
Multicore acceleration of Discrete Event
System Specification systems

Qi Liu1 and Gabriel Wainer2

Abstract
Parallel discrete-event simulation on heterogeneous multicore platforms requires innovative redesign of existing algo-
rithms in return for better performance. Based on the Discrete Event System Specification (DEVS) methodology, a
technique called Multicore Acceleration of DEVS Systems is proposed for efficient parallel discrete-event simulation on
the IBM Cell processor. The technique combines multi-grained parallelism and various optimizations to overcome
performance bottlenecks, while hiding the technical details of multicore programming from non-expert users. By explic-
itly exploiting the data- and event-level parallelism inherent in the simulation, the technique significantly accelerates both
memory-bound and compute-bound computational kernels in demanding parallel DEVS simulations, as shown in the
experimental results. Several key concepts and methods derived from this research can also be applied to other multi-
core and shared-memory architectures.

Keywords
cell processor, discrete-event simulation, Discrete Event System Specification formalism, multicore computing

1. Introduction

As the monolithic approach to microprocessor design
reaches a point of diminishing return, the industry has
moved towards multicore chip-multiprocessor (CMP)
architectures. Previous studies suggest that heteroge-
neous CMP designs, in which different types of cores
of varying size and complexity are integrated on a
single die, have the potential to meet the needs of a
broad spectrum of applications.1–3 One such example
is the IBM Cell processor,4,5 which includes two types
of cores based on different instruction sets and memory
subsystems. While the architectural features of the
Cell processor are attractive, its asymmetric design of
heterogeneous cores with explicit memory control
requires redesign of existing algorithms for optimized
performance.

Although the Cell processor has gained popularity in
scientific and multimedia applications,6,7 its potential
has yet to be realized in parallel discrete-event simula-
tion (PDES). Existing PDES techniques usually use
logical processes (LPs) to parallelize a simulation on
multiprocessor systems,8 whereas parallel simulation
on the Cell (and on CMP architectures in general) is
more efficient when all of the parallelization options are
exploited simultaneously at different system levels.

Moreover, PDES programs typically involve irregular,
control-intensive computation with complex data
dependency and unpredictable memory access patterns,
a class of workload not well suited for the Cell.9 Recent
advances in compilation and middleware technologies
(e.g. Eichenberger et al.;10 Knight et al.;11 McCool;12

Perez et al.13) offer little help in parallelizing PDES
systems on the Cell, due to the lack of adequate knowl-
edge for exploiting application-level parallelism effec-
tively. Several programming models and strategies
attempt to provide guidance for porting applications
to the Cell.4,14,15 However, developers still need to
handle such issues as computational kernel analysis,
data layout and movement, and task synchronization
explicitly.

With the advent of these CMP architectures and
their use in large parallel computers (such as the

Simulation

1IBM T. J. Watson Research Center, USA.
2Department of Systems and Computer Engineering, Carleton University,

Canada.

Corresponding author:

Qi Liu, Exascale Computing, IBM T. J. Watson Research Center, P.O. Box

218, Yorktown Heights, NY 10598, USA

Email: liuqi@us.ibm.com

Simulation: Transactions of the Society for

Modeling and Simulation International

88(7) 801–831

� The Author(s) 2011

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0037549711412237

sim.sagepub.com

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Roadrunner supercomputer16), there is a growing
interest in extending PDES techniques to such plat-
forms.17,18 Nevertheless, efficient PDES on these plat-
forms is a complex and error-prone task. One way to
facilitate this task is through the use of sound modeling
and simulation (M&S) methodologies. An advanced
modeling environment can assist in modeling, experi-
mentation, testing, and software maintenance in large-
scale simulations by allowing the user to focus on the
problems to solve, reducing the effort on technical
details. Among them, the Discrete Event System
Specification (DEVS)19 provides a general framework
for hierarchical and modular construction of reusable
discrete-event models. Parallel DEVS (or P-DEVS)20

improves the mechanism for handling simultaneous
events in DEVS simulations; Cell-DEVS21 allows for
the construction of discrete-event cellular models
using P-DEVS components. Both P-DEVS and
Cell-DEVS are implemented in CDþþ,22 an optimized
discrete-event simulator that has been redesigned to
support PDES on the Cell processor.23–25

This paper presents a technique called Multicore
Acceleration of DEVS Systems (MADS) for efficient
DEVS-based parallel simulation on the Cell. The
MADS technique adopts a data-flow oriented strategy
to exploit the inherent data and event parallelism, while
combining multi-grained parallelism and various opti-
mizations to accelerate both memory-bound and com-
pute-bound computational kernels. In addition, the
technique hides the technical details of multicore pro-
gramming from general users, allowing them to benefit
from increased computing capacity with minimal
knowledge of the execution environment. Several key
concepts and methods proposed here can be applied to
other CMP and shared-memory platforms, bridging the
gap between PDES algorithms and emerging CMP
architectures.

In the following, Section 2 reviews related work.
Section 3 introduces the DEVS methodology and its
realization in CDþþ. Section 4 presents the workload
characteristics of demanding DEVS-based simulations,
along with preliminary optimizations. The MADS tech-
nique is proposed in Section 5, while the performance
results are discussed in Section 6. Section 7 concludes
the paper with suggestions on future research direc-
tions. A glossary of the acronyms used in this paper
is given in the Appendix.

2. Background and related work

2.1. The Cell architecture

The Cell processor employs a heterogeneous architec-
ture with nine independent cores: a main two-way hard-
ware multithreading Power Processor Element (PPE)

and eight co-processors called Synergistic Processing
Elements (SPEs).5 The PPE is intended to execute con-
trol-intensive code using a conventional cache hierar-
chy (32 kB L1, 512 kB L2), while each SPE is optimized
to execute compute-intensive code using a private on-
chip Local Storage (LS) of 256 kB. Data sharing relies
on software-managed DMA (direct memory access),
which requires proper address alignment in both
memory domains (i.e. main memory and LS) and trans-
fer size to attain peak performance.26,27 The cores can
also communicate 32-bit messages through the Element
Interconnect Bus (EIB) channels, namely mailboxes
and signals. Moreover, the SPEs support both scalar
and 128-bit SIMD (Single Instruction, Multiple Data)
operations at different granularities. These architectural
features result in an increase in software complexity,
requiring an application to be partitioned in a way
that not only fits the functional specialization of the
cores, but also meets the requirements of DMA transfer
to reduce memory latency.

2.2. Related work

As noted by Gschwind,28,29 the performance of a Cell
application relies on simultaneous exploitation of multi-
grained parallelism at different system levels. While this
has been explored in scientific applications,30,31 doing
so in PDES remains a challenge. A PDES system typ-
ically has computational kernels with varied data access
and workload characteristics, requiring different paral-
lelization strategies. Moreover, most existing PDES
techniques realize coarse-grained parallelization at the
LP level, making it difficult to parallelize kernels that
are not naturally aligned with LP boundaries.

Various programming models have been used on
CMP architectures. In Stamatakis and Ott,32 a bioin-
formatics application was studied using the MPI
(Message Passing Interface), Pthreads, and OpenMP.
The authors suggest that the selection of the program-
ming model should rest on software engineering criteria
and promote data locality. Stream programming is a
known programming model that organizes parallel
computation from a data-flow perspective.33,34 In par-
ticular, six programming models were proposed to
improve programmability on the Cell.4 Although they
provide guidelines for developing new computing tech-
niques, significant efforts are still required to implement
PDES algorithms.

Advanced compilation techniques can facilitate soft-
ware development. For example, the IBM XL C/Cþþ
Compiler for Multicore Acceleration35 includes auto-
mated branch prediction, instruction prefetching, and
SPE code vectorization on the Cell.10 An optimizing
compiler was developed for processors with software-
managed memory hierarchies,11 addressing such issues

802 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

as data padding, software pipelining, and memory
space allocation. Without a full understanding of the
application logic, these techniques are inadequate for
PDES systems with irregular computation and complex
data dependency. On the other hand, compiler-assisted
optimization can help improve PDES performance
when application-level parallelism has already been
properly extracted.

Efforts towards providing a layer of abstraction on
top of the Cell programming primitives have resulted in
the development of several middleware frameworks.
Among them, RapidMind12 uses an embedded pro-
gramming language inside Cþþ to construct a compu-
tation using the data-parallel programming model.
CellSs13 exploits functional parallelism based on user-
supplied source code annotations. MPI Microtask36

enables certain MPI applications on the Cell, assuming
that the application can be partitioned manually to fit
into the LS. Although these frameworks have shown
noticeable success, some of them assume a strict data-
parallel programming model or adhere to a pure
C programming language, while others provide only a
minimal set of functionality of a standard library
for specific applications. These limitations hinder their
applicability to complex object-oriented PDES systems.

The Cell has been used in different applications, such
as scientific kernels,37 Fourier transformation,38 regular
expression scanning,39 and image processing.40 Most of
them exploit task and/or data perallelism based on a
priori knowledge of the workload. The Cell has also
been used to host M&S applications, including molec-
ular dynamics,41 lattice Boltzmann,42 and financial sim-
ulations.43 Instead of aiming at PDES, they focus on
porting numerically intensive computational kernels
(e.g. random number generation) to the SPEs.

Novel approaches for PDES have focused on
improving simulation performance by offloading and
parallelizing certain computation on special hardwares,
ranging from embedded processing units44,45 to net-
work interface co-processors.46–50 Efforts have also
been made towards PDES on Graphical Processing
Units (GPUs),51–53 demonstrating that the synchronous
stream processing style of GPU computation can speed
up discrete-event simulaitons. The MADS technique
proposed in this paper is complementary to these
attempts, addressing the issue of PDES on heteroge-
neous CMP platforms (exemplified by the Cell) based
on the general-purpose DEVS methodology.

3. Discrete Event System Specification
methodology and its implementation

3.1. P-DEVS and Cell-DEVS formalisms

In P-DEVS, a model is defined as a mathematical entity
composed of a hierarchy of atomic (behavioral) and

coupled (structural) components, which are executed
by an underlying simulation engine that can be imple-
mented as LPs specialized into Simulators and
Coordinators.20 A P-DEVS atomic model is specified
formally as

M ¼\X,Y,S, d int, dext, dcon, l, ta. :

An atomic model is in some state s 2 S and it will
remain in state s for ta(s) time units. When ta(s) expires,
the atomic model executes the output function l(s),
which can send outputs through a set of ports (Y).
The model immediately triggers the internal transition
function dint(s), which can change its state. In this case,
the model is called an imminent component. If an exter-
nal event x 2 X occurs before the expiration of ta(s), the
model changes to a state defined by the external tran-
sition function dext(s,e,X

b), where e is the elapsed time
since the last transition and Xb is a bag to collect the
simultaneous external events received at a given virtual
time. A confluent transition function dcon(s,e,X

b) decides
the new state in the case of state transition collisions,
when dint and dext occur at the same virtual time.

A P-DEVS coupled model specifies how its compo-
nents are connected with each other and with the exter-
nal environment in a hierarchical fashion, as follows:

DN ¼\X,Y,D, fMd d 2 Dj g, EIC, EOC, IC. :

The input/output (I/O) ports and values are defined
by X and Y. The external input and output couplings
are specified by EIC and EOC respectively, while the
internal coupling within the coupled model is specified
by IC. The basic components (D and Md) are P-DEVS
structures.

