cations, such as VPLs Body Electric [59], Alice [60], CAVElib [61], VRJuggler [62], 

DIVERSE [63], the Studierstube project [64], and MRToolkit [65]. Many Internet-

based PC games were developed by the Moves Institute, under the auspices of the 

US Army [37]. The armed forces are looking for simulation solutions for training 
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that provide a high level of realism and interactivity in a visual representation. In 

a real-time visual simulation of a battlefield, tactical scenarios have to be designed 

for the enemy side. Implementation of these scenarios takes a long time, in terms of 

programming and verification. It may also take a long time to modify these scenarios 

for different situations. 

2.2 DEVS and Cell-DEVS 

2.2.1 The DEVS Modeling and Simulation Formalism 

The Discrete Event Systems Specification (DEVS) is an M&S formalism that allows us 

to define hierarchical modular models [66]. DEVS M&S theory is based on systems 

theory concepts [19,67,68]. DEVS modular facilitates the reuse of tested models, 

improving the safety of the simulations. As a result, this can reduce development time. 

DEVS is a framework for constructing discrete-event hierarchical modular models, in 

which behavioral models (atomic) can be integrated, forming a hierarchical structural 

model (coupled). The atomic DEVS model is defined as in (2.1) and in Table 2.1. 

M =< X, Y, S, Sint, 5extl A, ta> (2.1) 

Table 2.1: Explanation of Atomic DEVS Model Equation Variables 

Variable Definition 

X The set of input events 

Y The output events set 

S The set of sequential states 

&int The internal state transition function 

&ext The external state transition function 

A The output function 

ta The time advance function 
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Fig. 2.1 shows the description of a DEVS atomic model. In the case of the absence 

of external events; if the DEVS model is in state s G S at a given time, an output 

value A(s) is invoked at port y after ta(s) has finished and then the s state changes to 

Sint(s). An internal transition occurs because of the consumption of time ta(s). When 

an external transition takes place, a state transition occurs. The new state transition 

is given by Sext(s, e, x) where s is the current state, e is the time elapsed since the 

last transition, and x is the external event that has been received. 

Figure 2.1: Discrete Event Systems Specification (DEVS) Atomic Model semantics 
[69] 

The atomic model can be considered as the base element in which we define dy­

namics of any system, while the coupled structural model consists of one or more 

atomic and/or coupled models. Coupled models are defined as a set of basic compo­

nents (atomic or coupled). Fig. 2.2 shows a description of the DEVS coupled model. 

The coupled model can be defined as in equation (2.2). The variables used are defined 

in Table 2.2 
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CM =< X, Y, D, {Md | deD}, EIC, EOC, IC, select > (2.2) 

Table 2.2: Explanation of Coupled DEVS Model Equation Variables 

Variable Definition 

X The set of input events 

Y The set of output events 

D The set of component names and for each d £ D 

Md A DEVS basic model(i.e., atomic or coupled) 

EIC the set of external input couplings 

EOC the set of external output couplings 

IC the set of internal coupling 

select the tie-breaker function 

Out 

M2 Ml 

C2 

Oat 
Outl 

Out2 

CI 

Ou^ 

Figure 2.2: Discrete Event Systems Specification (DEVS) Coupled Model [69] 

The coupled model explains how to convert the outputs of a model into inputs for 

the other models, and how to handle inputs/outputs to and from external models. 
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In recent years, the DEVS formalism [70] has gained popularity for modeling a va­

riety of problems [71]. Various DEVS-based simulation tools have been implemented, 

such as DEVS-C++ [72], DEVS/HLA [73,74], DEVSJAVA [75], and JDEVS [76], 

DEVS was also implemented in the CD+4- toolkit [77]. The CD++ toolkit is an 

open-source, object-oriented M&S environment that implements DEVS and Cell-

DEVS formalisms. 

2.2.2 Cell-DEVS Modeling and Simulation Formalism 

Different formalisms have been used to capture the behavior of the systems that can be 

represented as cell spaces. These systems can be found in many fields, from chemistry 

to engineering and from physics to social sciences [78,79]. Cellular automata are 

known formalisms that present these types of systems [80,81]. Cellular automata 

were established by von Neumann [82] to study self-reproducing systems. A cellular 

automaton is a discrete model that is composed of a network of cells where each 

cell has a finite number of states [79]. The state of each of the cells in time t is a 

function of states of its predefined neighbor cells in time t-1. Cell-DEVS [23,69] has 

extended the DEVS formalism, allowing us to implement cellular models with timing 

delays. Once the behavior of a cell is defined, a coupled Cell-DEVS can be created 

by interconnecting a number of cells with their neighbors. 

A Cell-DEVS model is a lattice of cells, where each cell is a DEVS atomic com­

ponent, holding state variables and a computing apparatus, which is in charge of 

updating the cell state according to a local rule-base. This is done using the current 

cell state and those of a finite set of nearby cells (called its neighborhood). Cell-

DEVS improves execution performance of cellular models by using a discrete-event 

approach. It also enhances the cell's timing definition by making it more expressive. 

Each cell is defined as a DEVS atomic component, and it can later be integrated to 

a coupled component representing the cell space. Cell-DEVS atomic components are 
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informally defined as in Fig. 2.3. 

• •• oqueue 

Figure 2.3: Description of a Cellular Discrete Event Systems Specification (Cell-
DEVS) Atomic Component [23] 

Each cell uses N inputs to compute its next state. These inputs, which are received 

through the model's interface, activate a local computing function (r). A delay (d) 

can be associated with each cell. The state (s) changes can be transmitted to other 

models, but only after the consumption of this delay. This model can be formally 

described as in equation (2.3). The used variables are defined in Table 2.3 

TDC =< X, Y, S, N, type, d, r, S int, dext, A, ta > (2.3) 
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Table 2.3: Explanation of Atomic Cell-DEVS Model Equation Variables 

Variable Definition 

X The set of input external events 

Y The set of output external events 

S The set of states 

N The set of input values 

d The delay for the cell 

type The type of delay (transport/inertial/other) 

r The local computing function 

&int The internal state transition function 

&ext The external state transition function 

A The output function 

ta The state's lifetime function 

Once the cell behavior is defined, a coupled Cell-DEVS can be created by putting 

together a number of cells interconnected by a neighborhood relationship. A Cell-

DEVS coupled model is informally presented in Fig. 2.4. A coupled Cell-DEVS model 

is the resulting array of cells (atomic models) with given dimensions, borders, and 

zones (if applicable). Each cell is connected to its neighborhood through standard 

DEVS input/output ports. 

The coupled Cell-DEVS model can be formally described as in equation (2.4). 

The variables used are defined in Table 2.4 

TDC =< X, Y, Xlist, Ylist, 77, N, m, n, C, B, Z, select > (2.4) 
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Table 2.4: Explanation of Coupled Cell-DEVS Model Equation Variables 

Variable Definition 

X The set of input external events 

Y The set of output external events 

Xlist The list of input coupling 

Y list The list of output coupling 

V The neighborhood size 

N The neighborhood set 

m, n The size of the cell space 

C The cell space set 

B The border cells set 

Z The transition function 

select The tie breaking selector function 

Cell-DEVS were implemented using CD++. CD-I—I- has solved a variety of com­

plex problems [83-85]. The basic features of the CD++ toolkit can be shown in an 

example of an application. A maze-solving algorithm, defined in [86], is used as an 

example of the application of such models [87], and is shown below: 

[ t o p ]  

c o m p o n e n t s  :  m a z e  

[ maze ] 

t y p e  :  c e l l  

d i m  :  ( 1 5 ,  1 5 )  

d e l a y  :  t r a n s p o r t  

d e faultDelay Time : 100 

b o r d e r  :  n o w r a p p e d  

n e i g h b o r s  :  m a z e (  — 1 , 0 )  

n e i g h b o r s  :  m a z e ( 0 , - l )  m a z e ( 0 , 0 )  m a z e ( 0 , l )  

n e i g h b o r s  :  m a z e ( l . O )  

i n i t i a l v a l u e  :  0  

i n i t i a l c e l l s v a l u e  m a z e . v a l  

l o c a l t r a n s i t i o n  :  m a z e — r u l e  
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Cell's connections 

OUT 

CeN definition 

Figure 2.4: Description of a Cellular Discrete Event Systems Specification (Cell-
DEVS) Atomic Component [23] 

[  m a z e — r u l e  ]  

r u l e  :  1  1 0 0  {  ( 0 , 0 )  =  0  a n d  ( t r u e c o u n t  =  3  

o r  t r u e c o u n t  =  4 )  }  

r u l e  :  0  1 0 0  {  ( 0 , 0 )  =  0  a n d  t r u e c o u n t  <  3  }  

r u l e  :  1  1 0 0  {  t  }  

In the maze example, the rules are as follows: 

• If the cell is a wall cell, the cell remains a wall cell. 

• If the number of neighborhoods of a cell is three or more, the cell becomes a 

wall cell. 

When the maze model is executed using these rules, all non-solution paths in the 

maze are closed successfully. One example of the initial cell state to the maze and 

the final steady state of the given initial maze cells is shown in Fig. 2.5, which is 

drawn using CD++ Modeler (a GUI included with the tool) [88]. Cell-DEVS was 

used to solve different problems in construction and architecture projects [89,90]. 
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The construction and architecture model shows a space representation and conflict 

analysis during construction, but there is no visualization used in this model. 3D 

visualization simulation [91,92] was used only to visualize different problems that 

were implemented in Cell-DEVS. 

L 

(a) (b) 

Figure 2.5: (a) Initial State of Maze (b) Final State of Maze 

Cell-DEVS was also used to solve complex problems in a battlefield on land. A 

land battlefield model was introduced by Madhoun and Wainer [93,94], The model 

describes two armies engaging on a battlefield. Each army consists of a number of 

soldiers defending their flag or attacking the enemy's flag. The soldiers move on 

the battlefield according to a simple rule to obtain the enemy's flag. The movement 

is made by comparing the current cell position of the soldier and the enemy's flag 

position only, and no consideration is given to neighboring friendly and enemy soldiers. 

Therefore, the output results cannot be guaranteed. 
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2.3 Building Information Modeling (BIM) 

For successful construction projects, an enormous amount of data should be collected 

and analyzed in the pre-design phase of the project. Until recently, the success of 

this phase was dependent on the experience of experts. However, the information 

required to complete the project and the amount of data that must be analyzed to 

do so is now greater and more complex. Therefore, there is a need for tools that can 

directly support this pre-design phase. BIM has been considered as a tool that can 

support this part of the construction project [95]. BIM has resulted in improvements 

to the way architects-contractors and fabricators work [96]. 

Architect Owner 

Mechanical 
Engineers/ 

BIM 

Interior 
Designers 

Electrical 
Engineers 

Chil 
Engineers 

Construction 
Mangers J 

Figure 2.6: Building Information Modeling Life Cycle [97] 

BIM is the process of generating and managing building data during the life 

cycle of the building project [5], as shown in Fig. 2.6. BIM uses 3D, real-time, 
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dynamic building modeling software to increase productivity in building design and 

construction. BIM allows us to achieve better and more accurate construction projects 

with minimized financial costs [6]. BIM also facilitates coordination and cooperation 

and supports the easy maintenance of a building life cycle. 

BIM software creates parametric 3D models instead of 2D perspective drawings 

and operates on a digital database where any change made to this database will be 

reflected in the whole drawing that is produced. BIM software is often associated 

with industry foundation classes (IFCs), which are data structures used to repre­

sent information used in BIM. IFCs were developed by the International Alliance 

for Interoperability [98]. The IFCs are based on the Standard for the Exchange of 

Product (STEP) [99]. This model data (STEP) is a way to exchange product data 

information. IFCs are supported in most of the current architecture software and it 

is recognized as a valuable means of providing interoperability and better integra­

tion of the life cycle process of buildings. The concept of interoperability in BIM is 

that all the data associated to a building can be handled in one repository, which 

facilitates exchange between different domains in the architecture, engineering, and 

construction industries, by having a centralized data model accessible to different 

domain applications [100]. The interoperability encloses the integration of both the 

tools for design and analysis, and the multiple domains of expertise in the building 

life cycle process [101]. BIM is considered to be an important improvement to the 

way architects-contractors and fabricators work [96], in that it allows for conflicts be­

tween them to be minimized, and presents a 3D visualization of the building during 

design and fabrication. Therefore, errors made by the design team can be minimized, 

resulting in reduced costs. 

There are different simulation applications for BIM, such as IDA Indoor Climate 

and Energy (IDA ICE) and DesignBuilder Software [102,103]. IDA Indoor Climate 
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and Energy (IDA ICE) is a dynamic simulation application that allows us to calcu­

late the thermal indoor climate of individual zones and the energy consumption of 

the entire building. DesignBuilder Software is a simulation software used to check 

building energy consumption, C02 emissions, and other building environmental as­

pects. In the research of [104], the integration of energy simulation as a mode of 

design assessment shows that information can be described in detail in a BIM to 

support design evaluation and decision-making in concept design. The BIM-based 

parametric design method models the building modeling and its configuration to be 

connected to real-world climatic parameters, and facilitates the study of building sus-

tainability related to energy efficiency [105]. Most BIM simulation focuses on energy 

efficiency, climate (heating, ventilating, and air-conditioning), and different aspects 

concerning the building. We have surveyed the available systems, such as Bentley 

Architecture, Graphisoft ArchiCAD, VectorWorks Architect, Autodesk Revit Archi­

tecture, and Autodesk 3ds Max [7-11], to see whether they support our proposal. 

These systems allow us to use BIM applications and present a 3D visualization that 

improves productivity in building design and construction. 

Although some of these BIM simulations are very advanced and focus on particular 

applications, they are not applicable for some aspects, such as building evacuation and 

emergency planning. Khan and Wainer in [24,25] presented a design and visualization 

of DEVS and Cell-DEVS simulation using Maya. Maya is used to visualize output 

simulation results in virtual time. The system is not interactive and cannot run in 

real time. 
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2.4 Emergency Simulation 

Emergency simulation has received increasing attention in recent years and research 

has been developed and proposed for this purpose. Specifically, disaster management 

and evacuation strategies are the two most important subjects within this field. Due 

to the devastating occurrence and destructive impact of emergencies, it is impractical 

to perform real-world studies of this nature. M&S is an alternative to field-based 

experiments [12]. Generally, such simulations are large-scale programs, which in turn 

raise the need for efficient simulation engines. Modeling, simulation, and visualization 

techniques can help address many of the challenges in emergency response planning. 

A number of modeling and simulation applications for analyzing various disasters are 

surveyed in [12]. 

In [16], a mathematical model was implemented in an emergent algorithm that 

was presented to be used for movement in robotic collectives. A tree-in-motion map­

ping (TIMM) technique was presented in [17]; this allows for efficient environment 

mapping by a set of intelligent mobile-robot sensor agents that dominate limited 

communication bandwidth and computational power. Abielmona and Petriu in [18] 

provided a design and development for a multi-agent system that included agents that 

dominate a limited amount of communication bandwidth and computational power 

for a territorial security application. Castonguay and Wainer in [3] provided a design 

and development for an aircraft evacuation using DEVS simulation and visualization, 

which allowed the aircraft evacuation results to be visualized after the simulation. 

