
Using Workflows And Web Services To Manage Simulation Studies
Judicaël Ribault, Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University Centre for Visualization and Simulation (V-Sim)

Ottawa, ON K1S-5B6 Canada
jribault@gmail.com, Gabriel.Wainer@sce.carleton.ca

Keywords: workflow, replayability, web service

Abstract
In the last few years, computer simulation has suffered from
a credibility crisis. One main issue is the lack of replayabil-
ity for the simulations. We propose a new methodology for
executing simulation studies in the cloud (accessible through
RESTful Web Services) and orchestrated by workflows. We
will show how replayability could be improved by sharing the
same simulation environment, simulation files, simulation in-
puts and also the same experiment workflows. As a proof of
concept, we have implemented our methodology to manage
CD++ simulation studies using RISE, Taverna, and myEx-
periment.

1 INTRODUCTION
In the last few years, computer simulation has suffered

from a credibility crisis. Credibility involves a strong vali-
dation, verification and accreditation (VV&A) process of the
simulation model. But credibility also involves replayability
of the simulation. Several studies [Pawlikowski, 2003; Paw-
likowski et al., 2002] questioned credibility in modeling and
simulation. The authors surveyed over 2200 publications on
telecommunication networks, and their conclusion was that
“[...] the majority of recently published results of simulation
studies do not satisfy the basic criteria of credibility”, includ-
ing replayability. In [Kurkowski, 2006], the authors analyzed
several papers from the ACM MobiHoc symposium between
2000 and 2005, and they have found that less than 15% of the
simulation results were replayable.

There are several reasons why replayability is an issue.
One of them is that installing a simulation environment can
be complex, as it implies dealing with dependencies (the cor-
rect libraries and compiler) and configuring the simulation
environment precisely and this is even more complex for dis-
tributed simulations, as it may also imply to deal with hard-
ware or software optimizations used in the original study.
Then one must reproduce the simulation in the same way as
the original, which implies that one must have the same simu-
lation files, inputs and also the same experimentation process.

In recent years, there has been some efforts [Al-Zoubi and
Wainer, 2010b; Rybacki et al., 2010, 2011], that introduced
the idea of using workflows to deal with some of these issues.
Workflow was first designed to improve the business process.
A product workflow is a set of steps required for developing
a product until it gets into market [Weske, 2007]. The work-

flow steps are based on observing a number of steps that are
usually repeated manually and formalizing them. Workflows
can be useful in Modeling and Simulation (M&S) for several
reasons. The first one is that they allow building a blueprint of
the simulation experiment, ensuring its replayability. The sec-
ond one is that they allow building a simulation experiment
independent from the simulation environment.

Here, we show how replayability could be improved by
sharing the same simulation environment, simulation inputs
and experiment workflows, and how these elements can be
shared using Web Services, in order to make them easily
accessible from any device connected to the Internet. This
new methodology allows executing simulation studies in the
cloud (accessible through RESTful Web Services [Richard-
son and Ruby, 2007] and orchestrated by workflows). The
idea is based on:
• to make existing simulators accessible through RESTful

Web Services

• to build experiment workflows based on a process that
deals with the RESTful simulation environment,

• sharing the workflow with other practitioners.
To replay an experiment, we only need to get the work-

flow, and run it. The workflow automatically executes all the
experiment steps once again, using the same simulation envi-
ronment.

As a proof of concept, we have implemented our methodol-
ogy to manage CD++ simulation studies [Wainer, 2002] using
RISE [Al-Zoubi and Wainer, 2010a], a middleware that pro-
vide RESTful Web Services [Richardson and Ruby, 2007],
Taverna [Hull et al., 2006] a workflow management system,
and myExperiment [Goble and De Roure, 2007] a Web site
to share and reuse workflows.

Section 2 provides necessary background and state of the
art in this field. Section 3 describes the architecture of the so-
lution, while Section 4 presents the use of Taverna workflows
and RISE to manage CD++ simulations. Finally, section 5
discusses the potential opportunities offered by this method-
ology.

