
 http://sim.sagepub.com/
SIMULATION

 http://sim.sagepub.com/content/89/1/41
The online version of this article can be found at:

DOI: 10.1177/0037549711424424

 2013 89: 41 originally published online 23 October 2011SIMULATION
Hesham Saadawi and Gabriel Wainer

Principles of Discrete Event System Specification model verification

Published by:

 http://www.sagepublications.com

On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATIONAdditional services and information for

 http://sim.sagepub.com/cgi/alertsEmail Alerts:

 http://sim.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://sim.sagepub.com/content/89/1/41.refs.htmlCitations:

 What is This?

- Oct 23, 2011 OnlineFirst Version of Record

- Nov 8, 2011OnlineFirst Version of Record

- Jan 10, 2013Version of Record >>

 at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from

http://sim.sagepub.com/
http://sim.sagepub.com/content/89/1/41
http://www.sagepublications.com
http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com/content/89/1/41.refs.html
http://sim.sagepub.com/content/89/1/41.full.pdf
http://sim.sagepub.com/content/early/2011/11/07/0037549711424424.full.pdf
http://sim.sagepub.com/content/early/2011/10/21/0037549711424424.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/

Simulation

Simulation: Transactions of the Society of

Modeling and Simulation International

89(1) 41–67

� 2011 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549711424424

sim.sagepub.com

Principles of Discrete Event System
Specification model verification

Hesham Saadawi1 and Gabriel Wainer2

Abstract
Real-time systems modeling and verification is a complex task. In many cases, formal methods have been employed to
deal with the complexity of these systems, but checking those models is usually unfeasible. Modeling and simulation
methods introduce a means of validating these model’s specifications. In particular, Discrete Event System Specification
(DEVS) models can be used for this purpose. Here, we introduce a new extension to the DEVS formalism, called the
Rational Time-Advance DEVS (RTA-DEVS), which permits modeling the behavior of real-time systems that can be mod-
eled by the classical DEVS; however, RTA-DEVS models can be formally checked with standard model-checking algo-
rithms and tools. In order to do so, we introduce a procedure to create timed automata (TA) models that are
behaviorally equivalent to the original RTA-DEVS models. This enables the use of the available TA tools and theories for
formal model checking. Further, we introduce a methodology to transform classic DEVS models to RTA-DEVS models,
thus enabling formal verification of classic DEVS with an acceptable accuracy.

Keywords
Discrete Event System Specification, model checking, Rational Time-Advance Discrete Event System Specification, real-
time systems, timed automata

1. Introduction

Real-time (RT) systems are very advanced computer sys-

tems with hardware and software components with timing

constraints. In some cases, they have ‘soft’ timing con-

straints (i.e. a deadline can be missed without serious con-

sequences). In other cases, the system must satisfy ‘hard’

timing constraints (and a missed deadline can result in cat-

astrophic consequences). In these highly reactive systems,

not only correctness is critical, but also the timeliness of

the executing tasks. For instance, if we consider the design

decisions made for an autopilot for an aircraft, or a con-

troller for an automated factory, in these cases we need to

obtain system responses within well-defined deadlines.

Consequently, RT software development is still time

consuming, error prone, and expensive, requiring a

difficult and costly testing effort with no guarantee for a

bug-free software product. Many techniques have been

proposed and used in practice to check RT software; in

particular, software testing has been the main methodol-

ogy for verifying software components.1 This method has

limitations because, in order to guarantee software reliabil-

ity, we need to apply exhaustive testing to the software

component, using all possible input combinations, which

is a costly process. Many techniques have been proposed

to enable a practical alternative to exhaustive software

testing.2 However, we cannot guarantee a full coverage of

all possible execution paths in software component, thus

leaving us with limited confidence in our software correct-

ness. Some approaches used modeling and simulation to

predict timing behavior of soft RT systems on the multi-

processor platform, as introduced by Florescu et al.3 and

Castro et al.4

Formal software analysis use is growing as an alternative,

as this technique allows full verification of software compo-

nents to be free of errors. In recent decades, these techniques

have matured to be used in some industrial capacity for soft-

ware and hardware correctness verification.5 New theoretical

advances in model checking allow one to guarantee certain

properties about models of such systems using a formal

1School of Computer Science, Carleton University, Ottawa, Canada
2Department of Systems and Computer Engineering, Carleton University,

Ottawa, Canada

Corresponding author:

Hesham Saadawi, School of Computer Science, 5302 Herzberg Building,

1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.

Email: hsaadawi@connect.carleton.ca

approach. These techniques can be automated to improve the

work of the software engineer. Timed automata (TA) the-

ory,6 in particular, has provided many practical results in this

area. However, there is still a gap between a model that is

checked as an abstract entity, and the actual code run on a

target platform. Errors could still creep into the final imple-

mentation as the programmer translates requirements cap-

tured and modeled in TA into code. TA and other formal

methods have showed promising results, but are still difficult

to apply and have limited power when the complexity of the

system under development scales up.

Instead, systems engineers have often relied on the use

of modeling and simulation (M&S) in order to make sys-

tem development tasks manageable. Construction of sys-

tem models and their analysis through simulation reduces

both end costs and risks, while enhancing system capabil-

ities and improving the quality of the final products. M&S

let users experiment with ‘virtual’ systems, allowing them

to explore changes, and test dynamic conditions in a risk-

free environment. This is a useful approach, moreover

considering that testing under actual operating conditions

may be impractical and in some cases impossible, see for

example use of simulation by Härri et al.7 and Staub

et al.8 Nevertheless, no practical, automatable approach

exists to perform the transition that exists between the

modeling and the development phases, and this often

results in initial models being abandoned, resulting in

increased initial costs that project managers usually try to

avoid. Simultaneously, M&S frameworks are not as robust

as their formal counterparts.

Here, we show a methodology that would have a higher

correctness checking reliability of the actual code execut-

ing in the RT system. This is achieved by model checking

and simulating models that are described using the

Discrete Event System Specification (DEVS).9 The same

models would run on the target platform, using a model-

based approach in which the user can move the original

models to a target platform to execute them in RT without

any changes. In order to guarantee the correctness of the

model, the methodology verifies DEVS models with TA

theory and tools. TA provides a solid theory and algo-

rithms for model checking, and the many existing tools

implementing these algorithms (for instance, UPPAAL,

Kronos and others10,11). The verified DEVS models would

then execute directly on a RT DEVS kernel, eliminating

the risk of introducing errors in the final system imple-

mentation on the target platform.

The DEVS formalism is based on systems theory, while

TA was proposed as a formal way to specify RT reactive

systems, and is based on finite automata theory. The

DEVS is the most general discrete event specification, and

one can build complex models as a composite of different

methods for the various components (cellular models,

Petri Nets, Timed Finite State Machines, Modelica, Partial

Differential Equation (PDEs). and other continuous

components) that can be then translated into a DEVS rep-

resentation. These models can be then simulated safely

using DEVS abstract simulation algorithms. TA’s main

concern is to have a system abstract formal description

that is verifiable by model checking, and is not focused on

simulating discrete systems. In that way, TA did not con-

sider constructs to build large modular systems out of

smaller components as DEVS does with its hierarchical

building of coupled models out of atomic models. Existing

DEVS simulators provide many functions, which do not

exist in UPPAAL, to simulate different systems; however,

DEVS simulators lack formal verification capability and

this was the motivation to this research.

The proposal we introduce differs from other existing

approaches in that it defines a new class of DEVS, called

the Rational Time-Advance DEVS (RTA-DEVS), which is

close to the classic DEVS in semantics and expressive

power. We then define a transformation to obtain a TA that

is behaviorally equivalent to the RTA-DEVS. The advan-

tage of doing so is that many classic DEVS models would

satisfy the semantics of RTA-DEVS models. Thus, they

could be simulated with any DEVS simulator. Likewise,

they can be transformed to TA to validate desired proper-

ties formally. The RTA-DEVS is close to the general

DEVS and adds expressiveness; however, it still restricts

the elapsed time in a state used in the external transition

function to be a non-negative rational number. When trans-

forming DEVS models to RTA-DEVS models, we make

some approximations and abstractions. To assess the accu-

racy of this approach we introduce a method to estimate if

any errors were introduced during the transformation that

may affect the verification step, or the validity of the

resulting RTA-DEVS model.

2. Background

As discussed in Section 1, we are interested in modeling

complex systems with the DEVS, and then to provide ana-

lytical validation of the system specification using formal

methods. The DEVS is a formal M&S methodology origi-

nally defined in the 1970s as a discrete event specification

modeling formalism. It is derived from systems theory,

and it allows one to define hierarchical modular models

that can be easily reused. A real system modeled with the

DEVS is described as a composite of sub models, each of

them being behavioral (atomic) or structural (coupled).

Closure under coupling allows coupled models to be inte-

grated to a model hierarchy.9 A DEVS atomic model is

formally described by

M = <X , S, Y , dint, dext, λ, ta>

Each model is seen as having input (X) and output (Y)

ports to communicate with other models. The input and

output events determine the values to appear in those ports.

42 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

The input external events are received in input ports, and

the specification of the external transition function (δext)

defines the behavior under such inputs. The internal transi-

tion function (δint) is activated after the lifetime of the pres-

ent state has been consumed, which is defined by the time-

advance (ta) function. Its goal is to produce an internal

event, which leads to a state change. The desired results

are spread through output ports by the output function (l),

which executes before the internal transition.

A DEVS coupled model is composed of several atomic

or coupled sub models. They are formally defined as

CM = <X , Y , D, fMig, fIig, fZijg, Select>

The coupled model uses input (X) and output (Y) ports

to receive external input events and to generate external

output events to communicate with other models. Coupled

models are defined as a set (indexed by the finite index D)

of basic components. These components Mi (atomic or

coupled, with i∈D) are interconnected. This interconnec-

tion is defined by the translation function (Zij), which is in

charge of converting the outputs of a model into inputs for

the others. To do so, an index of influences (Ii) is created

for each model. This index defines that the outputs of the

model Mi are connected to inputs in the model Mj, where j

is an element of Ii. The Select function is used to tiebreak

the execution of components under simultaneous events.

The CD++ tool12,13,14 allows one to define models

following DEVSs. The tool is built as a hierarchy of mod-

els, each of them related with a simulation entity. CD++
includes a graphical specification language to enhance

interaction with stakeholders during system specification,

while having the advantage of allowing the modeler to

think about the problem in a more abstract way.15 This

language uses the DEVS graphs notation to define atomic

models’ behavior.16 Each DEVS graph defines the state

changes according to internal and external transition func-

tions, and each is translated into an analytical definition.

DEVS graphs can be formally defined as15

GGAD= <XM , S, YM , dint, dext, λ, D>

where XM is the {(p, v)| p ∈ IPorts, v ∈ Xp} set of input

ports, YM is the {(p, v)| p ∈ OPorts, v ∈ Yp} set of output

ports, S is the B × P(V) states of the model, B is the {b |

b ∈ Bubbles} set of model states, and V is the {(v, n) |

v ∈ Variables, n ∈ R0} intermediate state variables of the

model and their values.

Here, δint, δext, l, and D have the same meaning as in

traditional DEVS models. Each model is defined by a

unique identifier, and it can include a graphical specifica-

tion or C++ code. When we use the state-based notation,

states are represented by bubbles, including an identifier

and a state lifetime. When the lifetime is consumed, an

internal transition function is executed.

Figure 1 shows a simple atomic model using this nota-

tion. The model includes three states: A, B, and C. Dotted

lines represent internal transitions, while full lines define

external transitions. This graphical notation has a textual

representation associated, used for creating simulation

models that execute in CD++ . The internal transitions

use the following syntax:

int: source destination [outport!va-

lue]* ({ (action;)* })
Here, source and destination represent the initial and

final states associated with the execution of the transition

function. As the output function should also execute before

the internal transition, an output value can be associated

with the internal transition. One or more actions can be

triggered during the execution of the transition (changing

the values of state variables).