A number of M&S applications exist for studying individual aspects of emergency 

response scenarios. However, a number of simulation tools have to be integrated 

to address multiple aspects of a single disaster event. Jain and McLean in [106] 

presented a framework for M&S in emergency response applications, which systemat­

ically integrates M&S tools to address the overall response. In [107], Jain and McLean 
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integrated gaming and simulation systems to train decision-makers and responders 

to work together as a team. A discrete-event environment introduced by Gonzalez 

in [108] presents the processes of analysis and design of a multi-agent system for 

a crisis response organization with the purpose of building a simulation testbed to 

experiment with different coordination mechanisms. To achieve efficient emergency 

management, we use virtual simulation with real-time emergency response, due to its 

capabilities to provide real-time system observations [13-15]. 

2.5 Agent-Based Distillation for Combat 

Lanchester's Equations, presented by Lanchester in 1916 [109], were considered by 

defense analysts to model and hypothesize combat attrition (which is the act of weak­

ening the enemy side by attack) [110, 111], Lanchester's Equations are a set of linear 

dynamic equations that address attrition as a continuous function over time. Combat 

is modeled as a deterministic process that needs an attrition-rate coefficient. 

Although Lanchester's Equations are easy to apply, such models, based on math­

ematical equations and physical description of combat, can explain an ideal model 

of military operations that is too abstract and does not satisfy reality. The draw­

backs of Lanchester's Equations have been described and analyzed in [110,112-114]. 

Research results in [110,111,114] show that warfare can be considered to be nonlin­

ear behavior. Combat can be considered as a complex adaptive system (CAS) [111], 

and multi-agent system (MAS) platforms have been applied successfully for studying 

CAS. The combatants are modeled as agents, usually with a set of predefined charac­

teristics. These agents adapt, evolve, and co-evolve with their environment [114,115]. 

This view of combat allows researchers to use agent-based simulations on military 

operations. The field is usually known as agent-based distillation (ABD) or agent-

based simulation (ABS). ABD emphasizes the concept of incorporating agents into 
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the environment [116]. Defense analysts have studied different behaviors of warfare 

based on ABD. Simulation is used to study and analyze the dynamics and behaviors 

of the system, which provide defense analysts with a useful tool for helping them to 

make decisions. 

The agent's movement depends on five different weights: agent healthy friend, 

agent injured friend, agent healthy opponent, agent injured opponent, and the flag 

position [117]. The first four categories describe the agent's health state, which affect 

its movement in the battlefield space. The flag position is also used to calculate the 

nest movement, according to the distance between the agent and its opposite flag. 

The movement is calculated at each simulation time step for each agent. The agent 

can move to another cell or decide to stay in the same cell. Each cell in the space 

cannot be occupied by more than one agent at a time. The decision-making used 

by each agent to decide on the direction in which to move depends on the agent's 

personality in the movement algorithm. The movement algorithm of, for example, 

the Enhanced ISAAC Neural Simulation Toolkit (EINSTein) uses equation (2.5) to 

compute the penalty for the next location [110,113]: 

= 2 if A'"™) + W" (~^f) (2'5) 

where 

Rs Sensor range of agent about to move; 

E Number of enemy entities within sensor range; 

WE Weighting toward enemy agents; 

Di,new Distance to the ith enemy from the new location; 

WF Weighting toward the flag; 

Distance to the flag from the new location; 

DFoid Distance to the flag from the current location. 
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The movement algorithm of Map Aware Non-uniform Automata (MANA) ( uses 

equation (2.6) to compute the penalty for the next location [114,118]: 

E Number of enemy entities within sensor range; 

WE Weighting toward enemy agents; 

Di^new Distance to the ith enemy from the new location; 

Di<0id Distance to the ith enemy from the current location 

Wp Weighting toward the flag; 

D f ,  n e w  Distance to the flag from the new location; 

DFoid Distance to the flag from the current location. 

Various development efforts for combat have been designed based on agent-based 

simulation. One of these is Irreducible Semi-Autonomous Adaptive Combat (ISAAC) 

[110,111] and its extension, EINSTein [110,113], designed by the US Marine Corps 

Combat Development Command. Although ISAAC and EINSTein have good analysis 

capabilities and support 2D visualization, they are not open source, meaning that the 

source code cannot be read or modified, and they also do not support 3D visualization. 

BactoWars was developed by Land Operations [119]. Although BactoWars is open 

source, so that the source code can be read and modified and is flexible with regard 

to adding any new, desired features to a model, it does not have good analysis capa­

bilities and also does not support 3D visualization. MANA [114,118] was provided 

by New Zealands Defence Technology Agency. Although MANA has good analysis 

Z 
Di,new + (100 - A,old) 

iew 

F,new (2.6) 

where 
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capabilities and supports 2D visualization, it is not open source and also does not 

support 3D visualization. The Conceptual Research Oriented Combat Agent Distilla­

tion Implemented in the Littoral Environment (CROCADILE) [112] and the Warfare 

Intelligent System for Dynamic Optimization of Missions (WISDOM) [120-122] were 

developed at the University of New South Wales at the Australian Defence Force 

Academy. Although WISDOM has good analysis capabilities and supports 2D visu­

alization, it is not open source and also does not support 3D visualization. 

All of these development tools use a function for the agent's movement in space. 

Research introduced in [123] examined MANA's movement algorithms. The move­

ment algorithm of agents within the EINSTein and MANA ABDs was modified by 

Grieger [123]. In such combat simulations, an agent always moves to the cell with 

the maximum weight. If a tie happens, the agent selects randomly between the cells 

in the tie. Due to this randomization, the stability of the solution may be affected 

and the outputs of this combat simulation are not guaranteed [117]. 
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Chapter 3 

The VCELL Framework 

3.1 Introduction 

3D visualization has become important in simulation, as it presents a 3D graphical in­

terface that is effective when used for training simulations. 3D visualization also gives 

decision-makers an overview of the problem at hand before they begin working with 

the real system. However, for military tactical training simulation, developing or mod­

ifying different scenarios in an existing virtual environment at the code level requires 

significant programming time and validation efforts. As discussed in Chapter 1, 3D 

visualization simulation could be combined with different applications, for instance, 

BIM software, in order to increase productivity in building design and construction. 

3D visualization could also be combined with emergency simulations and battlefield 

simulation to enhance training preparation, allowing decision-makers to investigate 

different scenarios. As discussed in Chapter 1, the central theme of this thesis is 

to develop a framework that allows different simulation models to receive real-time 

external parameters to be interactive, collaborative, and adaptive to the simulation 

events by integrating DEVS, Cell-DEVS, and 3D visualization with different model­

ing techniques, which improve simulation interoperability at the software level, which 

enhances simulation results. Our objective is to develop a generic framework to be 
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applied to simulation environments and applications. We use BIM simulation, emer­

gency simulation, and land combat simulation as case studies. This thesis presents 

a simulation adaptation and interoperability methods using DEVS, Cell-DEVS, and 

3D visualization. 

As discussed in Section 2.2, DEVS is one of the most advanced general-purpose 

M&S frameworks. DEVS facilitates the reuse of tested models and improves the safety 

of simulations. As a result, this reduces development time. The Cell-DEVS approach 

combines DEVS and cellular models, which allow complex systems to be described 

as a cell space by using simple rules for modeling. Existing DEVS and Cell-DEVS 

tools usually include 2D visualization tools to facilitate the analysis of the output 

results on a 2D grid map, but 3D visualization for DEVS and Cell-DEVS in real time 

is still limited. Although surveys [3] show that 3D visualization can be applied to 

DEVS and Cell-DEVS, most existing methods are not interactive, collaborative, or 

adaptive. Many of them work with the outputs after the simulation ends (and not 

in real time). They are not collaborative, as they cannot exchange simulation data 

at runtime, and so they are not adaptive to the change or modification of simulation 

data during the simulation. 

We also discussed the fact that 3D visualization methods (such as VR and com­

puter games) have changed military training preparation of soldiers for successful 

results in wartime missions (as discussed in Section 2.1). However, for military tac­

tical training simulation, developing or modifying different scenarios in an existing 

virtual environment requires significant programming time and validation efforts at 

the code level. Military tactical simulations are usually performed using land combat 

simulation, which was discussed in Section 2.5. The most popular method, agent-

based distillations (ABDs), can be used to explore different aspects of land combat 

operations and help decision-makers to quickly investigate various scenarios in real 

battle conditions. The ABDs' movement algorithms are used to simulate the target's 
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movement in the battlefield by a large set of parameters related to the battlefield. 

However, under some circumstances, these algorithms use random movements, which 

may result in unpredicted simulation outputs. In addition, most existing ABDs in­

clude only 2D visualization facilities. 

The analysis of the state-of-the-art also showed how simulation could be combined 

with 3D visualization for BIM in order to increase productivity in building design and 

construction (as discussed in Section 2.3). As BIM facilitates the coordination, coop­

eration, and maintenance of the construction life cycle, many research studies have 

included simulation. However, most of them focus only on thermal indoor climate, 

energy consumption, C02 emissions, and other environmental building aspects. We 

discussed the fact that no current research has applied generic M&S to BIM, which 

permits different studies, including building evacuation and fire spreading. There 

are also no adaptive simulation systems that can interact in real time with building 

parameters changes. 

Finally, we discussed the fact that current efforts in 3D visualization could be com­

bined with emergency simulations to enhance training preparation, allowing decision­

makers to investigate different scenarios (as discussed in Section 2.4). We also showed 

that M&S techniques have played an important role in emergency simulation where 

it is impractical to perform real-world studies. Generally, such simulations are large-

scale programs, which in return raise the need for efficient simulation engines. Re­

search studies described in Section 2.4 state that some of these emergency simulations 

have 3D visualization, but they do not have real input data from the field and they 

are not adaptive in real time. 

Based on the above, this research aims to design and develop a framework that 

enhances and improves the existing simulation environments discussed previously 

in this thesis. The framework, called VCELL (visualization of DEVS and CELL-

DEVS), can be used to solve various complex M&S problems with interactive and 
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collaborative 3D visualization for enhanced and improved results. The proposed 

framework should be adaptive to external data parameters, such as various hardware 

components, to achieve more accurate results. The framework should run in virtual 

and real time to allow for comparison between both output results, which facilitates 

the modification of the simulation rules and methods. The proposed framework should 

use predefined inputs, actual inputs, or a combination of both predefined and actual 

inputs of the simulated system for flexibility in different simulation scenarios. The 

framework must reduce the time spent in development, modification, and validation, 

to allow for the creation and modification of different scenarios for various simulation 

environments within a short period of time. These simulation environments should 

communicate with each other, and be interactive, collaborative, and adaptive. The 

VCELL framework will be explained in detail in the following sections. 

3.2 VCELL Framework Definition and Features 

The VCELL framework must allow different simulation models to receive real-time 

external parameters, to be interactive and adaptive to the simulation events by inte­

grating DEVS, Cell-DEVS, and 3D visualization with different modeling techniques. 

VCELL is a simulation-driven architecture and a collaborative system for integrating 

Cell-DEVS simulation with DEVS simulation dealing with the event locations, which 

are spread out on the field space of the simulation and then visualized on a 3D visual 

scene. 

We use CD++ (which was presented in Section 2.2) as a development tool for 

DEVS and Cell-DEVS simulations. As CD-I—I- is open source, modifications can be 

made and new modules or facilities can be added. This also allows us to extend and 

integrate it with other toolkits. To achieve our goals, we modified CD-I—I-, adding 

two modules for sending and receiving the required data to and from other toolkits 
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(such as 3D visualization software) through a network. We also used C++, OpenGL, 

and other tools for 3D visualization simulation. We implemented and developed two 

modules for sending and receiving the required data to and from other toolkits (such 

as CD++ toolkit) through a network. This will be discussed in detail in Chapter 4, 

Chapter 5, and Chapter 6. 

Using DEVS in VCELL helped us reuse tested models, improving the safety of 

the simulations, which resulted in reduced development time. In addition, using Cell-

DEVS, which is based on DEVS, allows the user to solve problems by using simple 

rules for modeling the phenomena on the cell space. Moreover, using 3D visualiza­

tion simulation provides us with a 3D graphical scene, which enhances and improves 

training, and helps decision-makers investigate different scenarios to obtain more ac­

curate results. VCELL facilitates the integration of different hardware devices via the 

DEVS component. The hardware devices are updated on a grid space corresponding 

to the simulated space area and accordingly reach every location in the space, dealing 

with all the events in the Cell-DEVS component. A 3D model of different hardware 

devices is then included in the 3D scene environment to be visualized in the visual 

simulation component. We applied VCELL to the different simulation applications 

discussed earlier, BIM, emergency planning, and land combat, as case studies. 

VCELL combines the Cell-DEVS definition for cellular models, DEVS-based real­

time controllers, and VR. This component-oriented approach provides model reusabil­

ity and interoperability, allowing any of the components to be integrated or replaced. 

The RT cellular simulation is an on-demand data source of the scenario, which is 

used by the DEVS model. Hardware-in-the-loop can be used to update the Cell-

DEVS simulation data with real information on the simulation space area. 

The key features of VCELL are summarized as follows: 

• VCELL serves as a container to hold different software components without 

being specific to any implementation, which allows new components to be added 
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without having to make changes at the code level or the framework architecture. 

• Using VCELL for adding various hardware devices allows hardware-in-the-loop, 

which enhances the simulation results by achieving more accurate results than 

when simulated hardware is used, and also improves training in different do­

mains (such as in military training) by allowing the use of real equipment. 

• VCELL can be used not only for real-time simulation, but also in virtual time, 

which allows enhancement of the simulation results by comparing both real-time 

and virtual-time outputs and hence modifying the simulation rules. 

• VCELL can use predefined inputs, actual inputs of the simulated system, or a 

combination of both predefined and actual inputs, which provide flexibility for 

modifying the simulated system to get accurate results. 

• VCELL reduces the time taken in scenario development, modification, and 

validation by using the simple rules in Cell-DEVS simulation. 

We first extended CD++ with a new component to hide CD++ internal imple­

mentation. This component consists of functions to support synchronization and 

adaptation and communicates using network messages. An interface was developed 

between DEVS, Cell-DEVS simulations, and 3D visualization, so that various in­

stances of each domain can cooperate with each other during the same simulation 

session. This means that simulation can be manipulated in real time. 

VCELL is generic and can be used in different application domains. As a proof 

of concept, the framework was applied successfully to BIM, emergency simulation, 

and land combat simulation, as discussed previously. First, we applied VCELL and 

integrated it with BIM models (this means that different simulations can be performed 

on BIM models to improve and enhance the BIM simulation results). VCELL is 

adaptive and collaborative, as we can obtain the actual building parameters and 

perform simulations on them, which results in improvement and enhancement of the 

simulation of BIM. We can also visualize the output simulation on the 3D visualization 
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sub-system. This will be explained in detail in Chapter 4. 

Table 3.1 compares VCELL with existing BIM toolkits (note that there are many 

existing BIM toolkits, which makes it difficult to list all of them; this table summarizes 

the most advanced BIM systems developed recently). The results shown are on a 

scale of P (poor), G (good), and E (excellent). Open source means that the source 

code can be read and modified. Flexibility is in terms of the ability to add any new 

features desired in a model. Adaptation considers a structure modified to fit a changed 

environment. Analysis means that statistical packages are included. Visualization 

means that there is visualization support. 