Cell-DEVS defines n-dimensional cell spaces as dis-
crete-event models where each cell is specified as a
P-DEVS atomic model with explicit timing delays,21

as follows:

TDC ¼\Xb,Yb,S,N, d, dint, dext, dcon, t, tcon, l,D. :

A cell can exchange bags of inputs and outputs (Xb

and Yb) with a set of neighboring cells (N) and other
P-DEVS components outside of the cell space. A cell’s
future state is determined by the local transition function
(t), based on its current state, and the values arrived at
the input ports. If the future state is different from the
current one, a state change is scheduled and the value of
the future state will be transmitted after a delay period
(d). As in P-DEVS atomic models, the output and state
transitions are defined by l, dint, and dext. In case of
transition collisions, dcon activates the confluent local
transition function (tcon), which presents a unique set
of inputs for the cell to compute the next state.

Liu and Wainer 803

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

The cells are coupled with each other through the
neighborhood relation to form a cell space, as follows:

GCC ¼\Xlist,Ylist,X,Y, n, ft1, . . . , tng,N,C,B,Z. :

A cell space (C) is a coupled model with a fixed size
(t1 3� � �3 tn). The neighborhood set (N) specifies the
relative positions of the neighboring cells. The cells on
the border of the cell space are included in set B. The
interface of the cell space itself is defined by the I/O
couplings (Xlist and Ylist), whereas the coupling between
cells inside the cell space is given by the Z function,
which translates an output of a cell into an input of a
neighboring cell.

3.2. DEVS-based simulation in CDþþ
As illustrated in Figure 1, CDþþ adopts a flat LP
structure to parallelize a DEVS-based simulation on
distributed-memory multiprocessors.54 The sequential
simulation on a node is executed by a Node
Coordinator (NC), a Flat Coordinator (FC), and a
group of Simulators. The NC is responsible for inter-
node MPI messaging and virtual time management on
the host, while the FC is in charge of synchronizing the
child Simulators and routing events between the local
LPs based on user-defined model coupling. A Simulator
is paired with an atomic model to trigger the model’s
behavior during a simulation. The behavior of P-DEVS
atomic models is defined by implementing the output
and transition functions in Cþþ, whereas a built-in
specification language is provided for specifying the
behavior of coupled and Cell-DEVS models using a
set of descriptive transition rules.22 This extra level of
abstraction is valuable on multicore platforms, since
modelers can focus on their modeling issues without
being distracted by technical details.

The simulation is driven by events of two kinds: con-
tent and control events. Content events, external (X) and
output (Y), carry input and output data. Control events,
initialization (I), collect (@), internal (*), and done (D),

control the execution at each virtual time. Specifically,
(I), (@), and (*) are passed down from the NC to trig-
ger initialization, output, and state transitions, respec-
tively, at the appropriate Simulators, whereas (D)
events are sent up the hierarchy to deduce the next
local simulation time. Detailed event-processing algo-
rithms can be found in Liu.55

A schematic view of DEVS-based simulation is given
in Figure 2, where three Simulators execute at different
virtual times (the FC and the NC are not shown for
simplicity).

In addition to FEL (Future Event List)-based sched-
uling, the coordinators execute DEVS-specific tasks as
part of their event processing. In particular, the FC
synchronizes its child Simulators in two functions:
findMinTime and findImminents. When the last
Simulator S1 finishes its state update at current virtual
time t1, it sends a (D) event to the FC carrying the
timestamp of the next scheduled state change (i.e. t4).
In response, the FC invokes findMinTime to find the
minimum timestamp among all child Simulators. This
minimum time is sent to the NC to determine the next
local simulation time, taking into account events that
may arrive from the other nodes and/or the environ-
ment. The NC then notifies the FC of the new local
simulation time, say t4, and the FC invokes
findImminents to obtain the IDs of the child
Simulators with state changes scheduled at t4 and
sends activation events to them. The activated
Simulators (i.e. S1 and S2) thus advance their virtual
time to t4 and trigger state updates in their associated
atomic models.

In Liu and Wainer,54 a multi-phased abstraction is
used to represent the sequential simulation on a node,
illustrating a high-level event execution pattern at each
virtual time, as shown in Figure 3. The simultaneous
events sent between the LPs at a virtual time are orga-
nized into an optional collect phase and a mandatory
transition phase. The simulation begins with an

Figure 2. Schematic of Discrete Event System Specification-
based simulation.Figure 1. Flat logical process structure.

804 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

initialization phase. Each phase is initiated by a control
event from the NC to the FC, and ended by a (D) event
returned to the NC. The control events exchanged
between the NC and the FC are also called phase-
changing events. At the end of a transition phase, the
NC determines the next local simulation time and
advances the simulation on the node.

As noted by Zeigler,56 DEVS-based simulation can
involve a large number of simultaneous events, espe-
cially in large-scale, densely interconnected, highly
active models where many imminent components send
outputs at the same time.

4. Workload analysis and preliminary
optimization

CDþþ was ported to the PPE of a Cell processor,
resulting in a sequential implementation called
CDþþ/PPE. In order to address our goals, preliminary
tests were carried out based on two Cell-DEVS models
that represent two classes of common workloads: a
large-scale simulation over a long time period, and a
highly active simulation with complex behavior. These
Cell-DEVS models are discrete-event models, and they
do not use traditional continuous or time-stepped
approaches. The cells execute asynchronously with
respect to each other; they determine their own time
advance independently and become inactive when not
used. These models are considered as appropriate
benchmarks also because they cover the types of com-
putation that can benefit the most from heterogeneous
CMP architectures (i.e. memory-bound and compute-
bound). The analysis focuses on the core computational
kernels in DEVS simulations (synchronization and
event execution). The integration with other types of
kernels (e.g. random number generation) is discussed
in Section 6.3.

4.1. Computational kernels

4.1.1. Large-scale simulation over a long time
period. In these simulations, a large number of
Simulators are synchronized by the FC on each node
at distinct virtual times, incurring a significant synchro-
nization overhead. This computational kernel is

prominent in the wildfire propagation model presented
by Wainer,57 which uses a large two-dimensional (2D)
cell space (10243 1024) to simulate fire-spreading sce-
narios following the Rothermel method.58 Each cell
maintains its own ignition time (zero for non-burning
cells). When a cell is ignited, it sends events to its neigh-
boring cells notifying them of the ignition time. In
response, each neighboring cell calculates its own ear-
liest ignition time based on the distance to the ignited
cell, the type of fuel, and the weather conditions. It then
updates its state and sends the new ignition time after a
delay, representing the difference between the current
virtual time and the new ignition time. The simulation
differs from a time-stepped approach in that the cells
are asynchronous and use variable delays. Moreover,
only a small fraction of the cells (i.e. those on the fire
frontline) is active at any time, making the simulation
more accurate and efficient than a time-stepped simu-
lation of the Rothermel model.

Table 1 gives the execution profile obtained with
CDþþ /PPE on an IBM BladeCenter QS22 server,
showing the distribution of execution time across the
major system components and the different types of
events processed by the LPs. It is clear that the main
bottleneck resides at the FC, which takes over 99% of
the runtime. Further, the FC spends most of the time
on processing (@) and (D) events, during which the
Simulators are synchronized.

A closer look at the FC synchronization task shows
that the sources of the bottleneck are the synchroniza-
tion functions findImminents and findMinTime. As
shown in Table 2, each function occupies 99.98% of
the execution time on processing the corresponding
type of events at the FC. Together, they constitute
the dominant bottleneck (99.4% of the runtime), not
only because they are invoked frequently, but also
because a large amount of timing data are processed in
each invocation to synchronize all the child Simulators.

Table 1 also shows a secondary bottleneck at the
Simulators, consuming 0.32% of the runtime.
A major component is the execution of (*) events,
where the transition functions are evaluated. This
bottleneck depends on the complexity of the model
behavior. It is relatively minor in this example because
the wildfire model uses simplified rules. If higher fidelity

Figure 3. Multi-phased sequential simulation process.54

Liu and Wainer 805

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

were required, more complex rules would be used, lead-
ing to a higher computational cost.

Table 3 gives the event counts in the simulation,
which includes over one million simulation phases,
as indicated by the numbers of phase-changing
events. Out of the over 49 million events executed, the
phase-changing events constitute only 4.31% of the
population, while all the others are simultaneous
events executed within different phases at distinct vir-
tual times.

4.1.2. Highly active simulation of complex model
behavior. Another type of computational kernel
exists in highly active simulations of complex behavior,
where the performance is dominated by the computa-
tion required to execute the transition functions, as
exemplified in the watershed model discussed by
Zeigler et al.59 and later redefined by Wainer.57 This
model simulates water accumulation in a drainage
basin under constant rain using a set of hydrological
equations. The three-dimensional (3D) cell space
(3203 3203 2) consists of two planes. The bottom
plane defines the topographical configuration of the
terrain, while the upper plane represents the heights
of retained water at different cells. The transition func-
tions compute future height values based on the initial
water level, the cumulative rain precipitation, the
dynamic water flow between the cells, and the soil con-
dition. In the simulation, the cells change states

asynchronously, advancing their virtual time based on
the hydrological dynamics. At any virtual time, only
the upper-plane cells with water level changes become
active.

Table 4 gives the watershed execution profile
obtained with CDþþ/PPE on a QS22 server. As
expected, the Simulator event-processing task becomes
the primary bottleneck, representing 98% of the run-
time. It is evident that the Simulators perform compute-
intensive state transitions during the processing of (*)
events. Unlike in the wildfire simulation, the FC syn-
chronization task incurs only a negligible computational
cost, as shown in Table 5, for two reasons. Firstly, the
watershed model uses a much smaller cell space with
reduced timing data to be processed in the synchroni-
zation functions. Secondly, the watershed simulation
consists of fewer simulation phases with decreased syn-
chronization frequency.

Table 6 gives the event counts in the watershed
simulation. Although the simulation consists of just
663 phases, the event population is 6.8 times larger
than what is observed in the wildfire simulation,

Table 1. 1024 3 1024 wildfire execution profile on the Power Processor Element

Components

Event type Simulators FC NC Bootstrap Other overhead

(I) 3.06 0.90 – – –

(*) 515.69 16.96 – – –

(@) 8.13 55,816.60 – – –

(X) 11.94 0 – – –

(Y) – 94.41 – – –

(D) – 112,215.00 3.25 – –

Sum (s) 538.82 168,143.87 3.25 181.57 134.58

Total (s) 169,002.10

FC: Flat Coordinator, NC: Node Coordinator.

Table 3. Event counts in 1024 3 1024 wildfire

Event type

LPs

Simulators FC NC

(I) 1,048,576 1 –

(*) 10,285,266 535,549 –

(@) 2,076,507 535,549 –

(X) 18,666,212 0 –

(Y) – 2,076,507 –

(D) – 13,410,349 1,071,099

Sum 32,076,561 16,557,955 1,071,099

Total 49,705,615

LP: Logical process, FC: Flat Coordinator, NC: Node Coordinator.

Table 2. Flat Coordinator synchronization task in 1024 3 1024
wildfire

Function name No. of invocations
Accumulated
runtime (s)

findImminents 535,549 55,804.30

findMinTime 1,071,099 112,189.00

806 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

demonstrating a much higher level of activity with an
even larger proportion of simultaneous events
exchanged between the LPs.

