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ABSTRACT  
ATLAS is a modeling language that allows one to define a 
static view of a city section for simulating traffic in an area. 
By using ATLAS TSC, an intermediary compiler, and 
CD++, a Cell-DEVS system, traffic simulations may be run. 
The outputs of the simulation are a collection of individual 
cell-space simulation results that are difficult to analyze as 
a whole. This problem is solved by using GATLAS ((ATLAS 
in Google Earth) to generate KML files from the CD++ 
outputs so that the simulation results may be examined as a 
whole in Google Earth. 
 
1 INTRODUCTION 
ATLAS (Advanced Traffic Language Specifications) is a 
high-level specification language defined to represent city 
sections as cell spaces [1, 2]. The models are formally 
specified, avoiding a high number of errors in the 
application, thus reducing the problem solving time. 
ATLAS specifications were used as a basis to define the 
TSC compiler, which can be used to convert a city plan file 
(used as input) into a DEVS formal model [3], producing a 
coupled model file that can be simulated using the CD++ 
environment. [4]. 
 
Although a VRML-based visualization tool was defined in 
[2], new technologies for visualization are available based 
on Web Services and Service Oriented Architecture. The 
emergence of recent XML-based technologies paved the 
way for new types of architectures and message exchanges 
on the Internet. This eXtensible Markup Language has 
provided interoperability between partners and enabled 
companies to deploy a myriad of machine consumable Web-
based services, which can be later integrated in many 
different ways to produce multiple sets of services. A 
system reusing existing distributed services and combining 
them to provide added value through a web application is 
called a Mash-Up. The idea of using existing web-based 
products as a visual aid in displaying other information is 
often referred to as a “mash-up”. Although we have shown 
that mashups for modeling and simulation can be created [5] 
(building a web mash-up that uses Google Maps and web-
based system for interacting with a CD++ model and 
simulation), Web Services technologies are still complex to 
mashup. In this work we show a mechanism to deal with a 

larger system, which focuses on the visualization of the 
results of a simulation in Google Earth.  
 
2 BACKGROUND 
In recent years, a variety of simulation languages and tools 
have been created, using different formal methods: queuing 
networks [6], DEVS [7], Cellular Automata [8], software 
agents, etc. Our research has focused on the construction of 
traffic microsimulations that describe precisely the local 
behavior of traffic, using DEVS and Cell-DEVS [3,4].  
 
Cell-DEVS is an extension of DEVS, especially devoted to 
define cell spaces. Each cell is defined as an atomic DEVS, 
and a procedure to couple cells is depicted. Timing delay 
constructions let the modeler to define the cell timing 
behavior. Each cell, built as an atomic model, can be 
described as:  

 
TDC = < X, Y, θ, N, delay, d, δint, δext, τ, λ, ta > 

 
X defines the external inputs, Y the external outputs. θ is the 
cell state definition, and N is the set of inputs. Delay defines 
the kind of delay for the cell, and d its duration. Finally, 
there are several functions: dint for internal transitions, dext 
for external transitions, τ, for local computations, λ for 
outputs and ta for the state's duration. Each cell uses the set 
of inputs to compute the cell's next state using the τ 
function. The delay allows to defer the transmission of the 
results. This behavior is defined by the dint, dext, λ and ta 
functions. A modeler only focuses in defining the local 
computing function, the kind of delay and its length.  
 
ATLAS [1] is a specification language built on top of DEVS 
and Cell-DEVS formalisms. DEVS formalism permits to 
specify discrete events systems using a modular description. 
A model is seen as composed by atomic submodels than can 
be combined into coupled models. The behavior for each of 
the constructions presented in this language was validated in 
terms of their correctness when built as Cell-DEVS models. 
Then, a compiler was built following the specifications [9]. 
The compiler, called ATLAS TSC (Traffic Simulator 
Compiler), generates code by using a set of templates that 
can be redefined by the user. In this way, ATLAS 
specifications can be translated into different tools with 
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facilities to define cellular models. It also avoids version 
problems if the underlying tools are modified.  