External transitions are defined as follows:

ext: source destination ({ (action;)* })?
EXPRESSION

In this case, when the expression is true (which includes

inputs arriving from input ports), the model will change

from state source to state destination, while also executing

one or more actions.

There exist some other tools that support the creation

and execution of DEVS models, such as PowerDEVS.17

PowerDEVS has the ability to execute models on a RT

operating system with synchronization of simulation time

to a RT clock. With its ability to model continuous sys-

tems within DEVS by the Quantized System State (QSS)

method, the RT execution of the DEVS allows simulation

of physical systems in RT.

Although the DEVS has been used to build RT applica-

tions,15,18,19 there is a need to formally validate and verify

these models. The main issue is that traditional techniques

rely on simulating the model and a subject matter expert

goes through simulation results to validate the model.

However, with the strong and precise formal nature of

the DEVS, formal validation and verification of its mod-

els can be achieved with a high degree of accuracy. In

addition, DEVS models are executable directly on varied

RT embedded target platforms. Therefore, any formally

validated DEVS model would be guaranteed to execute

as predicted by the validation, as no human intervention

comes between the checked model and the executable

system. This advantage would serve not only the simula-

tion community, but also the RT software community, as

the DEVS can be used to model controllers that would

be simulated, formally validated and then deployed on

the target platform. Therefore, these verification and

validation tasks are important and they must be carefully

planned, in particular when developing RT systems

where we need to ensure correctness and reliability of

simulation results. However, one of the major challenges

to the application of M&S is the lack of a formal valida-

tion methodology.20

Saadawi and Wainer 43

Varied techniques have been proposed for formal soft-

ware analysis, and they can be categorized into three broad

types,5 namely Model Checking, Abstract Interpretation, and

Deductive Methods. Further, approaches to use formal meth-

ods for software correctness vary. There are the Correctness-

by-Construction techniques, in which the implementation is

generated directly from a model in order to guarantee the

final software implementation conformance to its require-

ments. This generation is done through a series of transfor-

mations that are proven formally to preserve the desired

properties in the original model. Therefore, the final code

generated does not need extensive work to apply formal

analysis to prove its conformance to the original model, thus

reducing time to market and enabling the average software

engineer to produce formally correct software.21,22,23

One method of formal software verification is the

model-checking approach, which verifies required proper-

ties on an abstract model of the software. After verifying

the model, an implementation is obtained through manual

program coding. In this case, a major concern is to verify

the implementation correctness in regard to the verified

model. The work presented by Voeten24 tries to establish a

distance between the verified model timing properties and

the implementation physical time. A distance is defined as

a difference between model time and physical time. Once

established, RT properties of the implementation can be

predicted from the model.

We propose a method based on formal software verifi-

cation ideas, where we will use a combination of DEVS

models with a model-checking approach using TA formal

models. A timed automaton can be defined as:11

A= (N , lo, E, I)

where N is a finite set of locations (or nodes), lo ∈N is

the initial location, E ⊆N ×β(C)×�× 2C ×N is the set

of edges, and I: N!β(C) assigns invariants to locations

where β(C) denotes a set of clock constraints.

Here, C is a set of clock variables (with x, y, etc. represent-

ing clock variables from the set C). We use a, b, etc. to repre-

sent actions from a set of finite alphabet �. Assume a finite

set of real-valued variables C ranged over by clocks x, y, etc.

and a finite alphabet � (with actions a, b, etc.). Let us call a

clock constraint a conjunctive formula of atomic constraints

of the form x ~ n or x – y ~ n where x, y are clock variables,

~ is one of {≤ , < , =, > , ≥ } symbols, and n is a natural

number. Clock constraints can be used on transitions, where

they are called a guard, or in a location (state), where they

are called invariant. Invariants are constraints on the form x

≤ n, or x < n to restrict time spent in a TA location.

The semantics of a timed automaton are defined as a

Timed Transition System where states are pairs < L, u> ,

where L is a location and u is a clock valuation. We write

l −→g, a, r
l0 when (l, g, a, r, l0)∈E where g is a clock

Figure 1. An atomic model defined as a DEVS graph

44 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

constraint, a is an action, and r a set of clocks to be reset

to zero. TA use two types of transitions:

- Delay Transition: < L, u> −→d < L, u+ d > : the

time passage d causes a transition from the start loca-

tion to an end location;

- Action Transition: < L, u> −→a < L0, u0> : an

action a causes a transition from the start location to an

end location.

An example of a timed automaton similar to the one

given by Bengtsson and Yi11 is shown in Figure 2. This

model represents a light that can be either off, operating in

red mode, or in white mode. The light changes mode

depending on the user pressing the light switch button.

From the red mode if the switch is pressed twice within 5

seconds, the light goes to white then to off; otherwise it

goes to white then back to red. In order to do that, the TA

uses three states LightOff, RedLight, and WhiteLight.

LightOff is the initial state. The transition out of

WhiteLight to LightOff has a guard x ≤ 5 which enables

the transition only while clock x value is less than 5 time

units, whenever a synchronization signal arrives on chan-

nel press. States could also have clock constraints called

invariants. In this case, time is allowed to pass in a state

while the clock values satisfy the invariant. Once the

invariant is not satisfied, the automaton would leave that

state and enable a transition to another state with clock

values that would satisfy its invariant.

There have been several proposals to verify DEVS

models, including formal model checking of some

restricted classes of the DEVS, generation of test traces

from DEVS models for testing DEVS simulations, and

specification of high-level system requirements in TA (and

then verifying the DEVS model against those

requirements). Others introduce clock constructs into the

DEVS to conform to TA, and it has been shown that

DEVS models can be transformed to semantically equiva-

lent TA models, maintaining their original structure and

behavior.25

Hong et al.26 introduced RT-DEVS, a formalism with a

time-advance function that maps each state to a range with

maximum and minimum time values, including an algo-

rithm to build a timed reachability tree to be used for

safety analysis with RT-DEVS and a case study of a RT

system of train-gate-controller to demonstrate the metho-

dology. Further work on verifying the RT-DEVS is shown

in Furfaro and Nigro,27,28 where TA and UPPAAL10 are

used for verification purposes, and a transformation from

RT-DEVS to UPPAAL is shown. This transformation

allows weak synchronization between components of the

TA model, as RT-DEVS semantics uses weak synchroni-

zation. The transformation given, however, did not show

timed behavior equivalence formally between the RT-

DEVS and the resulting TA models.

Another approach, presented by Hwang and Zeigler,29

introduced a subclass of the DEVS (called Finite-

Deterministic DEVS) in which the time-advance function

maps states to rational numbers, and the external transition

function cannot use the elapsed time in its domain to pro-

duce the next state. In this work, the authors also intro-

duced verification through reachability analysis similar to

TA algorithms and techniques.

Han and Huang30 show a mapping from the DEVS

models to TA. The conversion method mapped the DEVS

model through its components using the DEVS simulator.

The approach suggests trace equivalence as the basis for

parallel DEVS and TA behavioral equivalence. In

Giambiasi et al.,31 high-level system specifications are

done in TA and then modeled with the DEVS; system

requirements are verified through the simulation of the

DEVS model.

A result presented by Hernandez and Giambiasi32

showed that verification of general DEVS models through

reachability analysis is undecidable. The authors based

their deduction on building a DEVS simulation Turing

machine. Since in Turing machines the halting problem is

undecidable (i.e. with analysis only, we cannot know in

which state a Turing machine would be), they concluded

that this is also true for DEVS models: we cannot know if

we reach a particular state starting from an initial state, and

hence reachability analysis for the general DEVS is impos-

sible. They argue that reachability analysis maybe possible

only for restricted classes of DEVSs with finite input/out-

put sets and finite states set. The authors then introduced a

new class of DEVSs called Time Constrained DEVS (TC-

DEVS) that expanded the classic DEVS atomic model def-

inition with the introduction of multiple clocks incremen-

ted independently of other clocks. The classic DEVS

atomic models can be seen as having only one clock that

keeps track of elapsed time in a state, and is reset on each

Figure 2. Timed automaton

Saadawi and Wainer 45

transition. The TC-DEVS also added clock constraints

similar to TA (to function as guards on external and inter-

nal transitions). However, it allows clock constraints in

states as state invariants that contain clock differences. The

TC-DEVS is then transformed to an UPPAAL TA model.

The paper, however, did not explain a transformation of

TC-DEVS state invariants to UPPAAL TA when the

model has invariants with clock differences, as UPPAAL

TA has a restricted type of state invariance without clock

differences.

There are other verification techniques proposed for

verifying DEVS models.33,34 The idea is to generate test-

ing sequences from model specifications that are later

applied against the model implementation to verify the

conformance of implementation to specifications.

As discussed earlier, our proposal, to be discussed in

detail in the following sections, differs from the above in

that it defines a new class of DEVS, called RTA-DEVS,

which is close to the classic DEVS in semantics and

expressive power.35,36 We then define a transformation to

obtain a TA that is behaviorally equivalent to the RTA-

DEVS. The advantage is that many classic DEVS models

satisfy the semantics of RTA-DEVS models and they can

be simulated with a DEVS simulator, while being able to

be transformed to a TA in order to validate the desired

properties formally. The RTA-DEVS follows the FD-

DEVS in restricting the time-advance function to non-

negative rational numbers, but it also relaxes the restric-

tion of the FD-DEVS on external transition functions,

making it closer to the general DEVS. However, the RTA-

DEVS still restricts the elapsed time in a state used in the

external transition function to be a non-negative rational

number. This restriction translates to having non-negative

rational constants in guards in the transformed TA model,

and ensures termination of the reachability analysis algo-

rithm implemented in UPPAAL,6,10 as irrational constants

in TA guards render reachability analysis undecidable.37

We chose UPPAAL as our verification engine, as this

tool has many features and new algorithms that have been

built into it over more than 15 years of development, many

of which focused on enhancing the performance of the

model checker. Any reachability analysis algorithm that

may work on the RTA-DEVS or other DEVS subclasses

would have the same basic timed model-checking algo-

rithm implemented in UPPAAL. Thus, no gain in perfor-

mance over UPPAAL would result from performing

reachability analysis directly on the DEVS. However,

UPPAAL uses other optimizations, such as special data

structures to store state information and state reduction

techniques, that would need to be implemented into any

specific DEVS tool to be as efficient as UPPAAL. By

translating DEVS models to TA and using UPPAAL, we

build a methodology on a reliable tool and a large and sta-

ble research community. Moreover, UPPAAL provides the

modeler with many optimization techniques that can be

exploited with the DEVS to scale the size of DEVS

models that can be verified. We believe this would give

the best return on effort for DEVS verification and it is

still an open area of research.

In the following sections, we build on the work we

introduced earlier in Saadawi and Wainer,36 and we

expand it by introducing a methodology to approximate

any DEVS model to the RTA-DEVS. We also provide a

methodology to estimate the effect on verification results

that may exist as a consequence of approximating a DEVS

model to an equivalent RTA-DEVS model.

3. Rational Time-Advance Discrete Event
System Specification

As in the classical DEVS, we need to define the RTA-

DEVS atomic model. The RTA-DEVS changes the

definitions of the time-advance function ta and the exter-

nal transition function δext. The Atomic Rational Time-

Advance is defined as follows:35,36

AMTC = <X , Y , S, s0, dint, dext, λ, ta>

where X is the set of external input events, Y is the set of

external output events, S is the set of system states, s0 is

the system initial state, - δint: S ! S is the internal transi-

tion function (the same as in the classic DEVS), δext: TxX

! S with T ={(s, e)/s 0 ≤ e ≤ ta(s), e ∈ Q0,+N} is the

external transition function (e is the time elapsed since the

last transition, which takes a positive rational value), l S

! Y ∪1 is the output function, and ta: S ! Q0,+N is

the time-advance function that maps each state to a posi-

tive rational number.

