
A Framework for Interoperability of Virtual Reality and Simulation Models in
Support of Training

by

Ahmed Ahmed Abdalwhab Sayed Ahmed, M. Sc.

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering (OCIECE)

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada, K1S 5B6

November 2011

© Copyright 2011, Ahmed Ahmed Abdalwhab Sayed Ahmed

Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-87752-4

Our file Notre reference

ISBN: 978-0-494-87752-4

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

Abstract

Computer-based Modeling and Simulation (M&S) is a powerful tool for cost-effective

analysis, design, control, and optimization of complex dynamic systems. One of

the most advanced general purpose (M&S) frameworks is the Discrete Event System

Specification (DEVS) formalism. Cell-DEVS combines DEVS with cellular models,

allowing complex systems to be described using simple rules. 3D visualization meth­

ods (such as virtual reality (VR) or computer games) provide support to simulation

studies; however, at present there is no way to integrate 3D visualization for DEVS

and Cell-DEVS (using interactive, collaborative platforms). Likewise, developing and

modifying scenarios in existing VR environments usually requires significant efforts

in programming and validation.

In order to solve the aforementioned problems, this thesis focuses on the definition,

design, and performance analysis of the visual Cell-DEVS (VCELL) framework, which

allows different simulation models to receive real-time data to interact, collaborate,

and adapt to simulation events (integrating 3D visualization, sensor data, DEVS, and

Cell-DEVS modeling and simulation), which improves the models' design.

As a proof of concept, we applied VCELL to different applications, including

building information modeling (BIM), emergency and disaster simulation, and land

combat simulation.

BIM is used to generate and manage data for buildings during the project life cycle.

Existing BIM applications include models for indoor climate, energy consumption,

iii

and C02 emissions. However, they do not take into consideration other problems.

This research shows a more generic environment for Cell-DEVS and BIM integration,

and a prototype implementation in the form of BIM for Cell-DEVS simulation and

visualization.

In emergency and disaster simulations, it is usually important to consider the

system evolution in time and space. Generally, such simulations are large-scale pro­

grams, which in turn raise the need for efficient simulation engines. However, some of

these emergency simulations do not have real-time input data and are not adaptive.

VCELL solves these problems, allowing the emergency simulation to be integrated

with 3D visualization in real time.

In the area of land combat simulation, agent-based distillation (ABD) provides

a method for studying different land combat behaviors, which helps with decision­

making. ABD movement algorithms are used to simulate the target's movement in

the battlefield by a large set of parameters. However, under some circumstances,

these movement algorithms use random movements, which may result in an unpre-

dicted simulation output. We propose to use a model that integrates a cellular agent

model and a collaborative 3D visual agent model in real time. VCELL allows the

randomization problem to be solved, providing more stable output and reducing the

scenario development, modification, and validation time.

The main ideas, design, and implementation of VCELL are discussed, and the

case studies are presented in detail.

iv

Acknowledgments

First and foremost, I would like to express my deepest thanks to Prof. Gabriel A.

Wainer for his guidance, support, and friendship. To me he is the role model of an

exceptional scientist and teacher. He has always been supportive, not only when I

made progress but also when I made mistakes. I have also learned from him how to

be professional in an academic career. It has been my great privilege to study my

PhD under his guidance.

I am also grateful to Prof. Samy A. Mahmoud for generously sharing his intelligent

ideas and comments, which are constant sources of encouragement. I also greatly

appreciate his friendship and empathy.

Lastly, I would like to thank my mother, my wife, and my kids for their love,

support, patience, cooperation, and understanding throughout the course of my stud­

ies.

v

Contents

Abstract iii

Acknowledgments v

Table of Contents vi

List of Tables ix

List of Figures x

List of Acronyms xii

1 Introduction 1

1.1 Thesis Contributions 3

1.2 Thesis Organization 7

2 Literature Review 9

2.1 Virtual Reality and Simulation 9

2.1.1 Virtual Reality Simulation in the Military 11

2.2 DEVS and Cell-DEVS 13

2.2.1 The DEVS Modeling and Simulation Formalism 13

2.2.2 Cell-DEVS Modeling and Simulation Formalism 16

2.3 Building Information Modeling (BIM) 22

vi

2.4 Emergency Simulation 25

2.5 Agent-Based Distillation for Combat 26

3 The VCELL Framework 30

3.1 Introduction 30

3.2 VCELL Framework Definition and Features 33

3.3 The Framework Architecture 39

3.4 VCELL Framework Implementation 43

4 VCELL for Building Information Modeling 46

4.1 Introduction 46

4.2 BIM and Cell-DEVS System Architecture 48

4.2.1 Integrating Cell-DEVS and BIM 51

4.2.2 Simulation with BIM Data 53

4.2.3 Cell-DEVS & BIM 3D Visualization 57

4.3 Summary and Discussion 60

5 VCELL for Emergency Management 62

5.1 Introduction 62

5.2 The System Architecture 64

5.3 Cell-DEVS Emergency Simulation 65

5.4 DEVS-based Robotic First Responder Agent 67

5.4.1 The Logical Controller 67

5.4.2 DEVS Controller Model Specifications 68

5.4.3 Controller Model Implementation on E-CD-I—I- 70

5.5 3D Visualization Engine 70

5.5.1 Three-dimensional Visualization Engine Description 71

5.5.2 3D Visualization Engine Implementation 73

vii

5.6 Global Message Structure 74

5.7 Summary and Discussion 76

6 A Real-time Visual Simulation in Support of Combat 78

6.1 Introduction 78

6.2 The Visual CELL-DEVS Agent 80

6.3 Cell-DEVS Agent Sub-model 83

6.3.1 Real-time Cell-DEVS 83

6.3.2 Global Message Structure 85

6.3.3 Cell-DEVS Agent Definition Model 87

6.4 Three-Dimensional Real-Time Visualization 90

6.4.1 Visualization Sub-model Description 91

6.4.2 RTV Sub-model Implementation 92

6.5 VCELL Framework Scalability 96

6.6 Summary 99

7 Conclusions and Suggestions for Future Work 101

7.1 Conclusion and Summary 101

7.2 Suggestions for Future Research 106

7.2.1 Interfacing DEVS and Visualization Models for Emergency

Management 106

7.2.2 Land Combat Simulation 106

7.2.3 Traffic Systems Simulation 108

List of References 110

viii

List of Tables

2.1 Explanation of Atomic DEVS Model Equation Variables 13

2.2 Explanation of Coupled DEVS Model Equation Variables 15

2.3 Explanation of Atomic Cell-DEVS Model Equation Variables 18

2.4 Explanation of Coupled Cell-DEVS Model Equation Variables 19

3.1 Comparison of BIM Simulation Toolkits with VCELL 37

3.2 Comparison of Emergency Simulation Models with VCELL 38

3.3 Comparison of ABDs with VCELL 40

ix

List of Figures

2.1 Discrete Event Systems Specification (DEVS) Atomic Model semantics

2.2 Discrete Event Systems Specification (DEVS) Coupled Model

2.3 Description of a Cellular Discrete Event Systems Specification (Cell-

DEVS) Atomic Component

2.4 Description of a Cellular Discrete Event Systems Specification (Cell-

DEVS) Atomic Component

2.5 (a) Initial State of Maze (b) Final State of Maze

2.6 Building Information Modeling Life Cycle

3.1 The Visual Cellular Discrete Event System Specification (VCELL)

Framework Architecture

4.1 Interactive Environment System for Revit (IES^Revit) Architecture .

4.2 Interactive Environment System Max (IES-Max) Architecture

4.3 Interactive Environment System for Revit (IES-Revit) Interface . . .

4.4 (a)Initial State for Concrete; (b)Final State for Concrete; (c)Initial

State for Brick; (d)Final State for Brick

4.5 Interactive Environment System 3ds Max Interface

5.1 Detailed System Architecture

5.2 Emergency Cellular Space with Random Locations of Fires

5.3 DEVS Graph State Diagram of the Robot Controller

5.4 Three-dimensional Visualization Engine Cellular Map

x

14

15

17

20

21

22

42

49

50

52

56

60

65

66

69

72

5.5 Three-dimensional Visualization Engine Zoomed Map 73

6.1 The Visual CELL-DEVS Agent (VCELL) Architecture 81

6.2 Sample Cell-DEVS Model Structure and Interfaces 85

6.3 Movement and sensor range of VCELLA 87

6.4 Cell Agent Model Implementation in CD++ 88

6.5 3D Real-time Visualization View 92

6.6 3D Real-time Visualization Hierarchy 94

6.7 Number of Cell-Spaces vs. Average Response Time 97

6.8 Number of Agents vs. Average Response Time 98

7.1 The Visual CELL-DEVS Agent (VCELL) Architecture 107

xi

List of Acronyms

Acronyms Definition

ABD Agent Based Distillation

ABS Agent Based Simulation

AEC Architecture, Engineering, and Construction industry

API Application Programming Interface

BIM Building Information Modeling

CAS Complex Adaptive System

COTS Commercial off-the-shelf

CROCADILE Conceptual Research Oriented Combat Agent Distillation

Implemented in the Littoral Environment

DCD++ Distributed CD++

DEVS Discrete Event Simulation

EINSTein Enhanced ISAAC Neural Simulation Toolkit

IAI International Alliance for Interoperability

IES Interactive Environment System

IFCs Industry Foundation Classes

xii

IG Image Generator

IL Intermediate Language

ISAAC Irreducible Semi-Autonomous Adaptive Combat

M&S Modeling and Simulation

MANA Map Aware Non-uniform Automata

MAS Multi Agent System

RTV 3D Real Time Visualization

WISDOM Warfare Intelligent System for Dynamic Optimization of Missions

VCELL Visual CELL-DEVS

VR Virtual Reality

xiii

Chapter 1

Introduction

Three-dimensional (3D) visualization methods (such as Virtual Reality (VR) or com­

puter games) have changed the military training of soldiers for successful results in

wartime missions [1]. VR can be defined as a computer-generated surrounding, an

interactive 3D computer graphical interface, or an immersive interactive environ­

ment [2]. Training simulation systems can be treated as games; hence, significant

effort has recently been devoted to trainee learning and improving their skills [3].

Digital Game-Based Learning [4], a learning style used currently and that will also

be used in the future, is deployed as a method of learning and training, because it

is motivating and effective when used correctly. Simulators have become a powerful

tool that is changing military training. Simulators are used not only to teach troops

how to use complex equipment, but also how to work efficiently in teams. Simulation

also gives military decision-makers a strategic overview of options before engaging in

real combat. In addition, they can estimate the performance of new weapons systems

under consideration [1], However, for military tactical training simulation, developing

or modifying different scenarios in an existing virtual environment at the code level

requires significant programming time and validation efforts.

These 3D visualization methods are also popular in various applications ranging

from training to construction. For instance, if 3D visualization and simulation are

1

combined with building information modeling (BIM), this could result in increased

productivity in building design and construction [5]. BIM is a technique used to

generate and manage building data during the life cycle of a building's construc­

tion, which allows for better and more accurate construction projects with minimized

financial cost [6]. Because BIM facilitates the coordination, cooperation, and mainte­

nance of the building life cycle, many research studies have included simulation [7-11].

Nevertheless, most of these have focused only on thermal indoor climate, energy con­

sumption, C02 emissions, and other environmental aspects. In addition, no existing

research has applied generic modeling and simulation (M&S) methods to BIM. Doing

so would permit different studies to be carried out in the areas of building evacuation,

fire spreading, and so on. Moreover, there are no reactive simulation systems that

can interact in real time with changes to building parameters

Another popular use of 3D visualization and simulation is analysis of emergency

situations. This enhances training preparation, allowing decision-makers to investi­

gate different scenarios. In emergency simulation, M&S techniques play an important

role when it is impractical to perform real-world studies due to the destructive im­

pact of emergencies. Generally, such simulations are large-scale programs, which in

turn raise the need for efficient simulation engines. Research studies [3,12-18] state

that some of these emergency simulations have 3D visualization, but they do not

incorporate real input data from the field and are not adaptive in real time.

VR is usually combined with computer-based M&S as a powerful tool for cost-

effective analysis, design, control, and optimization of complex dynamic systems. One

of the most advanced general-purpose M&S frameworks is the Discrete Event System

Specification formalism (DEVS) [19-22]. DEVS facilitates the reuse of tested models

and improves the safety of the simulations. As a result, this reduces development time.

The cellular DEVS (Cell-DEVS) [23] approach combines DEVS and cellular models,

which allows complex systems to be described as a cell space using simple rules for

2

modeling. Existing DEVS and Cell-DEVS tools usually include 2D visualization to

facilitate analyzing the output results on a 2D grid map, but 3D visualization and VR

for DEVS and Cell-DEVS in real time are not available. Although surveys [3,24,25]

show that 3D visualization can be applied to DEVS and Cell-DEVS, existing efforts

are not interactive, collaborative, or adaptive.

Considering these issues, the main objective of this research is to develop a frame­

work that allows different simulation models to receive real-time external parameters

so that they can be interactive, collaborative, and adaptive to simulation events by

integrating the DEVS, Cell-DEVS, and 3D VR with different modeling techniques.

1.1 Thesis Contributions

The central theme of this thesis is to develop a framework that allows different simu­

lation models to receive real-time external parameters so that they can be interactive,

collaborative, and adaptive to simulation events by integrating the DEVS, Cell-DEVS,

and 3D visualizations with different modeling techniques, which improves simulation

i n t e r o p e r a b i l i t y a t t h e s o f t w a r e l e v e l , w h i c h e n h a n c e s t h e s i m u l a t i o n r e s u l t s . O u r

objective is to develop a generic framework to be applied to simulation environments

and applications. This thesis presents a simulation adaptation and interoperability

methods using DEVS, Cell-DEVS, and 3D visualization. We use BIM simulation,

emergency simulation, and land combat simulation as case studies. The key contri­

butions are summarized below:

• The design and development of the framework, which is the first existing frame­

work to be based on DEVS, Cell-DEVS, and 3D visualization simulation prin­

ciples. The framework's key features are summarized as follows:

— The framework serves as a container to hold different software components

3

without being specific to any implementation, which allows new compo­

nents to be added without making changes at the code level or in the

framework architecture.

- Using the framework for adding various hardware devices allows hardware-

in-the-loop, which enhances the simulation results by achieving more ac­

curate results than when simulated hardware is used, and also improves

training in different domains (such as in military training) by allowing the

use of real equipment.

- The framework can be used not only for real-time simulation, but also

in virtual time, which allows for the enhancing of the simulation results

by comparing the real-time and virtual-time output results, and hence

modifying the simulation rules.

- The framework can use predefined inputs, actual inputs from the simulated

system, or a combination of both predefined and actual inputs, which gives

flexibility for modifying the simulated system to get accurate results.

The framework combines a Cell-DEVS cellular model, a DEVS-based con­

troller, and VR visualization. This component-oriented approach provides

model reusability and interoperability, allowing any of the components to be

integrated or replaced.

• The RT cellular simulation is an on-demand data source of the scenario that is

to be used by the DEVS model. A hardware-in-the-loop can be used to update

the Cell-DEVS simulation data with a real situation and the information on

the simulation space area.

• An interface is developed between DEVS, Cell-DEVS, and 3D visualization sim­

ulations so that various instances of each domain can cooperate with each other

to simulate the same simulation session. In this case, the required simulation

is performed within the framework. This means that the simulation can be

4

manipulated in real time.

As discussed earlier, the framework proposed in this research was applied to BIM

simulation, emergency simulation, and land combat simulation. These applications

are described below.

a) BIM Simulation

Most current BIM simulations do not cover our requirements, not only with regard

to the prediction of the construction and building life cycle but also in the mainte­

nance cycle. In this research, we focus on generalizing BIM simulations to overcome

these limitations. We also focus on developing a simulation-driven architecture for

integrating Cell-DEVS simulation with BIM on the simulated building in real time. A

3D visualization sub-system is then developed to present the output simulated results

of Cell-DEVS on a BIM model.

b) Emergency Simulation

Since emergencies are processes that are distributed over both time and space,

emergency and disaster simulations should take into consideration the system evolu­

tion in both time and space. In this research, we propose an integrated emergency

management system based on DEVS and Cell-DEVS to develop new classes of mod­

els for emergency response applications. Cell-DEVS allows models to receive external

information, and the simulation parameters can be updated at any time due to the

continuous-time nature of the discrete-event specifications. The proposed emergency

simulation integrated with emergency management is based on the collaboration of

DEVS, Cell-DEVS real-time simulations with hardware-in-the-loop, and 3D real-time

visual simulation. The emergency simulation is based on Cell-DEVS, and the emer­

gency management uses a robotic agent controlled by a DEVS model to respond to

the emergency in real time. We also use a 3D visualization engine that takes the

results of the emergency simulation and the emergency management to be visualized

in 3D in real time. Moreover, we propose a method to integrate Google Earth free

5

virtual reality web services with the visualization engine injecting the terrain data

into the Cell-DEVS engine in real time.

c) Land Combat Simulation

Defense analysts have studied different behaviors of land combat battlefields based

on agent-based distillations (ABD), which provide them with a useful tool for decision­

making. ABDs are the most popular method and can be used to explore different

aspects of land combat operations and help to quickly investigate different scenarios

in real battle conditions. Although ABDs' movement algorithms are used to simulate

the target's movement in the battlefield by a large set of parameters related to the

battlefield, they move randomly, which may result in unpredicted simulation outputs.

In addition, most existing ABDs include only 2D visualization facilities (with no 3D

visualization scene). Although VR and computer games are used for military tactical

training simulation, it requires significant programming time and validation efforts to

develop or modify different scenarios in an existing virtual environment at the code

level. In this research, we propose to deal with these problems using our framework,

which integrates a cellular agent model and a collaborative 3D visual agent model

in real time to solve the randomization problem of the ABDs' movement algorithms

and also reduce the development time required for programming different scenarios.

We also propose to integrate a hardware interface for our model, which facilitates the

building of training simulators based on human-in-the-loop. The proposed human-

in-the-loop training simulator will be designed, built, and used to train a tank crew

in a virtual simulation environment. This will provide reality in training, by using

real equipment, or a manufactured replica of it.

Parts of the thesis have appeared in the following publications:

• Ahmed Sayed Ahmed, Gabriel A. Wainer, and Samy Mahmoud. "Integrating

Building Information Modeling & Cell-DEVS Simulation". Proceedings of 2010

Spring Simulation Conference (SpringSimlO), Orlando, USA. April 2010.

6

• M. Moallemi, S. Jafer, A. Sayed Ahmed, and G. A. Wainer. "Interfacing DEVS

and Visualization Models for Emergency Management". Proceedings of 2011

Spring Simulation Conference (SpringSimll), Boston, USA. April 2011.

• Ahmed Sayed Ahmed, M. Moallemi, Gabriel A. Wainer, and Samy Mahmoud.

"VCELL: A 3D Real-Time Visual Simulation in Support of Combat". Proceed­

ings of 2011 Summer Computer Simulation Conference (SCSC11), The Hague,

Netherlands. June 2010

The last publication was awarded the second place Best Paper Award in recogni­

tion of its quality, originality and significance in modeling and simulation.

1.2 Thesis Organization

This thesis is organized as follows:

Chapter 2 provides detailed background on DEVS and Cell-DEVS formalism,

BIM, complex adaptive systems (CAS) and ABD, and 3D real-time visualization.

Chapter 3 gives an overview of the VCELL framework and presents its archi­

tecture. It focuses on integrating DEVS, Cell-DEVS, and 3D real-time visualization

simulation in virtual and real time.

Chapter 4 focuses on integrating Cell-DEVS simulation with the BIM model

based on a collaboration of Cell-DEVS and BIM simulation in virtual time. We

present the development of an Interactive Environment System (IES_Revit). It shows

a Cell-DEVS/BIM integration system and describes a prototype implementation in

the form of a BIM add-in tab for Cell-DEVS simulation, and then visualizes the output

simulation of Cell-DEVS on the BIM model. The diffusion limited aggregation (DLA)

model example is used to verify the feasibility of combining these two technologies

using IES.

7

Chapter 5 focuses on integrating emergency simulation with emergency manage­

ment based on the collaboration of DEVS, Cell-DEVS, and 3D real-time visualization

simulation in real time. It discusses the modifications made to the CD++ simula­

tion engine to enable real-time execution. We present the emergency management

mechanism using a DEVS-based robotic agent and explain the visualization of the

simulation. The message structure transferred between the three components is pre­

sented.

Chapter 6 describes a collaborative 3D real-time visual cellular agent model

(VCELL) and a cellular agent simulation in real time. The architecture of the visual

CELL-DEVS agent model is presented. This chapter also discusses the implementa­

tion of Cell Agent and the 3D real-time visual simulation sub-models of land combat.

The global message structure is illustrated.

Chapter 7 concludes this thesis by outlining major findings. Some future work

is also suggested.

8

Chapter 2

Literature Review

This chapter presents a literature review of the proposed work. Section 2.1 gives

background on VR and simulation. Section 2.2 describes the DEVS and Cell-DEVS

M&S framework and its implementation in the CD++ environment. Section 2.3

introduces BIM. Emergency simulation is reviewed in Section 2.4. ABD for combat

is presented in Section 2.5.