2 BACKGROUND
In this Section, we present a brief state of the art of work-

flows management system that can use and integrate Web Ser-
vices, and the RESTful Interoperability Simulation Environ-
ment (RISE) middleware we used for this research.

mailto:jribault@gmail.com
mailto:Gabriel.Wainer@sce.carleton.ca


2.1 Workflows of services
We need to orchestrate various services to manage and

formalize the simulation process in the Cloud. In [Tan et
al., 2009], the authors compare the service discovery, ser-
vice composition, workflow execution, and workflow result
analysis between BPEL and a workflow management system
(Taverna) in the use of scientific workflows. They determine
that Taverna provides a more compact set of primitives than
BPEL and a functional programming model that eases data
flow modeling. Due to our needs, we identify that a workflow
management system such Taverna would be a better alterna-
tive than BPEL to illustrate the feasability of our approach.

Several surveys have compared different workflow man-
agement systems. In [Deelman et al., 2009], the authors an-
alyzed and classified the functionality of workflow system
based on the needs of scientists who use them. In [Yu and
Buyya, 2006], the authors focused on the features to access
to distributed resources. In [Curcin and Ghanem, 2008], four
of the most popular scientific systems were reviewed. We de-
cided to use Taverna [Hull et al., 2006] instead of Kepler [Alt-
intas et al., 2004; Ludäscher et al., 2006], Triana [Churches et
al., 2006] or Worms [Rybacki et al., 2011] because Taverna
eases and focus on the integration of RESTful Web Service
and provides a deep integration of myExperiment services.

Taverna [Hull et al., 2006] is an application that eases
the use and integration of the growing number of tools and
databases available on the Web, especially Web Services. It
allows users who are not necessarily expert programmers to
design, execute and share workflows of Web Services. These
high-level workflows can integrate many different resources
into a single analysis. A Taverna workflow can contain sev-
eral services that can be useful to manage simulation studies:
• A service to develop a service in Java directly inside a

Taverna workflow.
• A service to have a Taverna workflow nested within an-

other hierarchically. In that way, simple workflows can
be used as a basis for more complex ones.
• A service to query a RESTful Web Service.
• A service to access local tools within a workflow. Thus,

we can use local tools within a Taverna workflow.
In Taverna, a service can take input and produce output.

The workflow input can be part of the workflow or can be
given prior to the execution of the workflow. The Taverna
RESTful service can take in input various data, and it returns
a status code and a response. For example, figure 1 shows
a simple workflow containing one REST service (“Concate-
nate REST Service”) taking two inputs: a string containing
“Hello” (top left) and a string parameter to be given at run-
time. This workflow will simply concatenate to the string
“Hello” the value passed at runtime parameter (for example
“World”). The invocation of the REST service provides two
outputs: a “status” and a “responseBody”. The status (for ex-

ample 404 if the service was not found, or 200 if everything
went well) is connected to the “StatusCode” output of the
workflow. The responseBody (for example “Hello World”) is
connected to the “Result” output of the workflow.

Workflow output ports

Workflow input ports

Result StatusCode

StringParameter

String1 String2

Concatenate_REST_Service

responseBody status

 

StringHello

value

Figure 1: Taverna workflow with a REST Service.

Workflows are ideal for automating simulation tasks, but
all the parameters needed as inputs might not always easily
identifiable in advance. In those cases, it is desirable to inter-
act with the users to understand what they want to do. Taverna
offers several user interfaces with this purpose:
• Ask: opens a box so the user can enter text.
• Choose, Select: lets the user select a value among a list

of values.
• Select File: lets the user select a file in the system.
• Tell, Warn: gives a message to the user.
A Taverna workflow can contain nested workflows. Thus,

several workflows can be combined together to obtain more
complex workflows. A complex workflow can then be saved
and shared on myExperiment.

myExperiment [Goble and De Roure, 2007] is an online
social networking environment to find, share and reuse work-
flows. myExperiment allows anybody who finds workflows
relevant to their research to reuse and repurpose them to their
specific requirement. At the same time, developers who build
their own workflows can submit them to myExperiment to
contribute to the scientific community. myExperiment also
provide a social aspect to the sharing of workflows, allow-
ing developers to get feedback from the community of users
who reuse their work. Since its release in 2007, myexperi-
ment has over 5000 registered users and contains more than
2000 workflows.

2.2 Middleware for simulation services
There are now a large number of research and commer-

cial applications that target specific modeling and simulation
environments [Zacharewicz et al., 2008]. In our case we use
RISE. In [Al-Zoubi and Wainer, 2010a] the authors discussed



the advantages and disadvantages of many of them, includ-
ing the High Level Architecture (HLA) [Kuhl et al., 1999],
CORBA, SOAP-based Web-services, etc. As discussed there,
most of these distributed simulation middlewares still lack of
plug-and-play interoperability, dynamicity, and composition
scalability. Instead, RESTful Web-services [Richardson and
Ruby, 2007] imitates the Web interoperability style. Based
on these ideas, we designed the first existing RESTful Inter-
operability Simulation Environment (RISE) middleware.