Coupled RTA-DEVS models are defined exactly as in

the classic DEVS Coupled Model CM introduced in

Section 2. Similarly to DEVS, a coupled RTA-DEVS

model CM has an equivalent atomic RTA-DEVS model.

This is showed by the closure under coupling property

described in Appendix A.

3.1 Equivalency of RTA-DEVS and TA

When transforming DEVS models to RTA-DEVS models,

we have to make some approximations and abstractions.

To assess the accuracy of this transformation, we here

introduce a method to estimate if there were any errors

introduced during the transformation that could affect the

verification step or the validity of the resulting RTA-

DEVS model. In order to verify RTA-DEVS models by

applying the advanced theoretical results and the multiple

tools available for TA, we need to construct TA models

from RTA-DEVS models that are behaviorally equivalent.

Generally there are two methods to check if two of the

Timed Labeled Transition Systems (TLTSs) are behavio-

rally equivalent, namely Trace Equivalence and

Bisimulation. In Aceto et al.,38 it was shown that, for RT

systems, trace equivalence is not enough to show the

46 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

complete equivalence of two TLTSs. Although one can

show the trace equivalency of two TLTSs (based on their

acceptance or the generation of event traces), RT systems

usually have multiple concurrent components working

together. Those components may go into a deadlock state

in which no external event is observable. Due to these

subtle errors, bisimulation is a better notion for behavior

equivalence. Both analyses of RTA-DEVS and TA are

based on bisimulation.

The bisimulation between two TLTSs (e.g. systems A

and B) establishes the relation between every state in sys-

tem A and a corresponding one in system B. It also relates

every observable transition in A to a corresponding obser-

vable transition in B. In Aceto et al.,38 the concepts of

strong and weak-timed bisimilarity were defined for the

behavioral equivalence of systems. The transformation

method presented in this section is based on weak-timed

bisimilarity equivalence, because its conditions are more

general to apply than the conditions for strong bisimulation.

We first define the behavior equivalency based on

weak-timed bisimulation. Then, following the conditions

of this bisimulation, we construct a TA model for the basic

behavior elements of RTA-DEVS (namely, the internal

and external transitions). Then, we deduce the required

constant values on the TA model to complete the bisimu-

lation equivalence.

3.1.1 Definition: eventual transition relation ‘)’

In a TLTS with states s and t, the eventual transition rela-

tion defines a transition from state s to state t that may

contain one or more direct transitions, labeled with events

that are non-observable to the outside world. If we have an

observable action a, a non-observable action τ, and a tran-

sition label α, then, for any TLTS, the eventual transition

relation) between s and t on action α (written s)
α

t) is

defined if any of the following conditions is true.

1. s)
τ

t: there is a transition from s to t only

composed of transitions labeled with non-

observable actions. For example, for the non-

observable action α = τ, there is a transition

s(−→τ) * t (* defines one or more occurrences of

these transitions).

2. s)
a

t: there is a transition from s to t composed

of one transition labeled with an observable

action α = a, and one or more eventual transi-

tions labeled with non-observable actions. For

example, s)
τ

s1 −→a s2)
τ

t for some states s1 and

s2.

3. s)
d

t: there is an eventual transition relation

from s to t with total delay d (called eventual

delay transition), which is composed of one or

more direct delay transitions combined with some

non-observable action transitions. This represents

a sequence of transitions with no observable

actions whose total delay amounts to d. For

example, for action α= d ∈<≥ 0 and s)
τ

s1 −→d1
t1 tn�1)

τ
sn −→dn

tn)
τ

t (with n ≥
0), for some intermediate states s1.sn, t1. tn and

delays d1.dn with d = Pn

i= 1

di (d is the total delay

for the eventual transition from s to t; by conven-

tion, d = 0 when n = 0).

3.1.2 Definition: weak-timed bisimulation

The weak-timed bisimulation is a binary relation R over a

set of states of a TLTS. For example, if we have states s1,

s’1, s2, and s’2, then R is a weak-timed bisimulation s1 R s2

(Aceto et al.38) if:

• s1 −→d s01, then there is a transition s
2
)
d

s02 such

that s#1 R s#2, as shown in Figure 3;
• s1 −→a s01, then there is a transition s2)

a
s02 such

that s#1 R s#2, as shown in Figure 4;
• s2 −→d s02, then there is a transition s1)

d
s01 such

that s#1 R s#2, as shown in Figure 5;
• s2 −→a s02, then there is a transition s1)

a
s01 such

that s#1 R s#2, as shown in Figure 6.

3.4 RTA-DEVS internal transition semantics

TA expresses the notion of time through clock

variables and constraints on them, as shown in the previ-

ous section. Here, we present the RTA-DEVS behavior

in terms of its transition functions, and we discuss

how to obtain a behaviorally equivalent TA according

Figure 3. Direct delay transition from s1 to s#1 and corresponding eventual delay transition from s2 to s#2

Saadawi and Wainer 47

to the previous definition. In doing so, we determine the

value of the constant in TA invariants and guards,

in order to keep the same behavior of the RTA-DEVS.

We will use the same notation of TLTS semantics as

defined in the paper for both RTA-DEVS and TA

transitions to easily relate RTA-DEVS and TA

when we talk about their semantically equivalent

transitions.

The RTA-DEVS internal transition semantics is shown

as a DEVS graph in Figure 7, and is defined as

1. δintðs1; eÞ ¼ s3; if e ¼ taðs1Þ ¼ T

In RTA-DEVS semantics, this transition means that we

move to state s3 when the elapsed time e in s1 equals

the time-advance value of s1. In a TLTS, this can be

defined as a time-elapsed transition with delay d with

the form

s1 −→d s3 if 0≤ e< ta(s1) and d = ta(s
1
)� e

which means that if we start at s1 with time spent e, we

need to delay d time units before changing to state s3:

2. δint(s1, e)= s1 if 0≤ e< ta(s1)

From the RTA-DEVS semantics, this transition means

that we stay in the same state s1 as long as the elapsed

time e in that state does not equal or exceed the time-

advance value for s1. This can be defined as a time

elapse transition of the form

s1 −→d s1 if 0≤ e< ta(s1) and 0≤ d < ta(s1)� e

which means that if we start at s1 with time spent e, as

long as time delay d is constrained as above, we stay at s1.

Figure 5. Direct delay transition from s2 to s#2 and corresponding eventual delay transition from s1 to s#1

Figure 6. Direct action transition from s2 to s#2 and corresponding eventual action transition from s1 to s#1

Figure 4. Direct action transition from s1 to s#1 and corresponding eventual action transition from s2 to s#2

48 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

From now on, we will use the operational semantics of

UPPAAL for TA, as defined by Behrmann et al.10 For the

graphs in the rest of the paper, we will name RTA-DEVS

states as si, and the corresponding TA locations as Li (with

i an integer number).

The delay transition for the TA in Figure 8 is defined as

(L1, clock = x) −→d (L1, clock = x+ d) for any d ≥ 0

This defines the RTA-DEVS delay transition above, in

which we stay in the same state with a total delay d less

then time advance of s1. We will show that the TA in

Figure 8 is behaviorally equivalent to the DEVS graph

model shown in Figure 7 through a timed bisimulation

relation. To do this, we will show that the state s1 is bisi-

milar to location L1, and state s3 is bisimilar to location L3.

This is done showing a weak-timed bisimulation relation

(from RTA-DEVS to TA, and from TA to RTA-DEVS).

We do this in steps 1 and 2 below.

In this model, two locations are defined (L1 and L3),

along with a transition from L1 to L3. L1 has an invariant

on clock x (x < C) that allows the TA to stay in that loca-

tion as long as the invariant is true. The transition from L1

to L3 has a guard (x ≥ C) that must be true for the transi-

tion to be enabled, and C is a rational number. The transi-

tion also has an update rule for clock variable x to reset it

to zero before entering location L3. We apply the condition

above to weak-timed bisimulation, first from RTA-DEVS

to TA and then from TA to RTA-DEVS. In doing so, we

determine a value for the constant C to preserve the bisi-

mulation relation.

3.4.1 Step1: from RTA-DEVS to TA

For the bisimulation of the states shown in Figures 7 and 8,

we have the following requirements.

• S1 R L1: this is a delay transition from s1 to itself.

If s1 −→d s1 for some value of d where

0≤ e< ta(s1) and 0≤ d < ta(s1)� e, then to satisfy

the bisimulation relation we should have

(L1, x= e) −→d (L1, x= e+ d) for the same value

of d. As we have from the invariant of state L1,

x<C then by substituting for x and d, we get

ta(s1)≤C ðRule 1Þ

s3 R L3: bisimilarity between s3 and L3: for the delay

transition from s1 to s3, let us consider the execution of the

DEVS internal transition (s1, e) −→d (s3, 0), where

0≤ e< ta(s1) and d = ta(s1)� e by the TA transition

(L1, x= e) −→d (L3, x= e+ d), with a reset statement on

the transition x: = 0.

In order for these two delay transitions to be behavio-

rally equivalent, they need to start from bisimilar states,

and after the same delay, they reach two bisimilar states.

To achieve this, we use the same value of delay d on both

transitions, and we deduce the constant C in the TA clock

constraint to give us that condition above for bisimulation.

The TA transition above starts from location L1, with the

clock x equal to the same value of elapsed time e at the

RTA-DEVS transition above; then, after the same delay d

of the RTA-DEVS transition, it transitions to L3, and the

value of clock x increases by d.

We apply the conditions for this delay transition on TA

transition above. With the TA guard on the transition out

of location L1: (x≥C) with the value of clock x:

(x= e+ d), we get

ta(s1)≥C ðRule 2Þ

This rule means that as long we use a constant C in the

guard of the TA transition with a value greater or equal to

the time-advance value of s1, the previous TA transition

executes the RTA-DEVS transition above.

The previous two rules give the condition ta(s1) = C for

the TA shown in Figure 8 to execute the DEVS graph as in

Figure 7.

This condition guarantees the weak-timed simulation

relation from the RTA-DEVS model of an internal transi-

tion to a delay transition of the TA. We show the condition

of the weak-timed simulation relation from TA to RTA-

DEVS in step 2 below.

Figure 7. RTA-DEVS internal transition

Figure 8. TA model for an internal RTA-DEVS transition

Saadawi and Wainer 49

3.4.2 Step 2: from TA to RTA-DEVS

To satisfy the other direction of the bisimulation relation,

we convert the TA in Figure 8 with the RTA-DEVS in

Figure 7.

Case 1: TA delay transition (L1, x= e) −→d (L1, x=
e+ d).

Here, we need the value of clock x to be less than C in

order for the L1 invariant to be true and TA to stay in L1,

that is

e+ d <C ðRule 3Þ

For the RTA-DEVS time delay transition

(s1, e) −→d (s1, e+ d) to stay in s1 after d, we need the

sum of the elapsed time and delay to be less than the life-

time of s1:

e+ d < ta(s1) ðRule 4Þ

Case 2: TA transition (L1, x= e) −→d (L3, x= 0).

We start from location L1 with a clock x equal to some

elapsed time e in L1. After d, we change to L3 and clock x

is reset. To exit from L1, the invariant would be false and

the guard on the TA transition would need to be true,

which gives

e+ d =C ðRule 5Þ

This transition is defined in the RTA-DEVS as

(s1, e) −→d (s3, 0), in which we need elapsed time e in s1

plus a delay d equal to the time advance of s1 to trigger

the internal transition:

e+ d = ta(s1) ðRule 6Þ

From Rules 3 and 4, we determine C = ta(s1). With this

value, we have a timed simulation relation from TA

(shown in Figure 8) to RTA-DEVS (shown in Figure 7).

By having a simulation relation in both directions, the

RTA-DEVS internal transition shown above is timed bisi-

milar and behaviorally equivalent to the TA timed transi-

tions shown above if we have the constant C equal to the

lifetime of corresponding state in the RTA-DEVS model.