 

 
Figure 1: ATLAS Software Architecture  

 
ATLAS allows representing the structure of a city section 
defined by a set of streets connected by crossings. The 
language constructions define a static view of the model. 
ATLAS formal specifications were used to build the 
ATLAS TSC compiler and the syntax for its language 
sentences. Following, we present the main constructions of 
ATLAS and its syntax in TSC. 
 
a) Segments: represent sections of a street between two 
crossings. Every lane in a given segment has the same 
direction (one way) and a maximum speed. They are 
specified as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 ∈ 
City ∧ n, max ∈ Ν ∧ a, dir ∈ {0,1} }, where p1 and p2 
represent the boundaries of the segment (City = { (x,y) / x, y 
∈ R }), n is the number of lanes, and dir represents the 
vehicle direction. The parameter a defines the shape of the 
segment (straight or curve, allowing to define the city shape 
more precisely, including the exact number of cells), and 
max is the maximum speed allowed in the segment. This 
constraint was included in ATLAS TSC. The compiler 
permits defining the segments by delimiting them using the 
sentences begin segments and end segments. At least one 
segment must be defined, using the following syntax: 
 
id = p1,p2,lanes,shape,direction, speed, parkType 

 
These values map the parameters mentioned previously, 
with shape: [curve|straight] and direction: 

[go|back]. Finally, parkType is used to define parking 
constructions, formally specified in the following 
paragraphs. 
 
b) Parking: border cells in a segment can be used for 
parking. If we review the construction used for Segments in 
ATLAS TSC also includes information for the parking 
segments. In this case,  

 
parkType: [parkNone|parkLeft|parkRight|parkBoth] 

 
defines an area where vehicles can park. 

c) Crossings: these constructions are used to represent the 
places where more than one segment intersects. They are 
specified as: Crossings = { (c, max) / c ∈ City ∧ max ∈ Ν ∧ 
∃ s, s’ ∈ Segments ∧ s = (p1, p2, n, a, dir, max) ∧ s’ = (p1’, 
p2’, n’, a’, dir’, max’) ∧ s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c 
∨ p2’ = c) }. In ATLAS TSC, the definitions for crossings 
are delimited by the separators begin crossings and end 
crossings. Each sentence defines a crossing as: 

 
id = p, speed, tLight, crossHole, pout 

 
Parameters p and speed represent (p1,p2) and max of the 
formal specification. Pout defines the probability that a 
vehicle leaves the crossing, used to simulate random routing 
 
d) Traffic lights: crossings with traffic lights define a set of 
models representing the traffic lights in a corner and the 
corresponding controller. The model sends a value 
representing the color of the traffic light to a cell in the 
intersection corresponding to the input segment affected by 
the traffic light. The following qualifier is added to a 
standard crossing definition in ATLAS TSC for crossings 
with traffic lights: tLight: [withTL|withoutTL]. 
 
e) Railways: they are built as a sequence of level crossings 
overlapped with the city segments. In ATLAS TSC, the 
begin railnets and end railnets act as separators. Each 
railnet is defined using the following syntax: 

id = (s1, d1) {,(si, di)} 
 
where si is the identifier of a segment crossed by the 
railway, and di is the distance between the beginning of the 
segment si and the railway. The compiler automatically 
generates the sequence number. 
 
f) Men at work: In ATLAS TSC, the begin jobsites and 
end jobsites separators define an area with accidents or 
men at work. Each sit is defined as: 

in t : firstlane, distance, lanes 

 
Here, firstlane defines the first lane affected by the jobsite, 
distance is the distance between the center of the jobsite 
and the beginning of the segment, and lanes is the number 
of lanes occupied. 
 
g) Traffic signs identify the segment where the traffic sign 
is used, the type of sign, and the distance from the 
beginning of the segment up to the sign. In ATLAS TSC, 
the begin ctrElements and end ctrElements delimiters 
define all the signs, with: 

in t : ctrType, distance 

 
being the definition for each sign. Here, ctrType: [bump | 

depression | intersection | saw | stop | school]. 
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The distance parameter defines the distance to the 
beginning of the segment. An extension of this construction 
allows us to define potholes, whose size is one cell. The 
definition of these elements is done using the begin holes 
and end holes separators. Each hole is defined as: 

in t : lane, distance 

 
A pothole can also be included in a crossing. Previously 
defined in the Crossings paragraphs, crossHole: 
[withHole|withoutHole] defines if a crossing contains a 
pothole or not. 
 
h) Experimental frameworks: experimental framework 
constructions permit build experiments on a city section by 
providing inputs and outputs to the area to be studied. They 
are associated with segments receiving inputs, or those used 
as outputs 
 
DEVS is a discrete event paradigm. It uses a continuous 
time base, which allows accurate timing representation. 
Precision of the conceptual models can be improved, and 
CPU time requirements reduced. The TSC compiler for the 
ATLAS specification language implements the ATLAS 
constructions as DEVS and Cell-DEVS models, using a 
generic rule generation mechanism for describing the traffic 
behavior. The compiler generates rules based on macro 
templates, entitling changes in the model implementation in 
a flexible way. The formal specification avoids a high 
number of errors in the developed application, and the 
problem solving time is highly reduced..  
 