The main goal of RISE it to provide simulation interop-
erability and mashup regardless of their formalism, theory
or implementation. Access to RISE is done through Web re-
sources (URIs) and XML messages using HTTP channels:
GET (to read a resource), PUT (to create new resource or up-
date existing data), POST (to append new data to a resource),
and DELETE (to remove a resource). RISE allows modelers
to run any number of experiment instances, whose settings
and resources (URIs) are persistent and repeatable (unless de-
liberately removed or updated). An interface between RISE
and CD++ [Wainer, 2002] allows running distributed simula-
tions.

RISE is the first (and only) REST-based simulation mid-
dleware available to date. Most distributed simulation sys-
tems have been provided using SOAP-based WS and other
approaches (see [Wainer et al., 2008] for a more comprehen-
sive list). The RISE API looks like a classic website URL
such as: “http://www.site.com/cdpp/sim”. The following ser-
vices are provided:

1. ../cdpp/sim/workspaces/{userworkspace} holds all sim-
ulation services for a given user.

2. ../cdpp/sim/workspaces/{userworkspace}/{servicetype}
holds all frameworks for a given user and service type
(i.e., a simulation engine like CD++).

3. ..orkpaces/{userworkspace}/{servicetype}/{framework}
allows interacting with a framework (including the
model’s source code, the simulation’s input variables,
and sub-models interconnections).

4. ..erworkspace}/{servicetype}/{framework}/simulation
allows interacting with the simulator.

5. ..erworkspace}/{servicetype}/{framework}/results
holds the simulation outputs.

6. ..erworkspace}/{servicetype}/{framework}/debug
holds the model-debugging files.

All these URLs respond to HTTP methods, for example, to
submit files to a framework we use the POST method in the
URI defined by Line 3. PUT is used to create a framework or
update simulation configuration settings. DELETE is used to
remove a framework. GET is used to retrieve the framework’s
state.

The main motivation behind basing workflow component
on RESTful services is that implementation can be hidden in
resources, which are represented via URI and are accessible

using HTTP channels.
The next section present a method to address the problem

of the replayability of simulation studies by using RESTful
Web Services and orchestrated by workflows.

3 WORKFLOWS WITH RISE
A discrete-event simulation usually requires a simula-

tion environment, simulation files (models, data initialization,
. . . ), input parameters, and an experimentation process. The
replayability of a discrete-event simulation study involves the
reuse of all these elements. The reuse of simulation files can
be easily solved by using a repository; it is much more com-
plicated to reuse the simulation environment and the experi-
mentation process.

Reusing the simulation environment involves the local in-
stallation of the simulation environment used in the original
simulation study, which can be complex because we must
take into account all the dependencies, the configuration, and
the optimization of the simulation environment with preci-
sion. The reuse of the experimentation process involves the
accurate reproduction of all the steps that led to the execu-
tion of the simulation. This task can also be complex since
it requires a formal description of all the steps of the experi-
mentation.

Figure 2: Overview of the proposed contribution.

Figure 2 shows a conceptual view of the proposed archi-
tecture. ES1 and ES2 represent two different simulation envi-
ronments in the Web cloud. RISE can be used to make those
(and other) simulators available through RESTful Web Ser-
vices. RISE can provide RESTful services to several simula-
tion environments, and additional services to the simulation
environments (such as archiving the simulation files and re-
sults to enhance the replayability).

Figure 2 also shows that accessibility to the simulation
environment can be done through several platforms: either
directly through the local execution of the workflow (us-



ing a personal computer) or through a “workflow server en-
gine”. The execution of the simulation in the cloud allows
not installing the simulation environment locally, sharing and
reusing the same simulation environment among all practi-
tioners and improving repeatability. The use of the RESTful
protocol to reach and manage the simulation environments
improves, through a simple protocol (GET, PUT, POST,
and DELETE), the accessibility, the interoperability, and the
mashup of applications.

Figure 2 also shows three users. User1 created a workflow
and shared it on a “workflow repository”. User1 also made
the workflow executable from the cloud by uploading it on a
“workflow server engine”. User1 can also execute the work-
flow locally: the workflow engine invokes the Web Services
provided by the “middleware server” to control the simulation
environment “ES1” and “ES2”. User2 downloaded the work-
flow uploaded by User1 and reused it. User3 used lightweight
client to log onto the “workflow server engine”, and execute
the workflow previously uploaded by user1.

