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ABSTRACT

Two new Modelica libraries are presented. The first li-

brary, named GGADLib, supports the DEVS graph no-

tation in Modelica. The second Modelica library, na-

med UDPLib, allows sending and receiving data using

the User Datagram Protocol (UDP). GGADLib uses

UDPLib. As a result, DEVS graph models composed

using GGADLib can receive and send data (input and

output events, according to DEVS terminology) using

UDP. This feature allows Modelica DEVS graph mo-

dels to communicate with hardware and with other mo-

dels, e.g., with models developed using other langua-

ges and tools, and running in other computers. The

implementation of UDPLib and GGADLib is discussed

in this paper. Their use is illustrated by means of a

case study: evaluating an obstacle avoidance controller

for the e-puck mobile robot. The UDPLib and GGAD-

Lib Modelica libraries can be freely downloaded from

http://www.euclides.dia.uned.es/

INTRODUCTION

The object-oriented modeling language Modelica facili-

tates describing the type of models commonly used in

control engineering (Åström et al., 1998). This is, mo-

dels of multi-domain physical systems (containing, e.g.,

electrical, mechanical, thermal, hydraulic or control sub-

components), which are mathematically described using

differential and algebraic equations, and events. This

type of model is known as hybrid-DAE model. The

continuous-time part of the model can be described in

Modelica using equations (non-causal modeling) and al-

gorithms. In addition, Modelica includes functionalities

for discrete-event management, such as if expressions to

define changes in the structure of the model, and when

expressions to define event conditions and the actions as-

sociated with the defined events (Otter et al., 1999).

In some cases, the application of a discrete-event mo-

deling formalism facilitates the development and descrip-

tion of the discrete-event part of hybrid models. Mode-

lica libraries have been developed for supporting diffe-

rent discrete-event modeling formalisms, including State

Graphs (Otter et al., 2005), Petri nets (Mosterman et al.,

1998) and DEVS (Sanz et al., 2010). These libraries can

be used together with other Modelica libraries in order to

compose multi-formalism hybrid models.

The DEVS (Discrete EVent Systems specification) for-

malism allows the modular and hierarchical specifica-

tion of discrete-event systems (Zeigler, 1976). The Pa-

rallel DEVS formalism (Chow and Zeigler, 1994) is an

extension of DEVS. DEVSLib (Sanz, 2010) is a full-

fledged Modelica library that facilitates the description

of discrete-event models according to the Parallel DEVS

formalism and provides components to interface with

continuous-time models, which can be composed using

other Modelica libraries. DEVSLib can be freely down-

loaded from (Urquia et al., 2012).

DEVS graph (Zeigler et al., 1994) is a graphical nota-

tion for describing atomic DEVS models. Graph-based

notations have the advantage of allowing the modeler to

think about the problem in a more abstract way. For this

reason, the use of the DEVS graph notation makes model

behavior specification easier.

Two new Modelica libraries will be presented in this

paper. The first library, GGADLib, supports the DEVS

graph notation in Modelica. The second Modelica li-

brary, UDPLib, allows sending and receiving data using

the User Datagram Protocol (UDP). GGADLib uses

UDPLib. As a result, DEVS graph models composed

using GGADLib can receive and send messages (input

and output events, according to DEVS terminology) th-

rough the network using UDP. This feature allows Mode-

lica DEVS graph models to communicate with hardware

and with other models, e.g., with models developed using

other languages and tools, and running in other compu-

ters.

The DEVS graph notation will be described in the fo-

llowing section. Next, the implementation and use of the

UDPLib and GGADLib Modelica libraries will be dis-

cussed. Finally, these libraries are applied to assess an

obstacle avoidance controller for the e-puck mobile ro-

bot (E-puck, 2012).