Google Maps is one of the leading online consumer 
mapping technologies. One of the features of Google Maps 
if viewing current traffic conditions, see Figure 2.  

 

 
Figure 2 - Traffic in Google Maps 

 
Although the presentation in Figure 2 is compelling, Google 
Maps are not ideal for simulation projects, because the 
Google Maps API has no sense of time. Therefore, 
visualizing simulation results over time would require an 
extension of the Google Maps API that took time-based 

events into account. Instead, Google Earth allows users to 
view satellite imagery, maps, terrain, and user-defined data 
on a model of the Earth and may be downloaded via 
<http://earth.google.com/>. Google Earth (originally 
named EarthViewer 3D) explicitly allows for time-based 
events though its use of KML, formerly Keyhole Markup 
Language. KML is an open standard officially named the 
OpenGIS® KML Encoding Standard (OGC KML). It is 
maintained by the Open Geospatial Consortium, Inc. 
(OGC), and its complete specification can be found at 
<http://www.opengeospatial.org/standards/kml/>. 
 
Different KML entities can be used for modeling within a 
simulation, in particular Style, GroundOverlay, Path 
(LineString), Point, and TimeSpan. 
 
Styles are defined so that they may be applied to objects in 
the KML file. A GroundOverlay is used to drape a user-
defined image over the surface of the earth. This can be 
useful to use custom imagery (in our case, it is useful to 
block out the underlying GoogleEarth imagery because of 
alignment issues between the simulation and GoogleEarth).  
 
We used various objects of type LineString to draw the 
traffic segments (sections of traffic between two corners).  
 
A Point is used to define a singular location in KML. We 
have used a point to define the position of a car, and 
referenced the carPlacemark Style to draw an icon of a car 
at this point. Within this definition, we used the TimeSpan 
markup to define the start and the end time between which 
this object exists. The TimeSpan markup is used to animate 
the cars. 
 
3 GATLAS IMPLEMENTATION 
GATLAS (ATLAS in Google Earth) uses a number of Perl 
scripts in order to be able to process the text files containing 
the simulation results, the TSC files and the interaction with 
Google Earth. Three main data objects were created to 
create the visualization, one hash each for segments, 
crossings, and events. 
 
The segments and crossings hashes each have as their first 
dimension key the name of the segment or crossing. The 
second dimension’s key is a property name, one for each 
item in the description of the segment or crossing in the 
.plan file. One last key for each crossing or segment (model) 
contains a 2D array to model the cell space for that object. 
This is used to generate the visualization, as it will be 
discussed in detail later. 
 
Initially, we build the necessary data structures, and then we 
pass them back and forth to various helper functions, in the 
following order: 
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1. Parse the TSC Plan File: this file contains the TSC 
definition for the simulation area. 

2. Parse the DEVS Coupled Model File: this file 
contains the coupled model specification generated 
by ATLAS TSC. 

3. Parse the Log File generated by CD++. 
4. Build the corresponding KML file. 

  

 
Figure 3 – A section of Buenos Aires and its corresponding 

Google Map.  
 
Figure 3 shows the topology of an ATLAS model that 
represents a section of the city of Buenos Aires, Argentina. 
In Figure 4 we can see the definition of this model in 
ATLAS/TSC.  
 