This concludes that s1 R L1 and s3 R L3 by the bisimula-

tion relation R.

When we use the previous method to map internal tran-

sitions from the RTA-DEVS model to transitions at a TA

model and vice versa, we guarantee the resulting transi-

tions to be behaviorally equivalent. We will show the

same for RTA-DEVS external transitions in the following

section.

3.7 RTA-DEVS external transitions

The RTA-DEVS external transition function is defined as

δext : VD ×X → S, where VD = (s, e) : s∈ S, 0≤ e≤ taf
(s)g.

Figure 9 represents the following definitions for the

RTA-DEVS external transition function:

δext(s4, a, e)= s5 for 0< e< 3

δext(s4, a, e)= s6 for 3≤ e< ta(s4)

Each of these transitions can be expressed as a time pas-

sage and action transitions:

1. s4 −→d < 3
s4 and s4 −→a s5;

2. s4 −→3≤ d < ta(s4)
s4 and s4 −→a s6.

From these expressions, we can represent the external

transitions as the TA transitions shown in Figure 10.

Figure 9. RTA-DEVS external transitions on action a

Figure 10. TA model for RTA-DEVS external transition

50 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

From TA semantics, each of these transitions is

expressed as a time and action transitions as follows.

1. (L4, x= 0) −→d < 3
(L4, x= 3) and (L4, x= 3) −→a

(L5, x= 0) for the first RTA-DEVS transition. That

is, we stay in L4 while the elapsed time is less than

3 units, and then with action a, the TA takes a tran-

sition to L5.

2. (L4, x= 0) −→3≤ d < ta(s4)
(L4, x= 3) and (L4, x) −→a

(L6, x= 0) for the second RTA-DEVS transition.

That is, if the elapsed time in L4 exceeds 3 units

and is less than lifetime of L4, with action a, the

TA transitions to L6.

This gives us the relation R between RTA-DEVS and

TA models, which states s4 R L4, s5 R L5, and s6 R L6.

Conversely, we can show the simulation in the other

direction from each of the TA transitions and the RTA-

DEVS external transitions above. Hence, this shows a bisi-

mulation relation R between the corresponding DEVS and

TA models above.

3.8 Observations: RTA-DEVS to TA transformation.

The transformation examples in the previous section intro-

duce the methodology to transform RTA-DEVS models to

TA models. The resulting TA models are a subset of deter-

ministic safety automata used in the UPPAAL model

checker. The complete transformation methodology can

be summarized as follows.

1. Define a clock variable for each atomic RTA-

DEVS model, for example x.

2. Replace every state in RTA-DEVS with a corre-

sponding one in TA, that is, L1 for source s1 and

L2 for destination s2.

3. An RTA-DEVS internal transition δint(s1, e)= s2 is

modeled in TA as follows.
• A source state L1 and a destination state L2.
• Reset the clock variable on the entry to each

location (x: = 0).
• Put an invariant in the source state derived

from the time-advance function for that state

as shown above, that is, x < ta(s1).
• If the value of the lifetime of state s1 is zero,

then define the corresponding location in TA

(L1) to be a committed location. Then, skip the

next step.
• Define a transition with a guard. This guard

should be the complement to the invariant in

the source state, as shown in the example trans-

formation above, that is, x ≥ ta(s1).

4. The RTA-DEVS external transition is modeled in

TA with the following items:

• a source state and some destination state(s), that

is, L1 for source s1 and L2 for destination s2;
• a clock reset on the entry to each location;
• an invariant in the source state that corresponds

to time-advance function for that state, that is,

x < ta(s1);
• for the external transition(s) with guards of

clock constraints, these constraints should be

disjointed to obtain a deterministic TA model;
• an action label on TA transitions corresponds

to each RTA-DEVS input event accepted at a

source state s1.

By applying the previous steps, we obtain a TA model

that executes every transition defined in the RTA-DEVS

model under study. As we know, the RTA-DEVS behavior

is completely defined by its transition functions, which

defines all the transitions in the RTA-DEVS model. Thus,

the resulting TA model executes the RTA-DEVS. This

gives us a TA model that is behaviorally equivalent to the

RTA-DEVS model, and that can be formally verified with

tools, such as UPPAAL, to infer properties about the origi-

nal RTA-DEVS model. In the following section, we look

into a full example of applying this methodology, and we

will show how, in case of explosion of states, a DEVS

simulator can be used to co-test the model using simula-

tion in parallel with the formal verification steps.

4. A transformation example

From the previous section, we can see that any RTA-

DEVS model can be transformed to a behaviorally

equivalent TA if we follow the steps shown in Section 3.

To show this process in further detail, we introduce an

example of an elevator system introduced by Saadawi

and Wainer.35 The system is composed of an elevator

and its controller, which interacts with the user to receive

button requests from each floor. Then, it makes the ele-

vator to respond to user requests. This is an abstract

model of the movement of the elevator. Other details

have been ignored, such as door operation, floor display,

etc., as we are only interested in controlling the elevator

movement with our controller. This is an example of a

(soft) RT system with safety and bounded response time

requirements. To check for these requirements, we

applied the previous transformation rules to the DEVS

graph models of the elevator system, and used UPPAAL

to check the validity of timing requirements.

The elevator DEVS graph model in Figure 11 includes

five external transitions (shown with solid arrows), and

three internal transitions (shown with dotted arrows). An

external transition is enabled whenever the expression on

that transition evaluates to true in the RTA-DEVS model.

The expression Value(mover) returns the value in the

Saadawi and Wainer 51

variable mover and compares it to the constant value

specified in the external transition function. If this com-

parison evaluates to true, the elevator model takes that

external transition. The value of the variable mover is

passed from the controller to instruct the elevator to

move or stop. The complete textual specification for this

graphical model can be found in Figure 12. For instance,

we check the external transitions rising!StopUp, stop-

ped!aux, GoingDown!SlowingDown and evaluate to

true for the value of 1 at transitions Slowing

Down!stopped, StopUp!stopped, stopped!GoingDown

and for the value of 2 at transitions stopped!rising.

By taking each transition from the RTA-DEVS model

and applying the previous steps defined in Section 3.4,

we convert this DEVS Graph into the TA model shown

in Figure 13. In our case, the expressions just discussed

are translated to a channel reception move?, and a vari-

able direction that takes values of 0, 1, or 2, as shown in

Figure 13. The guard condition on the value of the vari-

able direction is equivalent to the condition of the exter-

nal transition in the RTA-DEVS model. In this case,

whenever a value is transmitted on that channel, the

transition synchronized on that channel is enabled. In

order to model DEVS states with zero lifetimes (i.e. the

cases where this state is reached, the output function is

executed immediately, and then an internal transition is

executed departing from that state), we used committed

states as defined in UPPAAL’s TA. Time does not pass

in a committed state and, once we reach it in the TA

model, a transition out of that state is enabled immedi-

ately. An example of a committed state is the Aux state

in Figure 13. Likewise, note that the time-advance val-

ues for each state in the RTA-DEVS model have been

substituted with an equivalent clock invariant in the cor-

responding state in the TA, and the constant in that

invariant equals the state lifetime as indicated on the

RTA-DEVS model. By having bisimilar states in the TA

model to those of the RTA-DEVS model, we obtain a

TA (in Figure 13) that is behaviorally equivalent to an

RTA-DEVS model (in Figure 11).

The elevator Controller is responsible for interacting

with the user and sending commands to the elevator to sat-

isfy the user requests. The RTA-DEVS model for the con-

troller is shown in Figure 14 using DEVS graphs. In this

model, we abstract the behavior of the controller to being

in one of six possible states, which represent the elevator

[controller]
in: button stop sensor
out: move
var: floor cur_floor direction
state: stopping stdbyStop moving Stopped stdbyMov aux1
initial : stdbyStop
int: Stopped stopping move!0
ext: stopping stdbyStop Value(stop)?1
ext: stdbyStop moving Equal(button,cur_floor)?0 {floor =

button; direction = compare(cur_floor,floor,2,0,1);}
int: moving stdbyMov move!direction
int: aux1 stdbyMov
ext: stdbyMov aux1 Equal(sensor,floor)?0 {cur_floor=sensor;}
ext: stdbyMov Stopped Equal(sensor,floor)?1 {cur_floor = sensor;}
stopping: 00:00:00:00
stdbyStop: 00:00:1000:00
moving: 00:00:00:00
Stopped: 00:00:00:00
stdbyMov: 00:00:1000:00
aux1: 00:00:00:00
floor: 0
cur_floor: 0
direction: 0

Figure 12. Controller CD++ model

Figure 11. Elevator RTA-DEVS model represented in DEVS
graph notation

52 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

position, its movement direction, and its acceleration.

The state StdByStop represents the elevator in a com-

plete stop and ready to move. Moving is used when the

controller makes a decision to move the elevator based

on current floor and the button pressed floor. StdByMov

corresponds to the elevator moving to the desired floor,

and the controller in that state uses sensor signals to

decide when to stop the elevator. The state aux serves as

a ‘dummy’ state, and its internal transition is executed

immediately after reaching that state; its purpose is to

enable the test of the sensor value on the external transi-

tion to it with the function equal(sensor, floor). The state

Stopped corresponds to the controller deciding to send a

signal to the elevator to slow in preparation to stop, and

Stopping corresponds to the controller waiting for the

elevator to get into complete stop and send a stop signal

to the controller.

The idea is that the controller starts in the StdByStop

state, waiting for a button request. Whenever it receives

the button request, it triggers an external transition, com-

paring the button floor with the current floor (cur_floor)

where the elevator is located. Based on this comparison,

the controller determines the direction in which the eleva-

tor should move, and stores this info into the direction

variable. The controller then changes to the Moving state,

which uses a lifetime of zero time units, making an output

function be executed immediately in order to send the

direction information through the port move to the elevator

model. Likewise, an instantaneous internal transition is

triggered to change the state into the StdByMov state. The

Figure 15. TA controller model in UPPAAL

Figure 13. Elevator TA model
Figure 14. Elevator controller model as DEVS graphs

Saadawi and Wainer 53

controller then decides to change to the stopped state if the

sensor reading matches the desired floor; otherwise, it

loops between the aux state and StdByMov states, as shown

in the figure.

We applied the transformation steps defined in Section

3.4, and we obtained the TA shown in Figure 15. The

RTA-DEVS Elevator coupled model is composed of the

elevator atomic model and the Controller model. The

coupled Elevator model takes as an input a number

between 1 and 3 that represents the number of the floor

with the button pressed. In order to model inputs to the

system, we constructed a new automaton that sends the

button and sensor inputs to the controller, as shown in

Figure 16. This automaton is necessary to make the TA

system under study a closed model, because, in order for

model-checking techniques to be able to verify desired

properties, they must work on closed systems. The reason

for this is that a model checker explores all possible sys-

tem transitions to determine if the desired property is met

or not. Therefore, we need to model the system environ-

ment completely, in order to check all the possible system

behaviors for all expected environment inputs. In this

example, the environment modeled in Figure 16 is respon-

sible for sending button and sensor events to the control-

ler. It starts at S1 state and, after staying in this state for 5

time units, it sets variable button to 3, then synchronizes

with the controller TA on channel buttonc. Again, it waits

in state S2 until its clock y reaches 10 time units, sets the

sensor to 1, and synchronizes with the controller on the

channel sensorc. This process continues for the desired

input sequences to the controller, and then resets the clock

and restarts again at S1. Different environment TAs can

be built this way in order to check the system thoroughly.

In Saadawi and Wainer35 we showed how to verify a

number of desired properties for the RTA-DEVS model

based on the translation into TA. For instance, UPPAAL

(or other model checkers for TA models) can be applied to

the transformed model to study deadlock freedom,

bounded response time, and safety properties for the origi-

nal Elevator coupled model. The model checkers are usu-

ally based on Computational Tree Logic (CTL), which is

used to construct queries with the requirements and submit

them to UPPAAL to get an answer and hence verify that

requirement. After translating our DEVS model to an

equivalent TA model, we can use model checking to

answer questions about our original DEVS model behavior

(that otherwise needs to be simulated for all possible

executions in order to obtain all possible answers). Some

of the important questions to address would include the

following.

