
DEVS Simulation of Peer-To-Peer File-Sharing

Alan Davoust, Gabriel Wainer, Babak Esfandiari
Dept. of Systems and Computer Engineering

Carleton University Ottawa, Canada
Email: {adavoust,gwainer,babak}@sce.carleton.ca

Abstract—We present a framework to simulate a peer-to-
peer (P2P) file-sharing network, based on the Discrete Event
Systems Specification (DEVS) formalism. Our framework mod-
els a file-sharing network as a coupled model, comprising a
network model and a large number of peer models. While
most available network simulation tools focus on transport-
level dynamics, we provide extensible and reusable models for
the file-sharing protocol and for the behavior of peers. These
models, implemented using the CD++ toolkit, can readily be
used on existing simulators, including parallel and real-time
simulators.

As a case study, we apply our framework to simulate a
P2P web, and show the emergence of an interesting page
distribution.

Keywords-Peer-To-Peer; Simulation; DEVS

I. INTRODUCTION

In a peer-to-peer (P2P) network, the system of interest
is an overlay network, i.e. a network of peers connected in
an arbitrary topology, different from the physical network
topology. Simulating a P2P network therefore requires a
(real or simulated) transport layer infrastructure, and, at
the application level, users (or simulated users) to provide
input. As larger-scale networks are needed to evaluate such
aspects as the efficiency of a search protocol or the impact
of an incentive scheme, the required network and manpower
become unavailable, and must be simulated.

The simulation of transport networks is a well researched
topic, with many tools available, such as the popular Om-
net++ [21] or NS2 [17]. On the other hand, to simulate the
peers (users), reusable models are scarce.

Many P2P-related studies include validation by simula-
tion, but the peer models used in those simulations are rarely
reported in detail, if at all. This, along with the variety of
existing simulators, makes it very difficult to compare or
reproduce any reported results.

In our research, we develop new applications on top of a
P2P file-sharing platform. We then use simulation to study
the evolution of the network content, as an emergent side-
effect of the peers’ behavior. For this purpose, we need
elaborate peer models, possibly connected with models of
other domains, which would be difficult to adapt to P2P-
specific simulators.

In this paper, we present a framework for simulating
a P2P file-sharing network, based on the Discrete Event

Systems Specification (DEVS) formalism [26]. The use of
DEVS theory provides with a method with sound semantics
to represent both discrete systems such as the network
infrastructure, and continuous systems such as the peers
themselves.

Our framework comprises a network model, and a generic
peer model with configurable and customizable stochastic
behavior. It is implemented using the CD++ toolkit [22],
a general purpose DEVS simulation toolkit. As such, our
models are highly reusable and can be integrated with
models of other domains, for example to model external
events which may trigger increased peer activity, or affect
network connectivity.

The rest of this paper is organized as follows. After
a brief survey of related work in Section II, we present
in section III a formal characterization of a P2P network,
which we use as a basis for our DEVS models. Then in
Section IV we describe our DEVS framework model, and
in Section V we detail the principles of our peer model. In
Section VI we illustrate the application of our framework to
an interesting scenario: we consider a file-sharing network
containing hyperlinked files1, and simulate the behavior of
users “surfing” that P2P web. Finally, in section VII we
briefly present a separate visualization tool that can show
a “behind the scenes” view of the network evolution, and
provide visual clues of phenomena that may not appear
directly in statistical studies. In Section VIII we draw a few
conclusions and present some directions for future work.

II. RELATED WORK

P2P research (and simulation) covers a wide spectrum of
applications, such as file-sharing, grid computing, distributed
storage, collaborative work, etc. However, we focus here on
file-sharing, the main application of our research (and by far
the most popular application in the literature).

The main publicly available, discrete-event P2P simula-
tion tools are PeerSim [16] and OverSim [2]. Other available
tools include P2PSim [11] and GPS [24].