When VCELL was applied to an emergency simulation, we implemented an inte­

grated emergency management system based on the DEVS sub-system to develop new 

classes of cellular models for emergency response applications. The Cell-DEVS sub­

system allows models to receive external information, and the simulation parameters 

can be updated at any time, due to the continuous-time nature of the discrete-event 

specifications. The emergency simulation is based on the Cell-DEVS sub-system, and 

the emergency management is based on the DEVS sub-system, which uses a robotic 

agent as an example to respond to the emergency simulation in real time. We also use 

the 3D visualization sub-system, which takes the results of the emergency simulation 

and the emergency management to be visualized in 3D real-time visualization. This 

will be explained in detail in Chapter 5. 

Table 3.2 shows a comparison between VCELL and selected emergency simulation 

models (here it is also difficult to list all the emergency simulation models that are 

published; however, the list on the table focuses on some of the most recent emergency 

simulation work [3,13,15,17,18]. 

Finally, when we applied VCELL to land combat simulation, we incorporated two 

sub-systems: a Cell-DEVS agent simulation, and a 3D visualization agent, which is 
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Table 3.1: Comparison of BIM Simulation Toolkits with VCELL 

Model 
Open 

Source 
Flexibility Adaptation Analysis Visualization 

Bentley 

Architecture 
No G 

Specific 

algorithms 
G 

Evolution of 

BIM attributes 
G 

Supports basic statistical 

methods (e.g. mean, 

standard deviation, etc.) 

E 
2D&3D 

visualization 

Graphisoft 

ArchiCAD 
No G 

Specific 

algorithms 
G 

Evolution of 

BIM attributes 
G 

Supports basic statistical 

methods (e.g. mean, 

standard deviation, etc.) 

E 
2D&3D 

visualization 

VectorWorks 

Architect 
No G 

Specific 

algorithms 
G 

Evolution of 

BIM attributes 
G 

Supports basic statistical 

methods (e.g. mean, 

standard deviation, etc.) 

E 
2D&3D 

visualization 

Revit 

Architecture 
No G 

Specific 

algorithms 
G 

Evolution of 

BIM attributes 
G 

Supports basic statistical 

methods (e.g. mean, 

standard deviation, etc.) 

E 
2D&3D 

visualization 

VCELL Yes E 
User specified 

algorithms 
G 

Evolution of 

BIM attributes 
G 

Supports basic statistical 

methods (e.g. mean, 

standard deviation, etc.) 

E 
2D&3D 

visualization 



Table 3.2: Comparison of Emergency Simulation Models with VCELL 

Model 
Open 

Source 
Flexibility Adaptation Analysis Visualization 

[13] No P 
Few 

algorithms 
P 

Merely 

reactive 
P N/A G 

3D 

visualization 

[15] No P 
Few 

algorithms 
P 

Merely 

reactive 
P N/A G 

3D 

visualization 

[17,18] No P 
Few 

algorithms 
G 

Evolution 

of agents 

attributes 

G 

Supports basic statistical 

methods (e.g. mean, 

standard deviation, etc.) 

E 
2D&3D 

visualization 

[3] Yes P 
Few 

algorithms 
P 

Merely 

reactive 
P N/A G 

3D 

visualization 

VCELL Yes E 
User specified 

algorithms 
G 

Evolution 

of agent 

attributes 

G 

Supports basic statistical 

methods (e.g. mean, 

standard deviation, etc.) 

E 
2D&3D 

visualization 



based on a 3D visualization sub-system. The Visual Cell-DEVS agent for land combat 

is a new way of solving the randomization movement problem of movement algorithms 

in agent-based simulation by using the 3D visualization agent, which obtains the real 

position of agents in combat. The Cell-DEVS agent simulation reduces the time taken 

to create or modify tactical scenarios in the 3D visualization simulation by using the 

Cell-DEVS formalism and CD-I—I-, which includes an interpreter to write simple rules. 

The results can be viewed in 3D visualization by using 3D scenario generation. These 

components will be explained in detail in Chapter 6. 

We compared VCELL when applied to land combat simulation with selected exist­

ing ABDs, as shown in Table 3.3 (in this case, there are also plenty of ABDs toolkits 

available, which makes it difficult to list all of them. However, the list includes the 

most recent ABDs). It is evident that in this case, speed of execution is important. 

When analyzing the tables, we see that VCELL is open source and more flexible than 

the other ABDs. Its performance onscreen is good. In addition, VCELL is more 

adaptive than other ABDs and includes good analysis capabilities. It also supports 

3D visualization, which is not applicable in other ABDs. 

3.3 The Framework Architecture 

The following chapters in this thesis will discuss the design, implementation, and 

performance analysis of the VCELL framework in detail. In this section, we present 

the overall software architecture of the framework. 

Fig. 3.1 shows the overall architecture of VCELL, which integrates DEVS simu­

lation, Cell-DEVS simulation, and 3D visualization outputs. VCELL is composed of 

three collaborative sub-systems: the cellular model implemented in Cell-DEVS, the 

hardware device interfaces implemented in DEVS, and the visualization component 
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Table 3.3: Comparison of ABDs with VCELL 

Model 
Open 

Source 
Flexibility Adaptation Analysis Speed Visual 

BactoWars Yes E 

User 

specified 

algorithms 

P 
Merely 

reactive 
P 

Computes averages of 

some variables 
G 

Runs with 

occasional 

pauses 

G 2D 

Few 

algorithms 

Merely 

reactive 

Supports basic statistical Runs 

EINSTein No P 
Few 

algorithms 
P 

Merely 

reactive 
G methods (e.g. mean, 

standard deviation, etc.) 

E continuously G 2D 

Few 

algorithms 

Merely 

reactive 

Supports basic statistical Runs with 

MANA No P 
Few 

algorithms 
P 

Merely 

reactive 
G methods (e.g. mean, 

standard deviation, etc.) 

G occasional 

pauses 

G 2D 

Few 

algorithms 

Evolution Supports basic statistical Noticeable 

WISDOM No P 
Few 

algorithms 
G of agent G methods (e.g. mean, P time for screen G 2D 

Few 

algorithms 
attributes standard deviation, etc.) refreshes 

User Evolution Supports basic statist­
Runs 

continuously 

2D 

VCELL Yes E specified G of agent G ical methods (e.g. mean, E 
Runs 

continuously 
E k 

algorithms attributes standard deviation, etc.) 

Runs 

continuously 
3D 



that renders the 3D scenes. Each of these sub-systems runs on a different computer, 

communicating through messages sent over a network. The framework allows different 

users in different interfaces to collaborate and interact with each other in real-time. 

Each sub-system is independent in its engine and function and update each other 

through messaging via a network infrastructure. Each sub-system is composed of 

two main components: a Sender that transmits the information and simulation up­

dates from one sub-system to the other two sub-systems, and a Receiver that collects 

information and the simulation updates of the other two sub-systems in real time. 

The Cell-DEVS sub-system communicates with the DEVS sub-system, informing it 

about the dimensions of the cell space area, and sends updates about the location of 

the simulated space on the grid. At the same time, it also sends this information to 

the visualization sub-system, providing it with the required real-time data about the 

scene to generate the 3D scene environments. The DEVS model uses the information 

received from the Cell-DEVS engine to perform the requested simulation. Based on 

these commands, the hardware devices respond on the simulated grid area and update 

the grid locations within the cell space area one after another when required. The 

DEVS sub-system dynamically updates the cell-DEVS sub-system and the visualiza­

tion sub-systems about the grid locations that have been simulated. This process 

continues until all grid locations have been simulated. 
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The 3D visualization sub-system shown in Fig. 3.1 consists of two main com­

ponents: the Receiver, which takes the data from the DEVS and the Cell-DEVS 

sub-systems, and the Sender, which is responsible for the calibration and casting 

of data to be transmitted to the DEVS and the Cell-DEVS sub-systems. On the 

Receiver component, there is a separate thread that is spawned for receiving the re­

quired simulation data. The visualization sub-system produces 3D scenes from the 

updates received dynamically from both the DEVS simulation and the Cell-DEVS 

sub-systems. The visualization sub-system also sends 3D models dimension updates 

and the required simulation information to the Cell-DEVS sub-system. It is possible 

to create reusable library of the visualization components. It is also possible to add 

or extend the visualization components without changing in the core of the frame­

work. The visualization sub-system can be a 3D visualization engine, VR software, 

serious game engine, or BIM software, such as Autodesk Revit Architecture. A more 

detailed overview of the system will be discussed later in Chapter 4, Chapter 5, and 

Chapter 6. 

The collaboration of the sub-systems is based on a global message structure trans­

ferred over a network infrastructure. Each sub-system has two separate threads: one 

for sending simulation data, and the other for receiving requested simulation data. 

The message structure contains an integer data type to decode the type of the message 

according to the sending/receiving sub-system, the dimension message, the cell-space 

update message, the visualization update message, the next movement message, and 

the extinguish message, which will be explained in Chapter 5 and Chapter 6. 

3.4 VCELL Framework Implementation 

The VCELL framework has been implemented using various software components, 

libraries, and packages, details of which will be discussed in the following chapters. 
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For the DEVS and Cell-DEVS sub-systems, we used the CD++ toolkit for modeling 

and simulation. We developed and implemented the two main components of DEVS 

and Cell-DEVS sub-systems, and added the two main components to CD++. For 

the 3D visualization sub-system, we used various software tools for each case study 

of the simulation. As discussed earlier, we applied VCELL to BIM, emergency and 

disaster, and land combat simulations. For the BIM models, we used the Autodesk 

Revit Architecture and Autodesk 3d Max toolkits. These tools are provided with a 

scripting language and APIs that were used to develop and implement the two main 

components in the 3D visualization sub-system. The implementation of this com­

ponent will be explained in more detail in Chapter 4. For the emergency and land 

combat simulation, the visualization sub-system is developed and implemented in Vi­

sual C++, OpenGL, and Vega Prime toolkits. The development and implementation 

of these will be explained in more detail in Chapter 5 and Chapter 6. 

The remaining chapters of the thesis are organized as follows: 

• In Chapter 4, we show the use of VCELL (Cell-DEVS and 3D visualization) 

in virtual time for BIM. VCELL is applied and integrated with BIM models. 

This means that different simulations can be performed on BIM models to 

improve and enhance the BIM simulation results. We propose designing a 

Cell-DEVS/BIM integration and describe a prototype implementation in the 

form of a BIM add-in for Cell-DEVS simulation, and then visualize the output 

simulation of Cell-DEVS on the BIM model. 

• In Chapter 5, we use the VCELL framework in real time for emergency simu­

lation. We introduce a simulation-driven architecture for integrating emergency 

simulation with robotic first responders moving towards emergency locations, 

which are spread out on the field. The robot is placed on a grid corresponding 

to the simulated emergency area, and reaches every location, dealing with the 

emergency. 
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• In Chapter 6, we use the VCELL framework (the Cell-DEVS and 3D visu­

alization components only) in real time for land combat warfare. We show 

how VCELL can provide a solution to the randomization problem caused by 

ABD toolkits. We present collaboration between an agent based on Cell-DEVS 

formalism and a visual agent simulation based on a 3D real-time visualization 

simulation in real time. We also show how to reduce programming time to 

develop or modify the scenario tactics for combat in real-time visual simulation 

using Cell-DEVS. 
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Chapter 4 

VCELL for Building Information 

Modeling 

4.1 Introduction 

As discussed in Chapter 3, we used the VCELL framework in the context of BIM 

simulations. In this chapter, we focus on showing how VCELL provides a general 

framework that can be used for BIM applications. 

In order to solve different design and simulation problems in the field of building 

information modeling, it is important to be able to easily incorporate new models 

and simulations. To do so, VCELL provides a reconfigurable Interactive Environ­

ment System (IES) to support the simulation of BIM. Cell-DEVS models receive 

information from BIM, and the output results of Cell-DEVS simulation can be used 

for visualization on the BIM model. We show a Cell-DEVS/BIM integration and 

describe a prototype implementation in the form of a BIM add-in for the Cell-DEVS 

simulation, and then we will visualize the output simulation of Cell-DEVS on the 

BIM model. 

As discussed in Chapter 3, the central theme of this thesis is to develop a frame­

work that allows different simulation models to receive real-time external parameters, 
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in order to be interactive, collaborative, and adaptive to simulation events, by inte­

grating DEVS, Cell-DEVS, and 3D visualization with different modeling techniques, 

which improve simulation interoperability at the software level, which in turn en­

hances simulation results. As previously mentioned, we first selected the Cell-DEVS, 

DEVS framework to design a new VCELL framework, which mainly aims to interop-

erate independently developed and adaptive simulation systems. The design method­

ologies presented in this chapter show how these were adapted for BIM, which mainly 

demonstrate building information as parameters where the simulation information 

flows from those models. 

We used CD++ [77] to simulate Cell-DEVS models, and the Autodesk Revit ar­

chitecture and Autodesk 3ds Max toolkits for BIM [10,11]. CD+4- obtains the initial 

simulation values from an external value file, and runs the simulation according to 

the rules defined by the model. On the other hand, this interface exposes the internal 

CD-I—I- implementation. This means that the BIM input/output parameters are tied 

to the CD++ model file and value file. Thus, using the CD++ specific interface to 

interoperate with other systems is not practical, as it would require implementation 

changes in those systems. To bring those interfaces together and ease interoperability 

at the software level, this research targeted the two major syntactic and structural 

elements of the BIM and Cell-DEVS integration. We extended the Cell-DEVS archi­

tecture with real BIM parameters, and described the synchronization messages to be 

transmitted through a network. This interface simplified the synchronization between 

different systems and improved their performance. In this VCELL framework, CD++ 

still uses its original component to interoperate various CD++ instances, while using 

the new designed component to interoperate with BIM. 

This system is applied and integrated with BIM models (this means that different 

simulations can be performed on BIM models to improve and enhance the BIM sim­

ulation results). We design a Cell-DEVS/BIM integration and describe a prototype 
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implementation in the form of a BIM add-in for Cell-DEVS simulation, and then 

visualize the output simulation of Cell-DEVS on the BIM model. 

4.2 BIM and Cell-DEVS System Architecture 

The system is composed of two collaborative sub-systems: the cellular model imple­

mented in Cell-DEVS, and the BIM model. Each of these sub-systems runs on a 

different computer, communicating through messages sent over a network, updating 

each other through messaging via a network infrastructure. The Cell-DEVS model 

communicates with the BIM sub-system, informing it about the dimensions of the 

cell space area. The Cell-DEVS model uses the BIM information received from the 

BIM model to perform the required simulation. Fig. 4.1 and Fig. 4.2 present a more 

detailed overview of the VCELL framework of the IES for BIM models. The Inter­

active Environment System for Revit (IES-Revit), shown in Fig. 4.1, integrates the 

Cell-DEVS simulation and the BIM model to simulate the data received from the 

BIM model on Cell-DEVS. Then the IES-Max, shown in Fig. 4.2, integrates the Cell-

DEVS simulation and the BIM model to visualize the output simulation results sent 

from Cell-DEVS to BIM on its interface. Based on the above, we see that VCELL 

can be adapted and used in a collaborative manner when utilized in BIM modeling: 

collaborative because we can exchange data between different systems, and adaptive 

because we can obtain the actual building parameters and then run the simulation 

on the actual requested parameters to get the simulation output results, which can 

be changed according to the change in the actual building parameters. This results 

in improvement and enhancement of the BIM simulation. 
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Figure 4.1: Interactive Environment System for Revit (IES-Revit) Architecture 

Fig. 4.1 illustrates the architecture of the IES-Revit. The IES-Revit consists of 

two main phases: 

• Receiving the required data to be simulated from the BIM model 

• Simulating the data received from the BIM model using Cell-DEVS. 