• Does the DEVS model execution stop at one point

without being able to progress (i.e. having a

deadlock)?
• If no deadlocks are found in the DEVS model, is it

always guaranteed that, whenever a user pushes a

Figure 16. Environment inputs (button and sensor)

54 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

floor button, the elevator would eventually reach

that floor (normal operation as desired for the ele-

vator system)?
• In case the elevator reaches the requested floor, is

there an upper bound for the time between the

request and the arrival of the elevator that our

model would always guarantee to happen?

In order to answer these questions, we here show how

to formulate these questions into formal queries to the TA

model, and how UPPAAL responds when applied to the

TA models translated from the DEVS graphs we recently

discussed.

We started by addressing the first question above, and

we applied the UPPAAL verifier to our model, checking

for any deadlocks that maybe present in the elevator model

To check for that failure, we formulated a simple query to

the UPPAAL model. This is expressed in UPPAAL’s CTL

language as

A[] not deadlock

which means that, for all paths, there should be no dead-

locks. After running the checker, it shows that this prop-

erty is satisfied, that is, there is no deadlock in the DEVS

model:

UPPAAL version 4.0.6 (rev. 2986), March

2007 – server.

A[] not deadlock

Property is satisfied.

More complex queries could also be formulated to

check for more properties, verifying that properties using

UPPAAL in a similar fashion. UPPAAL also gives a trace

to help the designer get an insight into the system

working details. A trace is shown in Figure 17. In this

trace, the system starts at initial states for all three compo-

nents, and then progresses. The composed system state is

shown as (Stopped,StdByStop,S1); transitions
with synchronization are shown as buttonc:

User_sensor_input –> ElevatorController.

That means that User_sensor_input synchro-
nizes on the buttonc channel with the
ElevatorController. The new state resulting
from this transition is shown below the transition.

This trace result shows the composed state of the

model, that is, the Elevator, Controller, and

User_sensor_input composed state. The composed state is

represented by the tuple (elevatorState,Controller

State,User_Sensor_inputState). Therefore, in order to

compare this UPPAAL trace and a DEVS simulation, we

can compare the component trace with its corresponding

simulation output, as DEVS simulation output is stored for

each component individually. For example, the elevator

UPPAAL trace results are in the left-hand side of the

tuple. By extracting the elevator trace (Stopped,

Rising, StopUp, Stopped, GoingDown,

SlowingDown, Stopped), we can find it matches the

same corresponding states in the simulation results. (A
simulation of the same model will be discussed in the
following section; the corresponding results can be seen
in Figure 18. In that case, the UPPAAL states above
correspond to the states stopped, rising,

StopUp, stopped, dropping, SlowDown, and

stopped in the simulation.) As we can see in this trace
(and in the corresponding simulated version in Figure
18), the elevator starts at its initial state Stopped, and
then rises to reach third floor when the third floor but-
ton is pressed. The elevator stops there, and it remains
in the stopped state waiting for the next request.
When the first floor button is pressed, the elevator
moves down until it reaches the first floor, and it
remains there in the stopped state, ready for next but-
ton request. The same comparison can be done to the
controller trace (and we can compare the results with
the corresponding DEVS simulation, which is shown in
Figure 19).

To answer the second question above, we need to check

for the liveness property, that is, that something would

eventually happen. In our case, for the proper operation of

the controller within the coupled system, we are interested

to check if by pressing a certain floor button, the elevator

would eventually reach that floor. For example, if the user

presses the third floor button, the elevator would eventu-

ally reach the third floor. This property is expressed in

CTL as

button == 3 –> ElevatorController.

cur_floor == 3

that is, whenever the third floor button is pressed, the cur_-

floor variable in the ElevatorController eventually reaches

that floor. This property was satisfied as in the UPPAAL

model checker for the given model. (A detailed trace for

the example is found in the table included in the Appendix,

in which we can see all the results obtained during the veri-

fication process for this and other queries. The table

includes the preconditions and state changes are found on

the left-hand side of the table; the values of the system

variables are shown on the right-hand side of the table.) In

this case, the model starts in the composite state at

(Stopped,StdByStop,S1), then the User_sensor_input com-

ponent has an enabled transition that fires on channel but-

tonc and synchronizes with the ElevatorController

component on the same channel. This causes the total sys-

tem state to move to (Stopped,Moving,S2). At this moment,

the button request for the third floor is pressed (button =

3), however the elevator current floor is still on the first

floor (sensor = 1, ElevatorController.cur_floor = 1). The

system progresses through execution until the elevator

reaches third floor at composite state (Rising, Aux1, S5).

However, for the query

button == 3 –> ElevatorController.

cur_floor == 4 the property was not satisfied. When

Saadawi and Wainer 55

we press the third floor button, if the elevator initially
stopped at first floor, there is no way the elevator
would reach the fourth floor. This would allow a mode-
ler to revise the original DEVS graph model,

redesigning it according to requirements. The system
verifies that this would never be satisfied by checking
the model with all possible executions until no reach-
able composite state would satisfy the query. If we run
this in UPPAAL, we can see that the trace starts from
initial composite state not satisfying the query and,
after going through execution, we reach the same initial
composite state without satisfying the query in any
point during the execution.

To answer the third question (i.e. to find out whether

the elevator would reach the requested third floor within

some bounded time), we extended the model for bounded

time checking by adding a Boolean variable b, and a glo-

bal clock z, as shown on the Elevator model. The variable

b is set to true as long the elevator starts moving, and until

it reaches the Stopped state again. Therefore, by checking

the accumulated time in clock z while b is true, this gives

us the property we need to check. That property is

expressed as

(Stopped,StdByStop,S1)
buttonc: User_sensor_input --> ElevatorController
(Stopped,Moving,S1)
move: ElevatorController --> Elevator
(Rising,StdByMov,S1)
sensorc: User_sensor_input --> ElevatorController
(Rising,Aux,S1)
ElevatorController
(Rising,StdByMov,S3)
sensorc: User_sensor_input --> ElevatorController
(Rising,Aux1,S4)
ElevatorController
(Rising,StdByMov,S4)
sensorc: User_sensor_input --> ElevatorController
(Rising,Aux1,S5)
ElevatorController
(Rising,StdByMov,S5)
ElevatorController
(Rising,Stopped,S5)
move: ElevatorController --> Elevator
(StopUp,Stopped,S5)
stop: Elevator --> ElevatorController
(Stopped,StdByStop,S5)
buttonc: User_sensor_input --> ElevatorController
(Stopped,Moving,S6)
move: ElevatorController --> Elevator
(GoingDown,StdByMov,S6)
sensorc: User_sensor_input --> ElevatorController
(GoingDown,Aux1,S7)
ElevatorController
(GoingDown,StdByMov,S7)
sensorc: User_sensor_input --> ElevatorController
(GoingDown,Aux1,S1)
ElevatorController
(GoingDown,StdByMov,S1)
ElevatorController
(GoingDown,Stopped,S1)
move: ElevatorController --> Elevator
(SlowingDown,Stopped,S1)
stop: Elevator --> ElevatorController
(Stopped,StdByStop,S1)

Figure 17. Elevator TA simulation results in UPPAAL

C 00:00:00:000 : stopped ,
? 00:00:05:000 : move , 2
E 00:00:05:000 : stopped , rising
? 00:00:18:000 : move , 0
E 00:00:18:000 : rising , StopUp
O 00:00:19:000 : stop , 1
I 00:00:19:000 : StopUp , stopped
? 00:00:27:000 : move , 1
E 00:00:27:000 : stopped , dropping
? 00:00:36:000 : move , 0
E 00:00:36:000 : dropping , SlowDown
O 00:00:37:000 : stop , 1
I 00:00:37:000 : SlowDown , stopped

Figure 18. Elevator simulation results

56 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

A[] (b imply z < 27)

which is satisfied, that is, reaching the third floor with less

than 27 time units is possible for all possible executions.

We can see this in the trace from the initial composite

state in the table in the Appendix, until the composite state

(StopUp, Stopping, S5) where the elevator has stopped in

state StopUp and current floor is 3 with the clock z in the

interval [0,27). In this state, the query evaluates to true.

However, the query

A[] (b imply z < 26)

is not satisfied. This shows that the elevator would reach

the third floor after the request, and it would take no less

than 26 time units, but it guaranteed to reach the floor at

27 time units or more. From the same trace presented in

the Appendix, when we reach the third floor, clock z is in

the interval [0,27). This shows that the elevator cannot

meet a deadline of less than 26 time units for all execu-

tions leading to reach the third floor.

5. A Discrete Event System Specification
modeling and simulation example

As discussed earlier, the TA checkers (such as UPPAAL)

sometimes cannot solve the questions being asked (or, due

to explosion of states, the model checker can take a very

long time for every single query). In those cases, running

a simulation with individual test cases can provide insight

on the quality of the model, even when we cannot prove

all the properties available. In order to show this process

and the relationship with the formal verification presented

in Section 4, we here present a M&S example of the previ-

ous models.

As discussed earlier, the elevator model shown in

Figure 11 represents the different states of elevator move-

ment and the transitions between these states. In this

model, the elevator starts in the stopped state and waits for

controller commands to move to satisfy a button request

from the user. The decisions for proper direction, starting,

and stopping the movement are taken by the controller.

The DEVS graph in Figure 11 has a corresponding textual

representation and the model is shown in Figure 20.

As we can see, the model uses one input and one output

port, which are specified with the keywords in and out,

respectively. The State keyword defines the list of states

on the model, with initial as the initial state. External tran-

sitions are marked by the keyword ext. Internal transitions

are marked by the keyword int. For both transitions we

define source/destination states, along with the input port

and value for external transition, and output port and value

to that port in the case of internal transition. The lifetimes

for each state are represented besides the state name.

Similarly, the model textual specification corresponding to

the DEVS Graph model of the elevator Controller of

Figure 14 is shown in Figure 12.

C 00:00:00:000 : stdbystop , (direction=0) (floor=0) (cur_floor=0)
? 00:00:05:000 : button, 3
E 00:00:05:000 : stdbystop , moving(direction=2) (floor=3) (cur_floor=0)
O 00:00:05:000 : move, 2
I 00:00:05:000 : moving, stdbymov (direction=2) (floor=3) (cur_floor=0)
? 00:00:10:000 : floorSensor, 1
E 00:00:10:000 : stdbymov , aux1 (direction=2) (floor=3) (cur_floor=1)
I 00:00:10:000 : aux1 , stdbymov (direction=2) (floor=3) (cur_floor=1)
? 00:00:14:000 : floorSensor, 2
E 00:00:14:000 : stdbymov , aux1 (direction=2) (floor=3) (cur_floor=2)
I 00:00:14:000 : aux1 , stdbymov (direction=2) (floor=3) (cur_floor=2)
? 00:00:18:000 : floorSensor, 3
E 00:00:18:000 : stdbymov , stopped (direction=2) (floor=3) (cur_floor=3)
O 00:00:18:000 : move, 0
I 00:00:18:000 : stopped , stopping(direction=2) (floor=3) (cur_floor=3)
? 00:00:19:000 : stop, 1
E 00:00:19:000 : stopping, stdbystop (direction=2) (floor=3) (cur_floor=3)
? 00:00:27:000 : button, 1
E 00:00:27:000 : stdbystop , moving(direction=1) (floor=1) (cur_floor=3)
O 00:00:27:000 : move, 1
I 00:00:27:000 : moving, stdbymov (direction=1) (floor=1) (cur_floor=3)
? 00:00:32:000 : floorSensor, 2
E 00:00:32:000 : stdbymov , aux1 (direction=1) (floor=1) (cur_floor=2)
I 00:00:32:000 : aux1 , stdbymov (direction=1) (floor=1) (cur_floor=2)
? 00:00:36:000 : floorSensor, 1
E 00:00:36:000 : stdbymov , stopped (direction=1) (floor=1) (cur_floor=1)
O 00:00:36:000 : move, 0
I 00:00:36:000 : stopped , stopping(direction=1) (floor=1) (cur_floor=1)
? 00:00:37:000 : stop, 1
E 00:00:37:000 : stopping, stdbystop (direction=1) (floor=1) (cur_floor=1)

Figure 19. Controller simulation output

Saadawi and Wainer 57

Figure 21 shows the coupled model definition for the

system, which is composed by the elevator and the con-

troller models. In the top model, the two components are

defined, including the two input ports in the top compo-

nent: button and sensor. These two ports are linked to the

input ports of controller (as seen in lines 6 and 7). The cou-

pling between the elevator and controller atomic models is

shown in lines 4 and 5. The figure also includes a graphical

representation of this coupled model, which shows the

atomic models of the elevator and controller, the input

ports to the coupled model, and the links between all com-

ponents (both notations are equivalent).