Workflows can help to automate these steps. The automa-
tion will allow repeating the simulation process without re-
quiring human interaction. This can be useful to run several
times the same simulation by changing a few settings auto-
matically, such as the random seed or the input parameters.
In addition, a workflow is more convenient for designing and
sharing than a script. Indeed, a workflow using the REST-
ful protocol to control the remote simulation does not require
any installation or configuration of the local simulation envi-
ronment. The execution of the workflow allows repeating the
simulation process completely, from any place and software
environment.

Workflows can also guide the user during the simulation
process. While most of the simulation environments provide
a graphical interface to a dedicated simulation domain (biol-
ogy, networking, etc.), a workflow is dedicated to a specific
simulation study and allows to take into account its speci-
ficity.

In [Al-Zoubi and Wainer, 2010b], a solution based on the
BPM formalism was proposed. This formalism is used in
business process but e-science has other expectations needs,
such as the necessity to track the provenance of the workflow
execution results and to share feedbacks and comments. Like-
wise, in [Rybacki et al., 2010], the authors propose a work-
flow solution to improve the replayability of their simulation
environment. It first implies to install the simulation envi-
ronment while we try to avoid it. In [Rybacki et al., 2011],
the authors propose an interesting workflow system dedicated
to M&S. Their solution does not take into account the exe-
cution of workflow via Web Service, without having to in-
stall any simulation environment. Our solution facilitates the
comparison of simulation studies because practitioners share
the same simulation environment. Our solution also eases the

sharing of workflows among practitioners, because RISE is
environment-independent.

4 USING TAVERNA WORKFLOWS
We built a proof-of-concept implementation of our

methodology using RISE, the CD++ simulation environment,
Taverna, and myExperiment.

RISE makes available the CD++ simulation environment
using RESTful Web Services as explained in [Wainer et al.,
2008]. We reused the exact same RISE server and CD++ sim-
ulation environment, without any need of modification.

The life cycle of a simulation with CD++ involves the in-
stallation of the simulation environment, the creation of the
model, the compilation of the model, the execution of the
simulation, and the retrieval of simulation results to be fur-
ther analyzed. The use of RISE allows one to avoid the in-
stallation of the simulation environment, using an installation
behind the RISE middleware, accessible through the Web.

To manage a CD++ simulation with RISE using Taverna
workflow, we need to create or import existing Taverna work-
flows from myExperiment into a new Taverna workflow. This
new Taverna workflow will contains the following workflows
(available on myExperiment) as presented on figure 3.
• select a workspace among those present on the RISE

server (RISE ChooseUserWorkspace).
• select a simulation environment among those present in

the user workspace (RISE ChooseServiceType).
• select a framework among those present in the user

workspace and corresponding to the selected simulation
type (RISE ChooseFramework).
• enter a name for the new simulation experiment

(RISE AskFrameworkName).
• select the XML configuration file on the user personal

computer (RISE SelectXmlModelFile).
• select the zip file containing all the files of the simula-

tion: model, inputs, etc. (RISE SelectZipModelFile).
• create a framework on RISE (RISE CreateFramework).
• send the zip file on RISE (RISE SendZipModelFile).
• execute the simulation on RISE

(RISE ExecuteSimulation).
• get the simulation results (RISE GetResults).
This parent workflow (figure 3) requires no input to be ex-

ecuted. It performs, via an interaction with the user, the re-
quired steps to run a new CD++ simulation on RISE.

A Taverna workflow is data-flow oriented, which means
that as soon as all the inputs are provided, a workflow compo-
nent is executed. In our workflow (figure 3), we can see that
the last nested-workflow RISE GetResults receive in inputs
the outputs of the workflows RISE ChooseUserWorkspace,
RISE ChooseServiceType, and RISE AskFrameworkName.
As soon as we answered those 3 questions, the workflow
RISE GetResults will be executed. Thus, it is necessary to



RISE_CreateFramework

RISE_SendZipModelFile

RISE_CreateFrameworkService

RISE_ExecuteSimulation

RISE_GetResults

RISE_ChooseUserWorkspace

RISE_ChooseServiceType

RISE_AskFrameworkName

RISE_SelectXmlModelFile

Figure 3: Complete workflow to manage new CD++ simula-
tion using RISE WS.

schedule workflows, otherwise they will run simultaneously.
The collection of the results (workflow RISE GetResults)
can only be done after the execution of the simulation
(workflow RISE ExecuteSimulation). As well the execu-
tion of the simulation can only be done after uploading
th simulation files onto the RISE middleware (workflow
RISE SendZipModelFile). Finally, the upload can only be
done after the complete creation of the simulation experiment
into the user workspace (workflow RISE CreateFramework).
This dependance is represented by a line and a black circle on
figure 3.