The FC synchronization task and the Simulator
event-processing task, referred to as the FC
Synchronization Kernel (FSK) and the Simulator
Event-processing Kernel (SEK) thereafter, represent
the core computational kernels in many demanding
DEVS-based simulations.

4.2. Preliminary FSK optimization

From the phase-oriented view shown in Figure 3, the
FC synchronization task is performed at regular points
in a simulation: findImminents is called at the begin-
ning of a collect phase, while findMinTime is called at
the end of each collect and transition phases. A closer
examination, however, shows that it is unnecessary to
compute the minimum next state change time at the
end of collect phases, since these transitory phases do
not advance virtual time (i.e. each collect phase must be
followed by a transition phase at the same virtual time,
as required by the P-DEVS formalism). Therefore, it
is safe to eliminate the redundant invocations of
findMinTime in all of the collect phases.

This seemingly trivial optimization was not consid-
ered in the sequential CDþþ because the original
algorithms were developed from an event-oriented per-
spective (focusing on the processing of individual events
and overlooking the intrinsic correlation between events

executed at different points in a simulation). Conse-
quently, the FC is memoryless in terms of event execu-
tion. When a (D) event is received from a Simulator,
the FC cannot determine if this is the result of a (@)
or (*) event previously sent to that Simulator. To
ensure correct synchronization, the FC has to invoke
findMinTime for every last (D) event from the Simula-
tors, even though it suffices to do so only if the (D) event
is a logical consequence of a previous (*) event.

To implement this optimization in CDþþ/PPE, the
FC is turned into a context-aware LP that keeps track
of the type of the current phase so that findMinTime is
called at the end of transition phases only. The perfor-
mance gain is immediate in large-scale, long-running
simulations.

In the updated wildfire execution profile given in
Table 7, the time for processing (D) events at the FC
is decreased by 50.5% as findMinTime is invoked less
frequently, and the overall performance is improved by
34% accordingly.

Depending on the relative weight of the FSK, per-
formance can also improve in highly active simulations
of complex behavior. In the watershed simulation,

Table 4. 320 3 320 3 2 watershed execution profile on the Power Processor Element

Event type

Components

Simulators FC NC Bootstrap Other overhead

(I) 0.65 0.15 – – –

(*) 78,082.60 75.27 – – –

(@) 95.09 72.16 – – –

(X) 122.58 0 – – –

(Y) – 905.40 – – –

(D) – 16.42 0.002 – –

Sum (s) 78,300.92 1069.40 0.002 25.22 488.12

Total (s) 79,883.66

FC: Flat Coordinator, NC: Node Coordinator.

Table 6. Event counts in 320 3 320 3 2 watershed

Event type

LPs

Simulators FC NC

(I) 204,800 1 –

(*) 33,996,800 331 –

(@) 33,527,325 331 –

(X) 167,723,421 0 –

(Y) – 33,527,325 –

(D) – 67,728,925 663

Sum 235,452,346 101,256,913 663

Total 339,221,007

LP: Logical process, FC: Flat Coordinator, NC: Node Coordinator.

Table 5. Flat Coordinator synchronization task in
320 3 320 3 2 watershed

Function name No. of invocations
Accumulated
runtime (s)

findImminents 331 0.74

findMinTime 663 1.60

Liu and Wainer 807

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

however, this optimization does not lead to a noticeable
improvement, since the overall performance is primar-
ily dominated by the SEK.

5. Multicore acceleration of Discrete
Event System Specification systems

The MADS technique explicitly exploits the data and
event parallelism inherent in DEVS-based simulations
to accelerate both the FSK and the SEK. As data local-
ity has a significant impact on performance,60,61 this
issue is addressed carefully in the MADS technique.
Note that the array-based data management proposed
in this section is also applied to CDþþ/PPE to improve
data locality in the main memory for optimized sequen-
tial performance, as analyzed in Section 6.

5.1. Architecture overview

Figure 4 shows an overview of the MADS technique.
During simulation bootstrap, the PPE main thread
spawns a PPE helper thread, which in turn creates a
set of SPE threads (one on each SPE). The NC and
the FC are executed by the two PPE threads respec-
tively, sharing the FEL in the main memory. The SPE
threads are divided into two groups: one for the FSK
and the other for the SEK. The number of SPE threads
in a group can be adjusted based on the relative weights
of the kernel computation (in terms of the size and
duration of the simulation, as well as the complexity
of the simulated model). If no SPE thread is allocated
to a group, the kernel runs on the PPE helper thread
instead. This is useful if the performance is dominated
by just one kernel, obviating the need for paralleling the
other one that constitutes a negligible bottleneck.

The kernels are orchestrated by mailbox messages
sent between the PPE helper and the SPE threads
through the EIB channels. The simulation data used
by the kernels (e.g. events, states, transition rules, and

Simulator timing data) are managed in different buffers
allocated in the main memory. These data are fetched
and stored across memory domains using SPE-initiated
double-buffered DMA. When the simulation starts, the
addresses of the buffers are passed to the SPE threads in
a control block. Note that peak DMA performance is
achievable when the addresses of the data in both
memory domains are cache-line (128-byte) aligned
and when the size of transfer is 512 bytes or larger.26

This provides the rationale behind the data manage-
ment used in the MADS technique.

The FSK and SEK algorithms realize multi-grained
parallelism as follows.

5.1.1. Multi-grained parallelization of the FSK.
Thread-level parallelism is applied across SPEs. They
host FSK instances working on different chunks of
the Simulators’ timing data (i.e. next state change
times) to exploit data-level parallelism. Data-streaming
parallelism is used on each SPE to process data as a
stream of blocks, hiding memory latency with double-
buffered DMA. The FC synchronization functions are
implemented using SPE SIMD intrinsics to explore
vector parallelism, and loop-level parallelism is achieved
by unrolling the compute-intensive loops in the
functions.

5.1.2. Multi-grained parallelization of the SEK. The
SEK algorithms realize thread-level parallelism both on
the PPE, and between the PPE and a group of SPEs.
Each SPE thread executes a SEK instance. Double-
buffered DMA is applied at multiple layers to transfer
pending job IDs, event and state data of individual
jobs, and rule data of Cell-DEVS models, hiding
memory latency with data-streaming parallelism. The
SEK algorithms are implemented on SPEs using
SIMD intrinsics whenever possible, exploring vector
parallelism. Due to the irregular nature of the compu-
tation, only partial vectorization is applied to the most

Table 7. 1024 3 1024 wildfire execution profile on the Power Processor Element (Flat Coordinator (FC) synchronization optimized)

Event type

Components

Simulators FC NC Bootstrap Other overhead

(I) 3.07 0.91 – – –

(*) 497.40 14.38 – – –

(@) 7.66 55,044.50 – – –

(X) 11.79 0 – – –

(Y) – 93.52 – – –

(D) – 55,526.50 2.32 – –

Sum (s) 519.92 110,679.81 2.32 180.65 121.89

Total (s) 111,504.59

NC: Node Coordinator.

808 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

time-consuming loops in the SEK. During the simula-
tion, the PPE main thread handles file I/O and inter-
node MPI messaging in parallel with event processing
on the helper and SPE threads, exploiting the PPE
hardware multithreading to realize compute-I/O paral-
lelism. During each phase, independent events of differ-
ent active Simulators are executed concurrently at
distinct SPE threads, realizing event-embarrassing par-
allelism. Moreover, event-streaming parallelism is uti-
lized by executing the causally related events passed
between the Simulators (on the SPEs) and the FC (on
the PPE) in a two-stage pipeline. These two types of
event-level parallelism are analyzed next.

5.2. Event-level parallelism

A key challenge to the parallelization of the SEK is to
expose the event-level parallelism that is inherent in
DEVS-based simulations from a data-flow perspective.
To this end, Figure 5 shows a step-by-step view of event
execution in different phases based on the flat LP struc-
ture. During the initialization phase, the FC forwards
the (I) event from the NC to N child Simulators. Each
Simulator then returns a (D) event to the FC, which
sends a (D) event back to the NC. A similar pattern can
be seen in a transition phase, except that in this case the

FC sends (*) events to only K active Simulators
(K�N), which have state transitions scheduled at the
current virtual time. In a collect phase, model outputs
are emitted from M imminent Simulators (M�N) in
response to the (@) events from the FC. These (Y)
events are routed to their destinations as (X) events,
which are then consumed by the receiving Simulators.
Likewise, the FC sends a (D) event to the NC after
processing all of the (D) events from the Simulators.

Two types of fine-grained event-level parallelism
exist in the simulation, referred to as event-embarrassing
parallelism and event-streaming parallelism,25 which can
be exploited as follows without violating causal
consistency.

. Event-embarrassing parallelism exists between the
causally independent events within each step (shaded
at the FC and the Simulators). As there is no causal
or data dependency between them, these events can
be executed concurrently in an arbitrary order.

. Event-streaming parallelism exists between the caus-
ally related events in consecutive steps (arcs between
the FC and the Simulators). As the outputs from the
preceding step are the inputs to the next step, these
events can be executed concurrently in a pipelined
manner.

Figure 4. Architectural overview of the Multicore Acceleration of DEVS Systems technique on the Cell processor.
DEVS: Discrete Event System Specification.

Liu and Wainer 809

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Let us take the initialization phase to illustrate how
the event parallelism can be exploited. At step 2, it does
not matter which Simulator is initialized first, as long as
all of the Simulators are initialized by the end of the
phase. Similarly, the FC can process the (D) events from
the Simulators in an arbitrary order at step 3, so far as

the FC knows that all these (D) events are processed
before it sends a (D) event back to the NC. In addition,
the FC can immediately process the (D) events from
some of the Simulators, while the other Simulators are
still being executed by different threads, thus pipelining
the event execution between steps 2 and 3.

Figure 5. Event parallelism in Discrete Event System Specification-based simulation.25

810 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Phase-changing events are sent between the NC and
the FC at the first and last steps of each phase, provid-
ing natural fork and join points for synchronization.
Note that, according to P-DEVS, the simultaneous
(X) events received by a Simulator in the collect phase
(at step 4) are cached in an internal bag structure. These
(X) events will be consumed as a whole along with the
(*) event received by the Simulator in the ensuing tran-
sition phase (at step 2).20

5.3. FSK parallelization

The FSK consists of the two synchronization functions,
which rely on the Simulator timing data previously con-
tained in a Cþþ Standard Template Library map that
associates the IDs of the Simulators with the next state
change times. The computation is inherently data inten-
sive and memory bound in large-scale simulations.

5.3.1. Timing data management. To improve data
locality and DMA efficiency, an ID allocation scheme
is used to give positive IDs ([0. . .(N–1)]) to the
Simulators, whereas the NC and the FC use negative
IDs. Hence, the FC can use a Time Array (TA) to hold
the Simulator timing data, using the array indexes as
Simulator IDs. The FC also uses an Imminent ID Array

(IA) to contain the imminent Simulator IDs found by
findImminents in a collect phase. The map structure is
thus replaced by a flat array-based data layout, as
shown in Figure 6.

Both arrays are partitioned into m chunks
([C0. . .Cm]) as evenly as possible, where m is the
number of SPEs allocated for the FSK. Each chunk is
aligned on a 128-byte boundary in the main memory
for efficient DMA. Since not all of the Simulators are
imminent in a collect phase, the imminent IDs are ter-
minated by a –1 so that the FC can retrieve them with-
out a full traversal of the array.