PeerSim [16] is an open-source java framework for
simulating P2P networks, widely used for evaluating P2P

1we note that this scenario is motivated by a real application described
in [9]

978-1-4673-2362-8/12/$31.00 ©2012 IEEE 357

protocols. It includes a cycle-based simulation engine that
abstracts away the transport layer in return for high scala-
bility, and a discrete-event simulation engine that includes a
model for the underlying network. It uses the King dataset
to estimate network latency, a dataset of known latency
measurement between a number of real hosts on the internet.
Users may implement their own overlay network protocol
(or reuse existing ones), and they must also define and im-
plement peer behavior models. An extension for distributed
simulation (for scalability) was proposed (dPeersim [10]).

OverSim [2] is also an overlay simulation tool, based on
the discrete-event simulation tool Omnet++, written in C++.
OverSim includes several models for the transport layer, and
tools to analyse simulation results. As with PeerSim, no peer
behavior models are provided.

Such P2P simulation systems offer sizeable libraries of
P2P protocols, and in some cases provide quality tools for
packet-level simulation. But the design of peer models is left
entirely to the users. As a consequence, many simulation
studies use basic – or unspecified – assumptions about
the peer behavior, and focus the bulk of their efforts on
simulating the protocol. The main problem is that simulation
results from different studies cannot be easily compared.

Compared to existing tools, a DEVS-based approach
allows us to easily integrate models of arbitrary domains.
This includes advanced network-level models: work has
been done to integrate a DEVS simulation engine with the
popular network simulator NS-2 [13], and a recent project
has also appeared to build a pure DEVS network model
library [27].

Finally, we note that by using the generic toolkit CD++,
our models can be simulated on several readily available
simulators, including real-time and distributed simulators.

III. FORMAL CHARACTERIZATION OF A PEER-TO-PEER
NETWORK

In previous work [8] we have proposed a formal char-
acterization of a Peer-to-peer network. In this section, we
summarize this formal model and show how it can be used
to define a framework DEVS model.

A. Scope of the model

For the purpose of our research, a file-sharing network
is an infrastructure, at the same level of abstraction as the
client-server web. We are primarily interested in analyzing
the effect of various search mechanisms on the distribution
of files in the network.

According to Daswani et al. [7], a P2P search mechanism
defines the behavior of peers in three areas:

• Topology: how peers connect to one another;
• Data placement: what data is stored by which peers;
• Query routing: how the peers’ queries are propagated

through the network.

Our model aims to accomodate arbitrary strategies in
terms of network topology and query routing, but restricts
the data placement possibilities: we assume autonomous
peers, in the sense that they have full and exclusive control
over their local repositories.

Alternative data placement strategies generally assume
that the location and replication of files in the network
(in other words, their distribution) is controlled by the
protocol. These approaches mostly fall under the category
of Distributed Hash Tables. In such networks, the peers’
searching and downloading behavior generates traffic but
will leave the file distribution in the DHT itself unchanged,
as it is dictated by the DHT protocol.

As we are precisely interested in the evolution of the
file distribution, our model is designed to accomodate fully
autonomous peers, as defined above. Finally, we note that
this model does not model time (it considers a succession of
states), and abstracts away the transport layer entirely, i.e.
the details of the physical interconnection of peers. Aspects
relevant to the physical network must be modeled separately,
and integrated with the overlay network model, as described
in section IV-A.

B. Peer-to-peer Network

An overlay network formed by a set of peers {Pi} can
be modeled by a Labelled Transistion System (LTS)2.

Each state of this LTS is a graph, where the nodes are3

a subset of {Pi}, and the edges represent the connections
between the peers. The initial state of the LTS is an empty
graph.

The possible transitions from a given state are the addition
or removal of a node or edge in the graph, i.e. the following
events:

• a (previously offline) peer goes online;
• a (previously online) peer goes offline;
• an online peer connects to another online peer;
• an online peer drops its connection to another online

peer.
The conditions indicated for a given event (e.g. a peer can

only go offline if it was previously online) indicate which
state this event may occur in. The resulting state after each
event is straightforward: if a peer goes online, the next state
is the same graph with a new vertex associated with the peer,
and so on.