In Figure 22, we show a test case scenario for the ele-

vator top model. These inputs are used to simulate the

overall execution of the elevator system. These external

events are sent to the model top component defined in

Figure 21. The simulator will direct the inputs to the ele-

vator controller as specified in the model definition. In this

file, the third floor button is pressed 5 s after the start of

the simulation. The floorSensor inputs are used to define

the signals sent by the elevator sensors to the elevator con-

troller (which includes the floors 1, 2, and 3, which were

reached at times 10, 14, and 18 s, respectively). At time

27 s, the first floor button is pressed, and then, the floor

sensor sends the corresponding signals at designated times,

as shown in the figure.

Figure 19 shows the simulation results for the elevator

controller. The character in the first column in the simula-

tion results represents the following:

C: the initial state;
?: input received by the elevator atomic model;
E: external transition executed by the elevator atomic

model that is triggered by the reception of an event;
O: output caused by invoking the output function;
I: internal transition executed.
As we can see, initially, the controller is at state

stdbystop, with all variables initialized to zero. At 5
time units, the controller receives the third floor button
request as specified in the input event file in Figure 22.
This input causes the controller to execute the external
transition function, and it changes its state from
stdbystop to moving (with the new variable values
shown on the simulation trace). At time 5, the output
function executes, and it sends the value 2 to port
move. Then, the internal transition function executes,
and it reaches the state stdbymov. The simulation
continues according to the inputs fed to the model
(specified in the input event file in Figure 22).

Similarly, Figure 18 shows the elevator simulation

results according to the input/output events received from/

sent to the controller.

As we can see, the elevator simulation starts at the

stopped state at time 00:00. At time 5:00, the eleva-
tor receives an input on the move port with the value
of 2. This causes the elevator to change state to ris-
ing and wait there for input 0 on the move port. At
time 18:00, the required input arrives and the elevator
changes to state StopUp, which its lifetime equals to
1 time units. This state represents the elevator braking
in the upward direction preparing to stop. At 19:00,
the elevator executes the output function and sends
the value of 1 on the output port stop, then changes
to the stopped state. The simulation continues until
the model reaches the stopped state again in the last
line.

Figure 21. Elevator coupled model definition and corresponding coupled model graph

[elevator]
in: mover
out: stop
state: stopped GoingDown SlowingDown aux rising StopUp
initial : stopped
ext: stopped rising Value(mover)?2
ext: rising StopUp Value(mover)?0
ext: stopped aux Value(mover)?0
ext: GoingDown SlowingDown Value(mover)?0
int: aux stopped
int: SlowingDown stopped stop!1
int: StopUp stopped stop!1
ext: stopped GoingDown Value(mover)?1
stopped: 00:00:1000:00
GoingDown: 00:00:1000:00
SlowingDown: 00:00:1:00
aux: 00:00:00:00
rising: 00:00:1000:00
StopUp: 00:00:1:00

Figure 20. Elevator CD++ model

58 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

The models just simulated are the same ones that were

used earlier (which were transformed into TA, and were

verified through model-checking tools). If any problems

are found in any of these steps, the modeler can go back

directly to the original atomic and coupled models and

check any of the multiple results that both the model-

checking tools and the simulation software provides.

Simultaneously, the same model specification can be used

to generate code that can be used on an embedded platform

(in this particular case, a microcontroller in charge of mov-

ing the elevator). In our case, we have developed a virtual

machine that executes in varied platforms that can under-

stand the DEVS formal specifications and execute the mod-

els without modification. This provides a sound method for

model construction and verification, which can be executed

directly without any changes to the original specifications.

6. Model checking of approximated
Discrete Event System Specification
models.

In the previous sections, we showed a methodology to ver-

ify RTA-DEVS models formally using TA, and a method

to simulate those models in the case that the verification

algorithms do not work. However, classic DEVS models

are more expressive than RTA-DEVS models, and there-

fore it may be difficult if not impossible to directly verify

classic DEVS models. In this section, we introduce a

method for transforming classic DEVS to RTA-DEVS that

would allow us to use the verification methodology pre-

sented in the previous sections. However, this method

requires a higher level of abstraction and, consequently,

some approximations are required.

In this section, we introduce this method and we show

what approximations are needed and what effect they

would have on the verification results. In the case of a

DEVS model with an infinite number of states, we need

the modeler to make an abstraction of these to an approxi-

mation with a finite number of states. After this, the model

can be checked formally by converting, with the necessary

approximations, the classic DEVS model to RTA-DEVS.

To do so, we need to find a reasonable approximation for

any irrational values that may exist in the DEVS model,

while building a valid RTA-DEVS.

6.1 Irrational values in the time-advance function

DEVS irrational values in the codomain of the time-

advance function ta need to be approximated to a rational

value when converting to RTA-DEVS. An example of

such DEVS model definition is given in Figure 23(a).

In this figure, a DEVS model is approximated with a

RTA-DEVS model, shown in (b), and the equivalent and

approximated TA model, shown in (c). As we can see, the

irrational time-advance value originally found in the

DEVS model is converted to a rational value with approxi-

mation error �. This error propagates on the equivalent

TA.

The questions that we need to answer here are as fol-

lows. How is this approximation error � going to affect

the validity of the RTA-DEVS and TA models? Are these

valid models? Can we obtain the same conclusions on the

original DEVS and the TA?

To answer the first question (i.e. to guarantee building

valid RTA-DEVS and TA models), we show an example

of the proposed method. Figure 24 shows a piece of a

coupled DEVS model in which component A waits in

state S1 for O7 time units, and it then executes the output

and internal transition function (which transmits an output

event a, and it then changes to the state S2).

Simultaneously, the component B is in state S3 waiting for

the event a, and when this is received, it will trigger the

execution of the external transition function as follows:

δext(S3, e, a)= (S4, 0) if
ffiffiffi
7
p ≤ e �∞

δext(S3, e, a)= (S5, 0) if 0 � e �
ffiffiffi
7
p

Figure 23. Approximation of irrational time values in internal
transition: (a) DEVS; (b) RTA-DEVS; (c) TA

00:00:05:00 button3
00:00:10:00 floorSensor1
00:00:14:00 floorSensor2
00:00:18:00 floorSensor3
00:00:27:00 button1
00:00:32:00 floorSensor2
00:00:36:00 floorSensor1

Figure 22. Elevator simulation event file

Saadawi and Wainer 59

By coupling components A and B, the total behavior of

the coupled DEVS component C would be

S1, S3ð Þ −→d = ffiffi
7
p

, a
S2, S4ð Þ

The coupled system starts in total state of (S1, S3) and,

after a delay of O7 time units, model A sends event a to

model B, which triggers a transition to the total state (S2,

S4). Based on this, we can construct a behaviorally equiva-

lent RTA-DEVS model (Figure 25) that is approximated

to the DEVS shown in Figure 24. In this model, the life-

time of S1 is approximated by a rational value with error

�. The value of � depends on the precision chosen; for

example, for two decimal digits, �≤ 0.005. The external

transition function could be approximated as

Approximation 1:

δext(S3, e, a)= (S4, 0) 2:64+D≤ e �∞
δext(S3, e, a)= (S5, 0) 0 � e � 2:64+D

Or Approximation 2:

δext(S3, e, a)= (S4, 0) 2:64� D≤ e �∞
δext(S3, e, a)= (S5, 0) 0 � e � 2:64� D

However, the choice of the approximation would affect

the validity of the RTA-DEVS model. For instance, if we

approximate the ta of S1 with ta =2.64 – �, and we choose

Approximation 1 for model B, the coupled model C’

would have a different behavior from the original DEVS

model. Thus, component C’ behavior now becomes

S1, S3ð Þ −→d = 2:64�D, a
S2, S5ð Þ

Proposition 1: when approximating an irrational value trigger-

ing an internal transition that is coupled with an external tran-

sition, the choice of approximation value should be consistent

for all constants using this irrational number.

Formally, if we have the following defined in the DEVS:

δA
int(Si,Cirr)= Sj, λA(Si)= a, taA(Si)=Cirr

δB
ext(Sk, e, a)= (Sl, 0) Cirr ≤ e �∞

δB
ext(Sk, e, a)= (Sm, 0) 0 � e � Cirr

it should be approximated in the RTA-DEVS model as

δA
int(Si,Cr)= Sj, λ

A(Si)= a, taA(Si)=Cr

δB
ext(Sk, e, a)= (Sl, 0) Cr ≤ e �∞

δB
ext(Sk, e, a)= (Sm, 0) 0 � e � Cr

where Cirr is an irrational real number, Cr is a rational real

number, and δA
int, λ

A, taA are functions defined for compo-

nent A.

6.2 Irrational values in the external transition
function

As seen in the example shown in Figure 26, a modeler

may choose different approximations to form component

B’’.

Approximation 3:

δext(S3, e, a)= (S4, 0) 2:64+D≤ e �∞
δext(S3, e, a)= (S5, 0) 0 � e � 2:64� D

Or Approximation 4:

Figure 24. A coupled DEVS model

60 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

δext(S3, e, a)= (S4, 0) 2:64� D≤ e �∞

δext(S3, e, a)= (S5, 0) 0 � e � 2:64+D

The component C’’ in Figure 26 accepts an external input

from its environment on input port IN1, which is connected

to component B’’ at its port IN2. In this case, the behavior

of C’’ would not match the behavior of C, in that with

Approximation 3, the external transition function is not

defined in the interval 2:64�� � e � 2:64+�. Thus,

C’’ would contain an action lock,39 which is a special case

of a deadlock in which the system would not progress due

to lack of any enabled transitions at the exact point-in-time

in which an event occurs. This typically reflects a modeling

error (or, in our case, a modeling fault due to the approxi-

mation error). Approximation 4 introduces another type of

error. This would cause a non-deterministic behavior in the

model in the interval 2:64�� � e � 2:64+�, which dif-

fers from the original DEVS model behavior. To avoid

such errors, we define the next proposition.

Figure 26. RTA-DEVS component with external input

Figure 25. Coupled RTA-DEVS model

Saadawi and Wainer 61

Proposition 2: when approximating an irrational value for

elapsed time in external transition function definition, the

choice of approximation value should be consistent for all

constants using this irrational number.

Formally, if we have the following DEVS definition of exter-

nal transition function

δext(Si, e, a)= (Sj, 0) Cirr ≤ e �∞
δext(Si, e, a)= (Sk, 0) 0 � e � Cirr

it must be approximated in the RTA-DEVS model on the fol-

lowing form to avoid creating action locks:

δext(Si, e, a)= (Sj, 0) Cr ≤ e �∞
δext(Si, e, a)= (Sk, 0) 0 � e � Cr

6.3 Effect of the approximation error on model-
checking results

The consequences of using rational numbers in RTS mod-

els would not introduce any errors as long as we use them

according to the previous two propositions. This guaran-

tees preserving model behavior when approximating irra-

tional values with rational ones. The approximation we

choose for our rational value can be arbitrarily small com-

pared to computer system physical clock precision, to miti-

gate any practical effect on model behavior.