DEVS GRAPH NOTATION

A DEVS graph model is formally defined by the follo-

wing tuple of seven elements (Wainer, 2009):

GGAD = 〈X, S, Y, δint, δext, λ, ta〉 (1)
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The model may have input and output ports to com-

municate with other models. The tuple elements

X = {(pI, x) | pI ∈ IPorts, x ∈ Xp} (2)

Y = {(pO, y) | pO ∈ OPorts, y ∈ Yp} (3)

represent the set of input ports (IPorts) and values (Xp),

and the set of output ports (OPorts) and values (Yp),

respectively. The set of sequential states is represented

by S,

S = B × P (V ) (4)

where B represents the set of model states, also known

as model phases

B = {b | b ∈ Bubbles} (5)

and V represents the intermediate state variables of the

model and their values

V = {(v, n) | v ∈ V ariables, n ∈ R0} (6)

The internal (δint) and external (δext) transition fun-

ctions, and the output (λ) and time-advance (ta) fun-

ctions have the same meaning as in DEVS models (Zei-

gler et al., 2000). At any time the system is in some state

s ∈ S. If no external event occurs, the system will stay

in state s for time ta(s). When the ta(s) time expires,

the system outputs the value λ(s) and changes to state

δint(s). If an external event x ∈ Xp occurs before the

expiration time, ta(s), then the system changes to state

δext(s, e, x), where e is the elapsed time since the last

transition.

The model graphical description is composed of bub-

bles, arcs and labels. Bubbles represent model phases.

Each bubble includes an identifier and a state lifetime.

Arcs represent transitions between states: dotted lines re-

present internal transitions and full lines represent exter-

nal transitions. Labels placed beside external transitions

indicate the corresponding transition conditions, while

labels placed beside internal transitions show the asso-

ciated output events.

S1 S2

1 3pI ? 1

pO ! 2

pO ! 4

pI ? 2

Figure 1: Atomic model defined as a DEVS graph.

The atomic model shown in Figure 1 illustrates this

notation. The model has two phases: S1 and S2. The S1

bubble is composed of two concentric circumferences.

This indicates that S1 is the initial phase, i.e., the model

is in S1 when the simulation starts. The number written

into each bubble is the corresponding phase lifetime.

The p!v notation indicates that an output event of v

value is generated through the p port. For instance, pO!2

means that an event with 2 value is sent through pO port.

Trigger conditions of external transitions are logical

expressions. When the logical expression is evaluated to

true, then the corresponding transition is executed. The

p?v expression is true when the v value is received in the

p input port. In this model, if an event with 1 value is

received in pI while in S1, an external transition to S1 is

executed. If the event value is 2 while in S1, an external

transition to S2 is executed.

THE UDPLib MODELICA LIBRARY

The UDPLib Modelica library is composed of two mo-

del classes, inputUDPport and outputUDPport, and two

packages, src and Examples (see Figure 2a). The src pa-

ckage contains Modelica functions that are used by in-

putUDPport and outputUDPport. These functions are

not intended to be used directly by the library users. The

Examples package contains some use examples.

a)                                                    b)

y[N]

c

v[N]

c

Figure 2: a) The UDPLib Modelica library; and b) input-

UDPport and outputUDPport models.

The outputUDPport model allows to send data using

the UDP protocol. The port number and IP address are

model parameters, whose values can be modified when

the model is instantiated. The model interface is compo-

sed of the following two connectors (see Figure 2b): an

input Boolean variable, c, and an input array of N real

variables, v, whose size (N ) is a model parameter. When

the value of c changes from false to true and vice versa,

the N values of the v variable array are sent through the

network to the designated IP address and port.

The inputUDPport model allows to receive data, using

the UDP protocol, from a specified IP address and port

number, which are model parameters. The model inter-

face is composed of two connectors (see Figure 2b): an

output array of N real variables, y, whose size (N ) is

a model parameter, and an output Boolean variable, c.