In the first phase, we developed an IES-Revit model to get different data parame­

ters that will be simulated. The IES-Revit model then transfers these data as values 

to be sent to Cell-DEVS. The IES-Revit model is developed using Autodesk Revit 

Architecture [10] as implementation software. This part of the IES-Revit was written 

in Visual C#, which provides a graphical user interface invoked from Revit. 

In the second phase, we focused on simulating the received BIM model data using 

Cell-DEVS. To do this, we defined a Cell-DEVS model that contained the cell space 

definition: dimensions, initial values, data received from the BIM model, and the 

rules that will be applied to the BIM model. CD++ allows for these models to be 

implemented, and provides 2D and 3D visualization using VRML and Java. 2D and 

3D visualization enables visualization of Cell-DEVS models so that the output of our 

simulation model will be shown as a grid 

49 



Cell-DEVS Simulation BIM Model 

Vakw 
fie 

Fife 

Figure 4.2: Interactive Environment System Max (IES-Max) Architecture 

Fig. 4.2 illustrates the architecture of the IES-Max, which consists of two main 

phases: 

• Receiving the simulated data results from Cell-DEVS to be visualized on the 

BIM model 

• Visualizing the data received from Cell-DEVS on the BIM model. 

The first phase of IES-Max obtains the simulation data results to be visualized. 

These data are then transferred as values to the BIM model. The IES-Max model is 

developed using Autodesk 3d Max as the implementation software, and Max script. 

We first read the Cell-DEVS model file (.MA), which contains the definition of the 

behavior of the Cell-DEVS models and the initial data, which can also be contained 

in an external value file (.val). We then read the initial status of the Cell-DEVS and 

the simulation log (.log file), which contains all the steps of the output simulation 

results and their virtual time. 

In the second phase, we visualize the data received from Cell-DEVS on the BIM 

model using Autodesk 3d Max. To do this, we define a model that reads the cell 

space definition: dimensions, initial values, and data received from the Cell-DEVS 
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model. Autodesk 3d Max allows these models to be implemented, and provides a 

3D visualization scene that enables the visualization of Cell-DEVS simulation results 

on the BIM model. Based on the simulation status during the simulation lifetime 

and the final simulation results, we draw the collected simulation data in a 3d Max 

visualization scene. 

In the following sub-sections, we show a detailed version of each of the simulation 

steps based on these ideas. 

4.2.1 Integrating Cell-DEVS and BIM 

As discussed in the previous section, Cell-DEVS simulation is applied to BIM (us­

ing Autodesk Revit Architecture) to improve the output results, enhance the BIM 

models, and improve the Cell-DEVS simulation results by applying the simulation 

on actual parameters that are requested from the BIM model. Revit Architecture 

is a Parametric BIM tool, in which 3D models and 2D drawings can be built. We 

can develop different tasks using the Revit API. The Revit API allows us to create 

and delete different model elements, such as floors and walls. We also use the Revit 

API to obtain different model parameter data and model graphical data. The Re­

vit Platform API applications can be developed using Visual C# or VB.NET. Both 

Visual C# and VB.NET allow for the writing of equivalent code and compile to the 

same intermediate language (IL) code, which implies that one has no performance 

advantage over the other. We decided to use Visual C# for practical reasons. 

The first phase of IES-Revit is to obtain different parameters to be simulated from 

the BIM model, and to transfer these data to the Cell-DEVS models. We developed 

a prototype implementation in the form of a BIM add-in for Cell-DEVS simulation. 

This can now be invoked as the add-in tab for the AutoDesk Revit Architecture, as 

shown in Fig. 4.3. The add-on is responsible for executing the program to obtain the 
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Figure 4.3: Interactive Environment System for Revit (IES-Revit) Interface 

required parameters and send them to Cell-DEVS to be simulated. 

The IES-Revit interface receives the required parameters of the chosen item (e.g., 

a wall) in the active Revit document. This function receives the parameters of the 

selected element in the active document of the Autodesk Revit architecture. We then 

use this information to define a CD++ macro containing the parametric information. 

The new macro now contains the new value, which will be simulated in Cell-DEVS. 

Different elements in the same active Revit document will transmit different param­

eters in the newly selected element. 
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4.2.2 Simulation with BIM Data 

The second phase of IES.Revit is responsible for simulating the received BIM model 

data based on the rules that are written in the model file. The model file contains the 

cell space dimensions, the initial values, the definition of the macro file that contains 

the values received from the BIM model, and the rules that will be applied to the 

BIM model. 

In this section, we show a sample Cell-DEVS model representing a diffusion limited 

aggregation (DLA) phenomenon [124], DLA occurs when diffusing particles stick to 

and progressively enlarge an initial seed, represented by a fixed object. The seed 

typically grows in an irregular shape resembling frost on a window [81], or humidity 

and mold on a wall. The DLA model was defined using CD++, which includes 

an interpreter for a specification language that describes Cell-DEVS models. A set 

of rules is used to define the model; each rule indicates the output value for the 

cell's state after satisfying the precondition in this rule. These rules are performed 

sequentially until one rule produces the solution. We used CD++ macro definition 

facilities to read the parameter values received from the BIM model, and defined a 

Revit macro for the Cell-DEVS model. The output simulation can be seen using 2D 

visualization facilities provided by the CD++ modeler tool. 

The DLA model uses two types of particles: fixed particles (seeds) and mobile 

particles. There can be one or more seeds in each DLA Cell-DEVS model. A cell 

with a seed is fixed, and it has a value equal to 5. There is a mobile particle percentage 

of the cells in each DLA Cell-DEVS model. A mobile particle can move according to 

its value, in one of four directions: up (1), right (2), down (3), and left (4). We set an 

initial value from 1 to 4 randomly to occupy the cells in a certain concentration. This 

concentration is calculated and obtained in the Revit macro from the BIM model. 

Below is a description of some of the rules used: 
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%  i n i t i a l i z e  t h e  c e l l s  w i t h  m o b i l e  p a r t i c l e s  

%  i n  t h e  r a n g e  w i t h  v a l u e  o f  c o n c e n t r a t i o n  

r u l e  :  {  r o u n d  (  u n i f o r m  ( 1  , 4 ) )  }  1 0 0  { ( 0 , 0 )  =  — 1  

a n d  r a n d o m  <  \  t e x t  b f { # m a c r o  (  R e v i t )  }  }  

The following rule presents that fixed particles remains fixed: 

%  f i x e d  p a r t i c l e s  r e m a i n s  t o  b e  f i x e d  

r u l e  :  5  1 0 0  {  ( 0 , 0 )  =  5  }  

The following rules present the moving of mobile particles: 

• A cell has a mobile particle with value equal one can move to the above empty 

cell if there is no other mobile particle trying to move in to this empty cell. 

%  d i r e c t i o n  =  1  ( u p )  

%  s t a y  a n d  c h a n g e  d i r e c t i o n  w h e n  n o w h e r e  t o  m o v e  

r u l e  { r o u n d ( u n i f o r m  ( 1  , 4 ) ) }  1 0 0  { ( 0 , 0 )  =  1  

a n d  (  —  1 , 0 ) ! = 0 }  

r u l e  :  {  r o u n d  (  u n i f o r m  ( 1  , 4 ) )  }  1 0 0  { ( 0 , 0 )  =  1  

a n d  ( —  1 , 0 ) = 0  a n d  ( ( (  — 2 , 0 )  =  3  a n d ( - 2 , - l ) ! = 5  

a n d ( —  3 , 0 )  !  =  5  a n d  (  —  2  , 1 )  !  =  5 )  o r  ( ( —  1 ,  — 1 ) = 2  

a n d (  —  1 ,  —  2 ) !  =  5  a n d ( —  2 ,  — 1 ) ! = 5  a n d ( 0  ,  —  1 ) !  =  5 )  

o r  ( (  —  1 , 1  ) = 4  a n d ( — 2 , 1 )  !  =  5  a n d ( — 1 , 2 )  !  =  5  

a n d  ( 0 , 1 ) !  = 5 ) )  }  

%  m o v e  o t h e r w i s e  

r u l e  :  0  1 0 0  { ( 0 , 0 )  =  1  a n d  (  — 1 , 0 ) = 0  a n d  t }  

%  d i r e c t i o n  =  2  ( r i g h t )  

%  s t a y  a n d  c h a n g e  d i r e c t i o n  w h e n  n o w h e r e  t o  m o v e  

r u l e  :  {  r o u n d  (  u n i f o r m  ( 1  , 4 )  )  }  1 0 0  { ( 0 , 0 )  =  2  

a n d  ( 0 , 1 ) 1  =  0 }  

r u l e  :  {  r o u n d  (  u n i f o r m  ( 1  , 4 ) )  }  1 0 0  { ( 0 , 0 )  =  2  

a n d  ( 0 , 1 )  =  0  a n d  ( ( ( 0 , 2 )  =  4  a n d  (  —  1 , 2 ) !  =  5  

a n d  ( 0  , 3 ) !  =  5  a n d  ( 1  , 2 ) !  =  5 )  o r ( (  — 1 , 1 )  = 3  

a n d  (  —  1 , 0 ) 1  =  5  a n d ( —  2 , 1 ) !  =  5  a n d  ( — 1 , 2 ) 1 = 5 ) ) }  
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%  m o v e  o t h e r w i s e  

r u l e  :  0  1 0 0  { ( 0 , 0 ) = 2  a n d  ( 0 , 1 )  =  0  a n d  t }  

• A cell has a mobile particle with value equal three can move to the down empty 

cell if there is no other mobile particle trying to move in to this empty cell. 

• A cell has a mobile particle with value equal four can move to the left empty 

cell if there is no other mobile particle trying to move in to this empty cell. 

• A cell has a mobile particle becomes fixed if there is an adjacent fixed particle 

cell. 

%  t h e  p a r t i c l e  b e c o m e s  f i x e d  i f  a n  a d j a c e n t  c e l l  

%  c o n t a i n s  f i x e d  p a r t i c l e  

r u l e  :  5  1 0 0  {  ( 0 , 0 )  > 0  a n d  ( 0 , 0 ) < 5  a n d  

( (  —  1 , 0 )  =  5  o r  ( 0 ,  —  1  )  =  5  o r  ( 0  , 1 )  =  5  o r  ( 1 , 0 )  =  5 ) }  

Based on the above rules, a cell that has a mobile particle with a value equal to 1 

can move to the empty cell above; with a value equal to 2, it can move to the empty 

cell to the right; with a value equal to 3, it can move to the empty cell below; or 

with a value equal to 4, it can move to the left empty cell if there is no other mobile 

particle trying to move into this empty cell. Finally, a cell with a mobile particle 

becomes fixed if there is an adjacent fixed particle cell. 

We assume a DLA Cell-DEVS model with two initial seeds. The concentration 

percentage of mobile particles will vary due to the material parameter type value 

received from BIM. We ran the simulation for two different materials for the specified 

two seeds in the DLA Cell-DEVS model: one for concrete and the other for brick. We 

assume that the concentration percentage will be 30% for the concrete material and 

40% for the brick material. The simulation output of each run for the concrete and 

the brick is shown in Fig. 4.4. We see that both initial figures have two initial seeds 

(dark cells). As the simulation starts, some of the mobile particles that are adjacent 

to the fixed initial seeds and satisfy the rules stated above will become fixed particles. 
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During the simulation, the rules are checked for each step until the simulation ends. 

We observe that the deformation of the DLA on the brick surface is bigger than the 

deformation of the DLA on the concrete surface, as the deformation of the DLA is 

proportional to the concentration, and the concentration of the brick surface is greater 

than that of the concrete surface. 
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Figure 4.4: (a)Initial State for Concrete; (b)Final State for Concrete; 
(c)Initial State for Brick; (d)Final State for Brick 
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Based on the above example, we see that VCELL is more flexible than the existing 

BIM toolkits, as we can simulate any model (like DLA) based on the BIM model, while 

existing BIM toolkits do not support this feature. VCELL allows for new features 

to be added to the BIM model to easily simulate various problems, as discussed in 

Chapter 3. 

4.2.3 Cell-DEVS &; BIM 3D Visualization 

This sub-section discusses the details of the design and implementation of the visu­

alization sub-system for the output results of the Cell-DEVS simulation on the BIM 

model. The visualization sub-system integrates the Cell-DEVS simulation and the 

BIM model to visualize the output result of the cell-DEVS simulation on the BIM 

model. This will facilitate the improvement of the BIM model, as we can visualize 

the output results directly on it, which is more effective for the 2D visualization of 

Cell-DEVS. In this sub-section, we show that VCELL is not specific to any imple­

mentation, as we need the output results. This implies that new components can 

be added without changes having to be made at the code level or in the framework 

architecture, as discussed in Chapter 3. 

The methodology of the visualization sub-model is based on integration between 

the Cell-DEVS simulation and the BIM model. In the Cell-DEVS simulation, we 

retrieve the output simulation result of the Cell-DEVS simulation that was applied 

to the BIM model and then visualize these output data on the BIM model visual 

environment. The Cell-DEVS simulation uses its model file, which contains the defi­

nition of the behavior of the Cell-DEVS models and the initial data or the path of the 

value file, and the parameters received from the BIM model to run the simulation. 

These output simulation data will be saved in a log file. On the other hand, the BIM 

model has its visual environment, which is used to visualize the output simulation of 

the Cell-DEVS. We read and obtained the output simulation data and presented it 
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by developing two functions on the BIM model: one to obtain the initial data and the 

cell dimension of the model file, and the other to retrieve the output result data from 

the Cell-DEVS log file. We also developed a GUI that facilitates loading the value 

file, the model file, and the log file and then displaying the Cell-DEVS simulation 

output on BIM model. This GUI will be described as a prototype implementation 

in the form of a BIM add-in for Cell-DEVS simulation. We will build the graphical 

display output using 3D visualization tools. 

This model allows us to obtain a 3D visualization environment of the simulated 

output results of Cell-DEVS on the same BIM model. This will improve the decisions 

taken by all members who are involved in the construction project cycle. Therefore, 

the visualization sub-model will improve and enhance the simulations applied to the 

BIM model. 

The IES-Max sub-system integrates the Cell-DEVS simulation and the BIM model 

to visualize the output result of the Cell-DEVS simulation on the BIM model. This 

will facilitate the improvement of the BIM model, as we can visualize the output 

results directly on it, which is more effective for the 2D visualization of Cell-DEVS. 

IES-Max is implemented using Autodesk 3ds Max, used because it supports BIM and 

has a great 3D environment scene. 