This workflow can be found on myExperiment and it is
possible for the owner of the workflow to upload a new ver-
sion of the workflow, as well as to update the information
about the workflow. It is also possible for users to import the
workflow, in order to reuse it, as it, or as a base for a new
workflow, or as a nested workflow part of a bigger workflow.
It is also possible to tag, rate and comment the workflow.

To replay a study, users only have to get the corresponding
workflow and run it using Taverna. There is also the possi-
bility for the developer of the workflow to setup a Taverna
Server and upload the workflow on it. The execution of the
experiment workflow of the figure 3 is done as follow:
• The “RISE ChooseUserWorkspace” nested workflow

invokes the RISE RESTful service to get the list of
workspaces, and asks the user to select one workspace.
• The “RISE ChooseServiceType” nested workflow in-

vokes the RISE RESTful service to get the list of simu-

lation services available for the selected workspace and
asks the user for one simulation service type.
• The “RISE AskFrameworkName” nested workflow asks

to enter a name for the simulation experiment.
• The “RISE SelectXmlModelFile” nested workflow asks

for a XML configuration file on the local computer.
• The “RISE CreateFramework” nested workflow invokes

the RISE RESTful service to create a new experiment on
the server. Taverna receives an HTTP Basic Challenge
and asks the user to authenticate.
• The “RISE SelectZipModelFile” nested workflow asks

for the model files.
• The “RISE SendZipModelFile” nested workflow in-

vokes the RISE RESTful service to upload and compile
the model into the experiment.
• The “RISE ExecuteSimulation” nested workflow in-

vokes the RISE RESTful service to execute the simula-
tion and invokes periodically the RISE RESTful service
to know the simulation status in order to be aware of
the simulation termination. Once the simulation is termi-
nated, the “RISE ExecuteSimulation” stop and the ex-
periment workflow continue.
• The “RISE GetResults” nested workflow invokes the

RISE RESTful service to download the simulation re-
sults.

5 CONCLUSION
We have defined and built a workflow system using Web

Services to perform remote simulations. We have illustrated
the benefits of using the RISE middleware to provide REST-
ful service to CD++. We showed how to create a simple but
complete Taverna workflow to illustrate the concept.

However, workflows can be much more complex and must
be able to handle all steps of a simulation study. In a case of
emergency planning, an emergency crew would benefits from
having an automated workflow that run new simulations re-
motely, based on real-time data and processing the simula-
tion results to facilitate their reading directly from the emer-
gency site. Moreover, a workflow ensuring the replayability
of a simulation should not interact with the user; it should run
automatically. Conversely, a workflow to teach or to run sim-
ulations quickly must assume that the user has no knowledge,
and should help them during each step; from the creation of
the simulation to the analysis of the results. The workflow
must handle simulation errors and report them to the user.
This can be done by displaying error messages or by send-
ing e-mails to the user. The resolution of errors can also be
automated.

This way of managing simulation studies should allow to:
• facilitate the learning of the simulation software by of-

fering learning workflows to guide the user.
• facilitate access to the simulation by reducing the infras-

tructure costs to a minimum: it only requires access to



the Internet to execute a workflow containing only re-
mote service, such as RISE.

• increase the credibility of a study, providing automated
workflows that will guarantee the replayability.

• mix data from simulations and data from the real world
to make mashups, and use simulation as a prediction and
decision-making tool.

ACKNOWLEDGEMENT
This research was supported by a fellowship from the

Direction Générale de l’Armement and the INRIA Sophia-
Antipolis and partially funded by NSERC.

REFERENCES
K. Al-Zoubi and G. Wainer. Distributed simulation using

restful interoperability simulation environment (rise) mid-
dleware. Intelligence-Based Systems Engineering, pages
129–157, 2010.

K. Al-Zoubi and G. Wainer. Managing simulation workflow
patterns using dynamic service-oriented compositions. In
Winter Simulation Conference (WSC), Proceedings of the
2010, pages 765–777. IEEE, 2010.