As the TA indexes are used implicitly as Simulator
IDs, this method reduces the amount of data

transferred across memory domains. It also facilitates
the parallelization of the FSK using the data-parallel
model. Moreover, simulation performance can benefit
from the improved data locality even when the FSK is
executed on the PPE alone (refer to Section 6 for rele-
vant performance results).

5.3.2. Parallel data processing on the SPE. As the
timing data are mutually independent, different
chunks of data can be processed in parallel at different
SPEs. In large-scale simulations, each chunk can con-
tain a large amount of values. Due to the limited size of
LS, it is necessary to divide a TA chunk further into a
set of blocks of regular sizes, which can be adjusted for
different models and optimal DMA performance. An
IA chunk is also divided into the same number of
blocks.

On a SPE, four local buffers are allocated in the LS:
two input buffers for reading data from a given TA
chunk, and two output buffers for writing imminent
Simulator IDs to the corresponding IA chunk. The
local buffers have the same size as a TA block. Note
that using a larger block size (e.g. 16 kB) not only
improves DMA performance as more data are trans-
ferred in one stroke, but also increases the granularity
of computation on the SPEs, making it more likely to
overlap SPE computation with concurrent memory
I/O.

Figure 7 illustrates the parallel data processing using
multiple SPEs. Each SPE streams in and out data
blocks with double-buffered DMA. The synchroniza-
tion functions are vectorized using SPE SIMD intrin-
sics to process data in the local buffers.

As shown in Figure 8, findMinTime uses a 128-bit,
four-way MinVector to scan the timing data prefetched
into the local input buffer (lines 8–11). When the full
chunk of data is processed, the MinVector contains the
four minima obtained in the four ways. These values
are merged into the chunk minimum (line 13), which is
sent to the PPE through the outbound mailbox
channel.

Given in Figure 9, findImminents stores the start-
ing index of a TA chunk locally in baseId. The global
minimum, determined on the PPE, is replicated in the
MinVector (line 3). A 128-bit, four-way IndexVector is
used to keep track of the four Simulator IDs corre-
sponding to the entries in the current input buffer
when the timing data are shifted using the MinVector
(lines 10–15). At the end of the function, a status is sent
to the PPE, indicating that the imminent IDs are avail-
able in the IA chunk.

Although not shown explicitly, the compute-
intensive loops (lines 8–11 in Figure 8 and lines 10–15
in Figure 9) can be unrolled by using multiple Min and
Index Vectors.

Figure 6. Flat timing data layout for the Flat Coordinator
Synchronization Kernel.
TA: Time Array, IA: Imminent ID Array.

Liu and Wainer 811

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

5.3.3. FSK orchestration. The FSK instances are
invoked in a Remote Procedure Call style. A termina-
tion function is also defined to exit the FSK at the end
of a simulation. Each function is associated with an ID:
0 for findMinTime, 1 for findImminents, and 2 for
termination. Figure 10 gives the FSK orchestration
algorithm defined on the PPE.

When the last (D) event is received from the
Simulators at the end of a transition phase, the FC
invokes findMinTime by sending a mailbox message
of 0 to all of the FSKs. When the chunk minima are
returned, the FC merges them into a global minimum,

and sends it to the NC. Note that findMinTime is
invoked in place by the FC in the sense that the FC is
blocked until all the chunk minima are available.
Moreover, the returned values are recorded in the
main memory to improve the performance of
findImminents in the next collect phase.

In contrast, findImminents is invoked in advance by
the NC, when the local simulation is about to advance
to the next virtual time (line 2.1). Hence, when the FC
needs to retrieve the imminent IDs (in the next collect
phase), the FSKs have already executed, overlapping
the computation on the PPE and SPEs. Further, a

Figure 8. A skeleton of function findMinTime.

Figure 7. Parallel processing of Simulator timing data on the Synergistic Processing Elements.24

812 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 9. A skeleton of function findImminents.

Figure 10. A skeleton of the Flat Coordinator Synchronization Kernel orchestration algorithm.

Liu and Wainer 813

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

FSK runs only if it has found the current global mini-
mum (line 2.2). As imminent IDs may not exist, this
reduces the number of SPE threads used, reducing
memory contention with enhanced FSK scalability.

During a collect phase, the FC waits for a status
message from each FSK invoked by the NC and
retrieves the imminent IDs from the corresponding IA
chunk (line 3.4). At the end of a simulation, the NC
terminates the FSKs (line 4.2).

5.4. SEK parallelization

The SEK includes the Simulator algorithms for pro-
cessing (I), (@), and (*) events, as well as the
P-DEVS functions of the atomic models. Note that
the SEK does not include the Simulator algorithm for
processing (X) events, as will be explained shortly.
During each phase, the SEK processes a set of input
events from the FC based on the current states of the
active Simulators, and returns a set of output events
back to the FC. The events and states are handled inde-
pendently for different Simulators.

5.4.1. LP virtualization. Several issues need to be
addressed when mapping the SEK to the SPEs.
Firstly, the small size of the LS imposes a tight limit
on the number of Simulators hosted simultaneously on
a SPE. Secondly, a SPE can execute only one thread at
a time; a SPE context switch is very expensive.62 Hence,
it is impractical to swap in and out Simulators as SPE
threads without incurring an excessive overhead.
Thirdly, not all Simulators are active at any virtual
time; hence, the partitioning scheme should map only
active Simulators to the available SPEs. Finally, the
partitioning scheme should also facilitate dynamic
load balancing between SPEs.

We addressed these issues through the concept of LP
virtualization. The Simulators (and their associated
atomic models) are turned into virtual LPs, sharing
the functionality provided by a limited group of SPE
threads; the mapping of active Simulators to the SPEs
is determined dynamically at each virtual time. The
state data originally encapsulated in a Simulator–
atomic pair are separated from the event-processing
logic. While the state data are maintained in the main
memory, events are processed on the SPEs. The state of
an active Simulator is matched to a SPE thread using a
SEK job-scheduling algorithm, whereas the PPE is used
to host the remaining concrete LPs, such as the NC and
the FC.

The following discussion assumes that all of the
Simulators are mapped to the SPEs. However, as will
be discussed in Section 6.3, certain types of Simulators
might still need to be implemented as concrete LPs on
the PPE.

5.4.2. Virtual LP state management. With the ID
allocation scheme introduced earlier, the current
states of the Simulators are stored in a flat 128-byte
aligned array called the state buffer in the main
memory, using the array indexes as Simulator IDs, as
shown in Figure 11.

Each state buffer entry has an adjustable size of 512
bytes to contain the state variables extracted from a
Simulator–atomic pair. On a SPE, a pair of 128-byte
aligned local state caches is allocated to hold the states
of at most two active Simulators. Besides the improve-
ment in data locality, this circumvents the limitation of
small LS size, reducing memory latency by prefetching
the state of the next active Simulator in parallel with
event execution of the current one.

5.4.3. Decentralized event management. To trans-
fer events across memory domains, the raw data of each
CDþþ event are encoded in 32 bytes; a pair of flat 128-
byte aligned arrays (current event buffer and backup
event buffer) is allocated in the main memory to
exchange simultaneous events between the FC and the
virtual Simulators. Each event buffer entry has an
adjustable size of 1 kB to hold up to 32 events at a
time for a dedicated virtual Simulator. At any step,
the FC and a Simulator may exchange exactly one con-
trol event and optionally a list of content events. Hence,
the first slot in each event buffer entry is reserved for
passing control events, whereas the following slots are
for content events. This convention allows for separat-
ing the control and content events without checking
their actual types. On a SPE, a pair of 128-byte aligned
local event caches is allocated to hold the events for the
current and the next active Simulators.

The FEL is used to send phase-changing events
between the NC and the FC only at the beginning
and the end of a simulation phase. Together, the FEL
and the event buffer entries form a network of

Figure 11. Virtual Simulator state management.25

LP: logical process, DMA: direct memory access, LS: local storage.

814 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

bidirectional communication channels with a star
topology centered at the FC, as shown in Figure 12.

During a collect phase, the FC translates (Y) events
from the source Simulators into (X) events to be
received by the destination Simulators. As mentioned
in Section 5.2, these (X) events need to be cached tem-
porarily at the destination Simulators so that they can
be consumed along with the (*) events in the next tran-
sition phase. To fulfill this P-DEVS requirement (while
preventing data corruption), the FC caches the events
on behalf of the Simulators. To do so, it writes the
translated (X) events into the corresponding entries of
the backup event buffer instead of the current event
buffer, as this could still contain (Y) events generated
in the current collect phase. For example, as seen in
Figure 12, Simulator (N–1) sends a (Y) event that will
be received by Simulator 0, 1, and itself as (X) events. If
these events were written into the current event buffer,
they would overwrite the (Y) events being processed by
the current active Simulators in entry 1 and (N–1).
Hence, using a pair of event buffers allows the FC to
process (Y) events (on the PPE) concurrently with
Simulator event execution (on the SPEs) without expli-
cit synchronization. After writing the (*) events and any
additional (X) events in the backup event buffer at the
beginning of the ensuing transition phase, the FC resets
a flag, eventBufferIndex, to swap the two event buf-
fers. On the other hand, the virtual Simulators always
work on the current event buffer determined by the FC.

This decentralized event management has several
advantages. Firstly, multiple I/O events of a
Simulator are stored in the same event buffer entry,
allowing them to be transferred efficiently in a single
DMA operation. Secondly, all simultaneous events
are removed from the FEL, reducing event queue oper-
ational cost. Thirdly, the simultaneous events are read/

written directly in the event buffers without memory
allocation and de-allocation, further reducing the oper-
ational overhead. Fourthly, the Simulators no longer
need to cache (X) events explicitly in collect phases,
simplifying the SEK algorithms. As (X) and (*) events
scheduled for a Simulator are packed in the same buffer
entry by the FC, they can be consumed as a whole in
the transition phases, satisfying the P-DEVS require-
ment without introducing extra synchronization over-
head. Finally, the PPE cache memory is better utilized
because of increased event data locality.

5.4.4. Rule evaluation on the SPE. As discussed in
Section 3, the behavior of Cell-DEVS models is defined
by a set of local transition functions, each of which
includes several state transition rules that are evaluated
by active cells.22 A transition rule is composed of three
expressions: a post-condition, a delay, and a pre-
condition. During evaluation, a rule is fired if its pre-
condition is true; the post-condition defines the cell’s
future state, which is transmitted after a period derived
from the delay expression.

Originally, these transition rules are represented as
syntax trees that are evaluated recursively at runtime.22

However, recursion on the SPEs is problematic due to
the limited size of runtime call stack and the lack of
stack overflow protection.62 Moreover, syntax trees are
not well suited for efficient DMA. To solve these prob-
lems, the syntax trees are converted into a sequence of
floating-point values in postfix format and concate-
nated in a flat 128-byte aligned array (rule buffer) in
the main memory, as shown in Figure 13.

Each packed rule has four components: pre-condition
tree, delay tree, post-condition tree, and rule header,
which indicates the number of nodes in the syntax
trees. Each syntax node is encoded as an integer

Figure 12. Virtual Simulator event management.25

DMA: direct memory access, NC: Node Coordinator, FC: Flat

Coordinator, SPE: Synergistic Processing Element, LS: Local Storage.

Figure 13. Packing of a local transition function.25

DMA: direct memory access, SPE: Synergistic Processing Element,

LS: Local Storage.