2.1 Virtual Reality and Simulation

In the past, simulators and other simulation applications were only available to indus­

trial and military systems, due to the system requirements of high technology, which

were expensive [26]. In recent years, the rapidly expanding technology in computer

processing, storage, communications, and display capability has made it possible to

run simulators and other simulation applications on personal computer hardware [27]

because PCs now have advanced computational capabilities at very low cost [28].

This can be seen in the hardware of the current generation of video game consoles,

such as Sony's PlayStation 3, Nintendo's GameBox, and Microsoft's Xbox [29-31].

In recent years, serious games, simulation games, training simulators, and VR

have gained popularity in computer game technology. Serious games are the result of

9

applying simulation technology for training purposes [32], while simulation games are

the result of applying simulation technology for entertainment purposes [33]. Training

simulators, such as combat marksmanship simulators, flight simulators, and driving

simulators [34-36], are designed to develop the skills or experience of the trainees who

use them and to maximize their performance. VR technologies are used to enhance

the immersiveness and interactivity of the training simulator [36].

Most military simulators are based on various types of military equipment, such

as aircraft simulators, tank simulators, and Marine simulators. These simulators not

only improve and enhance military training but also reduce training costs and save

trainees' lives by giving them training in situations that would be too dangerous

to execute in reality. Due to the cost-effectiveness of computer game technology, it

is used in various armed-forces simulators. 3D games and serious games use these

simulation games for military purposes, such as America's Army [37]. Also, several

commercial off-the-shelf games, such as Delta Force 2 and Steel Beasts [38,39], are

used by armed forces to improve military training [40].

Burdea and Coiffet define VR as 3D, immersive, and real time simulations of

an environment that can be interactive with users via multiple sensorial channels

[41]. A VR application is based on various components: the scene and the objects,

behaviors, interaction, communication, and sound [42], With regard to the scene

and the objects: the scene presents the environment that contains 3D objects, which

represent various 3D models such as terrain, vehicles, or trees. It also includes lighting,

observers, collision detection, and environmental and special effects. Behaviors are

the properties of the objects, such as moving, rotating, and scaling. Interaction can

be defined as the action and reaction between the user and the virtual world, carried

out through various hardware devices such as mouse, keyboard, 3D mouse, data

gloves, or head-mounted devices. Communication means that the VR applications

are collaborative environments in which remote users can interact with each other.

10

Sound represents various sound effects in the VR application of the scene and objects.

The use of immersive displays and desktop displays for various tasks in VR offer

difficulties with regard to making a choice for specific tasks [43]. A great deal of

research has been done to compare the usability of immersive and desktop displays

[44-46] but immersive displays have been shown to be more advantageous.

Many VR software systems and VR toolkits have been proposed for the develop­

ment of VR applications. These software tools are classified as follows:

• Authoring tools have a graphical user interface (GUI) which is used for cre­

ating the scene and objects using various scripting languages. The developers

should have some knowledge of VR. The most frequently used authoring tools

are Autodesk 3dMax [11], Autodesk Maya [47], MilkShape 3D [48], Planlt

3D [49], AC3D [50], and Blender [51].

• Software Programming Libraries: in these, we can programme a VR appli­

cation from scratch using a programming library for VR, such as Java3D [52],

VRML [53], OpenGL [54], and X3D [55]. To use such a library, the developers

should have a good knowledge of programming, VR, and computer graphics.

2.1.1 Virtual Reality Simulation in the Military

VR can be defined as a computer-generated surrounding, an interactive 3D computer

graphical interface, or an immersive, interactive environment [2]. VR and computer

games are modifying military preparation for war to an extreme degree [1]. The use of

simulators has become a powerful tool that has changed military training. Simulators

are used not only to teach troops how to use complex equipment, but also teach them

how to work efficiently in teams. Simulation also gives military decision-makers a

strategic overview of options before starting real combat. They can also evaluate the

performance of new weapons systems under consideration [1],

11

The rapidly expanding technology in computer processing, storage, communica­

tions, and display capability has resulted in the rapid growth of software modeling and

visual simulation [56]. Interactive 3D simulation is used in combat simulation, where

it is necessary during peacetime to train soldiers for successful results in wartime mis­

sions [57]. Training simulation systems can be treated as games; hence, significant

effort has recently been devoted to trainees' learning and improving their skills [58].

Digital Game-Based Learning [4], a learning style used currently and in the future, is

deployed as a method of learning and training, because it is motivating and effective

when used correctly.

The components used in a visual simulation are:

• A real-time application program, which controls the graphical scene, model dy­

namics, collision detection, and various special effects. A real-time virtual en­

vironment development uses a computer graphics library/application program­

ming interface (API)/language such as OpenGL, Java3D, and VRML, which

can be used with a common programming language, such as C++, Java, or

Python.

• An image generator (IG), which is the graphical hardware responsible for draw­

ing the scene on PCs and gaming consoles.

• The visual database is the data that describe what, when, and how to draw the

scene.

• A modeling package, which creates visual databases that represent different 3D

objects in the scene.

Many VR software systems and VR toolkits have been developed for VR appli­

cations, such as VPLs Body Electric [59], Alice [60], CAVElib [61], VRJuggler [62],

DIVERSE [63], the Studierstube project [64], and MRToolkit [65]. Many Internet-

based PC games were developed by the Moves Institute, under the auspices of the

US Army [37]. The armed forces are looking for simulation solutions for training

12

that provide a high level of realism and interactivity in a visual representation. In

a real-time visual simulation of a battlefield, tactical scenarios have to be designed

for the enemy side. Implementation of these scenarios takes a long time, in terms of

programming and verification. It may also take a long time to modify these scenarios

for different situations.

2.2 DEVS and Cell-DEVS

2.2.1 The DEVS Modeling and Simulation Formalism

The Discrete Event Systems Specification (DEVS) is an M&S formalism that allows us

to define hierarchical modular models [66]. DEVS M&S theory is based on systems

theory concepts [19,67,68]. DEVS modular facilitates the reuse of tested models,

improving the safety of the simulations. As a result, this can reduce development time.

DEVS is a framework for constructing discrete-event hierarchical modular models, in

which behavioral models (atomic) can be integrated, forming a hierarchical structural

model (coupled). The atomic DEVS model is defined as in (2.1) and in Table 2.1.

M =< X, Y, S, Sint, 5extl A, ta> (2.1)

Table 2.1: Explanation of Atomic DEVS Model Equation Variables

Variable Definition

X The set of input events

Y The output events set

S The set of sequential states

&int The internal state transition function

&ext The external state transition function

A The output function

ta The time advance function

13

Fig. 2.1 shows the description of a DEVS atomic model. In the case of the absence

of external events; if the DEVS model is in state s G S at a given time, an output

value A(s) is invoked at port y after ta(s) has finished and then the s state changes to

Sint(s). An internal transition occurs because of the consumption of time ta(s). When

an external transition takes place, a state transition occurs. The new state transition

is given by Sext(s, e, x) where s is the current state, e is the time elapsed since the

last transition, and x is the external event that has been received.

Figure 2.1: Discrete Event Systems Specification (DEVS) Atomic Model semantics
[69]

The atomic model can be considered as the base element in which we define dy­

namics of any system, while the coupled structural model consists of one or more

atomic and/or coupled models. Coupled models are defined as a set of basic compo­

nents (atomic or coupled). Fig. 2.2 shows a description of the DEVS coupled model.

The coupled model can be defined as in equation (2.2). The variables used are defined

in Table 2.2

14

CM =< X, Y, D, {Md | deD}, EIC, EOC, IC, select > (2.2)

Table 2.2: Explanation of Coupled DEVS Model Equation Variables

Variable Definition

X The set of input events

Y The set of output events

D The set of component names and for each d £ D

Md A DEVS basic model(i.e., atomic or coupled)

EIC the set of external input couplings

EOC the set of external output couplings

IC the set of internal coupling

select the tie-breaker function

Out

M2 Ml

C2

Oat
Outl

Out2

CI

Ou^

Figure 2.2: Discrete Event Systems Specification (DEVS) Coupled Model [69]

The coupled model explains how to convert the outputs of a model into inputs for

the other models, and how to handle inputs/outputs to and from external models.

15

In recent years, the DEVS formalism [70] has gained popularity for modeling a va­

riety of problems [71]. Various DEVS-based simulation tools have been implemented,

such as DEVS-C++ [72], DEVS/HLA [73,74], DEVSJAVA [75], and JDEVS [76],

DEVS was also implemented in the CD+4- toolkit [77]. The CD++ toolkit is an

open-source, object-oriented M&S environment that implements DEVS and Cell-

DEVS formalisms.

2.2.2 Cell-DEVS Modeling and Simulation Formalism

Different formalisms have been used to capture the behavior of the systems that can be

represented as cell spaces. These systems can be found in many fields, from chemistry

to engineering and from physics to social sciences [78,79]. Cellular automata are

known formalisms that present these types of systems [80,81]. Cellular automata

were established by von Neumann [82] to study self-reproducing systems. A cellular

automaton is a discrete model that is composed of a network of cells where each

cell has a finite number of states [79]. The state of each of the cells in time t is a

function of states of its predefined neighbor cells in time t-1. Cell-DEVS [23,69] has

extended the DEVS formalism, allowing us to implement cellular models with timing

delays. Once the behavior of a cell is defined, a coupled Cell-DEVS can be created

by interconnecting a number of cells with their neighbors.

A Cell-DEVS model is a lattice of cells, where each cell is a DEVS atomic com­

ponent, holding state variables and a computing apparatus, which is in charge of

updating the cell state according to a local rule-base. This is done using the current

cell state and those of a finite set of nearby cells (called its neighborhood). Cell-

DEVS improves execution performance of cellular models by using a discrete-event

approach. It also enhances the cell's timing definition by making it more expressive.

Each cell is defined as a DEVS atomic component, and it can later be integrated to

a coupled component representing the cell space. Cell-DEVS atomic components are

16

informally defined as in Fig. 2.3.

• •• oqueue

Figure 2.3: Description of a Cellular Discrete Event Systems Specification (Cell-
DEVS) Atomic Component [23]

Each cell uses N inputs to compute its next state. These inputs, which are received

through the model's interface, activate a local computing function (r). A delay (d)

can be associated with each cell. The state (s) changes can be transmitted to other

models, but only after the consumption of this delay. This model can be formally

described as in equation (2.3). The used variables are defined in Table 2.3

TDC =< X, Y, S, N, type, d, r, S int, dext, A, ta > (2.3)

17

Table 2.3: Explanation of Atomic Cell-DEVS Model Equation Variables

Variable Definition

X The set of input external events

Y The set of output external events

S The set of states

N The set of input values

d The delay for the cell

type The type of delay (transport/inertial/other)

r The local computing function

&int The internal state transition function

&ext The external state transition function

A The output function

ta The state's lifetime function

Once the cell behavior is defined, a coupled Cell-DEVS can be created by putting

together a number of cells interconnected by a neighborhood relationship. A Cell-

DEVS coupled model is informally presented in Fig. 2.4. A coupled Cell-DEVS model

is the resulting array of cells (atomic models) with given dimensions, borders, and

zones (if applicable). Each cell is connected to its neighborhood through standard

DEVS input/output ports.

The coupled Cell-DEVS model can be formally described as in equation (2.4).

The variables used are defined in Table 2.4

TDC =< X, Y, Xlist, Ylist, 77, N, m, n, C, B, Z, select > (2.4)

18

Table 2.4: Explanation of Coupled Cell-DEVS Model Equation Variables

Variable Definition

X The set of input external events

Y The set of output external events

Xlist The list of input coupling

Y list The list of output coupling

V The neighborhood size

N The neighborhood set

m, n The size of the cell space

C The cell space set

B The border cells set

Z The transition function

select The tie breaking selector function

Cell-DEVS were implemented using CD++. CD-I—I- has solved a variety of com­

plex problems [83-85]. The basic features of the CD++ toolkit can be shown in an

example of an application. A maze-solving algorithm, defined in [86], is used as an

example of the application of such models [87], and is shown below:

[t o p]

c o m p o n e n t s : m a z e

[maze]

t y p e : c e l l

d i m : (1 5 , 1 5)

d e l a y : t r a n s p o r t

d e faultDelay Time : 100

b o r d e r : n o w r a p p e d

n e i g h b o r s : m a z e (— 1 , 0)

n e i g h b o r s : m a z e (0 , - l) m a z e (0 , 0) m a z e (0 , l)

n e i g h b o r s : m a z e (l . O)

i n i t i a l v a l u e : 0

i n i t i a l c e l l s v a l u e m a z e . v a l

l o c a l t r a n s i t i o n : m a z e — r u l e

19

Cell's connections

OUT

CeN definition

Figure 2.4: Description of a Cellular Discrete Event Systems Specification (Cell-
DEVS) Atomic Component [23]

[m a z e — r u l e]

r u l e : 1 1 0 0 { (0 , 0) = 0 a n d (t r u e c o u n t = 3

o r t r u e c o u n t = 4) }

r u l e : 0 1 0 0 { (0 , 0) = 0 a n d t r u e c o u n t < 3 }

r u l e : 1 1 0 0 { t }

In the maze example, the rules are as follows:

• If the cell is a wall cell, the cell remains a wall cell.

• If the number of neighborhoods of a cell is three or more, the cell becomes a

wall cell.

When the maze model is executed using these rules, all non-solution paths in the

maze are closed successfully. One example of the initial cell state to the maze and

the final steady state of the given initial maze cells is shown in Fig. 2.5, which is

drawn using CD++ Modeler (a GUI included with the tool) [88]. Cell-DEVS was

used to solve different problems in construction and architecture projects [89,90].

20

The construction and architecture model shows a space representation and conflict

analysis during construction, but there is no visualization used in this model. 3D

visualization simulation [91,92] was used only to visualize different problems that

were implemented in Cell-DEVS.

L

(a) (b)

Figure 2.5: (a) Initial State of Maze (b) Final State of Maze

Cell-DEVS was also used to solve complex problems in a battlefield on land. A

land battlefield model was introduced by Madhoun and Wainer [93,94], The model

describes two armies engaging on a battlefield. Each army consists of a number of

soldiers defending their flag or attacking the enemy's flag. The soldiers move on

the battlefield according to a simple rule to obtain the enemy's flag. The movement

is made by comparing the current cell position of the soldier and the enemy's flag

position only, and no consideration is given to neighboring friendly and enemy soldiers.

Therefore, the output results cannot be guaranteed.

21

2.3 Building Information Modeling (BIM)

For successful construction projects, an enormous amount of data should be collected

and analyzed in the pre-design phase of the project. Until recently, the success of

this phase was dependent on the experience of experts. However, the information

required to complete the project and the amount of data that must be analyzed to

do so is now greater and more complex. Therefore, there is a need for tools that can

directly support this pre-design phase. BIM has been considered as a tool that can

support this part of the construction project [95]. BIM has resulted in improvements

to the way architects-contractors and fabricators work [96].

Architect Owner

Mechanical
Engineers/

BIM

Interior
Designers

Electrical
Engineers

Chil
Engineers

Construction
Mangers J

Figure 2.6: Building Information Modeling Life Cycle [97]

BIM is the process of generating and managing building data during the life

cycle of the building project [5], as shown in Fig. 2.6. BIM uses 3D, real-time,

22

dynamic building modeling software to increase productivity in building design and

construction. BIM allows us to achieve better and more accurate construction projects

with minimized financial costs [6]. BIM also facilitates coordination and cooperation

and supports the easy maintenance of a building life cycle.

BIM software creates parametric 3D models instead of 2D perspective drawings

and operates on a digital database where any change made to this database will be

reflected in the whole drawing that is produced. BIM software is often associated

with industry foundation classes (IFCs), which are data structures used to repre­

sent information used in BIM. IFCs were developed by the International Alliance

for Interoperability [98]. The IFCs are based on the Standard for the Exchange of

Product (STEP) [99]. This model data (STEP) is a way to exchange product data

information. IFCs are supported in most of the current architecture software and it

is recognized as a valuable means of providing interoperability and better integra­

tion of the life cycle process of buildings. The concept of interoperability in BIM is

that all the data associated to a building can be handled in one repository, which

facilitates exchange between different domains in the architecture, engineering, and

construction industries, by having a centralized data model accessible to different

domain applications [100]. The interoperability encloses the integration of both the

tools for design and analysis, and the multiple domains of expertise in the building

life cycle process [101]. BIM is considered to be an important improvement to the

way architects-contractors and fabricators work [96], in that it allows for conflicts be­

tween them to be minimized, and presents a 3D visualization of the building during

design and fabrication. Therefore, errors made by the design team can be minimized,

resulting in reduced costs.

There are different simulation applications for BIM, such as IDA Indoor Climate

and Energy (IDA ICE) and DesignBuilder Software [102,103]. IDA Indoor Climate

23

and Energy (IDA ICE) is a dynamic simulation application that allows us to calcu­

late the thermal indoor climate of individual zones and the energy consumption of

the entire building. DesignBuilder Software is a simulation software used to check

building energy consumption, C02 emissions, and other building environmental as­

pects. In the research of [104], the integration of energy simulation as a mode of

design assessment shows that information can be described in detail in a BIM to

support design evaluation and decision-making in concept design. The BIM-based

parametric design method models the building modeling and its configuration to be

connected to real-world climatic parameters, and facilitates the study of building sus-

tainability related to energy efficiency [105]. Most BIM simulation focuses on energy

efficiency, climate (heating, ventilating, and air-conditioning), and different aspects

concerning the building. We have surveyed the available systems, such as Bentley

Architecture, Graphisoft ArchiCAD, VectorWorks Architect, Autodesk Revit Archi­

tecture, and Autodesk 3ds Max [7-11], to see whether they support our proposal.

These systems allow us to use BIM applications and present a 3D visualization that

improves productivity in building design and construction.

Although some of these BIM simulations are very advanced and focus on particular

applications, they are not applicable for some aspects, such as building evacuation and

emergency planning. Khan and Wainer in [24,25] presented a design and visualization

of DEVS and Cell-DEVS simulation using Maya. Maya is used to visualize output

simulation results in virtual time. The system is not interactive and cannot run in

real time.

24

2.4 Emergency Simulation

Emergency simulation has received increasing attention in recent years and research

has been developed and proposed for this purpose. Specifically, disaster management

and evacuation strategies are the two most important subjects within this field. Due

to the devastating occurrence and destructive impact of emergencies, it is impractical

to perform real-world studies of this nature. M&S is an alternative to field-based

experiments [12]. Generally, such simulations are large-scale programs, which in turn

raise the need for efficient simulation engines. Modeling, simulation, and visualization

techniques can help address many of the challenges in emergency response planning.

A number of modeling and simulation applications for analyzing various disasters are

surveyed in [12].

In [16], a mathematical model was implemented in an emergent algorithm that

was presented to be used for movement in robotic collectives. A tree-in-motion map­

ping (TIMM) technique was presented in [17]; this allows for efficient environment

mapping by a set of intelligent mobile-robot sensor agents that dominate limited

communication bandwidth and computational power. Abielmona and Petriu in [18]

provided a design and development for a multi-agent system that included agents that

dominate a limited amount of communication bandwidth and computational power

for a territorial security application. Castonguay and Wainer in [3] provided a design

and development for an aircraft evacuation using DEVS simulation and visualization,

which allowed the aircraft evacuation results to be visualized after the simulation.

A number of M&S applications exist for studying individual aspects of emergency

response scenarios. However, a number of simulation tools have to be integrated

to address multiple aspects of a single disaster event. Jain and McLean in [106]

presented a framework for M&S in emergency response applications, which systemat­

ically integrates M&S tools to address the overall response. In [107], Jain and McLean

25

integrated gaming and simulation systems to train decision-makers and responders

to work together as a team. A discrete-event environment introduced by Gonzalez

in [108] presents the processes of analysis and design of a multi-agent system for

a crisis response organization with the purpose of building a simulation testbed to

experiment with different coordination mechanisms. To achieve efficient emergency

management, we use virtual simulation with real-time emergency response, due to its

capabilities to provide real-time system observations [13-15].

2.5 Agent-Based Distillation for Combat

Lanchester's Equations, presented by Lanchester in 1916 [109], were considered by

defense analysts to model and hypothesize combat attrition (which is the act of weak­

ening the enemy side by attack) [110, 111], Lanchester's Equations are a set of linear

dynamic equations that address attrition as a continuous function over time. Combat

is modeled as a deterministic process that needs an attrition-rate coefficient.

Although Lanchester's Equations are easy to apply, such models, based on math­

ematical equations and physical description of combat, can explain an ideal model

of military operations that is too abstract and does not satisfy reality. The draw­

backs of Lanchester's Equations have been described and analyzed in [110,112-114].

Research results in [110,111,114] show that warfare can be considered to be nonlin­

ear behavior. Combat can be considered as a complex adaptive system (CAS) [111],

and multi-agent system (MAS) platforms have been applied successfully for studying

CAS. The combatants are modeled as agents, usually with a set of predefined charac­

teristics. These agents adapt, evolve, and co-evolve with their environment [114,115].