The model checks for newly arrived data with a certain

sampling period of simulated time, which is a model pa-

rameter (the default value is 0.01 seconds). When a new



data (an array of N real values) is received from the net-

work, the value of the Boolean variable c is changed and

the received data is assigned to the y array. Therefore, y

is an array of N piecewise constant variables which con-

tains the last received data. The changes in the value of c

indicate the time instants when data have been received.

v

c
y

c

v[1]

v[2]
v[3]

y[3]

y[2]

y[1]

a)

b) time (s)

Figure 3: a) Model; and b) detail of simulation result.

The simple model shown in Figure 3a is used to illus-

trate the use of inputUDPport and outputUDPport. The

left-most component sets the value of the c Boolean va-

riable and the three elements (N = 3) of the v array as

follows:

c = sin (w · time) > 0 (7)

v = {time, 2 · time, 3 · time} (8)

where the time variable represents time and the value gi-

ven to the w parameter is 10. When the value of c chan-

ges (from false to true and vice versa), the three values

of the v array are sent to port number 5000, IP address

127.0.0.1.

The component of the inputUDPport class checks the

port number 5000, IP address 127.0.0.1, for more inco-

ming data every 0.01 seconds of simulated time. The

received data are assigned to the y array. The simula-

ted time is synchronized with real time. A detail of the

simulation result is shown in Figure 3b.

In general, several instances of the inputUDPport and

outputUDPport classes can be present in a model. Also,

instances of these classes can be used to communicate

several models running in the same and in different com-

puters.

THE GGADLib MODELICA LIBRARY

The GGADLib library contains predefined Modelica

components that facilitate to compose DEVS graphs mo-

dels. These components include bubbles, to describe the

model states, and internal and external transitions. The

library is shown in Figure 4a. Ready-to-use components

are placed at the higher hierarchical level of the library.

These components inherit from the components included

within the src package. The Examples package contains

examples of use.

Model states are represented as bubbles in DEVS

graph notation. To this end, two classes are provided in

the library: InitialState and State (see Figure 4b). The

InitialState class allows to specify the model state at the

simulation start time. Therefore, a model has to contain

one and only one instance of the InitialState class. The

other model phases are described using instances of the

State class. InitialState and State have the same super-

class, src.State.

The InitialState and State classes have two parameters:

an identifier, which stores the state name, and the state li-

fetime, whose default value is one second. A Boolean

local variable, active, indicates whether the model is in

the state (active=true) or not (active=false). The simula-

ted time elapsed since the last transition is stored in the

e local variable. This variable allows detecting when the

state lifetime has been consumed.

InitialState and State have two connectors: one re-

presented as a black filled triangle (connectorA) poin-

ting toward the bubble, and another represented as a ho-

llow triangle (connectorB) pointing outwards the bubble.

Transitions to the state have to be connected to the first

connector, while transitions from the state have to be con-

nected to the second connector.

Components describing internal and external transi-

tions are provided in the library. A transition takes place

from an initial state to a final state. The connectorB of

the initial state has to be connected to the connectorB of

the transition component, and the connectorA of the final

state has to be connected to the connectorA of the tran-

sition component. Common features to internal and ex-

ternal transitions are modeled in the src.Transition class,

which is the superclass of the InternalTransition and Ex-

ternalTransition classes (see Figures 4c and 4d).

The InternalTransition class describes an internal tran-

sition and the generation of the output event associated to

the transition. The internal transition is triggered when

its initial state is active and the state lifetime has been

consumed. The send and data connectors describe the

output event generation (see Figure 4c). When the tran-

sition takes place, the value of the send Boolean variable

changes and the data real variable is set to the event va-

lue. By default, the value of the output event is a compo-

nent parameter (i.e., the output functions returns a single

constant value). This by-default behavior can be easily

modified, so that output event values can be evaluated

from any Modelica function.