We built a graphical display output using 3D visualization tools. We decided 

to expand our visual environment using Autodesk 3ds Max. Autodesk 3ds Max 

is a powerful application for 3D modeling and animation, using special effects and 

rendering. 3ds Max allows users to create 3D animation and visual effects. More 

functions can be added to Autodesk 3ds Max using MAXScript, which is a built-

in script language that facilitates the creation of functions and tools to efficiently 

enhance 3ds Max. We used the 3ds Max modeling and animation toolkit to create 3D 

visual environments for the Cell-DEVS simulation of DLA as an example. IES^Max is 

an application written in MAXScript that provides a GUI allowing CD+-1- files (*.ma 
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and *.log files) to interact with 3ds Max, and allows the corresponding Cell-DEVS 

simulation to be visualized in a 3D visual environment of the BIM model. This BIM 

model, which is exported as an FBX file (type of Autodesk file formats) from the 

Autodesk Revit Architecture, is imported into 3ds Max. IES-Max then animates the 

3D visual scene file in accordance with the CD++ files. IES-Max allows us to create 

a 3D visualization from the CD++ files created by the CD++ toolkit. 3ds Max 

has implicit support for hardware accelerated rendering. The 3ds Max visualization 

tool provides basic services that enable simple visualizations, including design and 

implementation of a GUI based on the MAXScript within the 3ds Max toolkit. 

We used the MAXScript language-i.e., the 3ds Max Toolkit script-to write the 

program to initialize the GUI interface window for the 3D visualization. We read 

the output simulation data of the CD++ file, and then displayed the 3D visual 

outputs. We obtained the Cell-DEVS model to read the *.ma file, which contains 

the dimensions of the simulation model and the value file name, then reformatted it 

to be used in the required argument to obtain the initial values of each object from 

the simulation model and reformatted them to be used in the required argument to 

draw the visual outputs. We read the log file, which contains the time and position 

of each object from the simulation model, and reformatted it for display. We created 

objects and displayed the 3D visualization of the CD-I—I- simulation model in the 

display window of 3ds Max, based on the dimension of the simulation model, which 

controls the size of the drawing area and the position of each cell to be drawn in the 

specified location. 

IES-Max consists of a GUI; as shown in Fig. 4.5, this is the graphical interface 

that requests the user to select a particular file. In the display window in this figure, 

we can see the DLA model (inside the circle) on the brick surface. As we can see, the 

results of the DLA are visualized in the building model, which provides an interactive 

visualization of the output simulation results of the Cell-DEVS simulation. VCELL 
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allows this to be done, and it is not specific to any implementation, as we simply read 

the output simulation results from the Cell-DEVS. This means that we can add new 

components without having to make changes at the code level or in the framework 

architecture, as discussed in Chapter 3. 

Figure 4.5: Interactive Environment System 3ds Max Interface 

4.3 Summary and Discussion 

In this chapter, we showed the structural and syntactic rules of the Cell-DEVS/BIM 

for designing a new VCELL framework that mainly aims to interoperate indepen­

dently developed simulation systems. This chapter illustrated the implementation of 

the VCELL framework on Cell-DEVS/BIM and described the implementation of the 
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interactive environment system (IES-Revit) as an integration of Cell-DEVS formal­

ism into BIM. The Cell-DEVS approach can be applied to improve and enhance the 

development of BIM. We discussed the details of the design and implementation of the 

visualization sub-system for output results of the Cell-DEVs simulation on the BIM 

model. The visualization sub-system (IES-Max) integrates the Cell-DEVS simulation 

and the BIM model to visualize the output result of the Cell-DEVS simulation on the 

BIM model. This will facilitate the improvement and enhancement of the BIM model, 

as we can visualize the output results directly on the BIM model, which is more effec­

tive for a 2D visualization of Cell-DEVS. It also helps decision-makers make decisions 

and modifications. CD++ is used as a toolkit for the Cell-DEVS models. We used 

the Autodesk Revit Architecture as a toolkit for BIM. The VCELL framework was 

applied and integrated with BIM models (this means that different simulations can be 

performed on the BIM models to improve and enhance the BIM simulation results). 

The VCELL framework is adaptive and collaborative, as we can obtain the actual 

building parameters and perform a simulation using the requested parameters, which 

results in the improvement and enhancement of the BIM simulation. The feasibility 

of the VCELL framework was verified using the DLA model. VCELL is open source, 

while other existing BIM toolkits are not. In addition, VCELL is more flexible than 

other existing BIM toolkits in terms of the ability to add new, desired features in a 

model, which allows user-specified algorithms to be used. Moreover, VCELL is more 

adaptive than other existing BIM toolkits in that a structure can be modified to fit 

a changed environment. 
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Chapter 5 

VCELL for Emergency Management 

5.1 Introduction 

In this chapter, we show the use of VCELL for simulating an emergency. As emer­

gencies are processes that are distributed over both time and space, emergency and 

disaster simulations should take into consideration the system evolution in both time 

and space. In this chapter we present an integrated emergency management system 

based on Cell-DEVS to develop new classes of cellular models for emergency response 

applications. 

We focus on integrating emergency simulation with emergency management based 

on the collaboration of DEVS and Cell-DEVS formalisms. The emergency simulation 

is based on Cell-DEVS, and emergency management is performed by a robotic agent 

controlled by a DEVS model to respond to the emergency in real time. We also 

use a visualization engine that takes the results of the emergency simulation and the 

emergency management as input and produces 3D visualizations of the simulation 

scenarios. 

As discussed in Chapter 3, we first selected the Cell-DEVS, DEVS, and visual­

ization engine to design new a VCELL framework that mainly aims to facilitate the 

62 



interoperation of independently developed and adaptive simulation systems. The de­

sign methodologies presented in this chapter show how these were adapted for an 

emergency simulation, which mainly exposes emergency information as values where 

the simulation information flows from those models. It also shows that the system 

is flexible with regard to adding any new, desired features to a model, which allows 

user-specified algorithms to be utilized. 

This chapter is organized as follows. Section 5.2 discusses the system archeticture. 

Section 5.3 shows the Cell-DEVS emergency model that we have designed using a 

real-time version of the CD-I—I- toolkit. In Section 5.4, we present the emergency 

management mechanism using a DEVS-based robotic agent. Section 5.5 explains the 

visualization of the simulation. Section 5.6 describes the message structure transferred 

between the three components, followed by a summary and discussion of the work of 

this chapter in Section 5.7. 

We introduce a simulation-driven architecture for integrating emergency simula­

tion with robotic first responders moving towards the locations of the emergency, 

which are spread out on the field. The robot is placed on a grid corresponding to the 

simulated emergency area and reaches every location, dealing with the emergency. 

Our work differs from previous research in three ways: 

• The RT cellular emergency simulation is an on-demand data source of the 

scenario, which is to be used by the robot. A supervisory control station can 

be used to update the emergency simulation data with that of a real emergency 

situation and information about the area. 

• This multi-model combines a Cell-DEVS cellular model, a DEVS-based robotic 

controller, and virtual reality visualization. This component-oriented approach 

provides model reusability and interoperability, allowing for any of the compo­

nents to be integrated or replaced. 

• Using a simulation-driven approach for controlling the robot allows the robot 
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controller to be tested in a fully simulated environment, then the same model to 

be used to control a real robot. Model-continuity from early simulation stages 

to its final embedding on the hardware speeds up the development process while 

increasing the reliability of the product and reducing risk and cost. 

5.2 The System Architecture 

Fig. 5.1 shows the system architecture that integrates Cell-DEVS for emergency sim­

ulation, DEVS for emergency response, and 3D visualization to output the results 

visually. The system is composed of three collaborative sub-systems: the cellular 

emergency model implemented in Cell-DEVS, the emergency response by a robotic 

agent implemented in DEVS, and the visualization component that renders the 3D 

scenes. Each of these sub-systems runs on a different computer, communicating 

through messages sent over a network. All three sub-systems run in real time and 

update each other through messaging via a network infrastructure. 

Fig. 5.1 also presents a more detailed overview of the system. The emergency sim­

ulation sub-system is in charge of the Cell-DEVS emergency model. It communicates 

with the DEVS emergency response sub-system, informing it about the dimensions 

of the emergency area, and sends updates regarding the location of a fire on the grid. 

At the same time, it also sends this information to the visualization sub-system, pro­

viding it with real-time data on the scene. The DEVS-based control model uses the 

emergency information received from the Cell-DEVS engine to carry out an emer­

gency response. Based on these commands, the robot moves on the simulated grid 

area and extinguishes the fires in the emergency area, one after another. The emer­

gency response sub-system dynamically updates the emergency simulation and the 

visualization sub-systems regarding the fires that have been extinguished. This pro­

cess continues until all fires have been extinguished. The visualization sub-system 
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produces 3D scenes from the updates received dynamically from both the emergency 

simulation and the emergency response sub-systems. 

DEVS Emergency Response Motiei 

Model Reader 

celts data 

fcorttrai 

data I 

Cett-OEVS Emergency Simulation 
Emergency area dimensions 

ceHs update 
•N-f-

Network 

extinguished ostl ^ _4l 

3D visualization 

Fife DataMarwgef 

Figure 5.1: Detailed System Architecture [125] 

5.3 Cell-DEVS Emergency Simulation 

In this section, we present the use of VCELL for adding various hardware devices 

that allow hardware-in-the-loop. This achieves more accurate simulation results than 

when simulated hardware is used. It also improves training in different domains, 

such as in emergency training, by allowing real equipment to be used, as discussed in 

Chapter 3. VCELL also allows models to receive real-time external information, and 

the simulation parameters can be updated at any time due to the continuous-time 

nature of the discrete-event specifications. By using Cell-DEVS to model emergency 

situations, the actual area is modeled as a cell-space and is divided into cells. The 

emergency model represents an area that has a number of locations on fire (e.g., 

roadside bombs or explosions), which are ignited randomly during the simulation. 
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The model is defined according to the conventions of Cell-DEVS using the CD++ 

toolkit, as seen in Fig. 5.2. In order to run the model in real time, we modified the 

CD++ simulation engine. The virtual time-advance was replaced with a real-time 

version, allowing the emergency simulation to interact with the emergency response 

and the visualization sub-systems in real time. We also added a generic interface to 

the simulation engine, which enables it to interact with the external environment (e.g., 

a network). The simulator sends the dimensions of the cell-space at the beginning of 

the simulation and submits any cell updates, and at the same time receives input to 

the cellular model using the message structure that will be discussed in Section 5.6. 

Figure 5.2: Emergency Cellular Space with Random Locations of Fires [125] 
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5.4 DEVS-based Robotic First Responder Agent 

In this section, we note that Mohamed Moallemi worked on the details of the design 

and implementation of the DEVS-based controller for the autonomous first responder 

robot. The controller model can also be used for a robotic swarm [98], in which a 

large number of homogeneous autonomous robots are engaged in an activity. We 

used the e-puck robotic kit [99] as a prototype of a first responder robot to deploy 

the simulation-driven controller developed for the emergency response system. The 

e-puck is a small, mobile robot capable of moving and spinning and is equipped with 

sensors and motors. It uses 8 infrared distance proximity sensors to detect obstacles 

around it. There are 8 LEDs mounted on top in the shape of a ring. The robot can 

interact with a PC via Bluetooth connection. We executed the prototype model on 

a PC while interacting with the robot using a Bluetooth connection; the robot was 

programmed to listen to the commands received from the PC. However, the final goal 

is to develop a simulation-driven, embedded controller for the robot. 

5.4.1 The Logical Controller 

The two main operations of the robot to help human first responders are as follows: 

• Deploying robots to gather information about the locations of emergency inci­

dents 

• To perform first-responder operations in the emergency locations and cooperate 

with human first responders. 

Our focus in this work is on the second usage, in which we try to develop a DEVS-

based, model-driven controller for an autonomous robot, which collaborates with the 

cellular emergency simulation engine. The robot tries to reach the locations of the 

fires and extinguish them one at a time, using the cellular space as a map of the region 

in which it is operating. Initially, the robot model receives the size of the cell-space 
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and builds a copy of the cellular space for itself. As the cellular model develops in 

real time, the robot also receives updates of cell values from the cell-DEVS model and 

marks the changes in its own copy. The robot controller model consists of two levels 

of controls, a higher-level and a lower-level controller. The higher-level controller is 

responsible for planning the path toward the closest emergency location (fire) using 

the data provided by the cell-space, while the lower-level controller is responsible for 

avoiding the obstacles in the path. 

5.4.2 DEVS Controller Model Specifications 

The robot model interacts with the cellular emergency model and the visualization 

engine. The model responsibilities are divided into two parts, constructing two main 

components in the model. The Model Reader is responsible for creating the local cell-

space, updating the cell-space by receiving the updates from the Cell-DEVS engine, 

and signaling the Controller component periodically to make a decision on path-

planning. The Controller component is responsible for implementing the HLC and 

LLC algorithms, sending control commands to the robot and informing the visualiza­

tion engine about the robot movements. 

Fig. 5.3 depicts an abstract representation of the behavior of the two components 

in DEVS graph format. The DEVS graph state diagram [126] summarizes the behav­

ior of a DEVS atomic component by rendering the states, transitions, inputs, outputs, 

and state durations of the atomic component graphically. The continuous edges be­

tween the states represent external transitions, with the input port, the input value, 

and any condition on the input. The discrete lines represent internal transitions with 

the associated outputs. 

The Model Reader starts in the wait for dimension state, where it waits to receive 

the dimensions of the cell-space from the Cell-DEVS engine. As soon as it receives the 
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Figure 5.3: DEVS Graph State Diagram of the Robot Controller [125] 

dimensions, it creates the local cell-space matrix and then transfers to the idle state. 

The idle state has a limited period, which corresponds to the movement period of the 

robot. During the idle state, the Model Reader also receives cell-space updates from 

the Cell-DEVS engine and marks them on the local cell-space, and if an emergency 

update is received, it adds it to the emergency list. At the end of this state, the 

Controller is signaled to carry out the next movement. The Controller starts by 

sending the initial position of the robot to the visualization engine and transitions to 

the stop state, where it receives periodic signals from the Model Reader. If there is an 

emergency location in the emergency list, the Controller is transferred to the calculate 

next step state, and the following tasks are executed in the corresponding external 

transition function: sort the emergency list, find the closest one, apply the HLC and 

LLC algorithms, and calculate the next step. Based on the result of the two-level 

control algorithms, the Controller is transitioned to one of the movement states and 
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in the output function, the movement commands for the robot and the next step 

information for the visualization engine are outputted. The Controller continues this 

sequence until it reaches the emergency location, when it is transferred to the prepare 

extinguish state. At the end of this state, it outputs the stop command to the robot, 

informs the Cell-DEVS and visualization engines about the emergency restraint, and 

transitions to the stop state, where it waits for the next emergency location. 

5.4.3 Controller Model Implementation on E-CD++ 

E-CD++ is an open-source, embedded, real-time DEVS-based modeling, simulation, 

and application development environment [127], built as an extension to the CD++ 

simulator. The models are developed incrementally in an Eclipse-based environment 

in C++ language and then embedded in the target hardware. E-CD++ deploys real­

time services offered by the underlying Xenomai real-time Linux kernel to execute the 

model, providing a reliable formal platform for real-time application development. 

The model structure is declared in a model file and an optional event file supplies 

the virtual inputs to the DEVS model. E-CD++ allows the model to be run as a 

simulation in virtual time and real time, and also as a real system interacting with the 

actual hardware counterparts. ECD++ allows for the definition of the driver interface 

functions for each input and output port of a DEVS model, in which the integer I/O 

values of a DEVS system are translated to signals to the external environment. 