This view of combat allows researchers to use agent-based simulations on military

operations. The field is usually known as agent-based distillation (ABD) or agent-

based simulation (ABS). ABD emphasizes the concept of incorporating agents into

26

the environment [116]. Defense analysts have studied different behaviors of warfare

based on ABD. Simulation is used to study and analyze the dynamics and behaviors

of the system, which provide defense analysts with a useful tool for helping them to

make decisions.

The agent's movement depends on five different weights: agent healthy friend,

agent injured friend, agent healthy opponent, agent injured opponent, and the flag

position [117]. The first four categories describe the agent's health state, which affect

its movement in the battlefield space. The flag position is also used to calculate the

nest movement, according to the distance between the agent and its opposite flag.

The movement is calculated at each simulation time step for each agent. The agent

can move to another cell or decide to stay in the same cell. Each cell in the space

cannot be occupied by more than one agent at a time. The decision-making used

by each agent to decide on the direction in which to move depends on the agent's

personality in the movement algorithm. The movement algorithm of, for example,

the Enhanced ISAAC Neural Simulation Toolkit (EINSTein) uses equation (2.5) to

compute the penalty for the next location [110,113]:

= 2 if A'"™) + W" (~^f) (2'5)

where

Rs Sensor range of agent about to move;

E Number of enemy entities within sensor range;

WE Weighting toward enemy agents;

Di,new Distance to the ith enemy from the new location;

WF Weighting toward the flag;

Distance to the flag from the new location;

DFoid Distance to the flag from the current location.

27

The movement algorithm of Map Aware Non-uniform Automata (MANA) (uses

equation (2.6) to compute the penalty for the next location [114,118]:

E Number of enemy entities within sensor range;

WE Weighting toward enemy agents;

Di^new Distance to the ith enemy from the new location;

Di<0id Distance to the ith enemy from the current location

Wp Weighting toward the flag;

D f , n e w Distance to the flag from the new location;

DFoid Distance to the flag from the current location.

Various development efforts for combat have been designed based on agent-based

simulation. One of these is Irreducible Semi-Autonomous Adaptive Combat (ISAAC)

[110,111] and its extension, EINSTein [110,113], designed by the US Marine Corps

Combat Development Command. Although ISAAC and EINSTein have good analysis

capabilities and support 2D visualization, they are not open source, meaning that the

source code cannot be read or modified, and they also do not support 3D visualization.

BactoWars was developed by Land Operations [119]. Although BactoWars is open

source, so that the source code can be read and modified and is flexible with regard

to adding any new, desired features to a model, it does not have good analysis capa­

bilities and also does not support 3D visualization. MANA [114,118] was provided

by New Zealands Defence Technology Agency. Although MANA has good analysis

Z
Di,new + (100 - A,old)

iew

F,new (2.6)

where

28

capabilities and supports 2D visualization, it is not open source and also does not

support 3D visualization. The Conceptual Research Oriented Combat Agent Distilla­

tion Implemented in the Littoral Environment (CROCADILE) [112] and the Warfare

Intelligent System for Dynamic Optimization of Missions (WISDOM) [120-122] were

developed at the University of New South Wales at the Australian Defence Force

Academy. Although WISDOM has good analysis capabilities and supports 2D visu­

alization, it is not open source and also does not support 3D visualization.

All of these development tools use a function for the agent's movement in space.

Research introduced in [123] examined MANA's movement algorithms. The move­

ment algorithm of agents within the EINSTein and MANA ABDs was modified by

Grieger [123]. In such combat simulations, an agent always moves to the cell with

the maximum weight. If a tie happens, the agent selects randomly between the cells

in the tie. Due to this randomization, the stability of the solution may be affected

and the outputs of this combat simulation are not guaranteed [117].

29

Chapter 3

The VCELL Framework

3.1 Introduction

3D visualization has become important in simulation, as it presents a 3D graphical in­

terface that is effective when used for training simulations. 3D visualization also gives

decision-makers an overview of the problem at hand before they begin working with

the real system. However, for military tactical training simulation, developing or mod­

ifying different scenarios in an existing virtual environment at the code level requires

significant programming time and validation efforts. As discussed in Chapter 1, 3D

visualization simulation could be combined with different applications, for instance,

BIM software, in order to increase productivity in building design and construction.

3D visualization could also be combined with emergency simulations and battlefield

simulation to enhance training preparation, allowing decision-makers to investigate

different scenarios. As discussed in Chapter 1, the central theme of this thesis is

to develop a framework that allows different simulation models to receive real-time

external parameters to be interactive, collaborative, and adaptive to the simulation

events by integrating DEVS, Cell-DEVS, and 3D visualization with different model­

ing techniques, which improve simulation interoperability at the software level, which

enhances simulation results. Our objective is to develop a generic framework to be

30

applied to simulation environments and applications. We use BIM simulation, emer­

gency simulation, and land combat simulation as case studies. This thesis presents

a simulation adaptation and interoperability methods using DEVS, Cell-DEVS, and

3D visualization.

As discussed in Section 2.2, DEVS is one of the most advanced general-purpose

M&S frameworks. DEVS facilitates the reuse of tested models and improves the safety

of simulations. As a result, this reduces development time. The Cell-DEVS approach

combines DEVS and cellular models, which allow complex systems to be described

as a cell space by using simple rules for modeling. Existing DEVS and Cell-DEVS

tools usually include 2D visualization tools to facilitate the analysis of the output

results on a 2D grid map, but 3D visualization for DEVS and Cell-DEVS in real time

is still limited. Although surveys [3] show that 3D visualization can be applied to

DEVS and Cell-DEVS, most existing methods are not interactive, collaborative, or

adaptive. Many of them work with the outputs after the simulation ends (and not

in real time). They are not collaborative, as they cannot exchange simulation data

at runtime, and so they are not adaptive to the change or modification of simulation

data during the simulation.

We also discussed the fact that 3D visualization methods (such as VR and com­

puter games) have changed military training preparation of soldiers for successful

results in wartime missions (as discussed in Section 2.1). However, for military tac­

tical training simulation, developing or modifying different scenarios in an existing

virtual environment requires significant programming time and validation efforts at

the code level. Military tactical simulations are usually performed using land combat

simulation, which was discussed in Section 2.5. The most popular method, agent-

based distillations (ABDs), can be used to explore different aspects of land combat

operations and help decision-makers to quickly investigate various scenarios in real

battle conditions. The ABDs' movement algorithms are used to simulate the target's

31

movement in the battlefield by a large set of parameters related to the battlefield.

However, under some circumstances, these algorithms use random movements, which

may result in unpredicted simulation outputs. In addition, most existing ABDs in­

clude only 2D visualization facilities.

The analysis of the state-of-the-art also showed how simulation could be combined

with 3D visualization for BIM in order to increase productivity in building design and

construction (as discussed in Section 2.3). As BIM facilitates the coordination, coop­

eration, and maintenance of the construction life cycle, many research studies have

included simulation. However, most of them focus only on thermal indoor climate,

energy consumption, C02 emissions, and other environmental building aspects. We

discussed the fact that no current research has applied generic M&S to BIM, which

permits different studies, including building evacuation and fire spreading. There

are also no adaptive simulation systems that can interact in real time with building

parameters changes.

Finally, we discussed the fact that current efforts in 3D visualization could be com­

bined with emergency simulations to enhance training preparation, allowing decision­

makers to investigate different scenarios (as discussed in Section 2.4). We also showed

that M&S techniques have played an important role in emergency simulation where

it is impractical to perform real-world studies. Generally, such simulations are large-

scale programs, which in return raise the need for efficient simulation engines. Re­

search studies described in Section 2.4 state that some of these emergency simulations

have 3D visualization, but they do not have real input data from the field and they

are not adaptive in real time.

Based on the above, this research aims to design and develop a framework that

enhances and improves the existing simulation environments discussed previously

in this thesis. The framework, called VCELL (visualization of DEVS and CELL-

DEVS), can be used to solve various complex M&S problems with interactive and

32

collaborative 3D visualization for enhanced and improved results. The proposed

framework should be adaptive to external data parameters, such as various hardware

components, to achieve more accurate results. The framework should run in virtual

and real time to allow for comparison between both output results, which facilitates

the modification of the simulation rules and methods. The proposed framework should

use predefined inputs, actual inputs, or a combination of both predefined and actual

inputs of the simulated system for flexibility in different simulation scenarios. The

framework must reduce the time spent in development, modification, and validation,

to allow for the creation and modification of different scenarios for various simulation

environments within a short period of time. These simulation environments should

communicate with each other, and be interactive, collaborative, and adaptive. The

VCELL framework will be explained in detail in the following sections.

3.2 VCELL Framework Definition and Features

The VCELL framework must allow different simulation models to receive real-time

external parameters, to be interactive and adaptive to the simulation events by inte­

grating DEVS, Cell-DEVS, and 3D visualization with different modeling techniques.

VCELL is a simulation-driven architecture and a collaborative system for integrating

Cell-DEVS simulation with DEVS simulation dealing with the event locations, which

are spread out on the field space of the simulation and then visualized on a 3D visual

scene.

We use CD++ (which was presented in Section 2.2) as a development tool for

DEVS and Cell-DEVS simulations. As CD-I—I- is open source, modifications can be

made and new modules or facilities can be added. This also allows us to extend and

integrate it with other toolkits. To achieve our goals, we modified CD-I—I-, adding

two modules for sending and receiving the required data to and from other toolkits

33

(such as 3D visualization software) through a network. We also used C++, OpenGL,

and other tools for 3D visualization simulation. We implemented and developed two

modules for sending and receiving the required data to and from other toolkits (such

as CD++ toolkit) through a network. This will be discussed in detail in Chapter 4,

Chapter 5, and Chapter 6.

Using DEVS in VCELL helped us reuse tested models, improving the safety of

the simulations, which resulted in reduced development time. In addition, using Cell-

DEVS, which is based on DEVS, allows the user to solve problems by using simple

rules for modeling the phenomena on the cell space. Moreover, using 3D visualiza­

tion simulation provides us with a 3D graphical scene, which enhances and improves

training, and helps decision-makers investigate different scenarios to obtain more ac­

curate results. VCELL facilitates the integration of different hardware devices via the

DEVS component. The hardware devices are updated on a grid space corresponding

to the simulated space area and accordingly reach every location in the space, dealing

with all the events in the Cell-DEVS component. A 3D model of different hardware

devices is then included in the 3D scene environment to be visualized in the visual

simulation component. We applied VCELL to the different simulation applications

discussed earlier, BIM, emergency planning, and land combat, as case studies.

VCELL combines the Cell-DEVS definition for cellular models, DEVS-based real­

time controllers, and VR. This component-oriented approach provides model reusabil­

ity and interoperability, allowing any of the components to be integrated or replaced.

The RT cellular simulation is an on-demand data source of the scenario, which is

used by the DEVS model. Hardware-in-the-loop can be used to update the Cell-

DEVS simulation data with real information on the simulation space area.

The key features of VCELL are summarized as follows:

• VCELL serves as a container to hold different software components without

being specific to any implementation, which allows new components to be added

34

without having to make changes at the code level or the framework architecture.

• Using VCELL for adding various hardware devices allows hardware-in-the-loop,

which enhances the simulation results by achieving more accurate results than

when simulated hardware is used, and also improves training in different do­

mains (such as in military training) by allowing the use of real equipment.

• VCELL can be used not only for real-time simulation, but also in virtual time,

which allows enhancement of the simulation results by comparing both real-time

and virtual-time outputs and hence modifying the simulation rules.

• VCELL can use predefined inputs, actual inputs of the simulated system, or a

combination of both predefined and actual inputs, which provide flexibility for

modifying the simulated system to get accurate results.

• VCELL reduces the time taken in scenario development, modification, and

validation by using the simple rules in Cell-DEVS simulation.

We first extended CD++ with a new component to hide CD++ internal imple­

mentation. This component consists of functions to support synchronization and

adaptation and communicates using network messages. An interface was developed

between DEVS, Cell-DEVS simulations, and 3D visualization, so that various in­

stances of each domain can cooperate with each other during the same simulation

session. This means that simulation can be manipulated in real time.

VCELL is generic and can be used in different application domains. As a proof

of concept, the framework was applied successfully to BIM, emergency simulation,

and land combat simulation, as discussed previously. First, we applied VCELL and

integrated it with BIM models (this means that different simulations can be performed

on BIM models to improve and enhance the BIM simulation results). VCELL is

adaptive and collaborative, as we can obtain the actual building parameters and

perform simulations on them, which results in improvement and enhancement of the

simulation of BIM. We can also visualize the output simulation on the 3D visualization

35

sub-system. This will be explained in detail in Chapter 4.

Table 3.1 compares VCELL with existing BIM toolkits (note that there are many

existing BIM toolkits, which makes it difficult to list all of them; this table summarizes

the most advanced BIM systems developed recently). The results shown are on a

scale of P (poor), G (good), and E (excellent). Open source means that the source

code can be read and modified. Flexibility is in terms of the ability to add any new

features desired in a model. Adaptation considers a structure modified to fit a changed

environment. Analysis means that statistical packages are included. Visualization

means that there is visualization support.

When VCELL was applied to an emergency simulation, we implemented an inte­

grated emergency management system based on the DEVS sub-system to develop new

classes of cellular models for emergency response applications. The Cell-DEVS sub­

system allows models to receive external information, and the simulation parameters

can be updated at any time, due to the continuous-time nature of the discrete-event

specifications. The emergency simulation is based on the Cell-DEVS sub-system, and

the emergency management is based on the DEVS sub-system, which uses a robotic

agent as an example to respond to the emergency simulation in real time. We also use

the 3D visualization sub-system, which takes the results of the emergency simulation

and the emergency management to be visualized in 3D real-time visualization. This

will be explained in detail in Chapter 5.

Table 3.2 shows a comparison between VCELL and selected emergency simulation

models (here it is also difficult to list all the emergency simulation models that are

published; however, the list on the table focuses on some of the most recent emergency

simulation work [3,13,15,17,18].

Finally, when we applied VCELL to land combat simulation, we incorporated two

sub-systems: a Cell-DEVS agent simulation, and a 3D visualization agent, which is

36

Table 3.1: Comparison of BIM Simulation Toolkits with VCELL

Model
Open

Source
Flexibility Adaptation Analysis Visualization

Bentley

Architecture
No G

Specific

algorithms
G

Evolution of

BIM attributes
G

Supports basic statistical

methods (e.g. mean,

standard deviation, etc.)

E
2D&3D

visualization

Graphisoft

ArchiCAD
No G

Specific

algorithms
G

Evolution of

BIM attributes
G

Supports basic statistical

methods (e.g. mean,

standard deviation, etc.)

E
2D&3D

visualization

VectorWorks

Architect
No G

Specific

algorithms
G

Evolution of

BIM attributes
G

Supports basic statistical

methods (e.g. mean,

standard deviation, etc.)

E
2D&3D

visualization

Revit

Architecture
No G

Specific

algorithms
G

Evolution of

BIM attributes
G

Supports basic statistical

methods (e.g. mean,

standard deviation, etc.)

E
2D&3D

visualization

VCELL Yes E
User specified

algorithms
G

Evolution of

BIM attributes
G

Supports basic statistical

methods (e.g. mean,

standard deviation, etc.)

E
2D&3D

visualization

Table 3.2: Comparison of Emergency Simulation Models with VCELL

Model
Open

Source
Flexibility Adaptation Analysis Visualization

[13] No P
Few

algorithms
P

Merely

reactive
P N/A G

3D

visualization

[15] No P
Few

algorithms
P

Merely

reactive
P N/A G

3D

visualization

[17,18] No P
Few

algorithms
G

Evolution

of agents

attributes

G

Supports basic statistical

methods (e.g. mean,

standard deviation, etc.)

E
2D&3D

visualization

[3] Yes P
Few

algorithms
P

Merely

reactive
P N/A G

3D

visualization

VCELL Yes E
User specified

algorithms
G

Evolution

of agent

attributes

G

Supports basic statistical

methods (e.g. mean,

standard deviation, etc.)

E
2D&3D

visualization

based on a 3D visualization sub-system. The Visual Cell-DEVS agent for land combat

is a new way of solving the randomization movement problem of movement algorithms

in agent-based simulation by using the 3D visualization agent, which obtains the real

position of agents in combat. The Cell-DEVS agent simulation reduces the time taken

to create or modify tactical scenarios in the 3D visualization simulation by using the

Cell-DEVS formalism and CD-I—I-, which includes an interpreter to write simple rules.

The results can be viewed in 3D visualization by using 3D scenario generation. These

components will be explained in detail in Chapter 6.

We compared VCELL when applied to land combat simulation with selected exist­

ing ABDs, as shown in Table 3.3 (in this case, there are also plenty of ABDs toolkits

available, which makes it difficult to list all of them. However, the list includes the

most recent ABDs). It is evident that in this case, speed of execution is important.

When analyzing the tables, we see that VCELL is open source and more flexible than

the other ABDs. Its performance onscreen is good. In addition, VCELL is more

adaptive than other ABDs and includes good analysis capabilities. It also supports

3D visualization, which is not applicable in other ABDs.

3.3 The Framework Architecture

The following chapters in this thesis will discuss the design, implementation, and

performance analysis of the VCELL framework in detail. In this section, we present

the overall software architecture of the framework.

Fig. 3.1 shows the overall architecture of VCELL, which integrates DEVS simu­

lation, Cell-DEVS simulation, and 3D visualization outputs. VCELL is composed of

three collaborative sub-systems: the cellular model implemented in Cell-DEVS, the

hardware device interfaces implemented in DEVS, and the visualization component

39

Table 3.3: Comparison of ABDs with VCELL

Model
Open

Source
Flexibility Adaptation Analysis Speed Visual

BactoWars Yes E

User

specified

algorithms

P
Merely

reactive
P

Computes averages of

some variables
G

Runs with

occasional

pauses

G 2D

Few

algorithms

Merely

reactive

Supports basic statistical Runs

EINSTein No P
Few

algorithms
P

Merely

reactive
G methods (e.g. mean,

standard deviation, etc.)

E continuously G 2D

Few

algorithms

Merely

reactive

Supports basic statistical Runs with

MANA No P
Few

algorithms
P

Merely

reactive
G methods (e.g. mean,

standard deviation, etc.)

G occasional

pauses

G 2D

Few

algorithms

Evolution Supports basic statistical Noticeable

WISDOM No P
Few

algorithms
G of agent G methods (e.g. mean, P time for screen G 2D

Few

algorithms
attributes standard deviation, etc.) refreshes

User Evolution Supports basic statist­
Runs

continuously

2D

VCELL Yes E specified G of agent G ical methods (e.g. mean, E
Runs

continuously
E k

algorithms attributes standard deviation, etc.)

Runs

continuously
3D

that renders the 3D scenes. Each of these sub-systems runs on a different computer,

communicating through messages sent over a network. The framework allows different

users in different interfaces to collaborate and interact with each other in real-time.

Each sub-system is independent in its engine and function and update each other

through messaging via a network infrastructure. Each sub-system is composed of

two main components: a Sender that transmits the information and simulation up­

dates from one sub-system to the other two sub-systems, and a Receiver that collects

information and the simulation updates of the other two sub-systems in real time.

The Cell-DEVS sub-system communicates with the DEVS sub-system, informing it

about the dimensions of the cell space area, and sends updates about the location of

the simulated space on the grid. At the same time, it also sends this information to

the visualization sub-system, providing it with the required real-time data about the

scene to generate the 3D scene environments. The DEVS model uses the information

received from the Cell-DEVS engine to perform the requested simulation. Based on

these commands, the hardware devices respond on the simulated grid area and update

the grid locations within the cell space area one after another when required. The

DEVS sub-system dynamically updates the cell-DEVS sub-system and the visualiza­

tion sub-systems about the grid locations that have been simulated. This process

continues until all grid locations have been simulated.

41

1 t
Model

Receiver

Model

Receiver

Model

Receiver

1

Simulation Resul

DEVS Sub-system

Cell-DEVS

Network

Dimensions

Cell-DEVS Sub-system

3D Visualization
Receiver

3D Visualizat: Sub-system

Figure 3.1: The Visual Cellular Discrete Event System Specification (VCELL)
Framework Architecture

42

The 3D visualization sub-system shown in Fig. 3.1 consists of two main com­

ponents: the Receiver, which takes the data from the DEVS and the Cell-DEVS

sub-systems, and the Sender, which is responsible for the calibration and casting

of data to be transmitted to the DEVS and the Cell-DEVS sub-systems. On the

Receiver component, there is a separate thread that is spawned for receiving the re­

quired simulation data. The visualization sub-system produces 3D scenes from the

updates received dynamically from both the DEVS simulation and the Cell-DEVS

sub-systems. The visualization sub-system also sends 3D models dimension updates

and the required simulation information to the Cell-DEVS sub-system. It is possible

to create reusable library of the visualization components. It is also possible to add

or extend the visualization components without changing in the core of the frame­

work. The visualization sub-system can be a 3D visualization engine, VR software,

serious game engine, or BIM software, such as Autodesk Revit Architecture. A more

detailed overview of the system will be discussed later in Chapter 4, Chapter 5, and

Chapter 6.