As we can see in the figure, each road segment includes the 
name of the street based on the city map (Monroe, 
Roosevelt, Usuahia, Tunez, etc.). Each of the road segments 
include the various parameters discussed earlier: the 
start/end points of the segment, the number of lanes on each 
segment, the shape of the segment (straight/curve), the 
direction of the vehicles (go/back), the maximum speed 
allowed on the segment, and parking information. We can 
also see the information about one of the crossings in the 
map (as it can be seen in the position array, this crossing 
ends at position 10 in the Y axis in the 2D plane). Each of 
the crossing constructions shows the connection to a 

different segment, and the kind of connection, which can 
include Traffic Lights or potholes). 
 
begin segments 
  Monroe_Exit = (0,10),(10,10),1, straight, back, 

20,300,parkNone 
  Monroe_In = (100,10),(110,10),1,straight,back, 

20,300,parkNone 
  Roosevelt_In= (0,20),(10,20),1,straight,go,20, 

300,parkNone 
  Roosevelt_Exit = (100,20),(110,20), 1,straight, 

go,20,300,parkNone 

. . .  
 Libertador_In1=(100,0),(100,10),4,straight,go,20, 

300,parkNone 
 Libertador_Exit1=(100,50),(100,60),4,straight,go, 

20,300,parkNone 
 Libertador_Exit2 = (100,0),(100,10),4,straight, 

back,20,300,parkNone 
 Libertador_In2=(100,50),(100,60),4,straight,back, 

20,300,parkNone 
 Usuahia1 =(52,45),(60,45),1,straight,back,20, 

300,parkNone 
 Tunez = (65,10),(65,20),1,straight,go,20,300, 

parkNone 
end segments 
 
begin crossings 
  c010_10_ = (10,10),20,withoutTL,withoutHole,300 
  c020_10_ = (20,10),20, withoutTL,withoutHole,300 
  c030_10_ = (30,10),20,withoutTL,withoutHole,300 
         ... 
  c090_10_ = (90,10),20,withoutTL,withoutHole,300 
  c100_10_ = (100,10),20,withoutTL,withoutHole,300 
... 
end crossings 

Figure 4. ATLAS/TSC definition of the maps in Figure 3. 
 

 Based on this notation, the TSC compiler builds a 
DEVS coupled model with CD++ notation as follows. 
 
components : BigCounter@TSCCounter Monroe_Exit 
components : Monroe_ExitCons@TSCConsumer  
components : Monroe_InGen@TSCGenerator Monroe_In 
components : Roosevelt_InGen@TSCGenerator 
components : Roosevelt_In  
components : Roosevelt_ExitCons@TSCConsumer 
... 
components : c010_10_ c010_10_Counter@TSCCounter 
... 
out : arrived_BigCounter qty_Cons_Monroe_Exit  
... 
link : y_co_car09@Monroe_Exit  
                     x_t_car0@Monroe_ExitCons  
link : quantity@Monroe_ExitCons  
                     qty_Cons_Monroe_Exit 
link : quantityAcum@Monroe_ExitCons  
                     qty_Cons_Acum_Monroe_Exit 
[Monroe_Exit] 
type : cell   width : 10    height : 1   
delay : transport border : nowrapped 
neighbors : (0,-1) (0,0) (0,1) 
in : x_c_car00  x_c_canEnter00  
out : y_c_space00  y_co_car09 
link : x_c_car00 x_c_car@Monroe_Exit(0,0) 
link : x_c_canEnter00  
               x_c_canEnter@Monroe_Exit(0,0) 
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link : y_c_space@Monroe_Exit(0,0) y_c_space00 
link : y_co_car@Monroe_Exit(0,9) y_co_car09 
portInTransition : x_c_canEnter@Monroe_Exit(0,0)  
              segment1-canEnter-startcross-rule  
portInTransition : x_c_car@Monroe_Exit(0,0)  
                       segment1-startcross-rule  
localtransition : segment1-lane-rule 
zone : segment1-cons-rule { (0,9) } 

 
[c010_10_] 
type : cell     width : 18        height : 1 
delay : transport     border : wrapped 
neighbors : (0,-1) (0,0) (0,1) 
in : x_t_car0 x_t_car1 x_t_car2 ... x_t_car17 
out : y_t_space0 y_t_space1 y_t_space2 ...  
link : x_t_car0 x_t_car@c010_10_(0,0) 
link : x_t_car1 x_t_car@c010_10_(0,1) 
localtransition : cellIn-rule 
portInTransition : x_t_car@c010_10_(0,0) car-rule 
... 
zone : c010_10_-cellOut-rule { (0,5) } 
... 

Figure 5. Translation of the maps in Figure 3 into CD++  
 
This model contains all the rules for the model to execute; 
each segment and crossing is translated into a Cell-DEVS 
model, and they are interconnected through input/output 
ports. It first defines all of the components generated by 
TSC: a TSCcounter model used as an experimental 
framework connected to the the model exits, a 
TSCGenerator to generate traffic in the zone, and one Cell-
DEVS model for each of the segments and crossing. For 
instance, we show the coupled model definition of 
Monroe_Exit , a 10x1 Cell-DEVS model that (is used to 
receive and transmite vehicles in the zone (using the links 
defined at the topmost level). We also show the definition of 
the crossing c010_10_, which is connected to each of the 
input/output segments in position (10,10) on the plane.  
 