C. File-Sharing Community

We now define the concept of a file-sharing community.
The file-sharing community represents the functionality of a

2a labelled transition system is a special case of a deterministic au-
tomaton, where there is no notion of “accepting state” (i.e. all states are
accepting)

3more formally, we should distinguish the nodes in each graph from the
peers themselves. A node only exists within the context of a graph, which
is itself a state of an LTS. The peers in a network do not cease to exist when
they go offline. In the following discussion we will ignore this distinction.

358

peer-to-peer client, as offered to the human user, and reliant
on the network interconnection.

A file-sharing community is defined by:

• a set of peers
• a network formed by this set of peers (i.e. in any state,

a subset of these peers forms the graph)
• a query protocol
• a (possibly infinite) set of data items D
• a (possibly infinite) query language Q

In this community, each peer stores some data and is
capable of outputting queries.

In terms of data and queries, we can consider the data
items {d ∈ D} and the queries {q ∈ Q} to be two disjoint
sets of abstract entities, and we have a binary relation
match(.,.) on Q×D.

The community protocol is a function that takes a graph
and a particular node of this graph as input, and returns a
subset of nodes of this graph. This abstract function can be
applied to a particular state of a network: if a peer (connected
in the network) outputs a query, the protocol specifies which
peers receive the query.

A peer has access to the following data operations:

• publish (d: data item): add d to the peer’s local repos-
itory;

• remove (d: data item): if d is in the peer’s local
repository, then remove d;

• query (q: query): output the query q to the network.
The peer receives as a response the list of data items
matching the query, and stored by the peers that were
reached by the query (this being determined by the
protocol);

• download (d: data item): this operation assumes as a
precondition that the peer does not store d locally, and
that d was a response to a previous query by the peer.
The post-condition of the operation is that the peer
publishes a copy of d to its local repository.

The community concept allows for a user to take part in
several different communities, with a different behavior, and
different types of data. In our research, we have created for
example a community to share science papers and citations,
and a P2P wiki system [5].

IV. DEVS MODEL FRAMEWORK

We now present the realization of this general model using
the DEVS formalism. At this level of abstraction, our formal
model can be represented as a framework for a coupled
DEVS model.

Our framework model has the structure illustrated in
Figure 1. In the following sections we detail the components
of the model, and for each component, we specify the
behavior of our default implementation.

A. Network Model

1) Network Graph: The NetworkGraph model keeps
track of the overlay network topology. It is a state machine
(an LTS, as discussed in section III-B), and its inputs are
messages from the peers that go online, offline, or attempt
to connect to other peers. The component only changes the
graph state following legal transitions, and outputs messages
to notify peers of successfully established connections, and
of dropped connections.

Our default implementation manages this functionality,
and introduces only minimal latency: successful connections
are almost instantaneous.

2) Physical Network: This model transfers messages
from one peer to another. It represents the network con-
nectivity: the component accepts input messages from any
peer, and outputs the same message to a specified destination
peer.

Our implementation of the model delivers the messages
reliably, with a random latency, following a configurable
statistical distribution (independent of network congestion).
For more fine-grained performance studies, this model would
need to be replaced by a more complex model of the
network, e.g. a packet-level simulator such as NS-2.

B. Peer Model

1) Connection Manager: This component represents the
behavior of a peer regarding connections, i.e. the “topology”
aspect of a search mechanism, as discussed in section III-A.
The peer communicates with the NetworkGraph component
to establish connections to other peers, and maintains a list
of its neighbours.

In our implementation of this component, the component
is initially configured with a list of acquaintances. Its be-
havior is then to periodically attempt to connect to each of
its acquaintances. When the connections are established, the
component remains idle. This behavior creates an unstruc-
tured network based on a social network.

2) Router: The router component represents the query
routing behavior of a peer. The component maintains the
current list of neighbours of the peer (based on inputs
from the NetworkGraph component), and receives input
queries, both from the local peer (from the SessionManager
component) and from other peers, via the network. The peer
then routes the queries to its neighbours, implementing a
specific search protocol.

Our implementation runs the Gnutella protocol v.0.4 [1].
3) Repository: The repository component maintains the

list of documents stored locally by the peer. Its inputs are
the publish and remove operations discussed in section III-C.
This model is also used to answer queries; it therefore
implements the match relation described in section III-C.
For this purpose, it takes queries as input, and has an output
for query answers.