The collaboration of the sub-systems is based on a global message structure trans­

ferred over a network infrastructure. Each sub-system has two separate threads: one

for sending simulation data, and the other for receiving requested simulation data.

The message structure contains an integer data type to decode the type of the message

according to the sending/receiving sub-system, the dimension message, the cell-space

update message, the visualization update message, the next movement message, and

the extinguish message, which will be explained in Chapter 5 and Chapter 6.

3.4 VCELL Framework Implementation

The VCELL framework has been implemented using various software components,

libraries, and packages, details of which will be discussed in the following chapters.

43

For the DEVS and Cell-DEVS sub-systems, we used the CD++ toolkit for modeling

and simulation. We developed and implemented the two main components of DEVS

and Cell-DEVS sub-systems, and added the two main components to CD++. For

the 3D visualization sub-system, we used various software tools for each case study

of the simulation. As discussed earlier, we applied VCELL to BIM, emergency and

disaster, and land combat simulations. For the BIM models, we used the Autodesk

Revit Architecture and Autodesk 3d Max toolkits. These tools are provided with a

scripting language and APIs that were used to develop and implement the two main

components in the 3D visualization sub-system. The implementation of this com­

ponent will be explained in more detail in Chapter 4. For the emergency and land

combat simulation, the visualization sub-system is developed and implemented in Vi­

sual C++, OpenGL, and Vega Prime toolkits. The development and implementation

of these will be explained in more detail in Chapter 5 and Chapter 6.

The remaining chapters of the thesis are organized as follows:

• In Chapter 4, we show the use of VCELL (Cell-DEVS and 3D visualization)

in virtual time for BIM. VCELL is applied and integrated with BIM models.

This means that different simulations can be performed on BIM models to

improve and enhance the BIM simulation results. We propose designing a

Cell-DEVS/BIM integration and describe a prototype implementation in the

form of a BIM add-in for Cell-DEVS simulation, and then visualize the output

simulation of Cell-DEVS on the BIM model.

• In Chapter 5, we use the VCELL framework in real time for emergency simu­

lation. We introduce a simulation-driven architecture for integrating emergency

simulation with robotic first responders moving towards emergency locations,

which are spread out on the field. The robot is placed on a grid corresponding

to the simulated emergency area, and reaches every location, dealing with the

emergency.

44

• In Chapter 6, we use the VCELL framework (the Cell-DEVS and 3D visu­

alization components only) in real time for land combat warfare. We show

how VCELL can provide a solution to the randomization problem caused by

ABD toolkits. We present collaboration between an agent based on Cell-DEVS

formalism and a visual agent simulation based on a 3D real-time visualization

simulation in real time. We also show how to reduce programming time to

develop or modify the scenario tactics for combat in real-time visual simulation

using Cell-DEVS.

45

Chapter 4

VCELL for Building Information

Modeling

4.1 Introduction

As discussed in Chapter 3, we used the VCELL framework in the context of BIM

simulations. In this chapter, we focus on showing how VCELL provides a general

framework that can be used for BIM applications.

In order to solve different design and simulation problems in the field of building

information modeling, it is important to be able to easily incorporate new models

and simulations. To do so, VCELL provides a reconfigurable Interactive Environ­

ment System (IES) to support the simulation of BIM. Cell-DEVS models receive

information from BIM, and the output results of Cell-DEVS simulation can be used

for visualization on the BIM model. We show a Cell-DEVS/BIM integration and

describe a prototype implementation in the form of a BIM add-in for the Cell-DEVS

simulation, and then we will visualize the output simulation of Cell-DEVS on the

BIM model.

As discussed in Chapter 3, the central theme of this thesis is to develop a frame­

work that allows different simulation models to receive real-time external parameters,

46

in order to be interactive, collaborative, and adaptive to simulation events, by inte­

grating DEVS, Cell-DEVS, and 3D visualization with different modeling techniques,

which improve simulation interoperability at the software level, which in turn en­

hances simulation results. As previously mentioned, we first selected the Cell-DEVS,

DEVS framework to design a new VCELL framework, which mainly aims to interop-

erate independently developed and adaptive simulation systems. The design method­

ologies presented in this chapter show how these were adapted for BIM, which mainly

demonstrate building information as parameters where the simulation information

flows from those models.

We used CD++ [77] to simulate Cell-DEVS models, and the Autodesk Revit ar­

chitecture and Autodesk 3ds Max toolkits for BIM [10,11]. CD+4- obtains the initial

simulation values from an external value file, and runs the simulation according to

the rules defined by the model. On the other hand, this interface exposes the internal

CD-I—I- implementation. This means that the BIM input/output parameters are tied

to the CD++ model file and value file. Thus, using the CD++ specific interface to

interoperate with other systems is not practical, as it would require implementation

changes in those systems. To bring those interfaces together and ease interoperability

at the software level, this research targeted the two major syntactic and structural

elements of the BIM and Cell-DEVS integration. We extended the Cell-DEVS archi­

tecture with real BIM parameters, and described the synchronization messages to be

transmitted through a network. This interface simplified the synchronization between

different systems and improved their performance. In this VCELL framework, CD++

still uses its original component to interoperate various CD++ instances, while using

the new designed component to interoperate with BIM.

This system is applied and integrated with BIM models (this means that different

simulations can be performed on BIM models to improve and enhance the BIM sim­

ulation results). We design a Cell-DEVS/BIM integration and describe a prototype

47

implementation in the form of a BIM add-in for Cell-DEVS simulation, and then

visualize the output simulation of Cell-DEVS on the BIM model.

4.2 BIM and Cell-DEVS System Architecture

The system is composed of two collaborative sub-systems: the cellular model imple­

mented in Cell-DEVS, and the BIM model. Each of these sub-systems runs on a

different computer, communicating through messages sent over a network, updating

each other through messaging via a network infrastructure. The Cell-DEVS model

communicates with the BIM sub-system, informing it about the dimensions of the

cell space area. The Cell-DEVS model uses the BIM information received from the

BIM model to perform the required simulation. Fig. 4.1 and Fig. 4.2 present a more

detailed overview of the VCELL framework of the IES for BIM models. The Inter­

active Environment System for Revit (IES-Revit), shown in Fig. 4.1, integrates the

Cell-DEVS simulation and the BIM model to simulate the data received from the

BIM model on Cell-DEVS. Then the IES-Max, shown in Fig. 4.2, integrates the Cell-

DEVS simulation and the BIM model to visualize the output simulation results sent

from Cell-DEVS to BIM on its interface. Based on the above, we see that VCELL

can be adapted and used in a collaborative manner when utilized in BIM modeling:

collaborative because we can exchange data between different systems, and adaptive

because we can obtain the actual building parameters and then run the simulation

on the actual requested parameters to get the simulation output results, which can

be changed according to the change in the actual building parameters. This results

in improvement and enhancement of the BIM simulation.

48

BIM Model Cell-DEVS Simulation

.UK

file

.rvt
file

.val
file

.log
file

CD++ SendToDEVS

CD++
Modeler

WriteMacro
function

GetParamcter
function

i

Figure 4.1: Interactive Environment System for Revit (IES-Revit) Architecture

Fig. 4.1 illustrates the architecture of the IES-Revit. The IES-Revit consists of

two main phases:

• Receiving the required data to be simulated from the BIM model

• Simulating the data received from the BIM model using Cell-DEVS.

In the first phase, we developed an IES-Revit model to get different data parame­

ters that will be simulated. The IES-Revit model then transfers these data as values

to be sent to Cell-DEVS. The IES-Revit model is developed using Autodesk Revit

Architecture [10] as implementation software. This part of the IES-Revit was written

in Visual C#, which provides a graphical user interface invoked from Revit.

In the second phase, we focused on simulating the received BIM model data using

Cell-DEVS. To do this, we defined a Cell-DEVS model that contained the cell space

definition: dimensions, initial values, data received from the BIM model, and the

rules that will be applied to the BIM model. CD++ allows for these models to be

implemented, and provides 2D and 3D visualization using VRML and Java. 2D and

3D visualization enables visualization of Cell-DEVS models so that the output of our

simulation model will be shown as a grid

49

Cell-DEVS Simulation BIM Model

Vakw
fie

Fife

Figure 4.2: Interactive Environment System Max (IES-Max) Architecture

Fig. 4.2 illustrates the architecture of the IES-Max, which consists of two main

phases:

• Receiving the simulated data results from Cell-DEVS to be visualized on the

BIM model

• Visualizing the data received from Cell-DEVS on the BIM model.

The first phase of IES-Max obtains the simulation data results to be visualized.

These data are then transferred as values to the BIM model. The IES-Max model is

developed using Autodesk 3d Max as the implementation software, and Max script.

We first read the Cell-DEVS model file (.MA), which contains the definition of the

behavior of the Cell-DEVS models and the initial data, which can also be contained

in an external value file (.val). We then read the initial status of the Cell-DEVS and

the simulation log (.log file), which contains all the steps of the output simulation

results and their virtual time.

In the second phase, we visualize the data received from Cell-DEVS on the BIM

model using Autodesk 3d Max. To do this, we define a model that reads the cell

space definition: dimensions, initial values, and data received from the Cell-DEVS

50

model. Autodesk 3d Max allows these models to be implemented, and provides a

3D visualization scene that enables the visualization of Cell-DEVS simulation results

on the BIM model. Based on the simulation status during the simulation lifetime

and the final simulation results, we draw the collected simulation data in a 3d Max

visualization scene.

In the following sub-sections, we show a detailed version of each of the simulation

steps based on these ideas.

4.2.1 Integrating Cell-DEVS and BIM

As discussed in the previous section, Cell-DEVS simulation is applied to BIM (us­

ing Autodesk Revit Architecture) to improve the output results, enhance the BIM

models, and improve the Cell-DEVS simulation results by applying the simulation

on actual parameters that are requested from the BIM model. Revit Architecture

is a Parametric BIM tool, in which 3D models and 2D drawings can be built. We

can develop different tasks using the Revit API. The Revit API allows us to create

and delete different model elements, such as floors and walls. We also use the Revit

API to obtain different model parameter data and model graphical data. The Re­

vit Platform API applications can be developed using Visual C# or VB.NET. Both

Visual C# and VB.NET allow for the writing of equivalent code and compile to the

same intermediate language (IL) code, which implies that one has no performance

advantage over the other. We decided to use Visual C# for practical reasons.

The first phase of IES-Revit is to obtain different parameters to be simulated from

the BIM model, and to transfer these data to the Cell-DEVS models. We developed

a prototype implementation in the form of a BIM add-in for Cell-DEVS simulation.

This can now be invoked as the add-in tab for the AutoDesk Revit Architecture, as

shown in Fig. 4.3. The add-on is responsible for executing the program to obtain the

51

Add-In ttenager for Autodesk Rev>t 20i0

MCJJBJ&££ornnKS71
- [o] \Acm{4)

« Floor Plans

1st Rf. Cnst

2nd Fk, Cnst.

3nJ Fir. Cnst

4th Fir. Cnst

5th PARAPH

LEVELS

LEVEL 7

,£ Ceiling PUrrs

- SO Views

Isometric

{3D*
£ Elevations (Elevaii

3 Sections (Caltout 1

Detail 0 W!n<

:rj Sections (Type 1)

Section 1

0 legends

£ E Schedules/QuantJt

t; @5 Sheets (ail)
• so Families

t, Groups

im Revit Links

Se«d Matenai ?aramete^s to CD

i/2* - i'-O"
@Pt<55«<0t») Va

Figure 4.3: Interactive Environment System for Revit (IES-Revit) Interface

required parameters and send them to Cell-DEVS to be simulated.

The IES-Revit interface receives the required parameters of the chosen item (e.g.,

a wall) in the active Revit document. This function receives the parameters of the

selected element in the active document of the Autodesk Revit architecture. We then

use this information to define a CD++ macro containing the parametric information.

The new macro now contains the new value, which will be simulated in Cell-DEVS.

Different elements in the same active Revit document will transmit different param­

eters in the newly selected element.

52

4.2.2 Simulation with BIM Data

The second phase of IES.Revit is responsible for simulating the received BIM model

data based on the rules that are written in the model file. The model file contains the

cell space dimensions, the initial values, the definition of the macro file that contains

the values received from the BIM model, and the rules that will be applied to the

BIM model.

In this section, we show a sample Cell-DEVS model representing a diffusion limited

aggregation (DLA) phenomenon [124], DLA occurs when diffusing particles stick to

and progressively enlarge an initial seed, represented by a fixed object. The seed

typically grows in an irregular shape resembling frost on a window [81], or humidity

and mold on a wall. The DLA model was defined using CD++, which includes

an interpreter for a specification language that describes Cell-DEVS models. A set

of rules is used to define the model; each rule indicates the output value for the

cell's state after satisfying the precondition in this rule. These rules are performed

sequentially until one rule produces the solution. We used CD++ macro definition

facilities to read the parameter values received from the BIM model, and defined a

Revit macro for the Cell-DEVS model. The output simulation can be seen using 2D

visualization facilities provided by the CD++ modeler tool.

The DLA model uses two types of particles: fixed particles (seeds) and mobile

particles. There can be one or more seeds in each DLA Cell-DEVS model. A cell

with a seed is fixed, and it has a value equal to 5. There is a mobile particle percentage

of the cells in each DLA Cell-DEVS model. A mobile particle can move according to

its value, in one of four directions: up (1), right (2), down (3), and left (4). We set an

initial value from 1 to 4 randomly to occupy the cells in a certain concentration. This

concentration is calculated and obtained in the Revit macro from the BIM model.

Below is a description of some of the rules used:

53

% i n i t i a l i z e t h e c e l l s w i t h m o b i l e p a r t i c l e s

% i n t h e r a n g e w i t h v a l u e o f c o n c e n t r a t i o n

r u l e : { r o u n d (u n i f o r m (1 , 4)) } 1 0 0 { (0 , 0) = — 1

a n d r a n d o m < \ t e x t b f { # m a c r o (R e v i t) } }

The following rule presents that fixed particles remains fixed:

% f i x e d p a r t i c l e s r e m a i n s t o b e f i x e d

r u l e : 5 1 0 0 { (0 , 0) = 5 }

The following rules present the moving of mobile particles:

• A cell has a mobile particle with value equal one can move to the above empty

cell if there is no other mobile particle trying to move in to this empty cell.

% d i r e c t i o n = 1 (u p)

% s t a y a n d c h a n g e d i r e c t i o n w h e n n o w h e r e t o m o v e

r u l e { r o u n d (u n i f o r m (1 , 4)) } 1 0 0 { (0 , 0) = 1

a n d (— 1 , 0) ! = 0 }

r u l e : { r o u n d (u n i f o r m (1 , 4)) } 1 0 0 { (0 , 0) = 1

a n d (— 1 , 0) = 0 a n d (((— 2 , 0) = 3 a n d (- 2 , - l) ! = 5

a n d (— 3 , 0) ! = 5 a n d (— 2 , 1) ! = 5) o r ((— 1 , — 1) = 2

a n d (— 1 , — 2) ! = 5 a n d (— 2 , — 1) ! = 5 a n d (0 , — 1) ! = 5)

o r ((— 1 , 1) = 4 a n d (— 2 , 1) ! = 5 a n d (— 1 , 2) ! = 5

a n d (0 , 1) ! = 5)) }

% m o v e o t h e r w i s e

r u l e : 0 1 0 0 { (0 , 0) = 1 a n d (— 1 , 0) = 0 a n d t }

% d i r e c t i o n = 2 (r i g h t)

% s t a y a n d c h a n g e d i r e c t i o n w h e n n o w h e r e t o m o v e

r u l e : { r o u n d (u n i f o r m (1 , 4)) } 1 0 0 { (0 , 0) = 2

a n d (0 , 1) 1 = 0 }

r u l e : { r o u n d (u n i f o r m (1 , 4)) } 1 0 0 { (0 , 0) = 2

a n d (0 , 1) = 0 a n d (((0 , 2) = 4 a n d (— 1 , 2) ! = 5

a n d (0 , 3) ! = 5 a n d (1 , 2) ! = 5) o r ((— 1 , 1) = 3

a n d (— 1 , 0) 1 = 5 a n d (— 2 , 1) ! = 5 a n d (— 1 , 2) 1 = 5)) }

54

% m o v e o t h e r w i s e

r u l e : 0 1 0 0 { (0 , 0) = 2 a n d (0 , 1) = 0 a n d t }

• A cell has a mobile particle with value equal three can move to the down empty

cell if there is no other mobile particle trying to move in to this empty cell.

• A cell has a mobile particle with value equal four can move to the left empty

cell if there is no other mobile particle trying to move in to this empty cell.

• A cell has a mobile particle becomes fixed if there is an adjacent fixed particle

cell.

% t h e p a r t i c l e b e c o m e s f i x e d i f a n a d j a c e n t c e l l

% c o n t a i n s f i x e d p a r t i c l e

r u l e : 5 1 0 0 { (0 , 0) > 0 a n d (0 , 0) < 5 a n d

((— 1 , 0) = 5 o r (0 , — 1) = 5 o r (0 , 1) = 5 o r (1 , 0) = 5) }

Based on the above rules, a cell that has a mobile particle with a value equal to 1

can move to the empty cell above; with a value equal to 2, it can move to the empty

cell to the right; with a value equal to 3, it can move to the empty cell below; or

with a value equal to 4, it can move to the left empty cell if there is no other mobile

particle trying to move into this empty cell. Finally, a cell with a mobile particle

becomes fixed if there is an adjacent fixed particle cell.

We assume a DLA Cell-DEVS model with two initial seeds. The concentration

percentage of mobile particles will vary due to the material parameter type value

received from BIM. We ran the simulation for two different materials for the specified

two seeds in the DLA Cell-DEVS model: one for concrete and the other for brick. We

assume that the concentration percentage will be 30% for the concrete material and

40% for the brick material. The simulation output of each run for the concrete and

the brick is shown in Fig. 4.4. We see that both initial figures have two initial seeds

(dark cells). As the simulation starts, some of the mobile particles that are adjacent

to the fixed initial seeds and satisfy the rules stated above will become fixed particles.

55

During the simulation, the rules are checked for each step until the simulation ends.

We observe that the deformation of the DLA on the brick surface is bigger than the

deformation of the DLA on the concrete surface, as the deformation of the DLA is

proportional to the concentration, and the concentration of the brick surface is greater

than that of the concrete surface.

mtr,

CHLJLj

• fi'i" •:

.•S .J;

1 *
-

. ® a &
;« -•), ••{;, • •
.

v

(a)

m

ijyCU »

(b)

1 ".W'.U1̂

(jdjC «

iJ*D

LsL " ;j

(c) (d)

Figure 4.4: (a)Initial State for Concrete; (b)Final State for Concrete;
(c)Initial State for Brick; (d)Final State for Brick

56

Based on the above example, we see that VCELL is more flexible than the existing

BIM toolkits, as we can simulate any model (like DLA) based on the BIM model, while

existing BIM toolkits do not support this feature. VCELL allows for new features

to be added to the BIM model to easily simulate various problems, as discussed in

Chapter 3.

4.2.3 Cell-DEVS &; BIM 3D Visualization

This sub-section discusses the details of the design and implementation of the visu­

alization sub-system for the output results of the Cell-DEVS simulation on the BIM

model. The visualization sub-system integrates the Cell-DEVS simulation and the

BIM model to visualize the output result of the cell-DEVS simulation on the BIM

model. This will facilitate the improvement of the BIM model, as we can visualize

the output results directly on it, which is more effective for the 2D visualization of

Cell-DEVS. In this sub-section, we show that VCELL is not specific to any imple­

mentation, as we need the output results. This implies that new components can

be added without changes having to be made at the code level or in the framework

architecture, as discussed in Chapter 3.

The methodology of the visualization sub-model is based on integration between

the Cell-DEVS simulation and the BIM model. In the Cell-DEVS simulation, we

retrieve the output simulation result of the Cell-DEVS simulation that was applied

to the BIM model and then visualize these output data on the BIM model visual

environment. The Cell-DEVS simulation uses its model file, which contains the defi­

nition of the behavior of the Cell-DEVS models and the initial data or the path of the

value file, and the parameters received from the BIM model to run the simulation.

These output simulation data will be saved in a log file. On the other hand, the BIM

model has its visual environment, which is used to visualize the output simulation of

the Cell-DEVS. We read and obtained the output simulation data and presented it

57

by developing two functions on the BIM model: one to obtain the initial data and the

cell dimension of the model file, and the other to retrieve the output result data from

the Cell-DEVS log file. We also developed a GUI that facilitates loading the value

file, the model file, and the log file and then displaying the Cell-DEVS simulation

output on BIM model. This GUI will be described as a prototype implementation

in the form of a BIM add-in for Cell-DEVS simulation. We will build the graphical

display output using 3D visualization tools.

This model allows us to obtain a 3D visualization environment of the simulated

output results of Cell-DEVS on the same BIM model. This will improve the decisions

taken by all members who are involved in the construction project cycle. Therefore,

the visualization sub-model will improve and enhance the simulations applied to the

BIM model.