5.5 3D Visualization Engine 

Visualization of emergency behavior can provide a number of benefits. First, it pro­

vides scientists with an interactive environment to verify the accuracy of these models 

by comparing the results of an actual emergency with the output of a simulated ver­

sion. Once the model is validated, it can then be used to predict not only the behavior 
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of an existing emergency, but also the consequences of preventative measures, such as 

vegetation thinning and prescribed burns. Displaying these predictions in a visually 

informative manner allows emergency departments to better educate the first respon-

ders on existing emergency hazards. Furthermore, enabling interactive manipulation 

of the simulation along with the visualization allows emergency leaders to be trained 

with respect to resource allocation and emergency behavior. While it would be risky 

and costly to experiment in a real-life situation, these risks can be mitigated by sim­

ulating untested approaches first. 3D user interfaces provide a more intuitive form of 

interaction. Additionally, high-fidelity graphics enable an observer to better compare 

a simulated emergency with a historic emergency. In the following sub-sections, we 

show that VCELL is not specific to any implementation, as we need the output re­

sults. This implies that new components can be added without changes having to be 

made at the code level or in the framework architecture, as discussed in Chapter 3. 

5.5.1 Three-dimensional Visualization Engine Description 

The 3D visualization engine is used to visualize the simulation output results of 

both the emergency simulation model and the robotic first responder agent. The 

visualization engine is implemented using Vega Prime [128] and OpenGL . Vega Prime 

is a high-performance software environment and toolkit for real-time simulation and 

virtual reality applications. It serves as an API consisting of a GUI called LynX 

Prime and Vega Prime libraries and header files of C++-callable functions. 

The 3D scenes are rendered using 3D openflight models. The terrain model con­

sists of trees, different buildings, roads, etc. The DEVS-based robotic agent is rep­

resented by a 3D emergency truck model. We can control the environmental effects 

and time of day in the 3D scene visualization. 

A 3D scene, as shown in Fig. 5.4 and Fig. 5.5, is displayed in a window that is 
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Figure 5.4: Three-dimensional Visualization Engine Cellular Map [125] 

divided into two channels: one for a perspective view of a 3D scene (on the left), and 

the other for an orthographical view of the 3D scene, which acts as a 2D map of the 

area (on the right). 

• In the perspective view in the first channel, the movement of the emergency 

responder truck is displayed, which is the 3D model representing the robot, 

and is observed using a fixed camera. The observer view can be changed to 

five positions: back, front, left side, right side, or rotate around the emergency 

responder truck. 

• In the orthographical view in the second channel, a red grid is created that 

represents the cellular grid of the simulated emergency area (see Fig. 5.4). 

The locations of the fires received from the Cell-DEVS engine are rendered by 

flashing yellow circles, and the emergency responder truck is represented by a white 

circle (see Fig. 5.5). The white circle changes to green when the robot extinguishes a 

fire in the scene, after which the fire special effects and the flashing yellow circle are 

removed from the 3D scene. The orthographical view is capable of zooming in and 
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Figure 5.5: Three-dimensional Visualization Engine Zoomed Map [125] 

out and the cellular grid can be removed for a better view (see Fig. 5.5). 

5.5.2 3D Visualization Engine Implementation 

The visualization program is implemented in Visual C++. The 3D visualization 

subsystem consists of two main components: 

• The Receiver, which receives the data from the DEVS-based robot model and 

the Cell-DEVS emergency model 

• The Visualizer, which is responsible for the display of the visualization scene. 

In the Receiver component is a separate thread spawned to receive the emergency 

and suppression data. The data received (such as the positions of the fire truck, the 

robotic first responder agent, and the fire) are transformed from the 2D grid position 

to the 3D visualization scene position. 

In the Visualizer component, there are five sub-components: 

• DrawGrid, which receives the cellular space dimensions from the Receiver and 

draws them on the 2D map channel. 
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• DrawCircle, which receives the fire positions from the Receiver during the ex­

ecution and renders flashing yellow circles (the fire) at the corresponding co­

ordinates. It also obtains the position of the robot, draws a white circle at 

the corresponding position, and changes the circle to green when the robot has 

extinguished a fire. 

• CreateEmergency, which receives the positions of the fires and applies them to 

the corresponding positions by rendering 3D special effects of the fire. 

• MotionModel, which receives the initial coordinates of the robot, the period of 

each step of the robot, and the next movement. It then creates a motion model 

for the robot in the 3D visualization scene. 

• RemoveEmergency, which receives the coordinates of the fire that is extin­

guished by the robotic first responder agent and removes the special effect of 

the fire from this location. 

The 3D visualization engine is capable of deploying different 3D terrain openflight 

models and different cellular areas (dimensions and initial values) without changing 

the code of the visualization. As a result, we see that VCELL is not specific to 

any implementation, as we read the output simulation results from the Cell-DEVS. 

This means that we can add new components without having to make changes at the 

code level or in the framework architecture, as discussed in Chapter 3. We can also 

visualize the output simulation on the 3D visualization scene, which improves and 

enhances decision-making. 

5.6 Global Message Structure 

The collaboration of the three components in this project is based on a global message 

structure transferred over a network infrastructure. The network-Struct contains the 

following five data fields: 
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1. msgJd: an integer data type used to decode the type of the message and 

the value of the next fields in the message. There are generally five types of 

message: 

• The dimension message carries the size of the cell-space from the Cell-

DEVS engine to the DEVS and visualization at the start of the execution. 

• The robot initial location message carries the initial coordinates of the 

robot from the DEVS engine to the visualization. 

• The cell-space update message carries the cell value changes during the 

execution from the Cell-DEVS engine to the DEVS and visualization. 

• The next movement message carries the direction of the next movement 

at the start of each step from DEVS to the visualization engine. 

• The extinguish message carries the location of the fire that has been 

extinguished by the robot, from the DEVS sub-system to the Cell-DEVS 

and visualization sub-systems. 

2. x: used to carry the horizontal axis value (the horizontal dimension or the 

horizontal coordinate). 

3. y: used to carry the vertical axis value (the vertical dimension or the vertical 

coordinate). 

4. dir\ carries the next direction. 

5. value: carries the value of the cell and is used in the cell update message. 

These messages are embedded in a UDP packet and transferred during the execu­

tion of the model through the network. However, for the next stages of the project we 

are planning to use a TCP protocol, which is more reliable and prevents packet loss. 

The design of the system is such that the number of messages transferred through 

the network is as low as possible, thus preventing delay in the message transfer. 
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5.7 Summary and Discussion 

We have a DEVS-based emergency management simulation and visualization sys­

tem. The system offers a robust software framework to make a real-time emergency 

response system more flexible and more scalable. The Cell-DEVS sub-system al­

lows models to receive external information, and the simulation parameters can be 

updated at any time, due to the continuous-time nature of the discrete-event specifi­

cations. A robotic agent acting as a first responder is placed in a virtual environment 

generated from a Cell-DEVS emergency simulation. The controller of the robot is a 

DEVS-based emergency response model that interacts with the emergency simulation 

through messaging and is informed about the map of the area and the location of the 

incident (e.g., roadside bombs, fire, explosions, etc). Both the emergency simulation 

and the emergency response sub-systems run in real time and communicate with each 

other and with a 3D visualization engine. The purpose of the visualization system 

is to generate 3D scenes and to visually monitor the activities of the robotic first 

responder. Although the emergency model is a simulation, it is simple to replace 

it with more complex emergency simulation models or a real emergency database 

fed from real-world data. The generic interface and message structure that enable 

the emergency simulation, the emergency response, and visualization sub-systems to 

interchange data also allow our system to simulate emergency management in real 

time under various conditions. Moreover, it can be integrated with stochastic opti­

mization models that use the scenario results from the simulation to determine an 

optimal mix of emergency planning resources to dispatch to an emergency situation. 

Our system is intended not only to train emergency response personnel, but can also 

be used as a core real-time strategy and response system. VCELL is open source, 

while most emergency simulation models are not. Likewise, VCELL is more flexible 

than other selected emergency simulation models in terms of the ability to add any 
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new, desired features to a model, which allows user-specified algorithms to be used, 

while other selected emergency simulation models are restricted to a few algorithms. 

Moreover, VCELL is more adaptive than other existing emergency simulation models 

and includes good analysis capabilities. It also supports 3D visualization, which is 

not applicable in other selected emergency simulation models. 
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Chapter 6 

A Real-time Visual Simulation in Support 

of Combat 

6.1 Introduction 

In this chapter, we show the use of VCELL for a land combat simulation. Since 

land combat movement algorithms can be distributed over both time and space, land 

combat simulations should take into consideration the system evolution in both time 

and space. In this chapter, we present a collaborative land combat model based on 

the Cell-DEVS formalism and 3D real-time visualization to develop new classes of 

land combat movement algorithms. 

We focus on collaboration between an agent based on Cell-DEVS formalism and a 

visual agent simulation based on a 3D real-time visualization simulation. The visual 

agent simulation allows us to visualize the land combat simulation scenarios in a 3D 

scene. 

As discussed in Chapter 3, we first selected the Cell-DEVS, DEVS, and visual­

ization engine to design the new VCELL framework, which mainly aims to facilitate 

the interoperation of independently developed and adaptive simulation systems. The 

design methodologies presented in this chapter show how these were adapted for a 
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land combat simulation, which mainly show land combat information as values where 

the simulation information flows from those models. It also shows that the system is 

flexible with regard to adding any new, desired features to a model, which allows for 

user-specified algorithms to be utilized. VCELL supports 3D visualization, which is 

not applicable in other ABDs. 

This chapter is organized as follows. Section 6.2 discusses the system architecture 

and its components. Section 6.3 describes the Cell-DEVS agent model that we have 

designed using a real-time version of the CD++ toolkit. The modifications made 

to the simulation engine to enable real-time execution are also pointed out and the 

message structure transferred between the components. In Section 6.4, we present 

a description of the visualization sub-model and its implementation. Section 6.5 

explains the scalability of the system, followed by a summary of the work in this 

chapter in Section 6.6. 

We present a collaborative 3D real-time visual cellular agent model (VCELL) and 

a cellular agent simulation in real time. The agents are divided into two teams: the 

blue team in the 3D visualization agent sub-model, and the red team in the Cell-

DEVS agent sub-model. These sub-models collaborate via a network connection. 

Our work differs from previous research as follows: 

• This work incorporates two components: a Cell-DEVS agent simulation and a 

3D visualization agent simulation. This component-oriented approach provides 

model reusability and interoperability, allowing for integration or replacement 

of any of the two components. 

• It uses a VCELL model to remove the random movement problem in the blue 

team, providing a 3D visualization agent that retrieves the real position of 

agents in combat. This guarantees the combat simulation output for the blue 

team. 

• The 3D visualization agent simulation is an on-demand data source for the 
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combat scenario. Real fighters can be invoked in the 3D visualization agent 

simulation to update the agent simulation data with real situation data. 

6.2 The Visual CELL-DEVS Agent 

In this section, we present the collaboration of the VCELL components and how they 

are connected to each other. VCELL also allows models to receive real-time external 

information, and the simulation parameters can be updated at any time due to the 

continuous-time nature of the discrete-event specifications, as discussed in Chapter 3. 

The Visual CELL-DEVS Agent (VCELL), as shown in Fig. 6.1, is composed of two 

main subsystems: 

1. The Cell Agent sub-model, which is implemented using a Cell-DEVS model 

running in real time 

2. The 3D real-time visual simulation (RTV) sub-model, which is implemented 

using Vega Prime and OpenGL. 

The CellAgent sub-model and the 3D real-time visualization sub-model each run 

on a different machine in real time and communicate via messages transferred through 

a network infrastructure. VCELL is a multi-agent simulation combat system that 

facilitates the analysis and understanding of land combat, and 3D real-time visual­

ization simulation for tactics in land combat. By using VCELL, not only can the 

analysts understand the overall shape and dynamics of a battle and know the out­

put of an operation, but combatants can also be trained in the 3D visual real-time 

simulation system. An agent in VCELL is characterized by certain properties, such 

as capabilities, movements, communications, and health. Agents can communicate 

by exchanging messages. Health can be defined as the level of energy of an agent, 

which is defined by users. When an agent is attacked by the opponent agent type, its 
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Figure 6.1: The Visual CELL-DEVS Agent (VCELL) Architecture 

health depends on the number of the neighborhood agents and their health strength. 

Users can import different 3D terrain types in the real-time visual model. The type 

of terrain affects the agent's movements. 

The agent's movement depends on five different weights: agent healthy friend, 

agent injured friend, agent healthy opponent, agent injured opponent, and the flag. 

The movement is calculated at each simulation time step for each agent. The agent 

can move to another cell or decide to stay in the same cell. No cell in the space can 

be occupied by more than one agent at a time. The decision-making used by each 
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agent to decide on the direction in which to move depends on the agent's personality 

in the movement algorithm. The movement algorithms used in VCELL are the same 

as in EINSTein and MANA, but VCELL is not restricted to these algorithms only, as 

we can apply different movement algorithms. The Movement Algorithm of EINSTein 

uses equation (6.1) to compute the penalty for the next location [110,113]: 

where 

Rs Sensor range of agent about to move; 

E Number of enemy entities within sensor range; 

We Weighting towards enemy agents; 

Di,new Distance to the ith enemy from the new location; 

Wp Weighting towards the flag; 

Df, new Distance to the flag from the new location; 

D f,oIci Distance to the flag from the current location. 

The Movement Algorithm of MANA uses equation (6.2) to compute the penalty 

for the next location [114,118]: 

,new 
new i,new 

F,old 

(6.1) 

Z, new 
t,new 

F,new (6.2) 

where 

E Number of enemy entities within sensor range; 

We Weighting towards enemy agents; 
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Di<new Distance to the ith enemy from the new location; 

Ditoid Distance to the ith enemy from the current location 

Wp Weighting towards the flag; 

-D/sneujDistance to the flag from the new location; 

DF,oid Distance to the flag from the current location. 

Agents are encouraged to move closer to the opponent agent. The agent will always 

move to the cell with maximum weight. There is no tie in the real-time simulation 

sub-model, but in the Cell-DEVS simulation sub-model, the agent randomly selects 

a cell between the cells in the tie. This kind of randomization may affect the stability 

of the solution in the enemy section only; however, it is not a serious problem, as the 

enemy section is based on our assumptions 

6.3 Cell-DEVS Agent Sub-model 

In this section, we show that VCELL serves as a container to hold different software 

components without being specific to any implementation. This allows new com­

ponents to be added without having to make modifications at the code level or in 

the framework architecture. VCELL also allows models to receive real-time external 

information, and the simulation parameters can be updated at any time, due to the 

continuous-time nature of the discrete-event specifications. We explain how VCELL 

reduces the time taken for scenario development, modification, and validation using 

the simple rules in the Cell-DEVS simulation, as discussed in Chapter 3. 