359

Figure 1. DEVS Model Framework, showing the structure and interconnections of the network and peer models.

Our default implementation of this model is based on a
graph loaded on initialization of the model, which describes
the match relation. It is a bipartite graph where query nodes
are related to document nodes by “match” edges. It then
separately maintains the list of documents stored by the
peers, based on the “publish” and “remove” inputs. The
model responds to queries with a small, fixed latency.

4) Session Manager: The Session Manager represents the
behavior of the human user of the P2P application.

The outputs of this model are the events initiated by a
human user: the peer begins a session and goes online, cre-
ates queries, or manages its local repository, by publishing
or removing documents.

We discuss our implementation of this model in more
detail in section V.

5) MsgIdGen: This model is a simple convenience model
that is used by all the peers to generate globally unique
identifiers. Many P2P protocols, including Gnutella, make
use of unique identifiers, which are typically large integers
generated by random functions or hash functions. Using an
external model to allocate sequential but unique IDs avoids
the need for large values and the risk of collisions.

V. A BEHAVIORAL MODEL FOR PEERS

The behavior of the human users is an important aspect
of simulating P2P networks, and for our specific research it
is fundamental. Although a number of measurement studies
exist, to the best of our knowledge, no model has emerged
as a reference benchmark for simulating P2P networks. In

this section we briefly review the measurement studies of
P2P user behavior, then describe our generic model, which
is the basis of the Session Manager DEVS model described
above.

A. Measurement studies

The main aspects that have been measured in P2P file-
sharing networks are on one hand churn, which is the
phenomenon of peers joining and leaving the network over
time, and on the other hand the querying and downloading
behavior of peers during their active sessions.

Churn, characterized by session duration, peer inter-arrival
time, and downtime, has been analyzed in several networks,
including the Gnutella, Overnet, Kad and BitTorrent net-
works [3], [19], [14].

Stutzbach et al. [19] show that the overall distribution
of sessions lengths can be fit to Weibull distributions, and
Bhagwan et al. [3] analyze the combined influences of daily
activity patterns, with overall long-term peer turnover.

Klemm et al. [14] provide models for the number of
queries and their inter-arrival time within peer sessions, and
show significant differences between geographical regions
(North America, Europe, East Asia), both in query frequen-
cies and session durations.

The popularity of queries and content was analyzed in
different networks by Gummadi et al. [12] in 2002, then by
Klemm et al. [14], [15] in 2004, then more recently by Dan
and Carlsson [6] (2010).

360

There are several major challenges in adapting these sta-
tistical models for the purpose of simulation. For one thing,
the available studies do not all agree on their conclusions.

Secondly, for applications that are not about sharing music
and video, there is little or no data available. We can assume
certain similarities, but the exact distribution parameters
are unlikely to generalize across domains. This problem
was faced by Siberski et al. for the simulation of their
system Edutella [18], and we are exploring entirely new
applications, e.g. a P2P wiki [5].

For these reasons, we conclude that it is more important
to offer a model that is generic and easy to configure, rather
than one that closely matches all of the statistical distribu-
tions reported in the literature. Therefore, we have selected
the behavior that appears most general and unrelated to the
application context, and made the statistical distributions
configurable.

B. A Stateful User Model

Figure 2. A peer’s stateful behavior

From the studies referenced above, we found that peers
had a general stateful behavior, which follows a somewhat
intuitive pattern. This pattern, illustrated in Figure 2, can be
described as follows:

1) the peer starts offline, and after some random time,
goes online, and chooses between an active and a
passive session;

2) • in an active session, the peer outputs a number
of queries, and upon receiving responses to the
queries, may choose some files to download. The
downloaded files are published.

• in an inactive session, the peers outputs no
queries, but is online, and routes and responds to
queries from others.

3) after a random “sleeping time”, the peer restarts the
cycle.

The randomized aspects of this behavior can be configured
for each peer:

• offline time;
• probability of selecting an active session;

• in an active session: number of queries, inter-query
time, after-querying time, probability of downloading
files from queryhits;

• duration of an inactive session.