Based on the complete model specification, the following 
simulation results were obtained: 
 
00:01:00:000 arrived_bigcounter 435 
00:01:00:000 solved_bigcounter 220 
00:01:00:000 qty_cons_monroe_out 1 
00:01:00:000 qty_cons_acum_monroe_out 1 
00:01:00:000 qty_cons_roosevelt_out 56 
00:01:00:000 qty_cons_acum_roosevelt_out 56 
00:01:00:000 qty_cons_ugarte_out 0 
00:01:00:000 qty_cons_acum_ugarte_out 0 
00:01:00:000 qty_cons_congreso_out 19 
00:01:00:000 qty_cons_acum_congreso_out 19 
00:01:00:000 qty_cons_usuahia1 0 
00:01:00:000 qty_cons_acum_usuahia1 0 

 
As we can see, in 1 simulated hour, 435 vehicles arrived in 
the area and 220 left the region (using different streets).  
Although this cumulative information is useful for statistical 
purposes, it does not provide any information on the 
microsimulation for each of the vehicles. This information, 

instead, can be found in the detailed simulation log showed 
in the following figure. 
 
... 
X / 00:00:00:010 / Root / x_t_car0 / 1 to top(01) 
X / 00:00:00:010 / top(01) / x_t_car0 / 1 to 
MonroeExit(02) 
D / 00:00:00:010 / MonroeExit(02) / 00:00:59:990 
to top(01) 
D / 00:00:00:010 / top(01) / 00:00:59:990 to 
Root(00) 
X / 00:00:00:020 / Root(00) / x_t_car1 /      1 to 
top(01) 
X / 00:00:00:020 / top(01) / x_t_car1 /      1 to 
MonroeExit(02) 
D / 00:00:00:020 / MonroeExit(02) / 00:00:59:980 
to top(01) 
D / 00:00:00:020 / top(01) / 00:00:59:980 to 
Root(00) 
X / 00:00:00:030 / Root(00) / x_t_car2 /      1 to 
top(01) 
X / 00:00:00:030 / top(01) / x_t_car2 /      1 to 
MonroeExit(02) 
D / 00:00:00:030 / MonroeExit(02) / 00:00:59:970 
to top(01) 

… 
Figure 6. Execution of the models using CD++ (.log files). 

 
This figure shows two different outputs provided by the 
simulator: the first part includes a summary of the 
simulation results on the different streets; the second part 
shows a detailed log file showing the simulation execution 
at every single submodel and at every timestam. 
 
These results were mashed up into a Google Map, using an 
advanced program (written in Perl due to the ease with 
which text may be processed). Three main data objects were 
created to create the visualization, one hash each for 
segments, crossings, and events. The segments and 
crossings hashes each have as their first dimension key the 
name of the segment or crossing. The second dimension’s 
key is a property name, one for each item in the description 
of the segment or crossing in the .plan file. One last key for 
each crossing or segment is ‘model’ that contains a 2D array 
to model the cell space for that object. This is used to 
generate the visualization and is explained in detail later in 
this paper. 
 
The main function of this program is to create the data 
structures and then passes them back and forth to various 
helper functions, which, in turn parse the Plan File, parse the 
corresponding MA and Log File, and then create a  
KML file for visualization. 
 
TSC takes a .plan file as input, containing a list of segments 
and crossings contained in the model. An example of a 
segment and a crossing definition from mapa.plan file is 
shown here: 
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Monroe_Exit = (0,10),(10,10),1,straight,back,20,  
       300, parkNone 
c060_10_ = (60,10),20,withoutTL,withoutHole,300 

Figure 7 - Plan File Sample 
 
The idea was to build a function of the same name that 
looks for the segment and crossing definitions and fills in 
the hashes accordingly. Regular expressions were used to 
parse the file, and care was taken to disregard changes in 
whitespace. The segments are parsed as follows:  
 