The InternalTransitionUDP class provides additional

features. It sends the event value to a predefined port

and IP address, using the UDP protocol. InternalTran-

sitionUDP has been defined by connecting the Internal-

Transition and the outputUDPport classes. The icon and
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Figure 4: a) The GGADLib Modelica library; b) InitialState and State classes; c) InternalTransition class; d) Exter-

nalTransition class; e) InternalTransitionUDP class; f) diagram of the InternalTransitionUDP class; g) Trigger class;

h) ExternalTransition Trigger class; and i) diagram of the ExternalTransition Trigger class.

diagram of the InternalTransitionUDP class are shown

in Figures 4e and 4f, respectively.

The ExternalTransition class facilitates describing ex-

ternal transitions. The transition is triggered when the

Boolean value of the triggerTransition input connector

changes (see Figure 4d) and the transition initial state is

active.

Frequently, the trigger condition is the result of eva-

luating a logical expression. The Trigger partial class

facilitates describing the trigger condition in these cases

(see Figure 4g). The interface of this partial class is com-

posed of an input Boolean variable (c), an array of input

real variables (y) and an output Boolean variable (trig-

gerSignal). When the c value changes, the value of trig-

gerSignal is evaluated from an expression that depends

on the y array. The expression is specified when the class

is instantiated.

The ExternalTransition trigger class is implemented

by connecting the Trigger and ExternalTransition clas-

ses. The icon and diagram of ExternalTransition trigger

are shown in Figures 4h and 4i, respectively.

Several external transitions are allowed to have the

same initial state. However, if two of these external tran-

sitions are triggered simultaneously, the final state is un-

defined. The instances of the src.State class check for

this condition during the simulation run. When two ex-

ternal transitions with the same initial state are triggered

simultaneously, an error message is logged out and the

simulation execution aborts.

The number of internal transitions from a state can be

zero or one. The src.State class checks that this condition

is fulfilled. If it is not fulfilled, the corresponding error

message is shown when the simulation starts. In case of

confluence between an internal and an external transition,

only the internal transition is executed.

EVALUATION OF AN OBSTACLE AVOIDANCE

CONTROLLER FOR THE E-PUCK ROBOT

The simulation study discussed in this section illustrates

the use of the UDPLib and GGADLib Modelica libraries.

The study objective is evaluating an obstacle avoidance

controller for the e-puck mobile robot (E-puck, 2012).

To this end, Modelica models of the controller and the

robot movement in an environment with obstacles have

been developed. The communication between the real-

time simulation of these models is accomplished using

the UDP protocol.

Once the controller performance has been tested using

simulation, the simulated robot has been substituted by

the real robot. In this case, the real-time simulation of

the controller is used to control the real e-puck. The com-

munication is implemented via the UDP protocol, using

ECD++ (Yu and Wainer, 2007; Moallemi and Wainer,

2010) to interface with the e-puck. The dynamic inter-

faces provided by ECD++ allow for integration of exter-

nal entities with the real-time model which operates as a

controller for the robot. Dymola 6.1 (Dynasim, 2008) is

used to simulate the Modelica models.

A hybrid model of the e-puck has been develo-

ped. The model has one discrete-time state variable,

phase, and three continuous-time state variables: the

robot position, r = (x, y), and orientation, θ. The



phase variable has the following four possible values:

{Stop, TurnL, TurnR, Forward}.

The e-puck model has an input port: motor. Possible

event values are: {1, 2, 3, 4, 5, 6}. These events, which

are generated by the controller, trigger transitions bet-

ween the model phases as shown in Figure 5.

Stop

Turn L Turn Rmotor ? 3,4

motor ? 3,4

motor ? 2,5,6

motor ? 2,5,6

motor ? 1

motor ? 1

motor ? 1

clearSpace = = true
clearSpace = = true

∞

Forward

∞ ∞

∞

Forward

Figure 5: DEVS graph describing the phase transitions

of the e-puck model.