C. Reusing the Model

The modular structure of the DEVS models makes it easy
to adapt and reuse this peer model for a particular problem.

The CD++ toolkit includes most of the classic probability
distributions, including all of those reported in the analytical
studies referenced above. Modifying a probability distribu-
tion does not require modifying the model source code, but
only a configuration file, where the name of the distribution
and its parameter values must be set.

In addition, each peer in the network can be configured
separately: this allows the designer of the network to take
classes of peers into consideration. For example, one could
create peers from different geographical regions, and assign
them the different distributions reported in [14]. For large-
scale networks, this configuration can be done easily with
scripts.

Finally, we note that an appropriate strategy to use this
model (as we did for our case study in section VI) would
be to configure the time-related session parameters, then to
manually code more advanced logic for choosing queries
and downloading files. In our case study, this allowed us to
model a user “surfing” a hyperlinked collection of files.

VI. CASE STUDY: THE RANDOM SURFER ON A P2P WEB

A. A P2P web

In this case study, we consider the scenario of a P2P
Web, i.e. a collection of hyperlinked documents shared in
a Gnutella-like file-sharing network. Documents are not al-
ways downloaded from their original publisher, they may be
available from other peers. Links refer to specific documents,
which could be anywhere in the network. When a peer wants
to follow a link, it must send out a search message in order
to locate a copy of the linked document, which it can then
download.

In this context, our goal is to study the propagation and
distribution of files, based on the peers’ behavior.

B. The Random Surfer

For this we must simulate the behavior of web browsing.
We consider a very simple model, the “random surfer model”
used as an intuitive justification of the PageRank algorithm,
by Brin and Page [4]. The model is described as follows [4]:

We assume there is a “random surfer” who is given
a web page at random and keeps clicking on links,
never hitting “back” but eventually gets bored and
starts on another random page.

The idea of the PageRank algorithm is to quantify the
probability of that a random surfer will land on a particular
page, after an infinite time of browsing. Assuming that the

361

Figure 3. Case study: Document count vs. PageRank values.

links pointing to a page convey an endorsement of this page,
then the pages with the highest PageRank, those that random
surfers are most most likely to land on, are those with the
highest reputation (in the sense of this link interpretation).

C. The P2P Random Surfer

In both the traditional and the P2P Web contexts, the users
download each page they visit; but in the P2P context, this
also means making an additional copy of the page available
for download by others. Therefore, in a P2P Web, where
the peers randomly surf the collection of pages, the number
of copies of each page should be proportional to the page’s
PageRank value.

However, documents in a Gnutella-like P2P network are
not permanently accessible to all the peers. Rather, the
documents stored by a peer are accessible only when the
peer is online, and only from other peers reachable by the
search protocol. The random surfer model must therefore be
adapted. Our P2P random surfer will keep clicking on links,
and from time to time will get bored, but will also only
follow links for pages that are available in the network. If
no pages are available, then the surfer searches for another
random page.

Research Question: Assuming that the peers implement
the P2P random surfer model, is the number of copies of the
pages still proportional, or at least positively correlated with
the PageRank values?

D. Simulation

We ran simulations with around 50 peers, surfing a
collection of 1000 hyperlinked pages. The hyperlink graph
was based on a real set of Wikipedia pages. At the beginning
of each simulation, 1 to 3 copies of each page were randomly
distributed among the peers.

The peers were configured with a number of acquain-
tances, forming a social graph with a “small world topol-
ogy”4. While they were online, the peers attempted to
connect to their acquaintances.

The peer’s behavior follows the stateful model described
in section V; but during the active sessions, the peers
randomly surfed the network, as described above.

In order to mitigate the effects of the initial random
document distribution, we ran 6 separate simulations, with
different social networks and initial document distributions.

E. Results

The document counts, plotted against their PageRank
values, are shown in Figure 3. The correlation between the
document counts and the PageRank is quite high: we found
a Spearman rank correlation value of 0.43, significant with
very high confidence5.