The IES-Max sub-system integrates the Cell-DEVS simulation and the BIM model

to visualize the output result of the Cell-DEVS simulation on the BIM model. This

will facilitate the improvement of the BIM model, as we can visualize the output

results directly on it, which is more effective for the 2D visualization of Cell-DEVS.

IES-Max is implemented using Autodesk 3ds Max, used because it supports BIM and

has a great 3D environment scene.

We built a graphical display output using 3D visualization tools. We decided

to expand our visual environment using Autodesk 3ds Max. Autodesk 3ds Max

is a powerful application for 3D modeling and animation, using special effects and

rendering. 3ds Max allows users to create 3D animation and visual effects. More

functions can be added to Autodesk 3ds Max using MAXScript, which is a built-

in script language that facilitates the creation of functions and tools to efficiently

enhance 3ds Max. We used the 3ds Max modeling and animation toolkit to create 3D

visual environments for the Cell-DEVS simulation of DLA as an example. IES^Max is

an application written in MAXScript that provides a GUI allowing CD+-1- files (*.ma

58

and *.log files) to interact with 3ds Max, and allows the corresponding Cell-DEVS

simulation to be visualized in a 3D visual environment of the BIM model. This BIM

model, which is exported as an FBX file (type of Autodesk file formats) from the

Autodesk Revit Architecture, is imported into 3ds Max. IES-Max then animates the

3D visual scene file in accordance with the CD++ files. IES-Max allows us to create

a 3D visualization from the CD++ files created by the CD++ toolkit. 3ds Max

has implicit support for hardware accelerated rendering. The 3ds Max visualization

tool provides basic services that enable simple visualizations, including design and

implementation of a GUI based on the MAXScript within the 3ds Max toolkit.

We used the MAXScript language-i.e., the 3ds Max Toolkit script-to write the

program to initialize the GUI interface window for the 3D visualization. We read

the output simulation data of the CD++ file, and then displayed the 3D visual

outputs. We obtained the Cell-DEVS model to read the *.ma file, which contains

the dimensions of the simulation model and the value file name, then reformatted it

to be used in the required argument to obtain the initial values of each object from

the simulation model and reformatted them to be used in the required argument to

draw the visual outputs. We read the log file, which contains the time and position

of each object from the simulation model, and reformatted it for display. We created

objects and displayed the 3D visualization of the CD-I—I- simulation model in the

display window of 3ds Max, based on the dimension of the simulation model, which

controls the size of the drawing area and the position of each cell to be drawn in the

specified location.

IES-Max consists of a GUI; as shown in Fig. 4.5, this is the graphical interface

that requests the user to select a particular file. In the display window in this figure,

we can see the DLA model (inside the circle) on the brick surface. As we can see, the

results of the DLA are visualized in the building model, which provides an interactive

visualization of the output simulation results of the Cell-DEVS simulation. VCELL

59

allows this to be done, and it is not specific to any implementation, as we simply read

the output simulation results from the Cell-DEVS. This means that we can add new

components without having to make changes at the code level or in the framework

architecture, as discussed in Chapter 3.

Figure 4.5: Interactive Environment System 3ds Max Interface

4.3 Summary and Discussion

In this chapter, we showed the structural and syntactic rules of the Cell-DEVS/BIM

for designing a new VCELL framework that mainly aims to interoperate indepen­

dently developed simulation systems. This chapter illustrated the implementation of

the VCELL framework on Cell-DEVS/BIM and described the implementation of the

60

interactive environment system (IES-Revit) as an integration of Cell-DEVS formal­

ism into BIM. The Cell-DEVS approach can be applied to improve and enhance the

development of BIM. We discussed the details of the design and implementation of the

visualization sub-system for output results of the Cell-DEVs simulation on the BIM

model. The visualization sub-system (IES-Max) integrates the Cell-DEVS simulation

and the BIM model to visualize the output result of the Cell-DEVS simulation on the

BIM model. This will facilitate the improvement and enhancement of the BIM model,

as we can visualize the output results directly on the BIM model, which is more effec­

tive for a 2D visualization of Cell-DEVS. It also helps decision-makers make decisions

and modifications. CD++ is used as a toolkit for the Cell-DEVS models. We used

the Autodesk Revit Architecture as a toolkit for BIM. The VCELL framework was

applied and integrated with BIM models (this means that different simulations can be

performed on the BIM models to improve and enhance the BIM simulation results).

The VCELL framework is adaptive and collaborative, as we can obtain the actual

building parameters and perform a simulation using the requested parameters, which

results in the improvement and enhancement of the BIM simulation. The feasibility

of the VCELL framework was verified using the DLA model. VCELL is open source,

while other existing BIM toolkits are not. In addition, VCELL is more flexible than

other existing BIM toolkits in terms of the ability to add new, desired features in a

model, which allows user-specified algorithms to be used. Moreover, VCELL is more

adaptive than other existing BIM toolkits in that a structure can be modified to fit

a changed environment.

61

Chapter 5

VCELL for Emergency Management

5.1 Introduction

In this chapter, we show the use of VCELL for simulating an emergency. As emer­

gencies are processes that are distributed over both time and space, emergency and

disaster simulations should take into consideration the system evolution in both time

and space. In this chapter we present an integrated emergency management system

based on Cell-DEVS to develop new classes of cellular models for emergency response

applications.

We focus on integrating emergency simulation with emergency management based

on the collaboration of DEVS and Cell-DEVS formalisms. The emergency simulation

is based on Cell-DEVS, and emergency management is performed by a robotic agent

controlled by a DEVS model to respond to the emergency in real time. We also

use a visualization engine that takes the results of the emergency simulation and the

emergency management as input and produces 3D visualizations of the simulation

scenarios.

As discussed in Chapter 3, we first selected the Cell-DEVS, DEVS, and visual­

ization engine to design new a VCELL framework that mainly aims to facilitate the

62

interoperation of independently developed and adaptive simulation systems. The de­

sign methodologies presented in this chapter show how these were adapted for an

emergency simulation, which mainly exposes emergency information as values where

the simulation information flows from those models. It also shows that the system

is flexible with regard to adding any new, desired features to a model, which allows

user-specified algorithms to be utilized.

This chapter is organized as follows. Section 5.2 discusses the system archeticture.

Section 5.3 shows the Cell-DEVS emergency model that we have designed using a

real-time version of the CD-I—I- toolkit. In Section 5.4, we present the emergency

management mechanism using a DEVS-based robotic agent. Section 5.5 explains the

visualization of the simulation. Section 5.6 describes the message structure transferred

between the three components, followed by a summary and discussion of the work of

this chapter in Section 5.7.

We introduce a simulation-driven architecture for integrating emergency simula­

tion with robotic first responders moving towards the locations of the emergency,

which are spread out on the field. The robot is placed on a grid corresponding to the

simulated emergency area and reaches every location, dealing with the emergency.

Our work differs from previous research in three ways:

• The RT cellular emergency simulation is an on-demand data source of the

scenario, which is to be used by the robot. A supervisory control station can

be used to update the emergency simulation data with that of a real emergency

situation and information about the area.

• This multi-model combines a Cell-DEVS cellular model, a DEVS-based robotic

controller, and virtual reality visualization. This component-oriented approach

provides model reusability and interoperability, allowing for any of the compo­

nents to be integrated or replaced.

• Using a simulation-driven approach for controlling the robot allows the robot

63

controller to be tested in a fully simulated environment, then the same model to

be used to control a real robot. Model-continuity from early simulation stages

to its final embedding on the hardware speeds up the development process while

increasing the reliability of the product and reducing risk and cost.

5.2 The System Architecture

Fig. 5.1 shows the system architecture that integrates Cell-DEVS for emergency sim­

ulation, DEVS for emergency response, and 3D visualization to output the results

visually. The system is composed of three collaborative sub-systems: the cellular

emergency model implemented in Cell-DEVS, the emergency response by a robotic

agent implemented in DEVS, and the visualization component that renders the 3D

scenes. Each of these sub-systems runs on a different computer, communicating

through messages sent over a network. All three sub-systems run in real time and

update each other through messaging via a network infrastructure.

Fig. 5.1 also presents a more detailed overview of the system. The emergency sim­

ulation sub-system is in charge of the Cell-DEVS emergency model. It communicates

with the DEVS emergency response sub-system, informing it about the dimensions

of the emergency area, and sends updates regarding the location of a fire on the grid.

At the same time, it also sends this information to the visualization sub-system, pro­

viding it with real-time data on the scene. The DEVS-based control model uses the

emergency information received from the Cell-DEVS engine to carry out an emer­

gency response. Based on these commands, the robot moves on the simulated grid

area and extinguishes the fires in the emergency area, one after another. The emer­

gency response sub-system dynamically updates the emergency simulation and the

visualization sub-systems regarding the fires that have been extinguished. This pro­

cess continues until all fires have been extinguished. The visualization sub-system

64

produces 3D scenes from the updates received dynamically from both the emergency

simulation and the emergency response sub-systems.

DEVS Emergency Response Motiei

Model Reader

celts data

fcorttrai

data I

Cett-OEVS Emergency Simulation
Emergency area dimensions

ceHs update
•N-f-

Network

extinguished ostl ^ _4l

3D visualization

Fife DataMarwgef

Figure 5.1: Detailed System Architecture [125]

5.3 Cell-DEVS Emergency Simulation

In this section, we present the use of VCELL for adding various hardware devices

that allow hardware-in-the-loop. This achieves more accurate simulation results than

when simulated hardware is used. It also improves training in different domains,

such as in emergency training, by allowing real equipment to be used, as discussed in

Chapter 3. VCELL also allows models to receive real-time external information, and

the simulation parameters can be updated at any time due to the continuous-time

nature of the discrete-event specifications. By using Cell-DEVS to model emergency

situations, the actual area is modeled as a cell-space and is divided into cells. The

emergency model represents an area that has a number of locations on fire (e.g.,

roadside bombs or explosions), which are ignited randomly during the simulation.

65

The model is defined according to the conventions of Cell-DEVS using the CD++

toolkit, as seen in Fig. 5.2. In order to run the model in real time, we modified the

CD++ simulation engine. The virtual time-advance was replaced with a real-time

version, allowing the emergency simulation to interact with the emergency response

and the visualization sub-systems in real time. We also added a generic interface to

the simulation engine, which enables it to interact with the external environment (e.g.,

a network). The simulator sends the dimensions of the cell-space at the beginning of

the simulation and submits any cell updates, and at the same time receives input to

the cellular model using the message structure that will be discussed in Section 5.6.

Figure 5.2: Emergency Cellular Space with Random Locations of Fires [125]

66

5.4 DEVS-based Robotic First Responder Agent

In this section, we note that Mohamed Moallemi worked on the details of the design

and implementation of the DEVS-based controller for the autonomous first responder

robot. The controller model can also be used for a robotic swarm [98], in which a

large number of homogeneous autonomous robots are engaged in an activity. We

used the e-puck robotic kit [99] as a prototype of a first responder robot to deploy

the simulation-driven controller developed for the emergency response system. The

e-puck is a small, mobile robot capable of moving and spinning and is equipped with

sensors and motors. It uses 8 infrared distance proximity sensors to detect obstacles

around it. There are 8 LEDs mounted on top in the shape of a ring. The robot can

interact with a PC via Bluetooth connection. We executed the prototype model on

a PC while interacting with the robot using a Bluetooth connection; the robot was

programmed to listen to the commands received from the PC. However, the final goal

is to develop a simulation-driven, embedded controller for the robot.

5.4.1 The Logical Controller

The two main operations of the robot to help human first responders are as follows:

• Deploying robots to gather information about the locations of emergency inci­

dents

• To perform first-responder operations in the emergency locations and cooperate

with human first responders.

Our focus in this work is on the second usage, in which we try to develop a DEVS-

based, model-driven controller for an autonomous robot, which collaborates with the

cellular emergency simulation engine. The robot tries to reach the locations of the

fires and extinguish them one at a time, using the cellular space as a map of the region

in which it is operating. Initially, the robot model receives the size of the cell-space

67

and builds a copy of the cellular space for itself. As the cellular model develops in

real time, the robot also receives updates of cell values from the cell-DEVS model and

marks the changes in its own copy. The robot controller model consists of two levels

of controls, a higher-level and a lower-level controller. The higher-level controller is

responsible for planning the path toward the closest emergency location (fire) using

the data provided by the cell-space, while the lower-level controller is responsible for

avoiding the obstacles in the path.

5.4.2 DEVS Controller Model Specifications

The robot model interacts with the cellular emergency model and the visualization

engine. The model responsibilities are divided into two parts, constructing two main

components in the model. The Model Reader is responsible for creating the local cell-

space, updating the cell-space by receiving the updates from the Cell-DEVS engine,

and signaling the Controller component periodically to make a decision on path-

planning. The Controller component is responsible for implementing the HLC and

LLC algorithms, sending control commands to the robot and informing the visualiza­

tion engine about the robot movements.

Fig. 5.3 depicts an abstract representation of the behavior of the two components

in DEVS graph format. The DEVS graph state diagram [126] summarizes the behav­

ior of a DEVS atomic component by rendering the states, transitions, inputs, outputs,

and state durations of the atomic component graphically. The continuous edges be­

tween the states represent external transitions, with the input port, the input value,

and any condition on the input. The discrete lines represent internal transitions with

the associated outputs.

The Model Reader starts in the wait for dimension state, where it waits to receive

the dimensions of the cell-space from the Cell-DEVS engine. As soon as it receives the

68

Model Reader Component Controller Component

SjflQjMSP Morles Reader
inoi 1—*- •

m

nee***d Sffnd ton Madd TWtifcr * then? • ertmyeiuy

Figure 5.3: DEVS Graph State Diagram of the Robot Controller [125]

dimensions, it creates the local cell-space matrix and then transfers to the idle state.

The idle state has a limited period, which corresponds to the movement period of the

robot. During the idle state, the Model Reader also receives cell-space updates from

the Cell-DEVS engine and marks them on the local cell-space, and if an emergency

update is received, it adds it to the emergency list. At the end of this state, the

Controller is signaled to carry out the next movement. The Controller starts by

sending the initial position of the robot to the visualization engine and transitions to

the stop state, where it receives periodic signals from the Model Reader. If there is an

emergency location in the emergency list, the Controller is transferred to the calculate

next step state, and the following tasks are executed in the corresponding external

transition function: sort the emergency list, find the closest one, apply the HLC and

LLC algorithms, and calculate the next step. Based on the result of the two-level

control algorithms, the Controller is transitioned to one of the movement states and

69

in the output function, the movement commands for the robot and the next step

information for the visualization engine are outputted. The Controller continues this

sequence until it reaches the emergency location, when it is transferred to the prepare

extinguish state. At the end of this state, it outputs the stop command to the robot,

informs the Cell-DEVS and visualization engines about the emergency restraint, and

transitions to the stop state, where it waits for the next emergency location.

5.4.3 Controller Model Implementation on E-CD++

E-CD++ is an open-source, embedded, real-time DEVS-based modeling, simulation,

and application development environment [127], built as an extension to the CD++

simulator. The models are developed incrementally in an Eclipse-based environment

in C++ language and then embedded in the target hardware. E-CD++ deploys real­

time services offered by the underlying Xenomai real-time Linux kernel to execute the

model, providing a reliable formal platform for real-time application development.

The model structure is declared in a model file and an optional event file supplies

the virtual inputs to the DEVS model. E-CD++ allows the model to be run as a

simulation in virtual time and real time, and also as a real system interacting with the

actual hardware counterparts. ECD++ allows for the definition of the driver interface

functions for each input and output port of a DEVS model, in which the integer I/O

values of a DEVS system are translated to signals to the external environment.

5.5 3D Visualization Engine

Visualization of emergency behavior can provide a number of benefits. First, it pro­

vides scientists with an interactive environment to verify the accuracy of these models

by comparing the results of an actual emergency with the output of a simulated ver­

sion. Once the model is validated, it can then be used to predict not only the behavior

70

of an existing emergency, but also the consequences of preventative measures, such as

vegetation thinning and prescribed burns. Displaying these predictions in a visually

informative manner allows emergency departments to better educate the first respon-

ders on existing emergency hazards. Furthermore, enabling interactive manipulation

of the simulation along with the visualization allows emergency leaders to be trained

with respect to resource allocation and emergency behavior. While it would be risky

and costly to experiment in a real-life situation, these risks can be mitigated by sim­

ulating untested approaches first. 3D user interfaces provide a more intuitive form of

interaction. Additionally, high-fidelity graphics enable an observer to better compare

a simulated emergency with a historic emergency. In the following sub-sections, we

show that VCELL is not specific to any implementation, as we need the output re­

sults. This implies that new components can be added without changes having to be

made at the code level or in the framework architecture, as discussed in Chapter 3.

5.5.1 Three-dimensional Visualization Engine Description

The 3D visualization engine is used to visualize the simulation output results of

both the emergency simulation model and the robotic first responder agent. The

visualization engine is implemented using Vega Prime [128] and OpenGL . Vega Prime

is a high-performance software environment and toolkit for real-time simulation and

virtual reality applications. It serves as an API consisting of a GUI called LynX

Prime and Vega Prime libraries and header files of C++-callable functions.

The 3D scenes are rendered using 3D openflight models. The terrain model con­

sists of trees, different buildings, roads, etc. The DEVS-based robotic agent is rep­

resented by a 3D emergency truck model. We can control the environmental effects

and time of day in the 3D scene visualization.

A 3D scene, as shown in Fig. 5.4 and Fig. 5.5, is displayed in a window that is

71

Figure 5.4: Three-dimensional Visualization Engine Cellular Map [125]

divided into two channels: one for a perspective view of a 3D scene (on the left), and

the other for an orthographical view of the 3D scene, which acts as a 2D map of the

area (on the right).

• In the perspective view in the first channel, the movement of the emergency

responder truck is displayed, which is the 3D model representing the robot,

and is observed using a fixed camera. The observer view can be changed to

five positions: back, front, left side, right side, or rotate around the emergency

responder truck.

• In the orthographical view in the second channel, a red grid is created that

represents the cellular grid of the simulated emergency area (see Fig. 5.4).

The locations of the fires received from the Cell-DEVS engine are rendered by

flashing yellow circles, and the emergency responder truck is represented by a white

circle (see Fig. 5.5). The white circle changes to green when the robot extinguishes a

fire in the scene, after which the fire special effects and the flashing yellow circle are

removed from the 3D scene. The orthographical view is capable of zooming in and

72

Figure 5.5: Three-dimensional Visualization Engine Zoomed Map [125]

out and the cellular grid can be removed for a better view (see Fig. 5.5).

5.5.2 3D Visualization Engine Implementation

The visualization program is implemented in Visual C++. The 3D visualization

subsystem consists of two main components:

• The Receiver, which receives the data from the DEVS-based robot model and

the Cell-DEVS emergency model

• The Visualizer, which is responsible for the display of the visualization scene.

In the Receiver component is a separate thread spawned to receive the emergency

and suppression data. The data received (such as the positions of the fire truck, the

robotic first responder agent, and the fire) are transformed from the 2D grid position

to the 3D visualization scene position.

In the Visualizer component, there are five sub-components:

• DrawGrid, which receives the cellular space dimensions from the Receiver and

draws them on the 2D map channel.

73

• DrawCircle, which receives the fire positions from the Receiver during the ex­

ecution and renders flashing yellow circles (the fire) at the corresponding co­

ordinates. It also obtains the position of the robot, draws a white circle at

the corresponding position, and changes the circle to green when the robot has

extinguished a fire.

• CreateEmergency, which receives the positions of the fires and applies them to

the corresponding positions by rendering 3D special effects of the fire.

• MotionModel, which receives the initial coordinates of the robot, the period of

each step of the robot, and the next movement. It then creates a motion model

for the robot in the 3D visualization scene.

• RemoveEmergency, which receives the coordinates of the fire that is extin­

guished by the robotic first responder agent and removes the special effect of

the fire from this location.

The 3D visualization engine is capable of deploying different 3D terrain openflight

models and different cellular areas (dimensions and initial values) without changing

the code of the visualization. As a result, we see that VCELL is not specific to

any implementation, as we read the output simulation results from the Cell-DEVS.

This means that we can add new components without having to make changes at the

code level or in the framework architecture, as discussed in Chapter 3. We can also

visualize the output simulation on the 3D visualization scene, which improves and

enhances decision-making.

5.6 Global Message Structure

The collaboration of the three components in this project is based on a global message

structure transferred over a network infrastructure. The network-Struct contains the

following five data fields:

74

1. msgJd: an integer data type used to decode the type of the message and

the value of the next fields in the message. There are generally five types of

message:

• The dimension message carries the size of the cell-space from the Cell-

DEVS engine to the DEVS and visualization at the start of the execution.

• The robot initial location message carries the initial coordinates of the

robot from the DEVS engine to the visualization.

• The cell-space update message carries the cell value changes during the

execution from the Cell-DEVS engine to the DEVS and visualization.

• The next movement message carries the direction of the next movement

at the start of each step from DEVS to the visualization engine.

• The extinguish message carries the location of the fire that has been

extinguished by the robot, from the DEVS sub-system to the Cell-DEVS

and visualization sub-systems.

2. x: used to carry the horizontal axis value (the horizontal dimension or the

horizontal coordinate).