I Altintas, C Berkley, E Jaeger, M. Jones, B. Ludascher, and
S. Mock. Kepler: An extensible system for design and exe-
cution of scientific workflows. In Scientific and Statistical
Database Management, 2004. Proceedings. 16th Interna-
tional Conference on, pages 423–424. IEEE, 2004.

David Churches, Gabor Gombas, Andrew Harrison, Jason
Maassen, Craig Robinson, Matthew Shields, Ian Taylor,
and Ian Wang. Programming scientific and distributed
workflow with Triana services. Concurrency and Compu-
tation: Practice and Experience, 18(10):1021–1037, Au-
gust 2006.

V Curcin and M Ghanem. Scientific workflow systems-
can one size fit all? Biomedical Engineering Conference,,
2008.

Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian
Taylor. Workflows and e-Science: An overview of work-
flow system features and capabilities. Future Generation
Computer Systems, 25(5):528–540, May 2009.

C.A. Goble and D.C. De Roure. myExperiment: social net-
working for workflow-using e-scientists. In Proceedings of
the 2nd workshop on Workflows in support of large-scale
science, pages 1–2. ACM, 2007.

Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole
Goble, Mathew R Pocock, Peter Li, and Tom Oinn. Tav-
erna: a tool for building and running workflows of services.
Nucleic acids research, 34(Web Server issue):W729–32,
July 2006.

F. Kuhl, R. Weatherly, and J. Dahmann. Creating computer
simulation systems: an introduction to the high level archi-
tecture. Prentice Hall PTR, 1999.

S.H. Kurkowski. Credible mobile and ad hoc network
simulation-based studies, 2006.

B. Ludäscher, I Altintas, Chad Berkley, D. Higgins, E Jaeger,
M. Jones, E.A. Lee, J. Tao, and Y. Zhao. Scientific work-
flow management and the Kepler system. Concurrency
and Computation: Practice and Experience, 18(10):1039–
1065, 2006.

K. Pawlikowski, H.D.J. Jeong, and J.S.R. Lee. On credibil-
ity of simulation studies of telecommunication networks.
Communications Magazine, IEEE, 40(1):132–139, 2002.

K. Pawlikowski. Do not trust all simulation studies of
telecommunication networks. In Information Networking,
pages 899–908. Springer, 2003.

Leonard Richardson and Sam Ruby. Restful web services.
O’Reilly, first edition, 2007.

Stefan Rybacki, Jan Himmelspach, Enrico Seib, and
Adelinde M. Uhrmacher. Using workflows in ms software.
In Proceedings of the 2010 Winter simulation Conference,
pages 535–545, 2010.

Stefan Rybacki, Jan Himmelspach, Fiete Haack, and
Adelinde M Uhrmacher. Worms- a framework to support
workflows in m&s. In S. Jain, R. R. Creasey, J. Him-
melspach, K. P. White, and M. Fu, editors, Proceedings of
the 2011 Winter Simulation Conference, Piscataway, New
Jersey, 2011. Institute of Electrical and Electronics Engi-
neers, Inc.

Wei Tan, Paolo Missier, Ravi Madduri, and Ian Foster. Build-
ing scientific workflow with taverna and bpel: A com-
parative study in cagrid. In Service-Oriented Comput-
ing–ICSOC 2008 Workshops, pages 118–129. Springer,
2009.

G.A. Wainer, R. Madhoun, and K. Al-Zoubi. Distributed
simulation of devs and cell-devs models in cd++ using
web-services. Simulation Modelling Practice and Theory,
16(9):1266–1292, 2008.

G. Wainer. Cd++: a toolkit to define discrete-event mod-
els. Software, Practice and Experience, 32(3):1261–1306,
2002.

M. Weske. Business process management: concepts, lan-
guages, architectures. Springer-Verlag New York Inc,
2007.

Jia Yu and Rajkumar Buyya. A taxonomy of workflow man-
agement systems for grid computing. Journal of Grid
Computing, 3(3-4):171–200, January 2006.

G. Zacharewicz, C. Frydman, and N. Giambiasi. G-devs/hla
environment for distributed simulations of workflows. Sim-
ulation, 84(5):197–213, 2008.


	Introduction
	Background
	Workflows of services
	Middleware for simulation services

	Workflows with RISE
	Using Taverna Workflows
	Conclusion