4This graph was generated with an algorithm from [20]
5Using randomization tests we obtain a confidence value above 99.99%

362

Figure 4. View of a query

The plot itself shows a general “cloud” of data points
shaped diagonally in a way that suggests the correlation,
and the vertical line at a PageRank value around 0.001 is
due to a very large number of pages (several hundred) with
identical or close values. Due to the random deviation from
a real linear relationship, these documents have different
counts, and their sheer number in that narrow region creates
a vertical line.

This correlation has interesting consequences. It implies
that in a P2P web, the number of copies of a page is likely to
reflect its PageRank, which itself has proved to be a valuable
quality indicator. The number of copies can thus be used as
a quality metric, as we do in our P2P wiki [5].

VII. VISUALIZATION TOOL

In order to conduct more “exploratory” analysis, we
have also developed a visualization tool, for the purpose
of observing peer activity in the network. Simulation logs
can be fed to this application, which can then re-play
the simulation as an animated graph, with the possibility
of pausing, reversing, fast-forwarding the animation, and
recording videos with third party-tools. The graph of active
peers is displayed, with the documents stored by each peer.
Nodes appear as the corresponding peers go online, and
change colors and shapes as queries are sent and answered.

The propagation of a query is shown in Figure 4. As a
query is output by a peer, the corresponding node changes
color briefly. Then, as the query is propagated through the
network, its path appears as wider edges between the nodes.
As peers process queries, their outline becomes wider, and
if they respond with a queryhit, then the peer node changes
color, as well as the smaller node representing the matching
document.

We have found this tool to be of great didactic value when
presenting our research to non-specialists.

VIII. CONCLUSION

We have presented a discrete-event P2P simulation frame-
work that includes configurable and customizable peer mod-
els. Implemented using CD++, a general purpose DEVS
simulation toolkit, our framework can be easily extended
with models of arbitrary domains.

One could for example model the periodic release of
new films and music, as a factor influencing queries and
downloads, or even consider integrating the network model
with a model for a large-scale environmental disaster, which
would cause a black-out in parts of the network.

In addition, CD++ can be readily simulated on existing
distributed and real-time simulators. Distributed simulators
dramatically improve the scalability of simulations [23],
while real-time simulators can be used to integrate simulated
systems with real deployments [25]. In our case, connecting
a real deployment to a simulated network would allow a lab
deployment to appear considerably larger than it actually is,
and allow for more valuable user studies. This is a possibility
we intend to explore in future work.

As an application of our framework, we have simulated
peers navigating a hyperlinked collection of documents,
and shown that their activity results in an interesting page
distribution.

Our models, as well as the visualization tool, are publicly
available on our lab web site6.

ACKNOWLEDGEMENT

Our summer interns Denis Dionne and Matthew Smith
contributed valuable development work on this project.

REFERENCES

[1] Gnutella: The gnutella protocol specification 0.4. rfc-
gnutella.sourceforge.net/developer/stable/index.html, 2002.

[2] I. Baumgart, B. Heep, and S. Krause. OverSim: A flexible
overlay network simulation framework. In Proceedings of
10th IEEE Global Internet Symposium (GI ’07) in conjunction
with IEEE INFOCOM 2007, Anchorage, AK, USA, pages 79–
84, May 2007.

[3] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding
availability. In M. F. Kaashoek and I. Stoica, editors, IPTPS,
volume 2735 of Lecture Notes in Computer Science, pages
256–267. Springer, 2003.

[4] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual web search engine. In Seventh International World-Wide
Web Conference (WWW 1998), 1998.

6http://www.nmai.ca

363

[5] A. Craig, A. Davoust, and B. Esfandiari. A distributed
wiki system based on peer-to-peer file sharing principles.
In Proceedings of the 2011 IEEE/WIC/ACM International
Conference on Web Intelligence, WI 2011, Lyon, France,
August 23 - 25, 2011, 2011.

[6] G. Dán and N. Carlsson. Power-law revisited: large scale
measurement study of p2p content popularity. In Proceedings
of the 9th international conference on Peer-to-peer systems,
IPTPS’10, pages 12–12, Berkeley, CA, USA, 2010. USENIX
Association.