6.3.1 Real-time Cell-DEVS 

In this subsection, we note that we worked collaboratively with Mohamed Moallemi 

for the time advances in the DEVS and Cell-DEVS models based on the availability 

of the events. Thus, the simulation runs in virtual time in which, after servicing every 
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event, the simulation time advances to the next scheduled event time. To visualize 

the agent model, we need to run the agent model simulation in real time, so that 

the events can be transferred to the visual engine, resulting in a real-life visualization 

of the battlefield. CD++ is designed and implemented based on the DEVS abstract 

simulation mechanism. A Root Coordinator object acts as a coordinator with the 

top-coupled component in a CD++ model, which is responsible for advancing the 

time to the next event time and also sending and receiving the I/O of the DEVS 

model. 

We modified the Root Coordinator event scheduler function to work in real time, 

in which the events are served at the time they are serviced and the time advances are 

based on the wall clock time. We added two new features to the CD-I—I- simulator, 

which make CD++ capable of receiving DEVS inputs from the network and injecting 

them into the model, at the same time sending outputs of the DEVS model to the 

network. A separate thread was added to the CD++ software structure to allow it to 

listen to the network inputs without interrupting the main execution sequence. The 

input thread executes an added function of the Root Coordinator, which creates a 

network socket and listens to the network in a blocking mode. As soon as a network 

packet is received, the content of the packet is extracted and saved in the input bag 

of the Root Coordinator, which will service the input. 

In order to send inputs to any specific atomic cell, we modified the CD-I—I- Main-

Simulator post-registration function, which is responsible for creating the DEVS ports 

defined in the model file. In the modified version, the MainSimulator creates a default 

input port for each atomic cell, as shown in Fig. 6.2. These ports are used later by 

the Root Coordinator to inject inputs into the specific cell based on the coordinates 

indicated in the network message. Once an input is received, the Root Coordinator 

sends an input message to the input port of the Top coordinator, which is connected 
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Figure 6.2: Sample Cell-DEVS Model Structure and Interfaces [129] 

to the specific cell that is the destination of the message. 

To submit the cell value changes, we added a function to the Root Coordinator 

that extracts the outputs of atomic cells from the Y messages (the output carrying 

message defined in the DEVS abstract simulation algorithm) and sends them to the 

network. 

6.3.2 Global Message Structure 

The collaboration of the sub-models is based on a global message structure transferred 

over a network infrastructure. The network_struct contains the following five data 

fields: 

1. msgJd: an integer data type used to decode the type of message and the value 

of the next fields in the message. There are generally three types of messages: 

(a) The dimension message carries the size of the cell-space from the CellA-

gent sub-model to the 3D real-time visualization sub-model at the start 

of the execution. 
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(b) The cell-space update message carries the cell value changes during the 

execution from the CellAgent sub-model to the 3D real-time visualization 

sub-model. It also carries the initial coordinates and personalities of 

the blue agent from the 3D real-time visualization sub-model to the 

CellAgent sub-model and the initial coordinates of the blue agent's flag 

from the 3D real-time visualization sub-model to the CellAgent sub­

model. 

(c) The visualization agent update message carries the visualization changes 

during the execution from the 3D real-time visualization sub-model to 

the CellAgent sub-model. It also carries the initial coordinates of the red 

agent's flag from the CellAgent sub-model to the 3D real-time visualiza­

tion sub-model and the initial coordinates of the blue agent's flag from 

the 3D real-time visualization sub-model to the CellAgent sub-model. 

2. x: used to carry the horizontal axis value (the horizontal dimension or the 

horizontal coordinate). 

3. y: used to carry the vertical axis value (the vertical dimension or the vertical 

coordinate). 

4. 2: used to carry the layer axis value (the layer dimension or the layer coordi­

nate). 

5. v: used to carry the value of the cell (x,y,z). 

These messages are embedded in a UDP packet and transferred during the ex­

ecution of the model through the network. The design of the system is such that 

the number of messages transferred through the network is a low as possible, thus 

preventing delay in the message transfer. 

86 



J VCELL Agent 

Movement range 

| Sensor range 
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6.3.3 Cell-DEVS Agent Definition Model 

The basic element of our CellAgent sub-model is a VCELL Agent (VCELLA), which 

represents a primitive combat unit (tank, transport vehicle, etc.). The combat bat­

tlefield is represented in the CellAgent sub-model as a two-dimensional cell space, 

as shown in Fig. 6.3. Each cell in the space can be occupied by the red agent of 

VCELLA. Each red agent can move to the next cell in the movement range or stay in 

the same cell. The sensor range is the area that is defined for each red agent to obtain 

the available number of friendly and enemy agents and their personality values. The 

user defines the dimension of the combat battlefield and the initial state of the red 

VCELLA agents at diagonally opposite corners to the red agents in the VisualAgent 

sub-model. The red flag is also positioned in the red VCELLA corner. The goal of the 

red VCELLA is to reach the blue flag successfully. The Combat CellAgent sub-model 

is defined using the modified CD-)—I- version described in Subsection 6.3.1. 
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Figure 6.4: CellAgent Model Implementation in CD-I—t- [129] 

Fig. 6.4 illustrates the CellAgent sub-model in CD++ with the specifications 

and the network interface. The CellAgent sub-model is composed of CD+-1- O/P 

Driver Component CD++ Input thread. CD++ O/P Driver Component sends the 

battlefield dimensions to start up the VisualAgent sub-model. Then it sends the 

initial and updated values of the red agents, their weights, and the red flag position 

in real time to the VisualAgent sub-model. The CD++ Input thread receives the 

initial and updated values of the blue agents, their weights, and the blue flag position 

in real time from the VisualAgent sub-model. Then it invokes these values in the cell 
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space of the model. 

The model file of the CellAgent sub-model reads the initialization data from a 

CD-I—I- associated value file. The value file contains the initial values of the red 

agents, their weights, and the red flag position. The dimensions of the battlefield are 

defined in the model file. The model file is composed of six layers. The first layer 

contains the red agents, the second layer has their weights, and the third contains 

the red flag position, which gets its initial values from the value file. The other three 

layers are allocated to the blue agents, their weights, and the blue flag position, which 

get its values from the 3D real-time simulation sub-model. 

The personality of VCELLA can be defined by the weight towards enemy agents 

and the weight towards the enemy flag which specify how VCELLA interacts with 

information within its sensor range. Each VCELLA has one of three states: alive, 

injured, or killed. The health state, 0 < H < 1, is the measure of an agent's health. 

The agent's health can be defined as shown in equation (6.3): 

(6.3) 

where 

F Number of friendly entities within sensor range; 

E Number of enemy entities within sensor range; 

a Function of x as defined in (6.4); 

1, 1 < x 

= \ x, 0 < x < 1 (6.4) 

0, otherwise 
\ 
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As discussed earlier, the CellAgent sub-model can interact with the 3D visualiza­

tion in real time. We have also added a generic interface to the simulation engine that 

enables it to interact with the external environment (e.g., a network). The simulator 

sends the dimensions of the cell-space at the start of the simulation, submits any cell 

updates, and at the same time receives input to the cellular model using the message 

structure described in Subsection 6.3.2. 

Based on the above and as discussed in Chapter 3, we show that VCELL is flexible, 

as we can add any new desired features to a model. VCELL is more adaptive, as 

the model is modified to fit a changed environment and we can add user-specified 

algorithms. 

6.4 Three-Dimensional Real-Time Visualization 

3D visualization of combat can provide a number of benefits. First, it provides 

decision-makers with an interactive environment to verify the accuracy of these mod­

els by comparing the results of actual combat with the output of a simulated version. 

Once the model is validated, it can then be used to predict the behavior of exist­

ing combat. Displaying these predictions in a visually informative manner allows 

decision-makers to understand the view of the situations and their soldiers and the 

battle in order to make more effective decisions. Furthermore, interactive simulation 

along with the 3D visualization allows trainers to apply different combat tactics and 

enemy behaviors. While real training would be risky and costly to perform, these 

risks can be minimized by simulating untested approaches first. 3D visual interfaces 

provide more understanding of interaction. Additionally, high-fidelity graphics enable 

an observer to better compare a simulated combat with a traditional 2D visualization. 

In the following sections, we show that VCELL is not specific to any implementation, 
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as we need the output results. This implies the ability to add new components with­

out having to make modifications at the code level or in the framework architecture, 

as discussed in Chapter 3. 

6.4.1 Visualization Sub-model Description 

3D real-time visualization is used to visualize the simulation output results of the 

CellAgent sub-model and also to implement a collaborative model that shares its 

components on two different simulation engines. The visualization renders the red 

agents and the creation of the blue agents and their characteristics based on their 

movement algorithm and personalities. The 3D real-time visualization model is im­

plemented using Vega Prime and OpenGL. Vega Prime is a high-performance software 

environment and toolkit for real-time simulation and virtual reality applications. It 

serves as an API consisting of a graphical user interface called LynX Prime and Vega 

Prime libraries and C++ callable functions. 

In the 3D real-time visualization sub-model, the combat can be seen in a 3D view 

for both red and blue agents. The blue agent personality calculations and position 

updates are done in the real-time visualization (RTV) sub-model, based on the data 

received regarding the red agents. The red agents' personalities and positions are 

received from the CellAgent sub-model in real time. The CellAgent sub-model obtains 

the blue agents' personalities and positions from the RTV in real time. 

The 3D scenes are rendered using 3D Openflight models. The terrain model 

consists of trees, buildings, roads, and so on. The agents are represented by a 3D 

tank model. We can control the environmental effects and the time of the day in the 

3D scene visualization. As illustrated in Fig. 6.5, a 3D scene is shown in a window 

that is divided into two channels: one with a perspective view of the 3D scene (on 

the left), and the other with the orthographical view of the 3D scene, which acts as 
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Figure 6.5: 3D Real-time Visualization View [129] 

a 2D map of the area (on the right). 

In the perspective view in the first channel, a 3D model for each agent (3D tank 

object) is displayed. The 3D scene is observed using a fixed camera. The observer 

view can be changed to five positions: back, front, left side, right side, or rotate 

around the object. 

In the orthographical view in the second channel, a yellow grid is created, rep­

resenting the cellular grid of the simulated combat area. The red agents' positions 

received from the CellAgent sub-model are rendered by red circles and the blue agents' 

positions represented by blue circles (see Fig. 6.5). The orthographical view can be 

zoomed in and out and the cellular grid can be removed for a better view. 

6.4.2 RTV Sub-model Implementation 

Fig. 6.6 illustrates the hierarchy of the 3D real-time visualization sub-model, which 

was implemented in Visual C++ and consists of three main components: 

1. The RTV Listener, which receives the red agents' data from the CellAgent 
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sub-model 

2. The RTV Visualization, which is responsible for creating the blue agents and 

the display of the 3D visualization scene 

3. The RTV Sender, which sends the blue agents' data to the CellAgent sub­

model. 

The RTV Listener is a separate thread, spawned to receive the red agents' data. 

First, the RTV Listener is responsible for receiving the dimensions of the cell-space 

from the CellAgent sub-model in order to start the RTV Visualization to render the 

3D scene. Then the RTV Listener receives the red agents' flag position. Finally, the 

RTV Listener receives the red agents' grid positions updates and their personalities 

in real time from the CellAgent sub-model. 

The RTV Visualization is the main part of the 3D real-time visualization sub­

model. The RTV Visualization is responsible for setting up the 3D visualization of 

the 3D real-time visualization sub-model. 

The RTV Visualization is composed of six main modules: 

1. 3D Scene Generator, which is responsible for setting up and synchronizing 

the 3D scene, drawing different 3D objects (terrain, tanks, buildings, etc.), 

defining and controlling different environmental effects (daytime, clouds, sun, 

etc.), and drawing the other modules. The 3D Scene Generator also removes 

the dead agents from the 3D scene. 

2. 3D Red Agent Generator, which creates a 3D object for the red agents. It 

positions the red agents based on the coordinates received from the RTV Lis­

tener. The 3D Red Agent Generator sets and updates the red agents with 

their personalities, which are received from the RTV Listener. 

3. 2D Map Draw, which consists of: 

• DrawGrid, which receives the cellular space dimensions from the RTV 
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Listener and draws it in the 2D map channel. 

• DrawCircle, which obtains the agents' positions and draws the red and 

blue circles according to the agents' type at the corresponding coordi­

nates. 

• DrawFlag, which draws a box for each flag according to its color at the 

corresponding coordinates. 

4. 3D Blue Agent Generator, which creates the blue agents (which include the 

3D object model, personalities, and position). The 3D Blue Agent Generator 

sends the position of the blue agents to the RTV Sender. 

5. 3D Blue Agent Updater, which calculates different personalities for the blue 

agents according to the received data for the red agents. It then sends the 

personalities of the blue agents to the RTV Sender. 

6. Blue Flag Generator, which creates a 3D object for the blue agent's flag at the 

user-defined position, then sends the position to the RTV Sender. 

The RTV Sender is a separate thread, spawned to send the blue agents' data. 

First, the RTV Sender sends the grid position of the blue agents' flag to the CellAgent 

sub-model running on the CD-I—I- workstation. After that, it sends the blue agents' 

grid positions and their personality updates to the CellAgent sub-model while the 

model develops. 

Finally, the 3D real-time visualization sub-model is capable of deploying different 

Openflight 3D terrain models and different cellular areas (dimensions and initial val­

ues) without changing the code of the visualization. As a result, we can add new com­

ponents without the code of the visualization needing to be changed in the framework 

architecture, as discussed in Chapter 3. We can also visualize the output simulation 

on the 3D visualization scene, which improves and enhances decision-making. It also 

improves the training session by providing a 3D visualization scene and various envi­

ronmental effects for the trainee on the RTV sub-system, which has different tactical 
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scenarios generated from the CellAgent sub-system. 

6.5 VCELL Framework Scalability 

The proposed implementation of VCELL has been tested with a variety of modeling 

scenarios, and several criteria have been applied for verification of the final imple­

mentation; for instance, a cell-agent model of 3 red agents on a 20X20 cell-space, 

each of them connected to an RTV engine and a visualization agent model of 3 blue 

agents. To ensure that the same scenario runs every time, the values coming from 

the cell-agent model were the same in all tests. All the cell-agent models follow the 

Cell-DEVS rules and the values were sent to the RTV engine successfully. This model 

is used to perform comprehensive performance tests in variable cell-space. The timing 

for the agent models varied in the different tests performed. The first test discussed 

in this section compared the average response time of the agents for different numbers 

of cell-spaces. The diagram in Fig. 6.7 shows the results of this test, for up to 60X60 

cell-spaces. 

The test was performed for 6 agents in the cell-agent model, increasing the cell-

space dimension from 10X10 cells up to 60X60 cells with 6 layers. We used a Dell 

PC machine for the CellAgent model with the following configuration: Intel(R) Pen-

tium(R) 4 CPU 3.20GHz, 512 MB memory, with operating system Linux Fedora Core 

5. We used a Dell Precision T7500 workstation for the RTV model with the following 

configuration: Intel(R) Xeon(R) CPU W5580@3.2 GHz, 3GB, with operating system 

Windows 7 64-bit. As shown in the chart, by increasing the cell-space dimension, the 

average response time increases exponentially. This is due to the heavier workload 

produced in larger cell-space models and propagation of data in the model. The result 

demonstrates the integrity and persistence of the implementation in a small cell-space 
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Figure 6.7: Number of Cell-Spaces vs. Average Response Time 

dimension up to 40X40 cells with 6 layers, but it grows exponentially after that, which 

demonstrates that the system is non-scalable after a 50X50 cell-space with 6 layers. 