/^\s*(\S+)\s*=\s*\(\s*(\S+)\s*,\s*(\S+)\s*\),\s*\(
\s*(\S+)\s*,\s*(\S+)\s*\)\s*,\s*(\S+)\s*,\s*(\S+)\
s*,\s*(\S+)\s*,\s*(\S+)\s*,\s*(\S+)\s*,\s*(\S+)\s*
/  

Likewise, the regular expression for crossings is defined as 
follows: 

 
/^\s*(\S+)\s*=\s*\(\s*(\S+)\s*,\s*(\S+)\s*\)\s*,\s
*(\S+)\s*,\s*(\S+)\s*,\s*(\S+)\s*,\s*(\S+)\s*,\s*(
\S+)\s*/ 

 
The need for the .ma file to be parsed came about because 
the size of each crossing is determined by TSC. This 
crossing size is included in the .ma file definition for the 
crossing, and it is based on the number of lanes of each of 
the roads leading into the crossing. Thus, we created a 
program that parses the .ma file and looks for the length of 
crossings that were detected in the .plan file. A new key in 
the crossing hash was added to hold this value.  
 
3.1 Simulation Outputs  
Once the GATLAS data structures are filled up with the 
segment and crossing definitions, we parse the log file for 
events detailing the movement of cars around the segments 
and crossings, as discussed earlier. For instance, 
 
#Message Y / 00:00:38:400 / 
libertador_b1(0,6)(1478) / out /   1 to 
libertador_b1(1471) 

 
This message indicates that a car is being placed in lane 0, 
cell 6 of the libertador_b1 segment at time 00:00:38:400 (1 
indicates the presence of a vehicle; if that value were 
0.0000, it would indicate that the car is being removed from 
that cell). The regular expression used to parse these events 
as follows:  
 
/Message Y \/\s*(\S*)\s*\/ 
(.*)\((.*),(\d*)\).*\/.*\/\D*([0-9\.]*).*/ 

 
In DEVS, output messages are part of the set Y, so this 
regular expression detects only the output messages of each 
cell. The %events hash has as its first key the time, and then 
successive keys are the element (segment or crossing), lane, 
and cell. The final value recorded is whether a car is being 
placed in or removed from the cell. Once the log file is 
parsed, all output messages matching the above regular 

expression are stored in the %events hash for later 
processing. 
 
3.2 ATLAS/TSC Data Processing 
Once the .plan, .ma, and .log file have been processed, all of 
the data required to visualize the traffic simulation is 
known. It is at this point that the last two steps in our 
process occur, create the traffic models and create the KML 
file. 
 
We first loop through each segment and crossing to create a 
2-dimensional array. Each of these two dimensional arrays 
is a representation of the cell space used by Cell-DEVS to 
model the segment or crossing. This model is used in the 
createKML function described later. The width of each array 
is simply the number of lanes of the segment, 1 for a 
crossing, which is taken from the .plan file. The length of a 
segment is the number of cells that are used to model the 
distance between the start point and end point. Note that 
these points are defined in terms of the cell space, so the 
distance between the start point and end point is determined 
and the length is taken to be the floor of that.  
 
As noted previously the length of a crossing is determined 
by the value read in the .ma file. The length of the segment 
could have also been read from the .ma file, but the segment 
length calculation was implemented prior to the time that it 
was determined that the crossing length would need to be 
read from the .ma file. 
 
Then, we need to create the KML file, and for doing so, we 
loop through each discrete time in the %event hash. Then 
for each element (crossing or segment) the model for that 
element has its elements set or cleared based on the data in 
the event hash. Once the element’s models are filled for a 
given time step, the time value is reformatted from CD++ 
format to ISO format, and then each element and timestamp 
pair is sent to a function that returns the KML markup for 
that element which is then written to a file. 
 
Segments are modeled by looking through each cell in the 
2d model array and seeing if there is a car present. If there 
is, a call is made to CDppSegmentToKMLPosition, the 
prototype of which is seen in Figure 8. 

 
my ($kml_latitude,$kml_longitude) =  
      &CDppSegmentToKMLPosition      ( 

               $segment_ref->{"start_x"} ,  
               $segment_ref->{"start_y"} ,  
               $segment_ref->{"end_x"} ,  
               $segment_ref->{"end_y"} ,  
               $segment_ref->{"direction"} ,  
               $segment_ref->{"num_cells"} ,  
               $lane_i, 
               $cell_j  
            ) ; 

Figure 8 - Call to CDppSegmentToKMLPosition 
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CDppSegmentToKMLPosition translates the position of the 
car in the model to a latitude/longitude position which is 
then inserted in the KML file. The 
CDppSegmentToKMLPosition function uses the start and 
end position of the model, the direction, the number of cells 
in the model, and the position of the given car in the model 
to calculate the latitude-longitude pair for that car. If the 
direction is ‘back’, the start and end points are swapped. 
 