Liu and Wainer 815

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

operation type and an optional floating-point operand.
On a SPE, a pair of 128-byte aligned local rule caches is
allocated for the double-buffered DMA of rule data. As
the transition rules are read only, they can be accessed
simultaneously by multiple SPE threads.

The recursive algorithm is redesigned to scan the
local rule cache iteratively (one syntax node at a
time), as shown in Figure 14. Note that the current
local rule cache is used as a software-managed call
stack to hold intermediate operands, allowing for

in-place rule evaluation without burdening the SPE
runtime call stack.

For each type of syntax node, an evaluation function
performs the required operation based on operands
retrieved from the syntax node (line 1.2), the data in
the current local state cache (line 2.2), or the interme-
diate data in the current local rule cache. The result is
pushed back into the local rule cache at stackTop.
If required, new types of syntax nodes can be defined
by implementing additional evaluation functions.

Figure 14. A skeleton of doubled-buffered rule evaluation on the Synergistic Processing Elements.

816 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

These functions are called through the evalFunctions
function pointer array using the operation types as
array indexes, reducing branching instructions in the
SPE code.

When a valid rule is identified (line 3.11), the new
delay and state are computed from the delay and post-
condition trees, respectively (lines 3.13–3.17 and lines
3.19–3.23), and the local transition function is termi-
nated (line 3.24).

5.4.5. SEK job processing. A SEK job executes a set
of events scheduled for an active Simulator, assuming
that the event and state data have already been made
available in the current local event and state caches in
the LS, whereas memory control and SEK orchestra-
tion are considered as separate services, which will be
discussed shortly. Decoupling SEK job execution from
these services allows one to implement the P-DEVS
functions on the SPE in a similar way as in the original
CDþþ (code vectorization is desired, but not abso-
lutely required), without having to cope with issues
related to DMA and thread scheduling.

The SEK job-processing algorithms are implemented
by three job handlers invoked, respectively, during the
initialization, collect, and transition phases. In essence,
they follow the Simulator algorithms for processing (I),
(@), and (*) events, with a few exceptions. Firstly, these
algorithms are coarse grained, since the local event
cache may contain multiple input events scheduled for
a Simulator. All these events are processed in a single
invocation of the respective job handler. In addition,
the output events and updated states are written
directly in the local event and state caches, which are
then transferred to the main memory event and state
buffer entries by the memory control service. Barring
these subtleties, the definition of the SEK job-proces-
sing algorithms is straightforward (further details can
be found in Liu55).

On the PPE, the IDs of the active Simulators are used
as SEK job IDs, which are scheduled by the FC in each
phase through a set of pending job queues, as depicted in
Figure 15. Each job queue is a 128-byte aligned integer
array containing the pending job IDs scheduled for a
SEK instance. A pair of local job caches is allocated on
a SPE so that the job IDs can be transferred in chunks
with double-buffered DMA. Each chunk has an adjust-
able size of 128 bytes for 32 jobs.

A SEK instance processes the job IDs in the current
local job cache sequentially. These IDs are used as off-
sets to calculate the addresses of the event and state
buffer entries in the main memory when accessing
data of active Simulators from the SPEs.

At the beginning of a simulation phase, the FC exe-
cutes the phase-changing events in the FEL, and then
writes the events generated into the event buffer based

on the IDs of the receiving Simulators. These Simulator
IDs are inserted into the pending job queues under a
certain job-scheduling policy, thus mapping the active
Simulators to the SEKs. As the SEK jobs executed in a
phase are of the same type with similar computational
intensity, simple yet effective scheduling policies (e.g.
round-robin, shortest-queue-first, or weighted round-
robin) can be used to achieve fine-grained dynamic
load balancing between the SPEs.

5.4.6. SEK memory control and notification. To
support SEK job processing, a memory control and
notification service is provided on the SPE. As shown
in Figure 16, the SEK memory control and notification
algorithm is implemented in a function called
provideService.

The purpose of the memory control service is to
prefetch the input events and states of the active
Simulators into the local event and state caches, and
to transfer the generated output events and updated
states back to the original event and state buffer entries
after job execution. The transfer of events and states
relies on the availability of pending job IDs in the local
job caches. Hence, double-buffered DMA is performed
at two layers: the job-data layer for transfer of pending
job IDs in chunks (lines 2 and 7) and the simulation-
data layer for transfer of events and states of individual
jobs (lines 9, 11, 17, 18, 20, and 21). Once the events
and states become available in the local caches, the cor-
responding SEK job handlers are invoked through a
function pointer array called jobHandlers (line 19),
overlapping SEK job execution with concurrent
memory I/O.

On the other hand, the notification service sends sig-
nals periodically to the PPE (line 24), indicating the
number of jobs that have been processed in the pending
job queue since the last notification. In this way, the FC
can process the output events from those finished
Simulators without waiting for the completion of all

Figure 15. Pending job queues for a Simulator Event-
processing Kernel instance.25

DMA: direct memory access, SPE: Synergistic Processing Element,

LS: Local Storage.

Liu and Wainer 817

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

pending jobs, exploiting event-streaming parallelism
between the PPE and the SPEs.

5.4.7. SEK orchestration. Similar to the FSK, a ter-
mination function is defined to exit the SEK at the end
of a simulation. When a simulation phase starts, a SEK
instance is triggered by two mailbox messages from the
PPE: a control message (sekCtrMsg) and the total
number of pending jobs scheduled for the SEK
(totalPendingJobs). As a result, either provide

Service or the termination function is invoked.
As shown in Figure 17, the four least significant bits

of the control message are used to carry three parame-
ters, which are extracted in the SEK algorithms to
determine the address of the current event buffer, the
ID of the SEK function, and the ID of the SEK job
handler.

The SEK orchestration algorithm consists of two
parts, as shown in Figures 18 and 19. At the beginning

of a simulation phase, the FC sends two mailbox mes-
sages to each SEK instance when the pending jobs have
been scheduled in the job queues (lines 1.6, 1.7, 2.7, 2.8,
3.8, and 3.9 in Figure 18). The FC then waits for noti-
fications from the SEKs. Upon notification, it processes
the output events generated by the completed SEK jobs
immediately, while the other active Simulators are
processed concurrently on the SPEs (lines 9–14 in
Figure 19).

Note that the SPE outbound mailbox channel can
contain at most one message at a time;62 thus, a SPE
thread will block when there is a message that has not
yet been cleaned in the channel by the PPE. For this
reason, the FC uses non-blocking polling to quickly
scan the status of the channels after processing the
output events from just one job (even when they are
generated from multiple SEK jobs) in order to reduce
the possibility of blocking the SEKs. As long as there
are uncompleted SEK jobs being processed on the

Figure 16. A skeleton of the Simulator Event-processing Kernel memory control and notification algorithm.

818 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

SPEs, the algorithm tries to balance short channel-
polling interval and concurrent event execution on the
PPE.

When the SEKs finish all pending jobs, the FC
executes the remaining output events and sends
phase-changing events to the NC through the FEL,
ending the current phase. At the end of a simulation,
the NC terminates the SEKs by sending SEK_
TERMINATE_SIG and zero to them.

6. Performance analysis and discussion

The sequential CDþþ/PPE was parallelized on the Cell
using the MADS technique. The parallel simulator
called CDþþ/Cell was implemented on Red Hat
Enterprise Linux 5.2 with the IBM SDK for
Multicore Acceleration 3.1. Using the wildfire and
watershed simulations as benchmarks, this section ana-
lyzes the performance of the FSK and SEK algorithms
on an IBM BladeCenter QS22 server, which features
two 3.2GHz IBM PowerXCell 8i processors with 32
GB main memory. The Cell processors in a QS22
server are connected through the Rambus FlexIOTM

interface using the coherent Broadband Interface pro-
tocol,62 allowing an application to scale transparently
across the two processors (two PPEs and 16 SPEs in
total). However, inter-processor communication via
FlexIO has lower bandwidth and higher latency than
intra-processor communication via the EIB.

The major performance metrics presented include
the total execution time (T) of the simulation and the
turn-around time (T) of the FSK synchronization func-
tions. The scale-up metric measures how performance
scales as a function of the number of SPEs involved in a

computation as follows.

Scale-up ¼ T(PPE with one SPE)

T(PPE with N SPEsÞ , where N. 1

As the PPE is very different from the SPEs, we use
the execution on the PPE with one SPE (instead of on
the PPE alone) as baseline. As a result, the scale-up is
more conservative than what would be obtained from a
traditional definition of speedup (based on a purely
sequential execution), because the baseline case exploits
a certain degree of parallelism (e.g. data-streaming par-
allelism and SIMD vector parallelism). In the experi-
ments, SEK jobs were scheduled using a round-robin
policy. For the FSK, the TA block size was 16 kB. To
minimize the impact of file I/O, no event logging was
used. The results were averaged over 20 independent
runs to balance data reliability and testing effort.

6.1. Performance of the FSK algorithms

Figure 20 shows the total execution time in the
10243 1024 wildfire simulation on PPE (CDþþ/
PPE) and across 1–16 SPEs (CDþþ/Cell). The PPE-
based sequential executions are denoted as ORG
(Table 1), SYN (Table 7), and FLT. When the various
types of simulation data are managed using flat arrays
in the main memory, as discussed in Section 5, the exe-
cution time (FLT) is reduced by a factor of 13.79 from
what is attained with the original CDþþ/PPE (ORG)
and by a factor of 9.09 from the synchronization-
optimized execution (SYN). As the wildfire simulation
performance is dominated by the FSK, which has a
regular access pattern (Simulator timing data are con-
tiguous in the main memory), the increased locality of

Figure 17. Bit pattern of the Simulator Event-processing Kernel control message.

Liu and Wainer 819

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

timing data improves the utilization of the PPE cache
memory, leading to a significant reduction in memory
contention and runtime.

This effect is illustrated in Table 8. Comparing it
with Table 7, it is evident that the biggest improvement
comes from the FC, and the time spent on processing
(@) and (D) events is reduced by more than 89% from
the SYN execution. In addition, the bootstrap time is
decreased by 50%, as most of the simulation data are

allocated and initialized as big blocks in flat arrays. The
use of the event buffers also accelerates Simulator event
execution and FEL operations (other overhead) by
7.1% and 23.81%, respectively.

With one SPE, the parallel simulation runs 1.78 times
faster than the FLT, thanks to more efficient data pro-
cessing and the exploitation of data-streaming parallel-
ism on the SPE. Overall, the total execution time is
reduced from the best sequential performance of over

Figure 18. A skeleton of the Simulator Event-processing Kernel orchestration algorithm (part I).

820 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

3 hours (FLT) to approximately 20minutes when the
FSK is parallelized on 16 SPEs (or a factor of up to
9.74). When compared with the original CDþþ/PPE,
the FSK algorithms accelerate the 10243 1024 wildfire
simulation by a factor of up to 134.34.

Figure 21 shows the scale-ups of the FSK itself. Due
to SIMD vectorization and double-buffered DMA, both
functions exhibit significant scalability (super-linear for

findImminents). Function findImminents performs
better than findMinTime for two reasons. Firstly,
findMinTime uses all of the SPEs (whereas a SPE is
engaged in findImminents only if it has found the
global minimum). Secondly, findMinTime is invoked
in place by the FC (whereas findImminents is invoked
in advance by the NC). Overall, a scale-up of 13.4 is
attained on 16 SPEs.