3. y: used to carry the vertical axis value (the vertical dimension or the vertical

coordinate).

4. dir\ carries the next direction.

5. value: carries the value of the cell and is used in the cell update message.

These messages are embedded in a UDP packet and transferred during the execu­

tion of the model through the network. However, for the next stages of the project we

are planning to use a TCP protocol, which is more reliable and prevents packet loss.

The design of the system is such that the number of messages transferred through

the network is as low as possible, thus preventing delay in the message transfer.

75

5.7 Summary and Discussion

We have a DEVS-based emergency management simulation and visualization sys­

tem. The system offers a robust software framework to make a real-time emergency

response system more flexible and more scalable. The Cell-DEVS sub-system al­

lows models to receive external information, and the simulation parameters can be

updated at any time, due to the continuous-time nature of the discrete-event specifi­

cations. A robotic agent acting as a first responder is placed in a virtual environment

generated from a Cell-DEVS emergency simulation. The controller of the robot is a

DEVS-based emergency response model that interacts with the emergency simulation

through messaging and is informed about the map of the area and the location of the

incident (e.g., roadside bombs, fire, explosions, etc). Both the emergency simulation

and the emergency response sub-systems run in real time and communicate with each

other and with a 3D visualization engine. The purpose of the visualization system

is to generate 3D scenes and to visually monitor the activities of the robotic first

responder. Although the emergency model is a simulation, it is simple to replace

it with more complex emergency simulation models or a real emergency database

fed from real-world data. The generic interface and message structure that enable

the emergency simulation, the emergency response, and visualization sub-systems to

interchange data also allow our system to simulate emergency management in real

time under various conditions. Moreover, it can be integrated with stochastic opti­

mization models that use the scenario results from the simulation to determine an

optimal mix of emergency planning resources to dispatch to an emergency situation.

Our system is intended not only to train emergency response personnel, but can also

be used as a core real-time strategy and response system. VCELL is open source,

while most emergency simulation models are not. Likewise, VCELL is more flexible

than other selected emergency simulation models in terms of the ability to add any

76

new, desired features to a model, which allows user-specified algorithms to be used,

while other selected emergency simulation models are restricted to a few algorithms.

Moreover, VCELL is more adaptive than other existing emergency simulation models

and includes good analysis capabilities. It also supports 3D visualization, which is

not applicable in other selected emergency simulation models.

77

Chapter 6

A Real-time Visual Simulation in Support

of Combat

6.1 Introduction

In this chapter, we show the use of VCELL for a land combat simulation. Since

land combat movement algorithms can be distributed over both time and space, land

combat simulations should take into consideration the system evolution in both time

and space. In this chapter, we present a collaborative land combat model based on

the Cell-DEVS formalism and 3D real-time visualization to develop new classes of

land combat movement algorithms.

We focus on collaboration between an agent based on Cell-DEVS formalism and a

visual agent simulation based on a 3D real-time visualization simulation. The visual

agent simulation allows us to visualize the land combat simulation scenarios in a 3D

scene.

As discussed in Chapter 3, we first selected the Cell-DEVS, DEVS, and visual­

ization engine to design the new VCELL framework, which mainly aims to facilitate

the interoperation of independently developed and adaptive simulation systems. The

design methodologies presented in this chapter show how these were adapted for a

78

land combat simulation, which mainly show land combat information as values where

the simulation information flows from those models. It also shows that the system is

flexible with regard to adding any new, desired features to a model, which allows for

user-specified algorithms to be utilized. VCELL supports 3D visualization, which is

not applicable in other ABDs.

This chapter is organized as follows. Section 6.2 discusses the system architecture

and its components. Section 6.3 describes the Cell-DEVS agent model that we have

designed using a real-time version of the CD++ toolkit. The modifications made

to the simulation engine to enable real-time execution are also pointed out and the

message structure transferred between the components. In Section 6.4, we present

a description of the visualization sub-model and its implementation. Section 6.5

explains the scalability of the system, followed by a summary of the work in this

chapter in Section 6.6.

We present a collaborative 3D real-time visual cellular agent model (VCELL) and

a cellular agent simulation in real time. The agents are divided into two teams: the

blue team in the 3D visualization agent sub-model, and the red team in the Cell-

DEVS agent sub-model. These sub-models collaborate via a network connection.

Our work differs from previous research as follows:

• This work incorporates two components: a Cell-DEVS agent simulation and a

3D visualization agent simulation. This component-oriented approach provides

model reusability and interoperability, allowing for integration or replacement

of any of the two components.

• It uses a VCELL model to remove the random movement problem in the blue

team, providing a 3D visualization agent that retrieves the real position of

agents in combat. This guarantees the combat simulation output for the blue

team.

• The 3D visualization agent simulation is an on-demand data source for the

79

combat scenario. Real fighters can be invoked in the 3D visualization agent

simulation to update the agent simulation data with real situation data.

6.2 The Visual CELL-DEVS Agent

In this section, we present the collaboration of the VCELL components and how they

are connected to each other. VCELL also allows models to receive real-time external

information, and the simulation parameters can be updated at any time due to the

continuous-time nature of the discrete-event specifications, as discussed in Chapter 3.

The Visual CELL-DEVS Agent (VCELL), as shown in Fig. 6.1, is composed of two

main subsystems:

1. The Cell Agent sub-model, which is implemented using a Cell-DEVS model

running in real time

2. The 3D real-time visual simulation (RTV) sub-model, which is implemented

using Vega Prime and OpenGL.

The CellAgent sub-model and the 3D real-time visualization sub-model each run

on a different machine in real time and communicate via messages transferred through

a network infrastructure. VCELL is a multi-agent simulation combat system that

facilitates the analysis and understanding of land combat, and 3D real-time visual­

ization simulation for tactics in land combat. By using VCELL, not only can the

analysts understand the overall shape and dynamics of a battle and know the out­

put of an operation, but combatants can also be trained in the 3D visual real-time

simulation system. An agent in VCELL is characterized by certain properties, such

as capabilities, movements, communications, and health. Agents can communicate

by exchanging messages. Health can be defined as the level of energy of an agent,

which is defined by users. When an agent is attacked by the opponent agent type, its

80

3D Real-time Visualization sab-model

f "V

3D RTV
Visualization

v J

3DRTV
Sender

I
3D RTV
Listener

f

Network

I 1 CellAgent sub-model > r
CellAgent Model

Listener

/* N
CellAgent Model

Sender

r

CellAgoit Model
Model file

\

v y

Figure 6.1: The Visual CELL-DEVS Agent (VCELL) Architecture

health depends on the number of the neighborhood agents and their health strength.

Users can import different 3D terrain types in the real-time visual model. The type

of terrain affects the agent's movements.

The agent's movement depends on five different weights: agent healthy friend,

agent injured friend, agent healthy opponent, agent injured opponent, and the flag.

The movement is calculated at each simulation time step for each agent. The agent

can move to another cell or decide to stay in the same cell. No cell in the space can

be occupied by more than one agent at a time. The decision-making used by each

81

agent to decide on the direction in which to move depends on the agent's personality

in the movement algorithm. The movement algorithms used in VCELL are the same

as in EINSTein and MANA, but VCELL is not restricted to these algorithms only, as

we can apply different movement algorithms. The Movement Algorithm of EINSTein

uses equation (6.1) to compute the penalty for the next location [110,113]:

where

Rs Sensor range of agent about to move;

E Number of enemy entities within sensor range;

We Weighting towards enemy agents;

Di,new Distance to the ith enemy from the new location;

Wp Weighting towards the flag;

Df, new Distance to the flag from the new location;

D f,oIci Distance to the flag from the current location.

The Movement Algorithm of MANA uses equation (6.2) to compute the penalty

for the next location [114,118]:

,new
new i,new

F,old

(6.1)

Z, new
t,new

F,new (6.2)

where

E Number of enemy entities within sensor range;

We Weighting towards enemy agents;

82

Di<new Distance to the ith enemy from the new location;

Ditoid Distance to the ith enemy from the current location

Wp Weighting towards the flag;

-D/sneujDistance to the flag from the new location;

DF,oid Distance to the flag from the current location.

Agents are encouraged to move closer to the opponent agent. The agent will always

move to the cell with maximum weight. There is no tie in the real-time simulation

sub-model, but in the Cell-DEVS simulation sub-model, the agent randomly selects

a cell between the cells in the tie. This kind of randomization may affect the stability

of the solution in the enemy section only; however, it is not a serious problem, as the

enemy section is based on our assumptions

6.3 Cell-DEVS Agent Sub-model

In this section, we show that VCELL serves as a container to hold different software

components without being specific to any implementation. This allows new com­

ponents to be added without having to make modifications at the code level or in

the framework architecture. VCELL also allows models to receive real-time external

information, and the simulation parameters can be updated at any time, due to the

continuous-time nature of the discrete-event specifications. We explain how VCELL

reduces the time taken for scenario development, modification, and validation using

the simple rules in the Cell-DEVS simulation, as discussed in Chapter 3.

6.3.1 Real-time Cell-DEVS

In this subsection, we note that we worked collaboratively with Mohamed Moallemi

for the time advances in the DEVS and Cell-DEVS models based on the availability

of the events. Thus, the simulation runs in virtual time in which, after servicing every

83

event, the simulation time advances to the next scheduled event time. To visualize

the agent model, we need to run the agent model simulation in real time, so that

the events can be transferred to the visual engine, resulting in a real-life visualization

of the battlefield. CD++ is designed and implemented based on the DEVS abstract

simulation mechanism. A Root Coordinator object acts as a coordinator with the

top-coupled component in a CD++ model, which is responsible for advancing the

time to the next event time and also sending and receiving the I/O of the DEVS

model.

We modified the Root Coordinator event scheduler function to work in real time,

in which the events are served at the time they are serviced and the time advances are

based on the wall clock time. We added two new features to the CD-I—I- simulator,

which make CD++ capable of receiving DEVS inputs from the network and injecting

them into the model, at the same time sending outputs of the DEVS model to the

network. A separate thread was added to the CD++ software structure to allow it to

listen to the network inputs without interrupting the main execution sequence. The

input thread executes an added function of the Root Coordinator, which creates a

network socket and listens to the network in a blocking mode. As soon as a network

packet is received, the content of the packet is extracted and saved in the input bag

of the Root Coordinator, which will service the input.

In order to send inputs to any specific atomic cell, we modified the CD-I—I- Main-

Simulator post-registration function, which is responsible for creating the DEVS ports

defined in the model file. In the modified version, the MainSimulator creates a default

input port for each atomic cell, as shown in Fig. 6.2. These ports are used later by

the Root Coordinator to inject inputs into the specific cell based on the coordinates

indicated in the network message. Once an input is received, the Root Coordinator

sends an input message to the input port of the Top coordinator, which is connected

84

Cell-DEVS Model

Top Coupled Component

Cells
Input
Ports

in5 —*-
in6 —*•

in9 ̂
in10 f in11=£
In12—*•

Network
Msg (11) (10) (12)

(13) (14) (15) (16)

iri15
in16

Figure 6.2: Sample Cell-DEVS Model Structure and Interfaces [129]

to the specific cell that is the destination of the message.

To submit the cell value changes, we added a function to the Root Coordinator

that extracts the outputs of atomic cells from the Y messages (the output carrying

message defined in the DEVS abstract simulation algorithm) and sends them to the

network.

6.3.2 Global Message Structure

The collaboration of the sub-models is based on a global message structure transferred

over a network infrastructure. The network_struct contains the following five data

fields:

1. msgJd: an integer data type used to decode the type of message and the value

of the next fields in the message. There are generally three types of messages:

(a) The dimension message carries the size of the cell-space from the CellA-

gent sub-model to the 3D real-time visualization sub-model at the start

of the execution.

85

(b) The cell-space update message carries the cell value changes during the

execution from the CellAgent sub-model to the 3D real-time visualization

sub-model. It also carries the initial coordinates and personalities of

the blue agent from the 3D real-time visualization sub-model to the

CellAgent sub-model and the initial coordinates of the blue agent's flag

from the 3D real-time visualization sub-model to the CellAgent sub­

model.

(c) The visualization agent update message carries the visualization changes

during the execution from the 3D real-time visualization sub-model to

the CellAgent sub-model. It also carries the initial coordinates of the red

agent's flag from the CellAgent sub-model to the 3D real-time visualiza­

tion sub-model and the initial coordinates of the blue agent's flag from

the 3D real-time visualization sub-model to the CellAgent sub-model.

2. x: used to carry the horizontal axis value (the horizontal dimension or the

horizontal coordinate).

3. y: used to carry the vertical axis value (the vertical dimension or the vertical

coordinate).

4. 2: used to carry the layer axis value (the layer dimension or the layer coordi­

nate).

5. v: used to carry the value of the cell (x,y,z).

These messages are embedded in a UDP packet and transferred during the ex­

ecution of the model through the network. The design of the system is such that

the number of messages transferred through the network is a low as possible, thus

preventing delay in the message transfer.

86

J VCELL Agent

Movement range

| Sensor range

Figure 6.3: Movement and sensor range of VCELLA [129]

6.3.3 Cell-DEVS Agent Definition Model

The basic element of our CellAgent sub-model is a VCELL Agent (VCELLA), which

represents a primitive combat unit (tank, transport vehicle, etc.). The combat bat­

tlefield is represented in the CellAgent sub-model as a two-dimensional cell space,

as shown in Fig. 6.3. Each cell in the space can be occupied by the red agent of

VCELLA. Each red agent can move to the next cell in the movement range or stay in

the same cell. The sensor range is the area that is defined for each red agent to obtain

the available number of friendly and enemy agents and their personality values. The

user defines the dimension of the combat battlefield and the initial state of the red

VCELLA agents at diagonally opposite corners to the red agents in the VisualAgent

sub-model. The red flag is also positioned in the red VCELLA corner. The goal of the

red VCELLA is to reach the blue flag successfully. The Combat CellAgent sub-model

is defined using the modified CD-)—I- version described in Subsection 6.3.1.

87

CelAgent Model

Blue Agent
personality.

llueAgent\ (Red Agent
QnApos^y Vjjersonality

Jlue Agent
Flag pos^

Figure 6.4: CellAgent Model Implementation in CD-I—t- [129]

Fig. 6.4 illustrates the CellAgent sub-model in CD++ with the specifications

and the network interface. The CellAgent sub-model is composed of CD+-1- O/P

Driver Component CD++ Input thread. CD++ O/P Driver Component sends the

battlefield dimensions to start up the VisualAgent sub-model. Then it sends the

initial and updated values of the red agents, their weights, and the red flag position

in real time to the VisualAgent sub-model. The CD++ Input thread receives the

initial and updated values of the blue agents, their weights, and the blue flag position

in real time from the VisualAgent sub-model. Then it invokes these values in the cell

88

space of the model.

The model file of the CellAgent sub-model reads the initialization data from a

CD-I—I- associated value file. The value file contains the initial values of the red

agents, their weights, and the red flag position. The dimensions of the battlefield are

defined in the model file. The model file is composed of six layers. The first layer

contains the red agents, the second layer has their weights, and the third contains

the red flag position, which gets its initial values from the value file. The other three

layers are allocated to the blue agents, their weights, and the blue flag position, which

get its values from the 3D real-time simulation sub-model.

The personality of VCELLA can be defined by the weight towards enemy agents

and the weight towards the enemy flag which specify how VCELLA interacts with

information within its sensor range. Each VCELLA has one of three states: alive,

injured, or killed. The health state, 0 < H < 1, is the measure of an agent's health.

The agent's health can be defined as shown in equation (6.3):

(6.3)

where

F Number of friendly entities within sensor range;

E Number of enemy entities within sensor range;

a Function of x as defined in (6.4);

1, 1 < x

= \ x, 0 < x < 1 (6.4)

0, otherwise
\

89

As discussed earlier, the CellAgent sub-model can interact with the 3D visualiza­

tion in real time. We have also added a generic interface to the simulation engine that

enables it to interact with the external environment (e.g., a network). The simulator

sends the dimensions of the cell-space at the start of the simulation, submits any cell

updates, and at the same time receives input to the cellular model using the message

structure described in Subsection 6.3.2.

Based on the above and as discussed in Chapter 3, we show that VCELL is flexible,

as we can add any new desired features to a model. VCELL is more adaptive, as

the model is modified to fit a changed environment and we can add user-specified

algorithms.

6.4 Three-Dimensional Real-Time Visualization

3D visualization of combat can provide a number of benefits. First, it provides

decision-makers with an interactive environment to verify the accuracy of these mod­

els by comparing the results of actual combat with the output of a simulated version.

Once the model is validated, it can then be used to predict the behavior of exist­

ing combat. Displaying these predictions in a visually informative manner allows

decision-makers to understand the view of the situations and their soldiers and the

battle in order to make more effective decisions. Furthermore, interactive simulation

along with the 3D visualization allows trainers to apply different combat tactics and

enemy behaviors. While real training would be risky and costly to perform, these

risks can be minimized by simulating untested approaches first. 3D visual interfaces

provide more understanding of interaction. Additionally, high-fidelity graphics enable

an observer to better compare a simulated combat with a traditional 2D visualization.

In the following sections, we show that VCELL is not specific to any implementation,

90

as we need the output results. This implies the ability to add new components with­

out having to make modifications at the code level or in the framework architecture,

as discussed in Chapter 3.

6.4.1 Visualization Sub-model Description

3D real-time visualization is used to visualize the simulation output results of the

CellAgent sub-model and also to implement a collaborative model that shares its

components on two different simulation engines. The visualization renders the red

agents and the creation of the blue agents and their characteristics based on their

movement algorithm and personalities. The 3D real-time visualization model is im­

plemented using Vega Prime and OpenGL. Vega Prime is a high-performance software

environment and toolkit for real-time simulation and virtual reality applications. It

serves as an API consisting of a graphical user interface called LynX Prime and Vega

Prime libraries and C++ callable functions.

In the 3D real-time visualization sub-model, the combat can be seen in a 3D view

for both red and blue agents. The blue agent personality calculations and position

updates are done in the real-time visualization (RTV) sub-model, based on the data

received regarding the red agents. The red agents' personalities and positions are

received from the CellAgent sub-model in real time. The CellAgent sub-model obtains

the blue agents' personalities and positions from the RTV in real time.

The 3D scenes are rendered using 3D Openflight models. The terrain model

consists of trees, buildings, roads, and so on. The agents are represented by a 3D

tank model. We can control the environmental effects and the time of the day in the

3D scene visualization. As illustrated in Fig. 6.5, a 3D scene is shown in a window

that is divided into two channels: one with a perspective view of the 3D scene (on

the left), and the other with the orthographical view of the 3D scene, which acts as

91

Figure 6.5: 3D Real-time Visualization View [129]

a 2D map of the area (on the right).

In the perspective view in the first channel, a 3D model for each agent (3D tank

object) is displayed. The 3D scene is observed using a fixed camera. The observer

view can be changed to five positions: back, front, left side, right side, or rotate

around the object.

In the orthographical view in the second channel, a yellow grid is created, rep­

resenting the cellular grid of the simulated combat area. The red agents' positions

received from the CellAgent sub-model are rendered by red circles and the blue agents'

positions represented by blue circles (see Fig. 6.5). The orthographical view can be

zoomed in and out and the cellular grid can be removed for a better view.

6.4.2 RTV Sub-model Implementation

Fig. 6.6 illustrates the hierarchy of the 3D real-time visualization sub-model, which

was implemented in Visual C++ and consists of three main components:

1. The RTV Listener, which receives the red agents' data from the CellAgent

92

sub-model

2. The RTV Visualization, which is responsible for creating the blue agents and

the display of the 3D visualization scene

3. The RTV Sender, which sends the blue agents' data to the CellAgent sub­

model.

The RTV Listener is a separate thread, spawned to receive the red agents' data.

First, the RTV Listener is responsible for receiving the dimensions of the cell-space

from the CellAgent sub-model in order to start the RTV Visualization to render the

3D scene. Then the RTV Listener receives the red agents' flag position. Finally, the

RTV Listener receives the red agents' grid positions updates and their personalities

in real time from the CellAgent sub-model.

The RTV Visualization is the main part of the 3D real-time visualization sub­

model. The RTV Visualization is responsible for setting up the 3D visualization of

the 3D real-time visualization sub-model.

The RTV Visualization is composed of six main modules:

1. 3D Scene Generator, which is responsible for setting up and synchronizing

the 3D scene, drawing different 3D objects (terrain, tanks, buildings, etc.),

defining and controlling different environmental effects (daytime, clouds, sun,

etc.), and drawing the other modules. The 3D Scene Generator also removes

the dead agents from the 3D scene.

2. 3D Red Agent Generator, which creates a 3D object for the red agents. It

positions the red agents based on the coordinates received from the RTV Lis­

tener. The 3D Red Agent Generator sets and updates the red agents with

their personalities, which are received from the RTV Listener.

3. 2D Map Draw, which consists of:

• DrawGrid, which receives the cellular space dimensions from the RTV

93

3D Real-time Visualization

3DRTV
Visualization

CeilAgent
Dimension:

Blue Agent
iPersonalitv,

Bhxe Agent
.Fiagpos^.