The car’s position in terms of cells between the start and end 
point is then calculated using the fact that the car should be 
positioned in the middle of the cell that it is occupying, 
shown in Figure 9. 

 
my $car_pos_x = $start_x + ($end_x-
$start_x)/(2*$num_cells) * (2*$cell+1); 
my $car_pos_y = $start_y + ($end_y-
$start_y)/(2*$num_cells) * (2*$cell+1); 

Figure 9 - Car's Model Position Calculation 
 
Once the car’s position between the start and end position is 
calculated, it’s position offset from the line between start 
and end is calculated, to take the number of lanes in the 
street into account. A unit vector in the direction of start to 
end is derived, rotated 90 degrees, and then the car is 
displaced in that direction by a scale factor. At the time this 
report is written, the scale factor being used is 1, so the car 
is moved over a distance of one cell. 
 
Once the car’s position is calculated within the model, the 
distance between this position and the origin of the model is 
determined – this distance is still measured in units of cells. 
This cell distance is then transformed into a distance in 
kilometers based on the fact that a cell is 7.5 meters on one 
side. The angle this vector position of the car makes with 
the x-axis is then derived. This angle is then added to an 
model-specific angle that is hard coded – the angle the 
model’s x-axis makes with the equator of the earth. 
 
Finally this new total angle, the distance from the origin in 
km, and the origin’s position as a latitude-longitude pair are 
used as inputs into an equation from 
<http://www.movable-

type.co.uk/scripts/latlong.html>, which equation 
produces a new latitude-longitude pair given an initial 
position, a bearing, and a distance. The resulting latitude-
longitude pair is then returned up the call stack and inserted 
into the KML template for the car using the time of the 
event and the next event time. 
 
Crossings are modeled using the same methodology as 
segments, the only difference being how the position of the 
car is determined. A crossing has a static x-y coordinate, so 
if all cars in the crossing were drawn at that point, they 
would overlap and it would look as though cars disappeared 
in the crossing if there was more than one car in the 

crossing. Thus, the position of the car is determined to be 
the position of the crossing, plus an offset that is calculated 
by drawing a circle of radius R around the crossing position 
and then placing the car on that circle based on its position 
within the crossing model. This has the effect of having the 
cars look as though they are driving in a roundabout while 
they are in the crossing. 
 
Once the first KML files were being produced by the 
system, it became evident that the combination of the 
models (the .plan files) and the transformation functions 
being used were not exact enough so that the cars followed 
the streets they were supposed to when visualized in Google 
Earth. The lack of traffic lining up with roads can be seen in 
Figure 10. It was not within the scope of this project to 
remodel the area, so it was decided that the cars previously 
modeled would be drawn on top of a white image covering 
the Google Earth imagery. Thus, it was then necessary to 
draw the segments so that the cars followed some sort of 
road system. 
 
The segments were position in KML using the same 
algorithm as was used to place the cars, this time the start 
and end points were transformed to latitude-longitude pairs 
and then drawn as lines in KML, as shown below.  

 

 
Figure 10 - Simulation Result 

 
It was at this time that the approach of drawing a white box 
and then drawing the segments as lines in KML was taken, 
whose results can be seen in Figure 11. Vehicles were seen 
to follow the roads and enter and exit the system. 
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Figure 11 - Final Simulation Result 

 
4 CONCLUSIONS 
ATLAS-based traffic simulations were successfully 
visualized in Google Earth. Future work could look into 
working with a ATLAS/TSC .plan file that more 
realistically models a true roadway system, so that the 
transformation equations may be verified. If a system was 
produced that allowed a user to specify a ATLAS/TSC 
model using Google Maps – this time Google Maps would 
be the better choice because its API is well suited for user 
interaction – then the positions of the cars could be 
calculated using the start and end latitude-longitude pairs 
rather than the cell space positions, which would lead to 
much better accuracy in the visualizations.  
 
An alternative approach for mapping of the real world to the 
ATLAS model would be to use a GIS data set to determine 
the geometry of the model based only on element names.  
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