Figure 19. A skeleton of the Simulator Event-processing Kernel orchestration algorithm (part II).

Figure 20. Total execution time in 1024 3 1024 wildfire simulation.

Liu and Wainer 821

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 21. Flat Coordinator Synchronization Kernel scale-ups in the 1024 3 1024 wildfire simulation.24

DMA: direct memory access.

Table 8. 1024 3 1024 wildfire execution profile on the Power Processor Element (flat array–based simulation data management)

Event type

Components

Simulators FC NC Bootstrap Other overhead

(I) 2.58 0.76 – – –

(*) 491.68 12.60 – – –

(@) 6.24 5650.61 – – –

(X) – 0 – – –

(Y) – 76.41 – – –

(D) – 5821.37 1.62 – –

Sum (s) 519.92 11,561.75 1.62 89.10 102.53

Total (s) 12,255.51

FC: Flat Coordinator, NC: Node Coordinator.

822 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 22 shows the total execution time for the
wildfire simulation of varied sizes using the optimized
CDþþ/PPE and the CDþþ/Cell. The parallel simula-
tion on 16 SPEs runs 8.37, 7.27, and 7.69 times faster
than the best PPE-based sequential execution (FLT) for
8963 896, 7683 768, and 6403 640 wildfire models,
respectively.

Figure 23 gives the overall simulation scale-ups
achieved by CDþþ/Cell on 2–16 SPEs. The results
indicate that the FSK algorithms can obtain better scal-
ability in larger simulations and on greater number of
SPEs. Since the FSK is a data-intensive, high-through-
put kernel with relatively light computation, the perfor-
mance depends primarily on the effective memory

Figure 23. Overall scale-ups in wildfire simulations.

Figure 22. Total execution time in wildfire simulations of varied sizes.
SPE: Synergistic Processing Element.

Liu and Wainer 823

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

bandwidth provided by the Cell processor. As long as
the memory path is not saturated, more DMA requests
from the SPEs can be handled concurrently with
improved memory bandwidth utilization, resulting in
higher scalability in larger simulations across multiple
SPEs.

6.2. Performance of the SEK algorithms

Figure 24 shows the total execution time for the
3203 3203 2 watershed simulation. The original and
optimized sequential executions with CDþþ/PPE are
denoted as ORG (Table 4) and FLT, respectively. The
execution time with preliminary FSK optimization
(SYN) is not shown because this optimization alone
does not have a noticeable impact on the watershed
simulation performance.

The flat simulation data management leads to a mar-
ginal improvement of 4.78% in the watershed simula-
tion (FLT versus ORG), due to the following reasons.

Firstly, the watershed simulation performance is dom-
inated by the compute-intensive SEK, making it less
sensitive to improved data locality. Secondly, at any
virtual time, the events and states of different active
Simulators are stored in different event and state
buffer entries, which may not be contiguous in the
main memory. Hence, while the FSK can fully benefit
from the enhanced locality of Simulator timing data,
the SEK may exploit increased data locality only when
processing multiple events for a single active Simulator,
as these events are packed contiguously within the same
event buffer entry.

The impact of flat simulation data management is
given in Table 9. Compared to the ORG execution,
the Simulator and FC event execution time is reduced
by 3.92% and 37.91%, respectively, thanks to
improved event data locality in the main memory.
The FEL operational cost is decreased by 70.12% as
all simultaneous events are exchanged through event
buffers. The bootstrap time is reduced by 16.61% due

Figure 24. Total execution time in 320 3 320 3 2 watershed simulation.
SPE: Synergistic Processing Element.

Table 9. 320 3 320 3 2 watershed execution profile on the Power Processor Element (flat array–based simulation data
management)

Event type

Components

Simulators FC NC Bootstrap Other overhead

(I) 0.36 0.03 – – –

(*) 75,198.80 15.42 – – –

(@) 32.64 37.27 – – –

(X) – 0 – – –

(Y) – 596.99 – – –

(D) – 14.26 0.001 – –

Sum (s) 75,231.80 663.97 0.001 21.03 145.86

Total (s) 76,062.66

FC: Flat Coordinator, NC: Node Coordinator.

824 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

to efficient allocation and initialization of simulation
data in flat arrays.

Using one SPE, the total execution time is reduced
by a factor of 5.56 over the FLT execution for several
reasons. Firstly, memory latency is reduced effectively
with the multi-layered double-buffering strategy. Using
the PPE with a SPE allows for pipelined event execu-
tion between the FC and the virtual Simulators,
exploiting event-streaming parallelism. Likewise, the
SEK is implemented in SIMD-aware code on the
SPE, making it more efficient than the object-oriented
scalar implementation on the PPE. Further, various
low-level optimizations are used to streamline the
SEK computation, such as proper address alignment
for efficient data access, in-place rule evaluation,
branch reduction and/or compiler-assisted branch
hints, loop unrolling, and in-line substitution. Overall,
the total execution time is reduced from over 21 hours
(FLT) to 26minutes when the SEK runs on 16 SPEs (or
a factor of up to 48.31). When compared to the ORG
execution, the SEK algorithms accelerate the
3203 3203 2 watershed simulation by a factor of up
to 50.74.

Figure 25 shows the total execution time attained in
watershed simulation of varied sizes with the optimized
CDþþ/PPE and the CDþþ/Cell. The parallel simula-
tion on 16 SPEs runs 28.09, 27.69, and 29.46 times
faster than the best sequential execution on PPE
(FLT) for 2563 2563 2, 1923 1923 2, and 1283

1283 2 watershed models, respectively.
Figure 26 gives the overall scale-ups achieved by

CDþþ/Cell. The results suggest that, regardless of

the difference in the model sizes, the watershed simula-
tion attains similar scalability across the SPEs. As the
watershed simulation is dominated by a compute-
intensive SEK, the cumulative computing power of
the available SPEs is a limiting factor in the overall
performance. As long as the SPEs are fully utilized,
the execution time can improve at a similar rate when
increasing the number of SPEs in the parallel
simulation.

As seen in Figures 23 and 26, the scale-ups grow a
little slower when more SPEs are used, mainly because
the kernel orchestration overhead increases along with
the number of SPEs. In addition, when the number of
SPEs goes beyond eight, the simulation performance
suffers from the increased overhead of inter-processor
communication.

6.3. Implications of the MADS technique

The implications of the MADS technique are discussed
as follows.

6.3.1. Additional computational kernels. The MADS
technique can be extended to accommodate other types
of kernels, such as random number generators.63 For
this purpose, one can reserve a group of SPEs to par-
allelize the kernel computation, while using the rest of
the SPEs to support the FSK and/or the SEK. In an
extreme case, both the FSK and the SEK can run on
the PPE if the new kernel becomes the primary bottle-
neck. Besides the FSK and SEK orchestration tasks,
the PPE helper thread can be extended to synchronize

Figure 25. Total execution time in watershed simulations of varied sizes.
SPE: Synergistic Processing Element.

Liu and Wainer 825

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

the SPE threads dedicated to the new kernel. In this
sense, the MADS technique allows for a modular and
extensible software architecture that can be adapted to
varied simulation requirements.

6.3.2. SPE-incompatible model components. As
mentioned in Section 5.4, it may not always be possible
to port all the Simulators to the SPEs. One example is
that certain atomic models require frequent access to a
legacy software library that is unsuitable to be hosted
on the co-processors. A simulation thus consists of a
mix of virtual and concrete Simulators, which must be
scheduled properly during each phase. This issue can be
solved within the MADS technique as follows. During
simulation bootstrap, the concrete Simulators are allo-
cated with greater IDs than that of the virtual
Simulators, forming two distinct groups. The simula-
tion data of both groups of Simulators are still man-
aged in the main memory buffers, using the array
indexes as SEK job IDs. For concrete Simulators, the
SEK jobs are processed directly on the PPE by access-
ing the various buffers through hardware-controlled
cache instead of software-managed DMA, taking
advantage of the increased data locality in the main
memory. The SEK orchestration algorithm can be
enhanced so that the concrete Simulators process
events (on the PPE) in parallel with virtual Simulator
job execution (on SPEs) during each phase.

6.3.3. Integration with PDES techniques. The
MADS technique can be integrated with existing
PDES techniques to achieve efficient conservative and
optimistic PDES on hybrid platforms with multicore
nodes. Due to the separation between inter-node syn-
chronization (the NC on the PPE) and intra-node paral-
lel kernel computation (the FC and the Simulators on
the PPE helper and SPE threads), the parallel simula-
tion can be viewed, at the cluster level, as a set of NCs
running asynchronously on different nodes. Hence,
many existing conservative PDES algorithms, such as
the null message algorithm64 and its variants,65–68 can
be applied transparently across the NCs to determine
the safe events that can be executed on a node, without
interference with the kernel computation on each multi-
core node.

On the other hand, integrating the MADS technique
with optimistic PDES algorithms, such as the Time
Warp protocol69 and its optimizations,70–73 is a more
elaborate task, mainly because the individual LPs are
required to perform irregular checkpointing and roll-
back operations on complex data structures. This task,
however, can be simplified by using the Lightweight
Time Warp protocol,74,75 which turns the Simulators
into lightweight LPs, allowing them to be readily imple-
mented as virtual LPs. In addition, the MADS
technique can be used along with other hardware-
accelerated Time Warp algorithms (e.g. Quaglia and

Figure 26. Overall scale-ups in watershed simulations.
SPE: Synergistic Processing Element.

826 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Santoro;48 Santoro and Quaglia49) to further speed up
optimistic parallel simulations.

6.3.4. Applicability to other multicore platforms.
The key method used in the MADS technique is to
exploit the fine-grained data and the event parallelism
inherent in DEVS-based simulations, while simulta-
neously combining the multi-grained parallelization
options provided by the underlying hardware.
Although the technique was developed on the Cell pro-
cessor, the method can be generalized to PDES on other
homogeneous/heterogeneous multicore platforms.
Specifically, both FSK and SEK algorithms can be
applied to general-purpose multicore central processing
units (CPUs) that support SIMD operations (e.g. the
Intel CoreTM i7 processor). Although it is beneficial to
use software-managedDMA for hidingmemory latency,
this is not a requirement to implement the MADS tech-
nique. It is expected that significant speedups can also be
obtained on CMP architectures with hardware-con-
trolled cache memory, owing to the enhanced data local-
ity and the exploitation of other types of parallelism.
Applying the MADS technique to special accelerator
architectures, such as GPUs, is more complex, due to
the constraints imposed by such processors.76 Whereas
the FSK algorithms can be ported to GPU in a relatively
straightforward way (because of the pure data-parallel
computing model), the SEK algorithms need to be
adapted to fit the synchronous stream computing style.
A hybrid scheme, such as the one proposed by
Perumalla,51 could be used to combine variable time
advance in DEVS simulation with synchronous state
updates at all of the Simulators during each phase, an
interesting topic that is worthy of further research.

In addition, the data restructuring and optimization
strategies employed in the MADS technique provide
useful insight on how to reorganize a PDES program
from a data-flow perspective to streamline the compu-
tation on multicore platforms in general. Furthermore,
the concept of LP virtualization could be used to
improve processor utilization and to achieve fine-
grained dynamic load balancing on CMP architectures.
Finally, the use of a descriptive language to hide multi-
core programming details would be of practical impor-
tance in developing PDES systems on CMP
architectures in order to enhance system usability and
modeler productivity at reduced M&S cost.