The next question is how the approximation of irra-

tional constants in ta or δext affect the formal verification

of RTA-DEVS models. Would a result obtained from

model checking RTA-DEVS models apply to the original

DEVS?

When we approximate an irrational constant Cirr with a

rational constant Cr, we introduce an error � such that Cirr

= Cr ± �. This error appears then in constants used for

time-advance function or external transition functions.

Verification of RTA-DEVS through transforming it to

equivalent TA is done with reachability analysis. Would

this analysis differ by introducing the error � when we

move from DEVS to RTA-DEVS?

Answering this question directly would require reach-

ability analysis of the original DEVS with irrational con-

stant values, and for the transformed RTA-DEVS model

with the rational values (then, comparing results). This

approach, however, is not feasible, as the reachability anal-

ysis for timed models with irrational constants has been

proven to be undecidable.35 Therefore, we need to use an

approximate approach to estimate the effect of � on the

reachability analysis.

This problem is equivalent to that of robustness of

TA.40 In robust TA, a robust model accepts an input

sequence of events within a time interval. This is called a

bundle of events, which are close in time, and the model

still behaves the same with this bundle input. Puri42

extended the notion of robust TA, and included in the

robustness definition those models in which their reach-

ability analysis remains the same with small drifts in clock

models. In this definition, a model is not robust if for any

small drift in clock rate, the reachability results change. In

De Wulf et al.,41 it was proved that clock drifts in TA are

equivalent to having a reaction delay by the implementa-

tion that increases guard constants by a small positive

value �. The robustness problem is then transformed to an

implementation problem, in which one needs to find a

value � that makes the verification results correct. Further

work by De Wulf et al.41 showed a methodology to assess

a model for implementability, by using standard TA

model-checking tools, and proved that if a model is toler-

ant to a certain value �, it would also be correct with any

value �’ such that �’ < �.

These results from robustness theory of TA are useful

to check if the formal verification results of RTA-DEVS

models also apply to the original DEVS model correctly.

Given an error � introduced by approximation of irrational

numbers in DEVS models, we model the possible transi-

tion from a state within an enlarged time interval � non-

deterministically. For example:

δext(Si, e, a)= (Sj, 0) Cirr ≤ e �∞
δext(Si, e, a)= (Sk, 0) 0 � e � Cirr

and Cirr = Cr ± �, then, we enlarge the interval in which

the external transition is enabled, that is, to define it as

δext(Si, e, a)= (Sj, 0) Cr � D≤ e �∞
δext(Si, e, a)= (Sk, 0) 0 � e � Cr +D

This model can be transformed to an equivalent TA, as

shown in previous sections, and it can then be checked

against the desired properties. With non-determinism in

the model, UPPAAL checks the transition as if enabled

during the interval, covering the point around the irrational

number value. Hence, if the model-checking results were

correct, we conclude that the approximation did not intro-

duce errors to the RTA-DEVS model.

6.4 Application to elevator/elevator-controller
example

We use the elevator system example shown previously to

demonstrate our methodology. The example is extended

by changing an irrational value in the controller model, as

seen in Figure 27.

As we can see, state stdbyMov in Figure 27 uses a ta of

O1000007 ≈ 1000.003 or O1000007 ≈ 1000.004; � =

0.001. The resulting TA model is shown in Figure 28. In this

TA model, we added node E and a transition from

StdByMov to E that is enabled at elapsed time of x ≥
1000003. This TA is semantically equivalent to the DEVS

62 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

model in Figure 27. However, this TA allows the transition

from node StdByMov to node Stopped to be taken non-

deterministically in the interval [0,1000004], while the tran-

sition to E is enabled in [1000003, ∞]. This ensures cover-

ing the interval [0, O1000007] in UPPAAL’s model-

checking algorithms.

We ran the model checker to verify the non-

deterministic version of the elevator-controller model along

with the other components in the elevator system. The

results were successful and unchanged from the results we

obtained previously as shown in figure 29. The consistency

of results in both non-deterministic and deterministic mod-

els indicates that the approximation error did not affect the

verification results. Hence, for any value smaller than

0.001, the results would not be affected.43 Although we

could not verify the DEVS model in Figure 27 because of

the irrational value of the time-advance function, our meth-

odology approximates this model to a behaviorally equiva-

lent RTA-DEVS and then to an equivalent TA, which can

be used to verify the equivalent DEVS model.

7. Conclusion

We introduced a series of methods to verify RT models spec-

ified with DEVS formally, and discussed some of the prob-

lems that prevent general classic DEVS models from being

modeled and verified. We introduced the RTA-DEVS to

overcome these problems and to offer a subset of DEVS that

is still expressive enough for modeling practical problems

and that can be transformed to TA for formal verification.

The transformed TA can be used to reason about the original

RTA-DEVS model, and hence about the real problem being

modeled. We also showed a methodology to convert the

RTA-DEVS to TA in a systematic way. We finally intro-

duced a methodology based on recent theoretical work that

can reveal if a given DEVS model being approximated by

RTA-DEVS would have its verification results unaffected by

the approximation process. In reality, if a given DEVS model

cannot tolerate small approximation errors without changing

its formal verification results, this DEVS model would be

almost impossible to implement faithfully on a hardware

platform, as that platform would never be able to give exact

timing due to the nature of digital clocks and transition

delays. Inconsistency of verification results in our methodol-

ogy would be an indication of such a DEVS model.

Validating DEVS models formally with TA model

checking can pave the road for solving RT predictability

in software systems. DEVS models are also directly

Figure 28. TA model with non-deterministic behavior

Figure 27. Elevator-controller in DEVS graphs notation

Saadawi and Wainer 63

executable on a virtual machine executing in embedded

RT platforms.44 With this advantage, any DEVS model

validated formally would be guaranteed to execute as pre-

dicted by the validation, as no human intervention comes

between the checked model and the executable specifica-

tion. This advantage would serve not only the simulation

community, but also the RT software community, as

DEVS can be used to model controllers that would be

simulated, formally validated, and then deployed on the

target platform.

Our approach to using model checking to verify DEVS

models is limited with the same limitations imposed on TA

model checking, mainly because of the problem of state

space explosion. This would limit the methodology to small-

and medium-sized DEVS models. However, many real-life

applications fall into these boundaries. For larger models, a

combination of abstraction and decomposition techniques

would be able to reduce the problem size to practical model

checking. In addition, in those cases where model checking

is not feasible, one can formally verify subcomponents of

the whole application while simulating the complete models,

in order to gain insight on the software applications.

One side effect of our work is that we obtained an

equivalent TA for the RTA-DEVS. This enables us to

apply theories and reasoning from existing literature of TA

to find specific properties of RTA-DEVS and DEVS form-

alisms. For example, we can compare the expressiveness

of the RTA-DEVS to that of TA. As our transformation

showed, the equivalent TA to a RTA-DEVS has no diago-

nal clock constraints of the form x – y < C. This is a lim-

itation of general TA with diagonal constraints. However,

this does not reduce the expressiveness of the RTA-DEVS

from the general TA formalism, as any TA with diagonal

constraints can be expressed with a TA without diagonal

constraints, as shown by Bérard et al.45 However, general

TA with diagonal constraints are more concise than the

RTA-DEVS (represented by a TA without diagonal con-

straints), as shown by Bouyer and Chevalier.46

We envision that this methodology could influence the

development of RT systems in a number of ways, produc-

ing models more accurately, and better simulations with

less cost and effort. For the validation and verification of

simulation models, which are done currently in a manual,

error-prone procedure, and usually need a domain expert,

this technique can improve such activities.

To overcome the scalability issue, future work

would take advantage of different techniques to reduce the

state-space during-model checking. These techniques are

based on specific properties of DEVS models that can be

exploited to simplify the resulting TA models.

Figure 29. Model verification execution in UPPAAL

64 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

Funding

This research was partially funded by NSERC.

References

1. Rehman MJ, Jabeen F, Bertolino A and Polini A. Testing soft-

ware components for integration: a survey of issues and tech-

niques. Software Test Verification Reliab 2007; 17: 95–133.

2. Gerlich R, Gerlich R and Boll T. Random testing: from the

classical approach to a global view and full test automation.

In: Proceedings of the 2nd international Workshop on

Random Testing: Co-Located with the 22nd IEEE/ACM

international Conference on Automated Software

Engineering (ASE 2007), Atlanta, GA.

3. Florescu O, Voeten J, Theelen B and Corporaal H. Patterns

for automatic generation of soft real-time system models.

Simulation 2009; 85: 709–734.

4. Castro R, Kofman E and Wainer G. A formal framework for

stochastic discrete event system specification modeling and

simulation. Simulation 2010; 86: 587–611.

5. Dwyer MB, Hatcliff J, Robby R, et al. Formal software analysis

emerging trends in software model checking. In: Proceedings

of the 2007 Future of Software Engineering (FOSE ’07), IEEE

Computer Society, Washington, DC, pp.120–136.

6. Alur R and Dill DL. A theory of timed automata. J Theor

Comput Sci 1994; 126: 183–235.

7. Härri J, Fiore M, Filali F, et al. Vehicular mobility simulation

with VanetMobiSim, Simulation 2011; 87: 275–300.

8. Staub T, Gantenbein R and Braun T. VirtualMesh: an emula-

tion framework for wireless mesh and ad hoc networks in

OMNeT++ . Simulation 2011; 87: 66–81.

9. Zeigler B, Kim T and Praehofer H. Theory of modeling and

simulation: integrating discrete event and continuous com-

plex dynamic systems. 2nd ed. Academic Press, 2000 San

Diego, CA, USA.

10. Behrmann G, David A and Larsen KG. A tutorial on Uppaal.

In: Proceedings of the 4th International School on Formal

Methods for the Design of Computer, Communication, and

Software Systems (SFM-RT’04), Formal Methods for the

Design of Real-Time Systems 2004, LNCS, vol. 3185,

pp.33–35.

11. Bengtsson J and Yi W. Timed automata: semantics, algo-

rithms and tools. In: Reisig W and Rozenberg G (eds)

Lecture Notes on Concurrency and Petri Nets. Vol. 3098,

LNCS Springer, 2004, pp.87–124.

12. Wainer G. Discrete-event modeling and simulation: a practi-

tioner’s approach. CRC Press, 2009 Boca Raton, FL, USA.

13. Wainer G. CD++ : a toolkit to define discrete-event models.

Software Pract Ex 2002; 32: 1261–1306.

14. Wainer G, Glinsky E and Gutierrez-Alcaraz M. Studying

performance of DEVS modeling and simulation environ-

ments using the DEVStone benchmark. Simulation 2011; 87:

pp.555–580.

15. Christen G, Dobniewski A and Wainer G. Modeling state-

based DEVS models in CD++ . In: Proceedings of MGA,

Advanced Simulation Technologies Conference, Arlington,

VA, 2004.

16. Praehofer H and Pree D. Visual modeling of DEVS-based

multiformalism systems based on higraphs. In: WSC’93:

Proceedings of the 25th Conference on Winter Simulation,

Los Angeles, CA, pp.595–603.

17. Bergero F and Kofman E. PowerDEVS: a tool for hybrid sys-

tem modeling and real-time simulation. Simulation 2011; 87:

113–132.

18. Song HS and Kim TG. Application of real-time DEVS to

analysis of safety-critical embedded control systems: railroad

crossing control example. Simulation 2005; 81: 119–136.

19. Hu X. From virtual to real – a progressive simulation-based

design framework. In: Wainer GA and Mosterman PJ (eds)

Discrete-event modeling and simulation: theory and applica-

tions, CRC Press, 2010 Boca Raton, FL, USA.