[7] N. Daswani, H. Garcia-Molina, and B. Yang. Open problems
in data-sharing peer-to-peer systems. In Proceedings of the
9th International Conference on Database Theory, ICDT ’03,
pages 1–15, London, UK, 2002. Springer-Verlag.

[8] A. Davoust. Collaborative knowledge construction in a
peer-to-peer file sharing network. Master’s thesis, Carleton
University, 2009.

[9] A. Davoust and B. Esfandiari. Towards semantically enhanced
peer-to-peer file-sharing. Journal of Software, 4, 2009.

[10] T. T. A. Dinh, G. Theodoropoulos, and R. Minson. Evaluating
large scale distributed simulation of p2p networks. In Pro-
ceedings of the 2008 12th IEEE/ACM International Sympo-
sium on Distributed Simulation and Real-Time Applications,
DS-RT ’08, pages 51–58, Washington, DC, USA, 2008. IEEE
Computer Society.

[11] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling.
P2Psim: a simulator for peer-to-peer (P2P) protocols, 2006.

[12] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. In Proceedings of the
nineteenth ACM symposium on Operating systems principles,
SOSP ’03, pages 314–329, New York, NY, USA, 2003. ACM.

[13] T. Kim, M. H. Hwang, D. Kim, and B. P. Zeigler. Devs/ns-2
environment: integrated tool for efficient networks modeling
and simulation. In M. J. Ades, editor, SpringSim (2), pages
219–226. SCS/ACM, 2007.

[14] A. Klemm, C. Lindemann, M. K. Vernon, and O. P. Wald-
horst. Characterizing the query behavior in peer-to-peer file
sharing systems. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, IMC ’04, pages 55–67,
New York, NY, USA, 2004. ACM.

[15] A. Klemm, C. Lindemann, and O. P. Waldhorst. Relating
query popularity and file replication in the gnutella peer-to-
peer network. In P. Buchholz, R. Lehnert, and M. Pióro,
editors, MMB, pages 305–314. VDE Verlag, 2004.

[16] A. Montresor and M. Jelasity. Peersim: A scalable p2p
simulator. In H. Schulzrinne, K. Aberer, and A. Datta, editors,
Peer-to-Peer Computing, pages 99–100. IEEE, 2009.

[17] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/,
2001.

[18] W. Siberski and U. Thaden. A simulation framework for
schema-based query routing in p2p-networks. In Current
Trends in Database Technology - EDBT 2004 Workshops,
volume 3268 of Lecture Notes in Computer Science, pages
510–510. Springer Berlin / Heidelberg, 2005.

[19] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-
peer networks. In Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, IMC ’06, pages 189–
202, New York, NY, USA, 2006. ACM.

[20] R. Toivonen, J.-P. Onnela, J. Saramaki, J. Hyvonen, and
K. Kaski. A model for social networks. Physica A: Statistical
and Theoretical Physics, 371(2):851–860, 2006.

[21] A. Varga. The OMNET++ discrete event simulation system.
In Proceedings of the European Simulation Multiconference,
pages 319–324, Prague, Czech Republic, June 2001. SCS –
European Publishing House.

[22] G. Wainer. Cd++: a toolkit to develop devs models. Software:
Practice and Experience, 32(13):1261–1306, 2002.

[23] G. A. Wainer, R. Madhoun, and K. Al-Zoubi. Distributed
simulation of devs and cell-devs models in cd++ using
web-services. Simulation Modelling Practice and Theory,
16(9):1266 – 1292, 2008.

[24] W. Yang and N. Abu-Ghazaleh. GPS: A general peer-to-peer
simulator and its use for modeling bittorrent. In Proceedings
of the 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunica-
tion Systems, pages 425–434, Washington, DC, USA, 2005.
IEEE Computer Society.

[25] Y. H. Yu and G. Wainer. ecd++: an engine for executing
devs models in embedded platforms. In Proceedings of the
2007 summer computer simulation conference, SCSC, pages
323–330, San Diego, CA, USA, 2007. Society for Computer
Simulation International.

[26] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation, Second Edition. Academic Press,
2 edition, January 2000.

[27] A. Zengin. Large-scale integrated network system simulation
with devs-suite. TIIS, 4(4):452–474, 2010.

364