7. Conclusion and future work

To address the challenges of DEVS-based parallel simu-
lation on CMP architectures, we proposed a computing
technique called MADS that integrates various optimi-
zation and parallelization strategies to accelerate both
memory-bound and compute-bound computational

kernels, which reflect the core performance bottlenecks
in the system. In addition to the exploitation of data and
event parallelism inherent in the simulation, the tech-
nique combines multi-grained parallelism at different
system levels to leverage the potential of the underlying
hardware architecture, while hiding the technical details
of multicore programming from non-expert users. The
simulation data are reorganized in flat array-based buf-
fers, improving data locality and facilitating kernel par-
allelization on multicore platforms. Through the
concept of LP virtualization, the technique enables effi-
cient mapping of an arbitrary number of LPs to a limited
set of co-processors dynamically in a simulation, allow-
ing for fine-grained dynamic load balancing. Moreover,
the resulting software architecture is kept flexible and
extensible for future development. Promising perfor-
mance results have been obtained, demonstrating that
the technique can achieve a significant level of scalability
in a variety of workloads.

We are currently working on a number of areas
related to this work, including integrating the MADS
technique with PDES techniques at the cluster level,
exploring new ways of leveraging multicore processors
in DEVS-based parallel simulations, and applying the
MADS technique to other homogeneous and heteroge-
neous CMP architectures.

Acknowledgment

The authors appreciate the constructive comments of Michael

Perrone, Ligang Lu, Daniele Paolo Scarpazza, and Lurng-
Kuo Liu from the IBM T. J. Watson Research Center.

This work was done while the corresponding author was at

the Department of Systems and Computer Engineering,
Carleton University, Canada.

Funding

This work was supported in part by the Natural Sciences
and Engineering Research Council (NSERC), the Ontario

Graduate Scholarship program (OGS), the Mathematics of
Information Technology and Complex Systems (MITACS)
Accelerate Ontario Program, Canada, and by the IBM T. J.
Watson Research Center, NY.

Conflict of interest statement

None declared.

References

1. Kumar R, Tullsen DM, Jouppi NP and Ranganathan P.

Heterogeneous chip multiprocessors. Computer 2005; 38:

32–38.
2. Kumar R, Tullsen DM and Jouppi NP. Core architecture

optimization for heterogeneous chip multiprocessors.

In: Proceedings of the 15th International Conference on

Parallel Architectures and Compilation Techniques,

Seattle, WA, USA, 2006, pp.23–32.

Liu and Wainer 827

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

3. Morad TY, Weiser UC, Kolodnyt A, Valero M and
Ayguade E. Performance, power efficiency and scalability
of asymmetric cluster chip multiprocessors. Comput

Archit Lett 2006; 5: 14–17.
4. Khale JA, Day MN, Hofstee HP, Johns CR, Maeurer TR

and Shippy D. Introducing to the Cell multiprocessor.
IBM J Res Dev 2005; 49: 589–604.

5. Chen T, Raghavan R, Dale JN and Iwata E. Cell
Broadband Engine architecture and its first implementa-
tion – a performance view. IBM J Res Dev 2007; 51:

559–572.
6. Williams S, Shalf J, Oliker L, Kamil S, Husbands P and

Yelick K. The potential of the Cell processor for scientific

computing. In: Proceedings of the 3 rd Conference on
Computing Frontiers, Ischia, Italy, 2006, pp.9–20.

7. Gedik B, Yu PS and Bordawekar RR. Executing stream

joins on the Cell processor. In: Proceedings of the 33 rd
International Conference on Very Large Data Bases,
Vienna, Austria, 2007, pp.363–374.

8. Fujimoto RM. Parallel and distributed simulation systems.

New York: John Wiley & Sons, 2000.
9. Scarpazza DP and Braudaway GW. Workload character-

ization and optimization of high–performance text

indexing on the Cell Broadband Engine (Cell/B.E.).
In: Proceedings of the 2009 IEEE International Sympo-
sium on Workload Characterization, Austin, TX, USA,

2009, pp.13–23.
10. Eichenberger AE, O’Brien JK, O’Brien KM, Wu P, Chen

T, Oden PH, et al. Using advanced compiler technology
to exploit the performance of the Cell Broadband Engine

architecture. IBM Syst J 2006; 45: 59–84.
11. Knight TJ, Park JY, Ren M, Houston M, Erez M,

Fatahalian K, et al. Compilation for explicitly managed

memory hierarchies. In: Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, San Jose, CA, 2007, pp.226–236.

12. McCool MD. Data-parallel programming on the Cell BE
and the GPU using the RapidMind development plat-
form. In: Proceedings of the GSPx Multicore

Applications Conference, Santa Clara, CA, 2006.
13. Perez JM, Bellens P, Badia RM and Labarta J. CellSs:

Making it easier to program the Cell Broadband Engine
processor. IBM J Res Dev 2007; 51: 593–604.

14. McCool MD. Scalable programming models for mas-
sively multicore processors. Proc IEEE 2008; 96:
816–831.

15. Varbanescu AL, Sips H, Ross KA, Liu Q, Liu LK,
Natsev A, et al. An effective strategy for porting Cþþ
application on Cell. In: Proceedings of the 2007

International Conference on Parallel Processing, Xi’an,
China, 2007, pp.59–68.

16. Barker KJ, Davis K, Hoisie A, Kerbyson DJ, Lang M,
Pakin S, et al. Entering the petaflop era: The architecture

and performance of Roadrunner. In: Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, Austin,
TX, 2008.

17. Perumalla KS. Parallel and distributed simulation:
Traditional techniques and recent advances.
In: Proceedings of the 2006 Winter Simulation Conference,

Monterey, CA, 2006, pp.84–95.

18. Perumalla KS. Switching to high gear: Opportunities for

grand-scale real-time parallel simulations. In: Proceedings

of the 13th IEEE/ACM International Symposium on

Distributed Simulation and Real Time Applications,

Singapore, 2009, pp.3–10.
19. Zeigler BP, Praehofer H and Kim TG. Theory of model-

ing and simulation: Integrating discrete event and continu-

ous complex dynamic systems. London: Academic Press,

2000.
20. Chow AC and Zeigler BP. Parallel DEVS: A parallel,

hierarchical, modular modeling formalism.

In: Proceedings of the 1994 Winter Simulation

Conference, Lake Buena Vista, FL, 1994, pp.716–722.

21. Wainer G and Giambiasi N. N-dimensional Cell-DEVS

models. Discrete Event Dyn Syst 2002; 12: 135–157.
22. Wainer G. CDþþ: A toolkit to develop DEVS models.

Software Pract Ex 2002; 32: 1261–1306.
23. Liu Q and Wainer G. Accelerating large-scale DEVS-

based simulation on the Cell processor. In: Proceedings

of the 2010 Symposium on Theory of Modeling and

Simulation – DEVS Integrative M&S Symposium,

Orlando, FL, 2010, pp.191–198.
24. Liu Q, Wainer G, Lu L and Perrone M. Novel perfor-

mance optimization of large-scale discrete-event simula-

tion on the Cell Broadband Engine. In: Proceedings of the

2010 International Conference on High Performance

Computing & Simulation, Caen, France, 2010, pp.108–

114.
25. Liu Q and Wainer G. Exploring multi-grained parallelism

in compute-intensive DEVS simulations. In: Proceedings

of the 24th IEEE Workshop on Principles of Advanced and

Distributed Simulation, Atlanta, GA, 2010, pp.65–72.
26. Araya-Polo M, Rubio F, Cruz R, Hanzich M, Cela JM

and Scarpazza DP. 3D seismic imaging through reverse-

time migration on homogeneous and heterogeneous

multi-core processors. Sci Program 2009; 17: 185–198.

27. Petrini F, Fossum G, Fernandez J, Varbanescu AL,

Kistler M and Perrone M. Multicore surprises: Lessons

learned from optimizing Sweep3D on the Cell Broadband

Engine. In: Proceedings of the 21st IEEE International

Parallel and Distributed Processing Symposium, Long

Beach, CA, 2007, pp.1–10.
28. Gschwind M. Chip multiprocessing and the Cell

Broadband Engine. In: Proceedings of the 3 rd

Conference on Computing Frontiers, Ischia, Italy, 2006,

pp.1–8.
29. Gschwind M. The Cell Broadband Engine: Exploiting

multiple levels of parallelism in a chip multiprocessor.

Int J Parallel Program 2007; 35: 233–262.
30. Blagojevic F, Nikolopoulos DS, Stamatakis A and

Antonopoulos CD. Dynamic multigrain parallelization

on the Cell Broadband Engine. In: Proceedings of the

12th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, San Jose, CA, 2007,

pp.90–100.

31. Blagojevic F, Feng X, Cameron KW and Nikolopoulos

DS. Modeling multigrain parallelism on heterogeneous

multi-core processors: A case study of the Cell BE.

In: Proceedings of the 3 rd International Conference on

828 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

High Performance Embedded Architectures and

Compilers, Goteborg, Sweden, 2008, pp.38–52.

32. Stamatakis A and Ott M. Exploiting fine-grained paral-

lelism in the phylogenetic likelihood function with MPI,

Pthreads, and OpenMP: A performance study.

In: Proceedings of the 3 rd International Conference on

Pattern Recognition in Bioinformatics, Melbourne,

Australia, 2008, pp.424–435.
33. Gummaraju J, Coburn J, Turner Y and Rosenblum M.

Streamware: Programming general-purpose multicore

processors using streams. ACM SIGARCH Comput

Archit News 2008; 36: 297–307.
34. Kudlur M and Mahlke S. Orchestrating the execution of

stream programs on multicore platforms. ACM

SIGPLAN Not 2008; 43: 114–124.
35. IBM Corporation. ‘IBM XL C/Cþþ for Multicore

Acceleration for Linux’, http://www-01.ibm.com/soft-

ware/awdtools/xlcpp/multicore/ (accessed 20 Feburary

2011).

36. Ohara M, Inoue H, Sohda Y, Komatsu H and Nakatani

T. MPI Microtask for programming the Cell Broadband

Engine processor. IBM Syst J 2006; 45: 85–102.
37. Williams S, Shalf J, Oliker L, Kamil S, Husbands P and

Yelick K. Scientific computing kernels on the Cell pro-

cessor. Int J Parallel Program 2007; 35: 263–298.

38. Chellappa S, Franchetti F and Puschel M. Computer gen-

eration of fast Fourier transforms for the Cell Broadband

Engine. In: Proceedings of the 23 rd International

Conference on Supercomputing, Yorktown Heights, NY,

2009, pp.26–35.
39. Scarpazza DP and Russell GF. High-performance regu-

lar expression scanning on the Cell/B.E. processor.

In: Proceedings of the 23 rd International Conference on

Supercomputing, Yorktown Heights, NY, 2009, pp.14–25.
40. Saidani T, Piskorski S, Lacassagne L and Bouaziz S.

Parallelization schemes for memory optimization on the

Cell processor: A case study of image processing algo-

rithm. In: Proceedings of the 2007 Workshop on

Memory Performance: Dealing with Applications,

Systems and Architecture, Brasov, Romania, 2007,

pp.9–16.
41. Shi G and Kindratenko V. Implementation of NAMD

molecular dynamics non-bonded force-field on the Cell

Broadband Engine processor. In: Proceedings of the 22nd

IEEE International Symposium on Parallel and

Distributed Processing, Miami, FL, 2008, pp.1–8.
42. Williams S, Carter J, Oliker L, Shalf J and Yelick K.