Network

CcflAgent Mode!
Sender

Figure 6.6: 3D Real-time Visualization Hierarchy

94

Listener and draws it in the 2D map channel.

• DrawCircle, which obtains the agents' positions and draws the red and

blue circles according to the agents' type at the corresponding coordi­

nates.

• DrawFlag, which draws a box for each flag according to its color at the

corresponding coordinates.

4. 3D Blue Agent Generator, which creates the blue agents (which include the

3D object model, personalities, and position). The 3D Blue Agent Generator

sends the position of the blue agents to the RTV Sender.

5. 3D Blue Agent Updater, which calculates different personalities for the blue

agents according to the received data for the red agents. It then sends the

personalities of the blue agents to the RTV Sender.

6. Blue Flag Generator, which creates a 3D object for the blue agent's flag at the

user-defined position, then sends the position to the RTV Sender.

The RTV Sender is a separate thread, spawned to send the blue agents' data.

First, the RTV Sender sends the grid position of the blue agents' flag to the CellAgent

sub-model running on the CD-I—I- workstation. After that, it sends the blue agents'

grid positions and their personality updates to the CellAgent sub-model while the

model develops.

Finally, the 3D real-time visualization sub-model is capable of deploying different

Openflight 3D terrain models and different cellular areas (dimensions and initial val­

ues) without changing the code of the visualization. As a result, we can add new com­

ponents without the code of the visualization needing to be changed in the framework

architecture, as discussed in Chapter 3. We can also visualize the output simulation

on the 3D visualization scene, which improves and enhances decision-making. It also

improves the training session by providing a 3D visualization scene and various envi­

ronmental effects for the trainee on the RTV sub-system, which has different tactical

95

scenarios generated from the CellAgent sub-system.

6.5 VCELL Framework Scalability

The proposed implementation of VCELL has been tested with a variety of modeling

scenarios, and several criteria have been applied for verification of the final imple­

mentation; for instance, a cell-agent model of 3 red agents on a 20X20 cell-space,

each of them connected to an RTV engine and a visualization agent model of 3 blue

agents. To ensure that the same scenario runs every time, the values coming from

the cell-agent model were the same in all tests. All the cell-agent models follow the

Cell-DEVS rules and the values were sent to the RTV engine successfully. This model

is used to perform comprehensive performance tests in variable cell-space. The timing

for the agent models varied in the different tests performed. The first test discussed

in this section compared the average response time of the agents for different numbers

of cell-spaces. The diagram in Fig. 6.7 shows the results of this test, for up to 60X60

cell-spaces.

The test was performed for 6 agents in the cell-agent model, increasing the cell-

space dimension from 10X10 cells up to 60X60 cells with 6 layers. We used a Dell

PC machine for the CellAgent model with the following configuration: Intel(R) Pen-

tium(R) 4 CPU 3.20GHz, 512 MB memory, with operating system Linux Fedora Core

5. We used a Dell Precision T7500 workstation for the RTV model with the following

configuration: Intel(R) Xeon(R) CPU W5580@3.2 GHz, 3GB, with operating system

Windows 7 64-bit. As shown in the chart, by increasing the cell-space dimension, the

average response time increases exponentially. This is due to the heavier workload

produced in larger cell-space models and propagation of data in the model. The result

demonstrates the integrity and persistence of the implementation in a small cell-space

96

160

140

120

100

80
71.902256

60

40
31.786015

20
2.038018

0

10 20 40 50 60

Dimension of cell space NXN

Figure 6.7: Number of Cell-Spaces vs. Average Response Time

dimension up to 40X40 cells with 6 layers, but it grows exponentially after that, which

demonstrates that the system is non-scalable after a 50X50 cell-space with 6 layers.

This is due to the heavier workload produced in larger cell-space (more than 15,000

cells) models and propagation of data in the model. This problem can be solved by

upgrading the hardware resources of the Cell Agent machine. In addition, we could

use Parallel CD++, which minimizes the cell-space dimensions for 50X50 cells with 6

layers from 15,000 cells to 2,500 cells, which results in reducing the average response

time. The exponential function of the diagram shows that the integrity of the func­

tionality of VCELL for different numbers of cell spaces on the processor is good in

the range of 60X60 cells.

To run the visualization sub-system in a real-time visual scene, the frame time

should be less than 40 ms, as the visualization sub-system runs based on the number of

frames per second (it should be more than 25 frames per second). However, the Cell-

DEVS sub-system must update the agent state in less than 40 ms to get accurate

97

results. In all the tests, the system update time was less than 40 ms, which is

acceptable to run in a smooth scene and without loss of data.

Fig. 6.8 shows the average response time of the model versus the number of agents

on each cell-space. The test was performed by increasing the number of agents to

check the system scalability on a 20X20 cell-space and 30X30 cell-space. For the

20X20 cell-space, we ran the system many times for 6 agents, 12 agents, 24 agents,

48 agents, and 96 agents. As for the 30X30 cell-space, we ran the system many

times for 6 agents, 12 agents, 24 agents, 48 agents, and 96 agents. As is shown in

the chart, by increasing the number of agents for the same cell-space, the processor

utilization increases linearly. The result demonstrates the integrity and persistence of

the implementation in a medium-load scenario. In addition, as the system gets busier,

the response time also increases. The slope of the diagram for different configurations

stays the same, showing the integrity of the functionality of VCELL for different levels

of load on the processor.

18

16

14

12

10

8

6

4

2

0

"ir*"-"

12 24

No. of Agmnti
48

30X30

••-20X20

96

Figure 6.8: Number of Agents vs. Average Response Time

98

Based on the above, the performance of the system depends on the underlying

hardware. As the number of cell spaces increases, the average response time also

increases. This means that the tasks are executed later to their release time, when

the system scales up. A simple solution might include upgrading the underlying

hardware resources in order to solve the scalability problem. We might also use

parallel CD++, which has a better performance and reduces the time and hardware

resources compared with CD++.

6.6 Summary

We present a 3D real-time visual cellular agent model (VCELL) for collaborative cell

agent simulation with 3D visualization in real time for different battlefield combat sce­

narios. This work is done using a 3D real-time visual engine and the CD++ simulator

running Cell-DEVS models. The VCELL model is not only used for prediction, but

also to improve the understanding and learning process in land combat. VCELL is

designed to help analysts and trainers get maximum gain by interactively simulating

the scenarios, validating the results, and training soldiers in an effective environment.

This work incorporates two sub-models: a Cell-DEVS agent simulation and a 3D vi­

sualization agent. The two sub-models provide model reusability and interoperability,

allowing for any of them to be integrated or replaced. The visual Cell-DEVS agent

for land combat is a new way of enhancing the randomization movement problem of

movement algorithms in agent-based simulation by using the 3D visualization agent,

which obtains the real position of agents in combat. The Cell-DEVS agent simulation

reduces the time taken to create or modify tactical scenarios in the 3D visualization

simulation by using the Cell-DEVS formalism and the CD++, which includes an in­

terpreter to write simple rules. These rules are transformed to be viewed in 3D by

using 3D scenario generation. To implement the Cell-DEVS communication interface,

99

we modified the CD++ simulator core engine. Our model was implemented using

robust software tools to make the real-time visual Cell-DEVS agent model more flex­

ible. VCELL is open source, which means the source code can be read and modified,

while other ABD toolkits are not open source. In addition, VCELL is more flexible

than other ABDs toolkits in terms of the ability to add any new, desired features to

a model, which allows user-specified algorithms to be used, while other ABD toolkits

are restricted to a few algorithms. Moreover, VCELL is more adaptive than other

existing ABD toolkits and includes good analysis capabilities. It also supports 3D

visualization, which is not applicable to other selected ABD toolkits.

100

Chapter 7

Conclusions and Suggestions for Future

Work

7.1 Conclusion and Summary

3D visualization has become important in simulation, as it presents a 3D graphical

interface that is effective when used for training simulations. 3D visualization also

gives decision-makers an overview of the problem at hand before they begin work­

ing with a real system. 3D visualization simulation can be combined with different

applications-for instance, Building Information Modeling (BIM) software-in order to

increase productivity in building design and construction. 3D visualization can also be

combined with emergency simulations and battlefield simulation to enhance training

preparation, allowing decision-makers to investigate different scenarios. As discussed

in Chapter 1, the central theme of this thesis was to develop a framework that allows

different simulation models to receive real-time external parameters so that they can

be interactive, collaborative, and adaptive to the events in a simulation, by integrating

DEVS, Cell-DEVS, and 3D visualization with different modeling techniques, which

improves simulation interoperability at the software level and enhances the simulation

results. Our objective was to develop a generic framework to be applied to simulation

101

environments and applications. We used BIM simulation, emergency simulation, and

land combat simulation as case studies. This thesis presented a simulation adaptation

and interoperability methods using DEVS, Cell-DEVS, and 3D visualization.

The VCELL framework combines Cell-DEVS models, DEVS-based controllers,

and 3D visualization engines. This component-oriented approach provides model

reusability and interoperability, allowing integration or replacement of any of the

components. VCELL serves as a container to hold different software components

without being specific to any implementation, which allows new components to be

added without having to make modifications at the code level or in the framework

architecture. Using VCELL to add various hardware devices allows hardware-in-the-

loop, which achieves more accurate simulation results than when simulated hardware

is used, and also improves training in different domains (such as in military training)

by allowing the use of real equipment. Model-continuity from the early simulation

stages to its finally embedding on the hardware speeds up the development process

while increasing the reliability of the product and reducing risk and cost. VCELL can

be used not only for real-time simulation, but also in virtual time, which allows for

better and more accurate simulation results through comparing both the real-time

and virtual-time output result and hence modifying the simulation rules. VCELL

can use predefined inputs, actual inputs of the simulated system, or a combination

of both predefined and actual inputs, which provide flexibility to modify the sim­

ulated system to obtain accurate results. VCELL also reduces the time taken for

scenario development, modification, and validation by using the simple rules in Cell-

DEVS simulation. The research first extended CD-I—I- with a new component to hide

CD++ internal implementation. This component consists of functions to support

synchronization and adaptation and communicates using network messages. An in­

terface was developed between DEVS, Cell-DEVS simulations, and 3D visualization,

so that various instances of each domain can cooperate with each other during the

102

same simulation session. This means that simulation can be manipulated in real time.

VCELL was applied successfully to the different application domains discussed above:

BIM, emergency simulation, and land combat simulation.

First, we applied VCELL and integrated it with BIM models (this means that

different simulations can be performed on BIM models to improve and enhance the

BIM simulation results). The VCELL framework is adaptive and collaborative, as we

can obtain the actual building parameters and carry out a simulation on the requested

parameters, which results in improvement and enhancement of the BIM simulation.

We implemented an Interactive Environment System (IES), which was described as an

integration of Cell-DEVS formalism into BIM. By using the IES, we can improve the

performance of BIM in different emergency situations, which is not covered in current

BIM simulations. VCELL uses Cell-DEVS to simulate different emergency situations

based on the external parameters received from the BIM models. The results of

the Cell-DEVS simulation are sent back to the BIM model to be presented in a 3D

visualization scene. The visualization sub-system integrates Cell-DEVS simulation

and the BIM model to visualize the output result of the Cell-DEVS simulation on

the BIM model. This facilitates the improvement and enhancement of the BIM

model, as we can visualize the output results directly on the BIM model, which is

more effective of 2D visualization of Cell-DEVS. It also facilitates making decisions

and modifications. The feasibility of the proposed IES has been verified by using a

diffusion limited aggregation (DLA) prototype.

When VCELL was applied to an emergency simulation, we implemented an inte­

grated emergency management system based on the DEVS sub-system to develop new

classes of cellular models for emergency response applications. The Cell-DEVS sub­

system allows models to receive external information, and the simulation parameters

can be updated at any time due to the continuous-time nature of the discrete-event

specifications. The emergency simulation is based on the Cell-DEVS sub-system, and

103

the emergency management is based on the DEVS sub-system, which uses a robotic

agent as an example to respond to the emergency simulation in real time. We also use

the 3D visualization sub-system, which takes the results of the emergency simulation

and the emergency management to be visualized in the 3D real-time visualization.

This system offers a software framework to make the real-time emergency response

system more flexible and more scalable. A robotic agent acting as a first responder

is placed in a virtual environment generated from a Cell-DEVS emergency simula­

tion. The controller of the robot is a DEVS-based emergency response model that

interacts with the emergency simulation via messaging and is informed about the

map of the area and the location of the incident (e.g., roadside bomb, fire, explosion,

etc). Both the emergency simulation and the emergency response sub-systems run in

real time and communicate with each other and with a 3D visualization engine. The

purpose of the visualization system is to provide 3D scenes and to visually monitor

the activities of the robotic first responder, which not only helps the modeler to en­

hance the emergency simulation models, due to the 3D virtual environment display

of the real scene, but also helps decision-makers make the best choice. Therefore, the

3D visualization system will improve and enhance emergency simulation. Although

the emergency model is a simulation, it is simple to replace it with more complex

emergency simulation models or a real emergency database fed from real-world data.

The proposed generic interface and message structure that enables the emergency

simulation, the emergency response, and visualization sub-systems interchange data,

enabling our system to simulate emergency management in real time under various

conditions. Moreover, it can be integrated with stochastic optimization models that

use the scenario results from the simulation to determine an optimal mix of emergency

planning resources to dispatch to an emergency situation. The proposed system is

intended not only to train emergency response personnel, but also to be used as a

core real-time strategy and response system.

104

Finally, when we applied VCELL to a land combat simulation, we incorporated

two sub-systems: a Cell-DEVS agent simulation and a 3D visualization agent, which

is based on a 3D visualization sub-system. The visual Cell-DEVS agent for land

combat is a new way of solving the randomization movement problem of movement

algorithms in an agent-based simulation by using the 3D visualization agent, which

obtains the real position of agents in combat. The Cell-DEVS agent simulation re­

duces the time taken to create or modify tactical scenarios in the 3D visualization

simulation by using the Cell-DEVS formalism and CD++, which includes an inter­

preter to write simple rules. The results can be visualized in 3D using 3D scenario

generation. This work was done using a 3D real-time visual engine and the CD-I—I-

simulator running Cell-DEVS models. The VCELL is used not only for prediction,

but also to improve the understanding and learning process in land combat. VCELL is

designed to help analysts and trainers get maximum gain by simulating the scenarios

interactively, validating the results, and training the soldiers in an effective environ­

ment. To implement the Cell-DEVS communication interface, the CD-I—I- simulator

core engine was modified. VCELL was implemented using robust software tools to

make the real-time visual Cell-DEVS agent model more flexible and more scalable.

105

7.2 Suggestions for Future Research

7.2.1 Interfacing DEVS and Visualization Models for Emer­

gency Management

One of the future extension plans of this work is to integrate the Google Earth file

free virtual reality web service with the visualization engine and inject the terrain

data into the Cell-DEVS engine. Therefore, if there is an emergency anywhere in the

world, such as the Fukushima Daiichi Nuclear Plant disaster, the model can read the

information about the environment from the Google Earth file and simulate it using

the Cell-DEVS formalism and then lead the robot.

7.2.2 Land Combat Simulation

VCELL is a multi-agent simulation combat system that facilitates the analysis and

understanding of land combat and 3D real-time visualization simulation for tactics in

land combat, as discussed in Chapter 6. We propose to modify and improve the 3D

real-time visual cellular agent model (VCELL) by developing a hardware interface for

different military equipment. This will make VCELL interactive, with real fighters in

the 3D visualization agent simulation, and update the agent simulation data with a

real situation.

The proposed agent, as shown in Fig. 7.1, could be composed of three main sub­

systems:

• The CellAgent sub-model, which will be implemented using a Cell-DEVS model

running in real time

• The 3D real-time visual simulation (RTV) sub-model

• The human-in-the-loop training simulator.

106

3D Real-time YbuaKzatioii sab-model

HAY Interface

H w interface
Sender CeflAgent Model

Littentr
CeflAgait Modd

Sendar

CdlAgau Modd
Modd file

Commander

*
Driver Gunner Loader

Figure 7.1: The Visual CELL-DEVS Agent (VCELL) Architecture

Each sub-model would run on a different machine, communicating by messages

sent over a network. The CellAgent sub-model, presented in Section 6.3, the 3D

real-time visualization sub-model, defined in Section 6.4, and the proposed human-

in-the-loop training simulator would run in real time and communicate via messages

transferred through a network infrastructure. The proposed human-in-the-loop train­

ing simulator will be designed, built, and used to train a tank crew in a virtual sim­

ulation environment. This will lend reality in training by using real equipment or a

manufactured replica of it. As mentioned above, in our model, we will use a tank

107

as an example. The simulation environment of the tank will integrate four stations,

which implement a driver's station, a gunner's station, a loader's station, and the

commander's station of a simulated tank. The simulated tank systems will be built

on the real body of a tank that includes real crew stations and its main weapon

systems. This system will be integrated with the visual CELL-DEVS agent using

RT-DEVS. RT-DEVS formalism is used for developing real-time embedded applica­

tions, which integrates simulation models with hardware components. The use of

RT-DEVS reduces the development cycle and its costs by allowing DEVS models to

be used for real-time and embedded applications with almost no modifications. It

enhances the quality and the reliability of the final product and makes it portable on

different hardware. Also we need to develop a model to predict the computational

complexity as a function of the space being simulated, the number of active objects

in that space and the real-time scale of the actions or change of state of the various

active objects.

7.2.3 Traffic Systems Simulation

VCELL could be applied to other domains, such as understanding, examining, and

solving traffic systems. We propose applying VCELL to a traffic system simulation to

facilitate the analysis and understanding of various traffic systems and improve and

enhance the output results. The proposed system could be composed of three main

sub-systems:

• The DEVS sub-system, which will be implemented using a DEVS model

• The Cell-DEVS sub-system, which will be implemented using a Cell-DEVS

model running in real time

• The 3D real-time visual simulation (RTV) sub-system.

108

We propose applying the DEVS sub-system to a traffic light system, which will

allow various traffic light algorithms to be run to achieve better results. The Cell-

DEVS sub-system can be assigned to the road flow and obstacles provided by the 2D

map of the area of study, which allows for which allows for the best direction for traffic

flow to be ascertained, and different traffic situations to be tested. The visualization

engine can present the scene in 3D, so the flow of traffic can be observed in the area

of study, which facilitates choosing the best traffic solution. With the visualization

engine, we can use the system as a driving simulator, which allows a trainee to learn

driving skills and rules, thereby improving the trainee's capabilities and saving lives.

It can also be used when applying for a driver's license to confirm driver skills before

the actual road driving test is taken, which saves time and lives.

109

List of References

M. Macedonia. "Games soldiers play." IEEE Spectrum 39(3), 32 -37 (2002).

K. Stanney. Handbook of virtual environments [electronic resource]: design,

implementation, and applications. Lawrence Erlbaum Associates (2002).

P. Castonguay and G. Wainer. "Aircraft Evacuation DEVS Implementation

& Visualization." In "Proceedings of Springsim 2009 (DEVS Symposium),"
(2009).

M. Prensky. Digital Game-Based Learning. Paragon House (2007).

G. Lee, R. Sacks, and C. Eastman. "Specifying parametric building object
behavior (BOB) for a building information modeling system." Automation in

Construction 15(6), 758-776 (2006).

S. Mihindu and Y. Arayici. "Digital Construction through BIM Systems will
Drive the Re-engineering of Construction Business Practices." In "International

Conference Visualisation," pages 29-34 (2008).

Bentley. "Bentley Architecture." http://www.bentley.com/en-US/Products/

Bentley+Architecture/ (Acessed Nov., 2011).

Graphisoft. "ArchiCAD 14." http://www.graphisoft.com/products/

archicad/ (Acessed Nov., 2011).

VectorWorks. "Vectorworks Architect." http://www.nemetschek.net/

architect/index.php (Acessed Nov., 2011).

AutoDesk. "Revit Architecture Building Information Modeling." http:

//en.autodesk.ca/adsk/servlet/pc/index?id=14608943&siteID=9719649

(Acessed Nov., 2011).

110

[11] AutoDesk. "3ds Max - 3D Modeling, Animation, and Rendering software."
http://en.autodesk.ca/adsk/servlet/pc/index?id=14551042&siteID=

9719649 (Acessed Nov., 2011).

[12] J. Kincaid, J. Donovan, and B. Pettitt. "Simulation Techniques for Training

Emergency Response." International Journal of Emergency Management 1(3),
238-246 (2003).

[13] A. Boukerche, M. Zhang, and R. Pazzi. "An adaptive virtual simulation and

real time emergency response system." In "Proceedings of the IEEE interna­
tional conference on Virtual Environments, Human-Computer Interfaces and

Measurement Systems," pages 360 -364. Hong Kong, China (2009).

[14] D. McGrath, A. Hunt, and M. Bates. "A simple distributed simulation archi­

tecture for emergency response exercises." In "Proceedings of the Ninth IEEE
International Symposium on Distributed Simulation and Real Time Applica­
tions," pages 221 - 226 (2005).

[15] K. Liu, X. Shen, A. El Saddik, A. Boukerche, and N. Georganas. "SimSITE: The
HLA/RTI Based Emergency Preparedness and Response Training Simulation."