This is due to the heavier workload produced in larger cell-space (more than 15,000 

cells) models and propagation of data in the model. This problem can be solved by 

upgrading the hardware resources of the Cell Agent machine. In addition, we could 

use Parallel CD++, which minimizes the cell-space dimensions for 50X50 cells with 6 

layers from 15,000 cells to 2,500 cells, which results in reducing the average response 

time. The exponential function of the diagram shows that the integrity of the func­

tionality of VCELL for different numbers of cell spaces on the processor is good in 

the range of 60X60 cells. 

To run the visualization sub-system in a real-time visual scene, the frame time 

should be less than 40 ms, as the visualization sub-system runs based on the number of 

frames per second (it should be more than 25 frames per second). However, the Cell-

DEVS sub-system must update the agent state in less than 40 ms to get accurate 
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results. In all the tests, the system update time was less than 40 ms, which is 

acceptable to run in a smooth scene and without loss of data. 

Fig. 6.8 shows the average response time of the model versus the number of agents 

on each cell-space. The test was performed by increasing the number of agents to 

check the system scalability on a 20X20 cell-space and 30X30 cell-space. For the 

20X20 cell-space, we ran the system many times for 6 agents, 12 agents, 24 agents, 

48 agents, and 96 agents. As for the 30X30 cell-space, we ran the system many 

times for 6 agents, 12 agents, 24 agents, 48 agents, and 96 agents. As is shown in 

the chart, by increasing the number of agents for the same cell-space, the processor 

utilization increases linearly. The result demonstrates the integrity and persistence of 

the implementation in a medium-load scenario. In addition, as the system gets busier, 

the response time also increases. The slope of the diagram for different configurations 

stays the same, showing the integrity of the functionality of VCELL for different levels 

of load on the processor. 
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Based on the above, the performance of the system depends on the underlying 

hardware. As the number of cell spaces increases, the average response time also 

increases. This means that the tasks are executed later to their release time, when 

the system scales up. A simple solution might include upgrading the underlying 

hardware resources in order to solve the scalability problem. We might also use 

parallel CD++, which has a better performance and reduces the time and hardware 

resources compared with CD++. 

6.6 Summary 

We present a 3D real-time visual cellular agent model (VCELL) for collaborative cell 

agent simulation with 3D visualization in real time for different battlefield combat sce­

narios. This work is done using a 3D real-time visual engine and the CD++ simulator 

running Cell-DEVS models. The VCELL model is not only used for prediction, but 

also to improve the understanding and learning process in land combat. VCELL is 

designed to help analysts and trainers get maximum gain by interactively simulating 

the scenarios, validating the results, and training soldiers in an effective environment. 

This work incorporates two sub-models: a Cell-DEVS agent simulation and a 3D vi­

sualization agent. The two sub-models provide model reusability and interoperability, 

allowing for any of them to be integrated or replaced. The visual Cell-DEVS agent 

for land combat is a new way of enhancing the randomization movement problem of 

movement algorithms in agent-based simulation by using the 3D visualization agent, 

which obtains the real position of agents in combat. The Cell-DEVS agent simulation 

reduces the time taken to create or modify tactical scenarios in the 3D visualization 

simulation by using the Cell-DEVS formalism and the CD++, which includes an in­

terpreter to write simple rules. These rules are transformed to be viewed in 3D by 

using 3D scenario generation. To implement the Cell-DEVS communication interface, 
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we modified the CD++ simulator core engine. Our model was implemented using 

robust software tools to make the real-time visual Cell-DEVS agent model more flex­

ible. VCELL is open source, which means the source code can be read and modified, 

while other ABD toolkits are not open source. In addition, VCELL is more flexible 

than other ABDs toolkits in terms of the ability to add any new, desired features to 

a model, which allows user-specified algorithms to be used, while other ABD toolkits 

are restricted to a few algorithms. Moreover, VCELL is more adaptive than other 

existing ABD toolkits and includes good analysis capabilities. It also supports 3D 

visualization, which is not applicable to other selected ABD toolkits. 
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Chapter 7 

Conclusions and Suggestions for Future 

Work 

7.1 Conclusion and Summary 

3D visualization has become important in simulation, as it presents a 3D graphical 

interface that is effective when used for training simulations. 3D visualization also 

gives decision-makers an overview of the problem at hand before they begin work­

ing with a real system. 3D visualization simulation can be combined with different 

applications-for instance, Building Information Modeling (BIM) software-in order to 

increase productivity in building design and construction. 3D visualization can also be 

combined with emergency simulations and battlefield simulation to enhance training 

preparation, allowing decision-makers to investigate different scenarios. As discussed 

in Chapter 1, the central theme of this thesis was to develop a framework that allows 

different simulation models to receive real-time external parameters so that they can 

be interactive, collaborative, and adaptive to the events in a simulation, by integrating 

DEVS, Cell-DEVS, and 3D visualization with different modeling techniques, which 

improves simulation interoperability at the software level and enhances the simulation 

results. Our objective was to develop a generic framework to be applied to simulation 
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environments and applications. We used BIM simulation, emergency simulation, and 

land combat simulation as case studies. This thesis presented a simulation adaptation 

and interoperability methods using DEVS, Cell-DEVS, and 3D visualization. 

The VCELL framework combines Cell-DEVS models, DEVS-based controllers, 

and 3D visualization engines. This component-oriented approach provides model 

reusability and interoperability, allowing integration or replacement of any of the 

components. VCELL serves as a container to hold different software components 

without being specific to any implementation, which allows new components to be 

added without having to make modifications at the code level or in the framework 

architecture. Using VCELL to add various hardware devices allows hardware-in-the-

loop, which achieves more accurate simulation results than when simulated hardware 

is used, and also improves training in different domains (such as in military training) 

by allowing the use of real equipment. Model-continuity from the early simulation 

stages to its finally embedding on the hardware speeds up the development process 

while increasing the reliability of the product and reducing risk and cost. VCELL can 

be used not only for real-time simulation, but also in virtual time, which allows for 

better and more accurate simulation results through comparing both the real-time 

and virtual-time output result and hence modifying the simulation rules. VCELL 

can use predefined inputs, actual inputs of the simulated system, or a combination 

of both predefined and actual inputs, which provide flexibility to modify the sim­

ulated system to obtain accurate results. VCELL also reduces the time taken for 

scenario development, modification, and validation by using the simple rules in Cell-

DEVS simulation. The research first extended CD-I—I- with a new component to hide 

CD++ internal implementation. This component consists of functions to support 

synchronization and adaptation and communicates using network messages. An in­

terface was developed between DEVS, Cell-DEVS simulations, and 3D visualization, 

so that various instances of each domain can cooperate with each other during the 
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same simulation session. This means that simulation can be manipulated in real time. 

VCELL was applied successfully to the different application domains discussed above: 

BIM, emergency simulation, and land combat simulation. 

First, we applied VCELL and integrated it with BIM models (this means that 

different simulations can be performed on BIM models to improve and enhance the 

BIM simulation results). The VCELL framework is adaptive and collaborative, as we 

can obtain the actual building parameters and carry out a simulation on the requested 

parameters, which results in improvement and enhancement of the BIM simulation. 

We implemented an Interactive Environment System (IES), which was described as an 

integration of Cell-DEVS formalism into BIM. By using the IES, we can improve the 

performance of BIM in different emergency situations, which is not covered in current 

BIM simulations. VCELL uses Cell-DEVS to simulate different emergency situations 

based on the external parameters received from the BIM models. The results of 

the Cell-DEVS simulation are sent back to the BIM model to be presented in a 3D 

visualization scene. The visualization sub-system integrates Cell-DEVS simulation 

and the BIM model to visualize the output result of the Cell-DEVS simulation on 

the BIM model. This facilitates the improvement and enhancement of the BIM 

model, as we can visualize the output results directly on the BIM model, which is 

more effective of 2D visualization of Cell-DEVS. It also facilitates making decisions 

and modifications. The feasibility of the proposed IES has been verified by using a 

diffusion limited aggregation (DLA) prototype. 

When VCELL was applied to an emergency simulation, we implemented an inte­

grated emergency management system based on the DEVS sub-system to develop new 

classes of cellular models for emergency response applications. The Cell-DEVS sub­

system allows models to receive external information, and the simulation parameters 

can be updated at any time due to the continuous-time nature of the discrete-event 

specifications. The emergency simulation is based on the Cell-DEVS sub-system, and 
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the emergency management is based on the DEVS sub-system, which uses a robotic 

agent as an example to respond to the emergency simulation in real time. We also use 

the 3D visualization sub-system, which takes the results of the emergency simulation 

and the emergency management to be visualized in the 3D real-time visualization. 

This system offers a software framework to make the real-time emergency response 

system more flexible and more scalable. A robotic agent acting as a first responder 

is placed in a virtual environment generated from a Cell-DEVS emergency simula­

tion. The controller of the robot is a DEVS-based emergency response model that 

interacts with the emergency simulation via messaging and is informed about the 

map of the area and the location of the incident (e.g., roadside bomb, fire, explosion, 

etc). Both the emergency simulation and the emergency response sub-systems run in 

real time and communicate with each other and with a 3D visualization engine. The 

purpose of the visualization system is to provide 3D scenes and to visually monitor 

the activities of the robotic first responder, which not only helps the modeler to en­

hance the emergency simulation models, due to the 3D virtual environment display 

of the real scene, but also helps decision-makers make the best choice. Therefore, the 

3D visualization system will improve and enhance emergency simulation. Although 

the emergency model is a simulation, it is simple to replace it with more complex 

emergency simulation models or a real emergency database fed from real-world data. 

The proposed generic interface and message structure that enables the emergency 

simulation, the emergency response, and visualization sub-systems interchange data, 

enabling our system to simulate emergency management in real time under various 

conditions. Moreover, it can be integrated with stochastic optimization models that 

use the scenario results from the simulation to determine an optimal mix of emergency 

planning resources to dispatch to an emergency situation. The proposed system is 

intended not only to train emergency response personnel, but also to be used as a 

core real-time strategy and response system. 
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Finally, when we applied VCELL to a land combat simulation, we incorporated 

two sub-systems: a Cell-DEVS agent simulation and a 3D visualization agent, which 

is based on a 3D visualization sub-system. The visual Cell-DEVS agent for land 

combat is a new way of solving the randomization movement problem of movement 

algorithms in an agent-based simulation by using the 3D visualization agent, which 

obtains the real position of agents in combat. The Cell-DEVS agent simulation re­

duces the time taken to create or modify tactical scenarios in the 3D visualization 

simulation by using the Cell-DEVS formalism and CD++, which includes an inter­

preter to write simple rules. The results can be visualized in 3D using 3D scenario 

generation. This work was done using a 3D real-time visual engine and the CD-I—I-

simulator running Cell-DEVS models. The VCELL is used not only for prediction, 

but also to improve the understanding and learning process in land combat. VCELL is 

designed to help analysts and trainers get maximum gain by simulating the scenarios 

interactively, validating the results, and training the soldiers in an effective environ­

ment. To implement the Cell-DEVS communication interface, the CD-I—I- simulator 

core engine was modified. VCELL was implemented using robust software tools to 

make the real-time visual Cell-DEVS agent model more flexible and more scalable. 
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7.2 Suggestions for Future Research 

7.2.1 Interfacing DEVS and Visualization Models for Emer­

gency Management 

One of the future extension plans of this work is to integrate the Google Earth file 

free virtual reality web service with the visualization engine and inject the terrain 

data into the Cell-DEVS engine. Therefore, if there is an emergency anywhere in the 

world, such as the Fukushima Daiichi Nuclear Plant disaster, the model can read the 

information about the environment from the Google Earth file and simulate it using 

the Cell-DEVS formalism and then lead the robot. 

7.2.2 Land Combat Simulation 

VCELL is a multi-agent simulation combat system that facilitates the analysis and 

understanding of land combat and 3D real-time visualization simulation for tactics in 

land combat, as discussed in Chapter 6. We propose to modify and improve the 3D 

real-time visual cellular agent model (VCELL) by developing a hardware interface for 

different military equipment. This will make VCELL interactive, with real fighters in 

the 3D visualization agent simulation, and update the agent simulation data with a 

real situation. 

The proposed agent, as shown in Fig. 7.1, could be composed of three main sub­

systems: 

• The CellAgent sub-model, which will be implemented using a Cell-DEVS model 

running in real time 

• The 3D real-time visual simulation (RTV) sub-model 

• The human-in-the-loop training simulator. 
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Figure 7.1: The Visual CELL-DEVS Agent (VCELL) Architecture 

Each sub-model would run on a different machine, communicating by messages 

sent over a network. The CellAgent sub-model, presented in Section 6.3, the 3D 

real-time visualization sub-model, defined in Section 6.4, and the proposed human-

in-the-loop training simulator would run in real time and communicate via messages 

transferred through a network infrastructure. The proposed human-in-the-loop train­

ing simulator will be designed, built, and used to train a tank crew in a virtual sim­

ulation environment. This will lend reality in training by using real equipment or a 

manufactured replica of it. As mentioned above, in our model, we will use a tank 
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as an example. The simulation environment of the tank will integrate four stations, 

which implement a driver's station, a gunner's station, a loader's station, and the 

commander's station of a simulated tank. The simulated tank systems will be built 

on the real body of a tank that includes real crew stations and its main weapon 

systems. This system will be integrated with the visual CELL-DEVS agent using 

RT-DEVS. RT-DEVS formalism is used for developing real-time embedded applica­

tions, which integrates simulation models with hardware components. The use of 

RT-DEVS reduces the development cycle and its costs by allowing DEVS models to 

be used for real-time and embedded applications with almost no modifications. It 

enhances the quality and the reliability of the final product and makes it portable on 

different hardware. Also we need to develop a model to predict the computational 

complexity as a function of the space being simulated, the number of active objects 

in that space and the real-time scale of the actions or change of state of the various 

active objects. 

7.2.3 Traffic Systems Simulation 

VCELL could be applied to other domains, such as understanding, examining, and 

solving traffic systems. We propose applying VCELL to a traffic system simulation to 

facilitate the analysis and understanding of various traffic systems and improve and 

enhance the output results. The proposed system could be composed of three main 

sub-systems: 

• The DEVS sub-system, which will be implemented using a DEVS model 

• The Cell-DEVS sub-system, which will be implemented using a Cell-DEVS 

model running in real time 

• The 3D real-time visual simulation (RTV) sub-system. 
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We propose applying the DEVS sub-system to a traffic light system, which will 

allow various traffic light algorithms to be run to achieve better results. The Cell-

DEVS sub-system can be assigned to the road flow and obstacles provided by the 2D 

map of the area of study, which allows for which allows for the best direction for traffic 

flow to be ascertained, and different traffic situations to be tested. The visualization 

engine can present the scene in 3D, so the flow of traffic can be observed in the area 

of study, which facilitates choosing the best traffic solution. With the visualization 

engine, we can use the system as a driving simulator, which allows a trainee to learn 

driving skills and rules, thereby improving the trainee's capabilities and saving lives. 

It can also be used when applying for a driver's license to confirm driver skills before 

the actual road driving test is taken, which saves time and lives. 
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