Lattice Boltzmann simulation optimization on leading

multicore platforms. In: Proceedings of the 22nd IEEE

International Symposium on Parallel and Distributed

Processing, Miami, FL, 2008, pp.1–14.

43. Docan C, Parashar M and Marty C. Advanced risk ana-

lytics on the Cell Broadband Engine. In: Proceedings of

the 23 rd IEEE International Parallel and Distributed

Processing Symposium, Rome, 2009, pp.1–8.

44. Fujimoto RM, Tsai JJ and Gopalakrishnan GC. Design

and evaluation of the rollback chip: Special purpose

hardware for time warp. IEEE Trans Comput 1992; 41:

68–82.

45. Lynch EW and Riley GF. Hardware supported time syn-

chronization in multi-core architectures. In: Proceedings

of the 23 rd IEEEWorkshop on Principles of Advanced and

Distributed Simulation, Lake Placid, NY, 2009, pp.88–94.
46. Rosu MC, Schwan K and Fujimoto RM. Supporting

parallel applications on clusters of workstations: The

intelligent network interface approach. In: Proceedings

of the 6th IEEE International Symposium on High

Performance Distributed Computing, Portland, OR,

1997, pp.159–168.
47. Noronha R and Abu-Ghazaleh NB. Early cancellation:

An active NIC optimization for time-warp.

In: Proceedings of the 16th IEEE Workshop on

Principles of Advanced and Distributed Simulation,

Washington, DC, 2002, pp.43–50.
48. Quaglia F and Santoro A. Nonblocking checkpointing

for optimistic parallel simulation: Description and an

implementation. IEEE Trans Parallel Distrib Syst 2003;

14: 593–610.
49. Santoro A and Quaglia F. Multiprogrammed non-block-

ing checkpoints in support of optimistic simulation on

myrinet clusters. J Syst Archit 2007; 53: 659–676.
50. Santoro A and Fujimoto RM. Off-loading data distribu-

tion management to network processors in HLA-based

distributed simulations. IEEE Trans Parallel Distrib Syst

2008; 19: 289–298.
51. Perumalla KS. Discrete-event execution alternatives on

general purpose graphical processing units (GPGPUs).

In: Proceedings of the 20th IEEE Workshop on

Principles of Advanced and Distributed Simulation,

Singapore, 2006, pp.74–81.
52. Xu Z and Bagrodia R. GPU-accelerated evaluation plat-

form for high fidelity network modeling. In: Proceedings

of the 21st IEEE Workshop on Principles of Advanced and

Distributed Simulation, San Diego, CA, 2007, pp.131–

140.

53. Park H and Fishwick PA. A GPU-based application

framework supporting fast discrete-event simulation.

Simulation 2010; 86: 613–628.
54. Liu Q andWainer G. Parallel environment for DEVS and

Cell-DEVS models. Simulation 2007; 83: 449–471.
55. Liu Q. Algorithms for parallel simulation of large-scale

DEVS and Cell-DEVS models. PhD Dissertation.

Canada: Carleton University, Ottawa, ON, 2010.
56. Zeigler BP. DEVS today: Recent advances in discrete

event-based information technology. In: Proceedings of

the 11th IEEE/ACM International Symposium on

Modeling, Analysis and Simulation of Computer

Telecommunications Systems, Orlando, FL, 2003,

pp.148–161.

57. Wainer G. Applying Cell-DEVS methodology for model-

ing the environment. Simulation 2006; 82: 635–660.

58. Rothermel RC. A mathematical model for predicting fire

spread in wild-land fuels. Research Paper INT-115.

USDA Forest Service, Intermountain Forest and Range

Experiment Station, Ogden, UT, 1972.
59. Zeigler BP, Moon Y, Kim D and Ball G. The DEVS

environment for high-performance modeling and simula-

tion. IEEE Comput Sci Eng 1997; 4: 61–71.

Liu and Wainer 829

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

60. Fujimoto RM and Panesar KS. Buffer management in
shared-memory time warp systems. In: Proceedings of
the 9th IEEE Workshop on Principles of Advanced and

Distributed Simulation, Lake Placid, NY, 1995, pp.149–
156.

61. Curry R, Kiddle C, Simmonds R and Unger B.
Sequential performance of asynchronous conservative

PDES algorithms. In: Proceedings of the 19th IEEE
Workshop on Principles of Advanced and Distributed
Simulation, Monterey, CA, 2005, pp.217–226.

62. IBM Corporation. ‘Cell Broadband Engine
Programming Handbook: Including the PowerXCell 8i
Processor (version 1.12)’, https://www-01.ibm.com/

chips/techlib/techlib.nsf/ techdocs/
7A77CCDF14FE70D5852575CA0074E8ED (accessed
20 Feburary 2011).

63. Bader DA, Chandramowlishwaran A and Agarwal V. On
the design of fast pseudo-random number generators for
the Cell Broadband Engine and an application to risk
analysis. In: Proceedings of the 37th International

Conference on Parallel Processing, Portland, OR, 2008,
pp.520–527.

64. Chandy KM and Misra J. Distributed simulation: A case

study in design and verification of distributed programs.
IEEE Trans Software Eng 1979; SE-5: 440–452.

65. De Vries RC. Reducing null messages in Misra’s distrib-

uted discrete event simulation method. IEEE Trans
Software Eng 1990; 16: 82–91.

66. Wood KR and Turner SJ. A generalized carrier-null
method for conservative parallel simulation.

In: Proceedings of the 8th IEEE Workshop on Parallel
and Distributed Simulation, Edinburgh, 1994, pp.50–57.

67. Bagrodia RL and Takai M. Performance evaluation of

conservative algorithms in parallel simulation languages.
IEEE Trans Parallel Distrib Syst 2000; 11: 395–411.

68. Park A, Fujimoto RM and Perumalla KS. Conservative

synchronization of large-scale network simulations.
In: Proceedings of the 18th IEEE Workshop on Parallel
and Distributed Simulation, Kufstein, Austria, 2004,

pp.153–161.
69. Jefferson DR. Virtual time. ACM Trans Program Lang

Syst 1985; 7: 405–425.
70. Preiss BR, Loucks WM and Macintyre ID. Effects of the

checkpoint interval on time and space in time warp. ACM
Trans Model Comput Simulat 1994; 4: 223–253.

71. Preiss BR and Loucks WM. Memory management tech-

niques for time warp on a distributed memory machine.
In: Proceedings of the 9th IEEE Workshop on Parallel and
Distributed Simulation, Lake Placid, NY, 1995, pp.30–39.

72. Quaglia F. A scaled version of the elastic time algorithm.
In: Proceedings of the 15th IEEE Workshop on Parallel
and Distributed Simulation, Lake Arrowhead, CA, 2001,
pp.157–164.

73. Wang J and Tropper C. Using genetic algorithms to limit
the optimism in time warp. In: Proceedings of the 2009
Winter Simulation Conference, Austin, TX, 2009,

pp.1180–1188.
74. Liu Q and Wainer G. Lightweight time warp – a novel

protocol for parallel optimistic simulation of large-scale

DEVS and Cell-DEVS models. In: Proceedings of the

12th IEEE International Symposium on Distributed
Simulation and Real Time Applications, Vancouver, BC,
Canada, 2008, pp.131–138.

75. Liu Q and Wainer G. A performance evaluation of the
lightweight time warp protocol in optimistic parallel sim-
ulation of DEVS-based environmental models.
In: Proceedings of the 23 rd IEEE Workshop on

Principles of Advanced and Distributed Simulation, Lake
Placid, NY, 2009, pp.27–34.

76. Owens JD, Luebke D, Govindaraju N, Harris M, Kruger

J, Lefohn AE, et al. A survey of general-purpose compu-
tation on graphics hardware. Comput Graph Forum 2007;
26: 80–113.

Appendix: Glossary of acronyms

CMP Chip multiprocessor

DEVS Discrete Event System Specification

DMA Direct memory access

EIB Element Interconnect Bus

FC Flat Coordinator

FEL Future Event List

FSK FC Synchronization Kernel

GPU Graphical Processing Unit

IA Imminent ID Array

LP Logical process

LS Local Storage

M&S Modeling and simulation

MADS Multicore Acceleration of DEVS Systems

MPI Message Passing Interface

NC Node Coordinator

PDES Parallel Discrete-Event Simulation

P-DEVS Parallel DEVS

PPE Power Processor Element

SEK Simulator Event-processing Kernel

SIMD Single Instruction, Multiple Data

SPE Synergistic Processing Element

TA Time Array

Qi Liu received his BEng degree in Information
Engineering from the Huazhong University of Science
and Technology, China, in 1993 and his MASc and
PhD degrees in Electrical and Computer Engineering
from the Carleton University, Canada, in 2006 and
2010, respectively. He was a recipient of a Senate
Medal for Outstanding Academic Achievement for his
research work and a variety of distinguished scholar-
ships. He served as the chair and founding member of
the Ottawa Student Chapter of the Society for
Modeling and Simulation International (SCS). He is

830 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

currently a postdoctoral researcher in the exascale com-
puting group at the IBM T. J. Watson Research Center,
NY, USA. His research interests include high-perfor-
mance computing, multicore computing, programming
models for heterogeneous architectures, advanced par-
allel/distributed simulation algorithms, and operations
research and optimization. Further information can be
found at https://researcher.ibm.com/researcher/view.-
php?person¼us-liuqi.

Gabriel A Wainer (SMSCS, SMIEEE) received his MSc
(1993) and PhD degrees (1998, with highest honors)
from the University of Buenos Aires (UBA),
Argentina, and Université d’Aix-Marseille III, France,
respectively. After being an assistant professor at the
Computer Science Department of UBA, in July 2000 he
joined the Department of Systems and Computer
Engineering at Carleton University, where he is now
an associate professor. He has been a visiting scholar
at ACIMS (Arizona Center of Integrative Modeling
and Simulation, The University of Arizona); LSIS/
CNRS (Laboratory of Informatics and Systems/
National Research Council), University of Nice, and
INRIA (National Institute for Research in
Informatics and Automatics), France. He is the

author of three books and over 240 research articles;
he edited four other books, and helped organizing over
110 conferences, including being one of the founders of
SIMUTools and SimAUD. He is the Vice-President
Publications, and was a member of the board of direc-
tors of the SCS. He is also the Chair of the Ottawa
Center of The McLeod Institute of Simulation
Sciences. He is a special issues editor of Simulation,
member of the editorial board of Wireless Networks
(Elsevier), Journal of Defense Modeling and
Simulation, and SIMULATION: Transactions of The
Society for Modeling and Simulation International
(SAGE Publishers). He is the head of the Advanced
Real-Time Simulation lab, located at Carleton
University’s Centre for Advanced Simulation and
Visualization (V-Sim). He has been the recipient
of various awards, including the IBM Eclipse
Innovation Award, SCS Leadership Award, and vari-
ous Best Paper awards. He has been awarded
Carleton University’s Research Achievement Award
(2005–2006), the First Bernard P. Zeigler DEVS
Modeling and Simulation Award, and the SCS
Outstanding Professional Award (2011). Further infor-
mation can be found at http://www.sce.carleton.ca/
faculty/wainer.

Liu and Wainer 831

 at CARLETON UNIV on August 3, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /FreestyleScript
 /Freestylescript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