20. Pace DK. Modeling and simulation verification and valida-

tion challenges. Johns Hopkins APL Tech Digest 2004; 25:

163–172.

21. Hemer D and Lindsay PA. Template-based construction of

verified software. IEE Proc Software Eng 2005; 152: 2–12.

22. Huang J, Voeten J and Corporaal H. Predictable real-time

software synthesis. Real Time Syst 2007; 36: 159–198.

23. Baleani M, Ferrari A, Mangeruca L, Sangiovanni-Vincentelli

AL, Freund U, Schlenker E and Wolff H.-J. 2005. Correct-by-

Construction Transformations across Design Environments for

Model-Based Embedded Software Development. In

Proceedings of the conference on Design, Automation and

Test in Europe - Volume 2 (DATE ’05), Vol. 2. IEEE

Computer Society, Washington, DC, USA, 1044–1049.

24. Voeten J, Florescu O, Huang J and Corporaal H. Error com-

putation for predictable real-time software synthesis.

Simulation 2011; 87: 334–350.

25. Dacharry HP and Giambiasi N. A formal verification

approach for DEVS. In: Proceedings of the 2007 Summer

Computer Simulation Conference, Society for Computer

Simulation International, San Diego, CA, 16–19 July 2007,

pp.312–319.

26. Hong JS, Song HS, Kim TG, et al. A real-time discrete event

system specification formalism for seamless real-time soft-

ware development. Discrete Event Dyn Syst 1997; 7:

355–375.

27. Furfaro A and Nigro L. Embedded control systems design

based on RT-DEVS and temporal analysis using

UPPAAL. In: Proceedings of Computer Science and

Information Technology (IMCSIT 2008), 20–22 October

2008, pp.601–608.

28. Furfaro A and Nigro L. A development methodology for

embedded systems based on RT-DEVS. Innovat Syst

Software Eng 2009; 5: 117–127.

29. Hwang MH and Zeigler BP. Reachability graph of finite and

deterministic DEVS networks. IEEE Trans Autom Sci Eng

2009; 6: 468–478.

30. Han S and Huang K. Equivalent semantic translation

from parallel DEVS models to time automata. In: Computational

Science – ICCS, LNCS 2007, volume 4487, pp. 1246–1253.

31. Giambiasi N, Paillet J-L and Châne F. From timed automata

to DEVS models. In: Proceedings of the 2003 Winter

Simulation Conference, 2003, pp.923–931.

32. Hernández A and Giambiasi N. State Reachability for

DEVS Models. In: Proceedings of Argentine Symposium

on Software Engineering (2005), Rosario, Argentina,

August 2005: 267–277.

Saadawi and Wainer 65

33. Hong KJ and Kim TG. Timed I/O test sequences for discrete

event model verification. In: Artificial Intelligence and

Simulation, 2005, LNCS, volume 3397, pp.275–284.

34. Labiche Y and Wainer G. Towards the verification and vali-

dation of DEVS models. In: Proceedings of the 1st Open

International Conference on Modeling & Simulation,

Clermont-Ferrand, France, 2005, pp.295–305.

35. Saadawi H and Wainer G. Verification of real-time DEVS mod-

els. In: Proceedings of SpringSim’09, San Diego, CA, 2009.

36. Saadawi H and Wainer G. Rational time-advance DEVS

(RTA-DEVS). In: Proceedings of 2010 Symposium on

Theory of Modeling and Simulation (DEVS’10), Orlando,

FL, 2010.

37. Miller J. Decidability and complexity results for timed

automata and semi-linear hybrid automata. In: Hybrid

Systems: Computation and Control, 2000, LNCS; volume

1790, pp.296–309.

38. Aceto L, Anna I, Larsen KG, and Jiri S. Reactive Systems:

Modelling, Specification and Verification. Cambridge

University Press, Cambridge, UK, August 2007.

39. Bowman H and Gomez R. Concurrency theory: calculi and

automata for modelling untimed and timed concurrent sys-

tems. 1st ed. Springer, 2006 London, UK.

40. Gupta V, Henzinger TA and Jagadeesan R. Robust timed

automata. Hybrid Real Time Syst 1997; 1201: 331–345.

41. De Wulf M, Doyen L and Raskin J-F. Almost

ASAP Semantics: From Timed Models to Timed

Implementations. Hybrid Systems: Computation and

Control, 2004, LNCS, volume 2993, pp.296–310.

42. Puri A. Dynamical properties of timed automata. Discrete

Event Dyn Syst 2000; 10: 87–113.

43. De Wulf M, Doyen L and Markey N. Robustness and imple-

mentability of timed automata. In: Formal Techniques,

Modelling and Analysis of Timed and Fault-Tolerant

Systems 2004, LNCS, volume 3253, pp.359–374.

44. Yu YH and Wainer G. eCD++ : an engine for executing

DEVS models in embedded platforms. In: Proceedings of

the 2007 Summer Computer Simulation Conference, Society

for Computer Simulation International, San Diego, CA, 16–

19 July 2007, pp.323–330.

45. Bérard B, Diekert V, Gastin P, et al. Characterization of the

expressive power of silent transitions in timed automata.

Fundamenta Informaticae 1998; 36: 145–182.

46. Bouyer P and Chevalier F. On conciseness of extensions of

timed automata. J Automata Lang Combinatorics 2005; 10:

393–405.

47. Wikipedia. ‘DEVS Behavior’, http://en.wikipedia.org/wiki/

Behavior_of_Coupled_DEVS (accessed August 2009).

Author biographies

Hesham Saadawi is currently a PhD candidate at the School of

Computer Science, Carleton University, in Ottawa, ON, Canada.

He holds the Bachelor of Mechanical Engineering from Ain

Shams University 1990, Diploma of Computer and Information

Science, ISSR, Cairo University 1992, and master of Computer

Science, Carleton University 2003. He has been a reviewer for

multiple M&S conferences, and a contract instructor at School of

Computer Science, Carleton University. He also has extensive

software design and development experience with projects within

commercial and public sectors.

Gabriel A Wainer (SMSCS, SMIEEE) received his MSc

(1993) and PhD degrees (1998, with highest honors) from the

University of Buenos Aires (UBA), Argentina and the Université

d’Aix-Marseille III, France, respectively. After being Assistant

Professor at the Computer Science Department of UBA, he

joined the Department of Systems and Computer Engineering at

Carleton University, where he is now an Associate Professor. He

has been a visiting scholar at ACIMS (The University of

Arizona); LSIS/CNRS, University of Nice and INRIA (Sophia-

Antipolis), France. He is the author of three books and over 240

research articles; he edited four other books, and helped organize

over 110 conferences, including being one of the founders of

SIMUTools and SimAUD. He is also the Chair of the Ottawa

Center of The McLeod Institute of Simulation Sciences. He is

Special Issues Editor of Simulation, member of the Editorial

Board of Wireless Networks (Elsevier), the Journal of Defense

Modeling and Simulation, and the International Journal of

Simulation and Process Modelling (Inderscience). Prof Wainer is

the Vice-President Publications, and was a member of the Board

of Directors of the SCS. He is the head of the Advanced Real-

Time Simulation lab, located at Carleton University’s Centre for

advanced Simulation and Visualization (V-Sim). He has been the

recipient of various awards, including the IBM Innovation

Award, SCS Leadership Award, and various Best Paper awards.

He has been awarded Carleton University’s Research

Achievement Award (2005–2006), the First Bernard P. Zeigler

DEVS Modeling and Simulation Award, and the SCS

Outstanding Professional Award (2011). Further information can

be found at http://www.sce.carleton.ca/faculty/wainer.

Appendix A: Closure-under-coupling
property for the RTA-DEVS

A coupled RTA-DEVS model M can be simulated with an

equivalent atomic RTA-DEVS model, whose behavior is

defined as follows:47

M = <X , Y , S, s0, δext, δint, λ, ta>

• X and Y are the input and output event sets, respec-

tively. X is the set of all input events accepted and Y

is the set of all output events generated by coupled

model M.
• S = × i∈DVi is the model state. It is expressed

as the Cartesian product of all component

states, where Vi is the total state for component

i, Vi = (si, tei)jsi ∈ Si, tei ∈ ½0, ta(si)�f g. Here, tei

denotes the elapsed time in state si of component i,

and Si is the set of states of component i.
• s0 = × i∈Dv0i is the initial system state, with

v0i = (s0i, 0) the initial state of component i∈D.
• ta : S →T is the time-advance function. It is

calculated for the global state s∈ S of the

coupled model as the minimum time remaining for

any state among all components, formally

66 Simulation: Transactions of the Society of Modeling and Simulation International 89(1)

ta(s)= min (ta(si)� tei)ji∈Df g, where s= . . . ,ð
(si, tei), . . .Þ is the global total state of the coupled

model at some point in time, si is the state of com-

ponent i, and tei is elapsed time in that state.
• δext : X ×V → S is the external transition function

for the coupled model, where V is the total state of

the coupled model: V = (s, te)js ∈ S , te ∈f
½0, ta(s)�g.

• δint : S → S is the internal transition function of the

coupled model.
• λ : S → Y is the output function of the coupled

model.

Appendix B: Verification trace for the
elevator-controller model

Composite system state System variable values

(Stopped,StdByStop,S1) d sensor = 1; button = 2

d stopValue = direction = b = 0

d ElevatorController.cur_floor = 1

d ElevatorController.floor = 1

d z in [0,5]

buttonc: User_sensor_input –> ElevatorController

(Stopped,Moving,S2)

d sensor = 1; button = 3

d stopValue = 0; direction = 2; b = 0

d ElevatorController.cur_floor = 1

d ElevatorController.floor = 3

d z in [0,5]

move: ElevatorController –> Elevator

(Rising, StdByMov, S2)

d sensor = 1; button = 3

d stopValue = 0; direction = 2; b = 1

d ElevatorController.cur_floor = 1

d ElevatorController.floor = 3

d z in [0,10)

sensorc: User_sensor_input –> ElevatorController

(Rising, Aux1, S3)

d sensor = 1; button = 3

d stopValue = 0; direction = 2; b = 1

d ElevatorController.cur_floor = 1

d ElevatorController.floor = 3

d z in [0,10)

ElevatorController

(Rising, StdByMov, S3)

d sensor = 1; button = 3

d stopValue = 0; direction = 2; b = 1

d ElevatorController.cur_floor = 1

d ElevatorController.floor = 3

d z in [0,14)

sensorc: User_sensor_input –> ElevatorController

(Rising, Aux1, S4)

d sensor = 2; button = 3

d stopValue = 0; direction = 2; b = 1

d ElevatorController.cur_floor = 2

d ElevatorController.floor = 3

d z in [0,14)

ElevatorController

(Rising, StdByMov, S4)

d sensor = 2; button = 3

d stopValue = 0; direction = 2; b = 1

d ElevatorController.cur_floor = 2

d ElevatorController.floor = 3

d z in [0,18)

sensorc: User_sensor_input –> ElevatorController

(Rising, Aux1, S5)

d sensor = 3; button = 3

d stopValue = 0; direction = 2; b = 1

d ElevatorController.cur_floor = 3

d ElevatorController.floor = 3

d z in [0,18)

ElevatorController

(Rising, StdByMov, S5)

d sensor = 3; button = 3

d stopValue = 0; direction = 2; b = 1

d ElevatorController.cur_floor = 3

d ElevatorController.floor = 3

d z in [0,27)

ElevatorController

(Rising, Stopped, S5)

d sensor = 3; button = 3

d stopValue = direction = 0; b = 1

d ElevatorController.cur_floor = 3

d ElevatorController.floor = 3

d z in [0,27)

ElevatorController

(StopUp, Stopping, S5)

d sensor = 3; button = 3

d stopValue = 1; direction = 0; b = 1

d ElevatorController.cur_floor = 3

d ElevatorController.floor = 3

d z in [0,27)

Saadawi and Wainer 67