In "Proceedings of the 11th IEEE International Symposium on Distributed

Simulation and Real Time Applications," pages 59 -63 (2007).

[16] R. Cioarga, M. Micea, V. Cretu, and E. Petriu. "Movement in Collaborative

Robotic Environments Based on the Fish Shoal Emergent Patterns." Sensors
& Transducers Journal 5, 18-36 (2009).

[17] R. Abielmona, E. Petriu, and T. Whalen. "Distributed intelligent sensor agent
system for environment mapping." Journal of Ambient Intelligence and Hu­

manized Computing 1(2), 95-110 (2010).

[18] R. Abielmona, E. Petriu, M. Harb, and S. Wesolkowski. "Mission-Driven

Robotic Intelligent Sensor Agents for Territorial Security." IEEE Computa­
tional Intelligence Magazine 6(1), 55-67 (2011).

[19] B. Zeigler. Theory of Modeling and Simulation. New York: Wiley-Interscience

(1976).

[20] B. Zeigler. Multifacetted Modelling and Discrete Event Simulation. Orlando:
Academic Press (1984).

[21] B. Zeigler. Object-Oriented Simulation with Hierarchical, Modular Models: In­

telligent Agents and Endomorphic Systems. Boston: Academic Press (1990).

Ill

[22] B. Zeigler and S. Vahie. "DEVS Formalism and Methodology: Unity of Concep­

tion/Diversity of Application." In "Proceedings of the 1993 Winter Simulation
Conference," pages 573-579 (1993).

[23] G. Wainer and N. Giambiasi. "N-dimensional Cell-DEVS models." Discrete

Events Systems: Theory and Applications 12(1), 135-157 (2002).

[24] A. Khan, W. Venhola, G. Wainer, and M. Jemtrud. "On the use of CD++/Maya

for visualization of discrete-event models." In "Proceedings of IMACS World

Congress on Scientific Computation, Applied Mathematics and Simulation,"
(2005).

[25] A. Khan and G. Wainer. "Advanced Visualization of DEVS and Cell-DEVS

Models in CD++/Maya." In "Proceedings of SISO Fall Interoperability Work­

shop," (2005).

[26] E. Hughes. "Simulation for design, test and evaluation, and training: reconciling

the differences." In "Proceedings of the 22nd conference on Winter simulation,"
pages 231-236 (1990).

[27] P. GAERITY. "PC-Based Technology Invades Army Simulation." http://

www.metavr.com/downloads/PE0STRI-PC-BasedTechInvadesArmySim2000.

pdf (Acessed Nov., 2011).

[28] J. Manojlovich, P. Prasithsangaree, S. Hughes, J. Chen, and M. Lewis. "Agent

models I: UTSAF: a multi-agent-based framework for supporting military-based
distributed interactive simulations in 3d virtual environments." In "Proceedings

of the 35th conference on Winter simulation: driving innovation," pages 960-
968 (2003).

[29] SONY. "Playstation 3." http://us.playstation.com/playstation3/

(Acessed Nov., 2011).

[30] NINTENDO. "Nintendo Gamecube." http://www.nintendo.com/3ds

(Acessed Nov., 2011).

[31] MICROSOFT. "Mech Warrior 4." http://www.microsoft.com/games/

mechwarrior4/ (Acessed Nov., 2011).

[32] D. Michael. Serious games: games that educate, train, and inform. Boston,

MA: Thomson Course Technology PTR (2006).

112

http://www.metavr.com/downloads/PE0STRI-PC-BasedTechInvadesArmySim2000

D. Gibson and Y. Baek. Digital simulations for improving education: learn­

ing through artificial teaching environments. Hershey, PA: Information Science

Reference (2009).

Noptel. "Noptel Shooter Training." http://www2.noptel.fi/eng/nts/index.

php (Acessed Nov., 2011).

L3. "F-22 Pilot Training Devices." http://www.link.com/fa22ptd.html

(Acessed Nov., 2011).

S. Bayarri, M. Fernandez, and M. Perez. "Virtual reality for driving simulation."

Communications of the ACM. 39, 72-76 (1996).

M. Zyda, A. Mayberry, C. Wardynski, R. Shilling, and M. Davis. "The MOVES

institute's America's army operations game." In "Proceedings of the 2004 ACM

SIGGRAPH international conference on Virtual Reality continuum and its ap­
plications in industry," pages 219-220 (2003).

NOVALOGIC. "Delta force 2." http://www.novalogic.com/games.asp?

GameKey=DF2 (Acessed Nov., 2011).

Social-Impact. "Battle Command 2010." http://www.socialimpactgames .

com/modules.php?op=modload&name=News&file=index&catid=9&topic=

&allstories=l (Acessed Nov., 2011).

G. Fong. "Adapting cots games for military simulation." In "Proceedings of the

2004 ACM SIGGRAPH international conference on Virtual Reality continuum
and its applications in industry," pages 269-272 (2004).

C. Grigore, C.and Philippe. Virtual Reality Technology. Wiley-IEEE Press
(2003).

J. Vince. Introduction to Virtual Reality. Springer Verlag (2004).

F. Brooks. "What's Real About Virtual Reality?" In "Proceedings of the IEEE
Computer Graphics and Applications," pages 2 3 (1999).

[44] R. SCHROEDER, A. STEED, A. AXELSSON, I. HELDAL, A. ABELIN,

J. WIDESTROEM, A. NILSSON, and M. SLATER. "Collaborating in net­
worked immersive spaces: as good as being there together?" Computers and

Graphics 25(5), 781-788 (2001).

113

http://www2.noptel.fi/eng/nts/index
http://www.novalogic.com/games.asp

[45] D. Bowman, J. Gabbard, and D. Hix. "A study of influential factors on effec­

tive closely-coupled collaboration based on single user perceptions." Presence:
Teleoperators and Virtual Environments 11(4), 404-424 (2002).

[46] D. Roberts, R. Wolef, and O. Otto. "Constructing a gazebo: Supporting team
work in a tightly coupled, distributed task in virtual reality." Presence: Tele-

operators and Virtual Environments 12(6), 644-668 (2003).

AutoDesk. "Autodesk Maya." http://en.autodesk.ca/adsk/servlet/pc/

index?id=14557791&siteID=9719649, (Acessed Nov., 2011).

MilkShape3D. http://chumbalvun.swissquake.ch/index.html (Acessed
Nov., 2011).

PLANIT3D. http://www.planit3d.com/source/index.htm (Acessed Nov.,

2011).

AC3D. http://www.inivis.com/ (Acessed Nov., 2011).

Blender, http://www.blender.org/ (Acessed Nov., 2011).

I. Palmer. Essential Java 3D: Developing 3D Graphics Applications in Java.

Springer (2001).

J. Hartman and J. Wernecke. The VRML 2.0 handbook: building moving worlds

on the web. Addison-Wesley (1996).

OpenGL. http://www.sgi.com/products/software/opengl/ (Acessed Nov.,
2011).

A. Walsh and M. Bourges-Sevenier. Core Web 3D. Prentice Hall PTR (2000).

M. Griffiths. "The educational benefits of videogames." Education and Health

20(3), 47 - 51 (2002).

T. C. 25-20. A Leader's Guide To After-Action Reviews. Department of the
Army, Washington, DC. (1993).

C. on Modeling, Simulation, and Games. The Rise of Games and High Perfor­

mance Computing for Modeling and Simulation. The National Academies Press

(2010).

[59] Y. Adachi, T. Kumano, and K. Ogino. "Intermediate Representation for Stiff

Virtual Objects." In "Proceedings of the 1995 Annual International Symposium

on Virtual Reality," pages 203 -210 (1996).

114

[60] R. Pausch, T. Burnette, A. Capehart, M. Conway, D. Cosgrove, R. DeLine,

J. Durbin, R. Gossweiler, S. Koga, and J. White. "Alice: Rapid prototyping for
virtual reality." IEEE Computer Graphics and Applications 15(3), 8 11 (1995).

[61] Mechdyne. "Cavelib." http://www.mechdyne.com/cavelib.aspx (Acessed
Nov., 2011).

[62] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira.

"VR Juggler: A Virtual Platform for Virtual Reality Application Develop­

ment." In "Proceedings of the 2001 IEEE Virtual Reality," pages 89 -96 (2001).

[63] J. Kelso, L. Arsenault, S. Satterfield, and R. Kriz. "DIVERSE: A Framework

for Building Extensible and Reconfigurable Device Independent Virtual Envi­

ronments." In "Proceedings of the 2002 IEEE Virtual Reality," pages 183 -190
(2002).

[64] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, L. M. Encarnagao,

M. Gervautz, and W. Purgathofer. "The studierstube augmented reality
project." Presence: Teleoperators and Virtual Environments 11(1), 33-54
(2002).

[65] C. Shaw, M. Green, J. Liang, and Y. Sun. "Decoupled simulation in virtual

reality with the mr toolkit." ACM Transactions on Information Systems (TOIS)

11(3), 287-317 (1993).

[66] G. Wainer and N. Giambiasi. "Timed Cell-DEVS: modelling and simulation of

cell spaces." In "Discrete event modelng and simulation technologies," chap­

ter 10, pages 187-214. Springer-Verlag New York, Inc. (2001).

[67] G. Klir. Trends in general systems theory. New York: Wiley-Interscience (1972).

[68] L. Zadeh and C. Desoer. Linear system theory; the state space approach. New

York, McGraw-Hill (1963).

[69] G. Wainer. Discrete-Event Modeling and Simulation: a Practitioner approach.

Taylor and Francis (2009).

[70] B. Zeigler, H. Praehofer, and K. T. Theory of Modeling and Simulation: Inte­

grating Discrete Event and Continuous Complex Dynamic Systems. Academic

Press (2000).

115

[71] Y. Labiche and G. Wainer. "Towards the Verification and Validation of DEVS
Models." In "Proceedings of the 1st Open International Conference on Modeling

& Simulation," Clermont-Ferrand, France (2005).

[72] B. Zeigler, Y. Moon, D. Kim, and J. Kim. "DEVS-C++: A High Performance

Modelling and Simulation Environment." In "Proceedings of the Twenty-Ninth

Hawaii International Conference on System Sciences," volume 1, pages 350 -
359 (1996).

[73] H. Sarjoughian and B. Zeigler. "Devs and hla: Complementary paradigms for
m&s?" Transactions of the Society for Computer Simulation 17(4), 167-197
(2000).

[74] B. Zeigler. "Implementation of the DEVS Formalism over the HLA/RTI: Prob­
lems and Solutions." In "Simulation Ineroperability Workshop," (1999).

[75] H. Sarjoughian and B. Zeigler. "DEVSJAVA: Basis for a DEVS-based col­
laborative M&S." In "Proceedings of the 1998 International Conference on
Web-Based Modeling and Simulation," (1998, month=, volume=, number=,
pages=29-36,).

[76] F. J. and B. P. "Jdevs: An implementation of a devs based formal framework

for environmental modelling." Environmental Modelling and Software 19(3),
261-274 (2004).

[77] G. Wainer. "CD++: a toolkit to define discrete-event models." Software,

Practice and Experience 32(3), 1261-1306 (2002).

[78] T. Chandrupatla and A. Belegundu. Introduction to finite elements in engi­

neering. Upper Saddle River, N.J. : Prentice Hall (1997).

[79] S. Wolfram. Theory and applications of cellular automata(Advances Series on

Complex Systems), Volume 1. World Scientific (1986).

[80] S. Wolfram. A new kind of science. Champaign, IL : Wolfram Media (2002).

[81] T. Toffoli and N. Margolus. Cellular automata machines : a new environment

for modeling. Cambridge, Mass. : MIT Press (1987).

[82] J. V. Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press (1966).

116

[83] J. Ameghino, A. Troccoli, and G. Wainer. "Models and simulation of complex

physical systems using Cell-DEVS." In "Proceedings of the 33rd SCS Summer
Computer Simulation," pages 266-273 (2001).

[84] G. Wainer. "Modeling and simulation of complex systems with Cell-DEVS."

In "Proceedings of the Winter Simulation Conference," volume 1 (2004).

[85] G. Wainer, S. Jafer, B. Al-Aubidy, A. Dias, R. Bain, M. Dumontier, and

J. Cheetham. "Advanced DEVS models with application to biology and
medicine." In "Proceedings of Artificial Intelligence, Simulation and Planning

in High Autonomy Systems," Buenos Ares, Argentina (2007).

[86] B. Nayfeh. "Cellular automata for solving mazes." Dr. Dobb's Journal 18,

32-38 (1993).

[87] K. Lam and G. Wainer. "Modeling of maze-solving problems using Cell-DEVS."
In "Proceedings of the 2003 SCS Summer Computer Simulation Conference,"
Montreal, QC., Canada (2003).

[88] K. Kidisyuk and G. Wainer. "CD++: A graphical viewer for DEVS models."

Technical report, SCE-017, Ottawa, ON., Canada (2007).

[89] E. Poliakov, G. Wainer, J. Hayes, and M. Jemtrud. "Modeling Space-Shaped

Defense Applications with Cell-DEVS." In "Proceedings of AIS, Artificial In­

telligence, Simulation and Planning," Buenos Aires, Argentina (2007).

[90] C. Zhang, T. Zayed, A. Hammad, and G. Wainer. "Cell-based representation

and analysis of spatial resources in construction simulation." Elsevier Journal

of Automation in Construction 16(4), 436-448 (2007).

[91] "Advanced Visualization of DEVS and Cell-DEVS Models in CD[+-l-/Maya,

author = Khan, A. and Wainer, G. , booktitle = Proceedings of SISO Fall
Interoperability Workshop, year = 2005, address = San Diego, CA. U.S.A,."

[92] A. Khan, W. Venhola, G. Wainer, and M. Jemtrud. "On the use of CD++/Maya

for visualization of discrete-event models." In "Proceedings of IMACS World

Congress on Scientific Computation, Applied Mathematics and Simulation,"
Paris, France (2005).

[93] R. Madhoun and G. Wainer. "Modeling Space-Shaped Defense Applications

with Cell-DEVS." In "Proceedings of SISO Fall Interoperability Workshop,"

San Diego, CA. U.S.A (2005).

117

[94] R. Madhoun and G. Wainer. "Creating Spatially-Shaped Defense Models Using
DEVS and Cell-DEVS." SCS Journal of Defense Modeling and Simulation 2(3),

121-143 (2005).

[95] H, Nam-Hyuk, M. Kyung-Min, K. Ju-Hyung, L. Yoon-Sun, and K. Jae-Jun. "A

Study on Application of BIM (Building Information Modeling) to Pre-design in

Construction Project." In "Convergence and Hybrid Information Technology,

2008. ICCIT '08. Third International Conference on," volume 1, pages 42-49
(2008).

[96] H. Brad. BIM and Construction Management: Proven Tools, Methods, and
Workflows. Wiley (2009).

[97] ACS. "Architectural services & steel detailing." http://www.acscad.ie/3d_

visualisation.html (Acessed Nov., 2011).

[98] IAI/IFC. "International Alliance for Interoperability, Industrial Foundation

Classes." http://www.iai-tech.org/ (Acessed Nov., 2011).

[99] I. 10303-1. "Industrial automation systems and integration - product data

representation and exchange Part 1: Overview and fundamental principles

(1994).

[100] C. Eastman. Building Product Models: Computer Environments Supporting

Design and Construction. London: CRC Press (1999).

[101] C. Eastman, P. Teicholz, R. Sacks, and K. Liston. BIM Handbook. John Wiley

& Sons (2008).

[102] EQUA. "Equa simulation, simulation software, simulation consultancy." http:

//www.equa.se/ (Acessed Nov., 2011).

[103] DesignBuilder. "Building design, simulation and visualization." http://www.

designbuilder.co.uk/ (Acessed Nov., 2011).

[104] P. Sanguinetti, C. Eastman, and G. Augenbroe. "COURTHOUSE ENERGY

EVALUATION: BIM AND SIMULATION MODEL INTEROPERABILITY IN

CONCEPT DESIGN." In "Eleventh International IBPSA Conference," pages
1922 - 1929. Glasgow, Scotland (2009).

[105] J. Wang, J. Li, and X. Chen. "Parametric Design Based on Building Infor­
mation Modeling for Sustainable Buildings." In "Challenges in Environmental

118

http://www

Science and Computer Engineering (CESCE), 2010 International Conference
on," volume 2, pages 236 -239 (2010).

[106] S. Jain and C. McLean. "A framework for modeling and simulation for emer­

gency response." In "Proceedings of the Winter Simulation Conference," vol­
ume 1, pages 1068 - 1076 (2003).

[107] S. Jain and C. McLean. "Integrated simulation and gaming architecture for

incident management training." In "Proceedings of the Winter Simulation Con­
ference," (2005).

[108] R. Gonzalez. "Analysis and design of a multi-agent system for simulating a cri­

sis response organization." In "Proceedings of the International Workshop on
Enterprises k. Organizational Modeling and Simulation," Amsterdam, Nether­
lands (2009).

[109] F. Lanchester. Aircraft in Warfare: The Dawn of the Fourth arm. Constable

and Company Limited, London. ISBN 9781409776192 (1916).

[110] A. Ilachinski. "Irreducible semi-autonomous adaptive combat (isaac): An arti­

ficial life approach to land combat." Technical Report CRM 97-61, Center for
Naval Analyses, Alexandria, VA (1997).

[111] A. Ilachinski. "Irreducible semi-autonomous adaptive combat (isaac): An ar­

tificial life approach to land combat." Military Operations Research 5, 29-46
(2000).

[112] M. Barlow and A. Easton. "Crocadile: An open, extensible agent-based distil­

lation engine." Information & Security 8(1), 17- 51 (2002).

[113] A. Ilachinski. Enhanced Isaac Neural Simulation Toolkit (einstein), an

Artificial-Life Laboratory for Exploring Self-Organized Emergence in Land Com­

bat. Center for Naval Analyses, Beta-Test Users Guide CIM 610.10. (1999).

[114] M. Lauren. "Modeling combat using fractals and the satistics of scaling ssys-

tems." Military Operations Research 5(3), 47-58 (2000).

[115] D. Alberts and T. Czerwinski. Complexity, Global Politics, and National Secu­

rity, chapter 9, pages 99-111. National Defense University, Washington, D.C.

(1997).

119

[116] R. Brooks and L. Steels. The Artificial Life Route to Artificial Intelligence:

Building Embodied, Situated Agents, chapter 2, pages 25-81. Lawrence Erlbaum
Associates, Hillsdale, NJ (1995).

[117] A. Yang, H. Abbass, and R. Sarker. "Characterizing warfare in red teaming."

IEEE Transactions on ISystems, Man, and Cybernetics, Part B: Cybernetics

36(2), 268 -285 (2006).

[118] M. Lauren and R. Stephen. "Map-aware non-uniform automata - a new Zealand

approach to scenario modelling." Battlefield Technology 5(1), 27-31 (2002).

[119] G. White. "The mathematical agent a complex adaptive system representation

in bactowars." In "First workshop on complex adaptive systems for defence,"

(2004).

[120] A. Gill. "Improvement to the movement algorithm in the mana agent-based

distillation." Battlefield Technology 7(2), 19-22 (2004).

[121] A. Yang, H. Abbass, and R. Sarker. "Wisdom-ii: A network centric model

for warfare." In "Knowledge-Based Intelligent Information and Engineering

Systems," pages 173-173. Springer Berlin / Heidelberg (2005).

[122] A. Gill and D. Grieger. "Validation of agent based distillation movement al­

gorithms." Technical report, Defence Science and Technology Organization,

Australia. DSTO-TN-0476 (2003).

[123] D. Grieger. "Comparison of two alternative movement algorithms for agent
based distillations." Technical Note DSTO-TN-0777, Defence Science and Tech­

nology Organisation Edinburgh (Australia) Land Operations Div (2007).

[124] W. Ding, C. Lin, L. Chechiu, X. Wu, and G. Wainer. "Definition of Cell-DEVS

Models for Complex Diffusion Systems." In "Proceedings of the SCS Summer
Computer Simulation Conference," (2005).

[125] M. Moallemi, S. Jafer, A. Sayed Ahmed, and G. Wainer. "Interfacing DEVS

and Visualization Models for Emergency Management." In "Proceedings of

2011 Spring Simulation Conference (SpringSimll)," (2011).

[126] G. Christen, A. Dobniewski, and G. Wainer. "Modeling State-Based DEVS

Models in CD-I—)-." In "Proceedings of MGA, Advanced Simulation Technolo­

gies Conference," (2004).

120

[127] M. Moallemi and G. Wainer. "Designing an Interface for Real-Time and

Embedded DEVS." In "Proceedings of 2010 Spring Simulation Conference

(SpringSimlO), DEVS Symposium," pages 154-161 (2010).

[128] PRESAGIS. "Vega prime." http://www.presagis.com/products_services/

products/ms/visualization/vega_prime/ (Acessed Nov., 2011).

[129] A. Sayed Ahmed, M. Moallemi, , and G. Wainer. "VCELL: A 3D Real-time

Visual Simulation in Support of Combat." In "Proceedings of 2011 Summer
Simulation Multiconference (SummerSimll)," (2011).

121