The e-puck robot is equipped with a ring of 8 infrared

proximity sensors (E-puck, 2012). The IR[0], ..., IR[7]
readings from these sensors are the distance to obstacle

measured in cm. These values are sent to the contro-

ller through an output port. In addition, the e-puck uses

these readings to trigger the transition from the TurnL

and TurnR phases to the Stop phase. The turning maneu-

vers stops when enough clear space is detected in front

of the e-puck, i.e., when the clearSpace function

clearSpace = min(IR[0, 1, 6, 7]) > δ (9)

returns true. The δ distance is a model parameter. The e-

puck model calculates the sensor readings from its actual

location and orientation, for a predefined environment.

In this study, a L × H rectangular free space surrounded

by a wall is assumed.

The e-puck position and orientation are calculated

from its linear (v) and angular (w) velocities:

dr

dt
= v,

dθ

dt
= w (10)

The velocity vector (v) can be calculated from the ve-

locity module (v) and the orientation (θ):

v = |v| · {cos θ, sin θ} = v · {cos θ, sin θ} (11)

The velocity module (v) and the angular velocity (w)

depend on the robot phase. The velocity is zero while the

e-puck is in the Stop, TurnL and TurnR phases. v = V

while phase=Forward. The angular velocity is w = W

and w = −W while the e-puck is in the TurnL and TurnR

phases, respectively, and w = 0 otherwise. The forward

(V ) and angular (W ) velocities are model parameters.

The Modelica model of the e-puck moving in an en-

vironment with obstacles is shown in Figure 6. The in-

putUDPport component located in the upper-left corner

of the figure represents the motor input port. It receives

messages from the controller. The sensors component lo-

cated in the lower-left corner calculates the sensor mea-

surements from the actual position and orientation of the

robot, and the obstacle position. The sensor data are sent

to the controller through an output port, which is mode-

lled using the outputUDPport component located in the

lower-right corner of the figure. All the phase changes in

this model are driven by external transitions. An arbitrary

value is given to phase lifetimes: 1e10.

The model describing the e-puck controller is shown

in Figure 7. The inputUDPport component (upper-left

corner) receives messages from the e-puck sensors. The

y and c connectors of this inputUDPport component are

connected to the y and c connectors of the ExternalTran-

sition Trigger components. For the sake of clarity, these

connections are not shown in the diagram (i.e., they are

drawn in white color). Components of the InternalTran-

sitionUDP class are used to describe the internal tran-

sitions and the generation of output events. The output

events are sent to the 5000 port of the local address.

In order to facilitate visualizing the simulation results

and experimenting with the robot and controller models,

an interactive graphic interface has been developed using

the Interactive Modelica library (Martin-Villalba et al.,

2012). The main window of the virtual-lab is shown in

the left side of Figure 8. It contains an animated diagram

of the e-puck location and orientation. The robot moves

within an L × H rectangular area surrounded by walls.

The length (L) and width (H) of this area can be changed

interactively. Check boxes allow to show and hide plots

of the robot location and orientation versus time, and the

events generated by the controller and the sensors. The

virtual-lab plot window displaying the time evolution of

the robot position and orientation is shown in the right

side of Figure 8.

CONCLUSIONS

Two new Modelica libraries have been presented: UDP-

Lib and GGADLib. UDPLib facilitates sending and re-

ceiving arrays of real values using the UDP protocol.

This feature allows communicating the Modelica models

with hardware and with other models, e.g., with models

developed using other languages and tools, and running

in other computers. GGADLib supports the DEVS graph

notation in Modelica. GGADLib uses UDPLib, facilita-

ting the development of DEVS graph models that send

and receive events using the UDP protocol. The UDPLib

and GGADLib Modelica libraries can be freely downloa-

ded from http://www.euclides.dia.uned.es/



Figure 6: Model of the e-puck and its environment.

Figure 7: Model of the e-puck controller.



Figure 8: Main window of the virtual-lab for evaluating the e-puck controller (left). Virtual-lab plot window displaying

the time evolution of the robot position and orientation (right).
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