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Abstract 
Hybrid systems (where continuous and discrete phenomena interact) 

are found in many natural and artificial systems. An important exam-

ple, real-time embedded systems usually include discrete-event con-

trollers interacting with a continuous plant. Verifying these real-time 

systems for correct behavior is of utmost importance, as results of in-

correct behavior are usually catastrophic. To complement the use of 

Modeling and Simulation study of such hybrid real-time systems, we 

extend here the verification method, based on RTA-DEVS, hybrid 

Timed Automata and the QSS that was introduced in [1], which al-

lows verifying real-time hybrid systems modeled by DEVS formal-

ism. This extension allows the transformation of the QSS model into 

overapproximation TA model using interval arithmetic to solve the 

limitation introduced by the purely integer arithmetic available in 

UPPAAL. 

 

I. INTRODUCTION 
Real-Time (RT) systems are complex computer systems with hard-

ware and software components with timing constraints. These con-

straints can be “soft” timing (i.e., a deadline can be missed without 

serious consequences), or "hard" timing constraints (and a missed 

deadline can result in catastrophic consequences). In these highly re-

active systems, correctness is concerned with both system behavior 

and its ability to execute its tasks in a timely manner. These systems 

are usually hybrid in nature as they are often composed of a digital 

computer controller interacting with the physical environment. This 

implies the need for an analysis methodology that can deal with both 

discrete and continuous models.  

Formal analysis is growing as a methodology to enable the full 

verification of RT systems. One of the most successful methods of 

formal verification is model checking which enables full automation 

of the verification process. RT systems have benefited the most from 

timed model checking as with the case of Timed Automata TA [2].  

As DEVS is formalism for M&S, modeling the RT system with 

this formalism, enables testing real life scenarios, even for those cas-

es in which real-life testing might be too costly or impossible to 

achieve [3]. If the executable models used for M&S are formal, their 

correctness would also be verifiable, and a designer could see the sys-

tem evolution and its inner workings even before starting a simula-

tion [3], then these models can be deployed to the target platform, 

thus giving the opportunity to use the model not only for simulations, 

but also as the actual implementation deployed on the target hard-

ware. This avoids any new errors that would appear during the im-

plementation from transformation of the verified models into an im-

plementation, thus guaranteeing a high degree of correctness and reli-

ability. 

The objective of this paper is to introduce an advanced method-

ology enabling formal verification of hybrid RT systems modeled 

with DEVS formalism. This methodology would add the benefit of 

rigorous formal correctness checking to the current practice of simu-

lating RT hybrid systems. The main contribution is to extend on the 

transformation we presented in [1] to enable the verification of any 

general continuous system modeled with QSS through proper trans-

formation to an equivalent TA model. Then, TA can be formally veri-

fied with tools such as UPPAAL.This method would deal with issues 

of infinite continuous state space and the limitations of integer arith-

metic in UPPAAL by the use of interval arithmetic to obtain an over-

approximated TA model that preserves safety and reachability prop-

erties of the original RT system. DEVS ability to be executed on em-

bedded DEVS simulators provides the opportunity to use the verified 

controller component, from the verified hybrid model, to be the actu-

al implementation code executing on the embedded platform. 

II. BACKGROUND 

A. Hybrid DEVS Models 

A Major problem in hybrid systems verification is the lack of a uni-

fied theory to model and solve both continuous and discrete compo-

nents together [4]. As a result, modeling and simulation is still one of 

the most useful methods to verify this kind of systems [5-7]. Hybrid 

systems simulation was enabled within DEVS formalism by using a 

method, called Quantizes State Systems (QSS) that will be covered in 

section B, which allows modeling continuous components [8-10] as 

discrete event systems.  

To use the model checking method to verify hybrid systems, the 

focus would be to find a suitable finite abstraction of the hybrid sys-

tem that can be verified and hence reachability algorithm is guaran-

teed to terminate. Different types of labeled transition systems were 

proposed to model hybrid systems abstractions including Petri Nets 

[11], hybrid automata and TA [12]. 

 However, as Henzinger et al. shows in [13], Hybrid TA verifica-

tion through reachability analysis is not decidable in general. For this 

reason, it would be an advantage to model the hybrid system in some 

form with a decidable verification such as TA. Many techniques have 

been proposed to approximate continuous-time systems into a dis-

crete representation of TA [14-17]. 

This paper uses another technique to represent the continuous 

system in discrete format using DEVS formalism based on Quantized 

State Systems (QSS). 

B. Quantized State Systems (QSS) Method 

In this section, we introduce the QSS method as was explained in 

[8,9]. The QSS is an approximation method to model and simulate 

continuous systems, which are usually modeled with Ordinary Dif-

ferential Equations (ODE) and Algebraic Equations. Traditional 

method to obtain a detailed description of a system behavior entails 

solving these equations simultaneously. To do this, a technique of 

numerical integration is used to solve ODEs such as Euler, Runge-

Kutta, etc. All these methods rely on discrete-time integration of 

ODEs. In this way, time progresses in small steps, and at each step, 

an approximation is computed for the ODEs solution. When a system 

modeled by ODEs has a discontinuity (i.e. sudden jumps in its varia-

bles values with regard to time), the numerical integration method 

may produce unacceptable errors [10]. However, these kinds of dis-

continuity are normal properties in hybrid systems, which can be seen 

as operating in different modes, each described with a specific ODE, 

for example, a heating system with an on-off thermostat controller. 
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Quantized State Systems QSS is a different method for approxima-

tion. This is a quantization-based method that models hybrid systems 

as discrete-event systems and not as discrete-time. This solves the 

above problem around discontinuities while solving hybrid system as 

discussed in [9]. We consider here a continuous system modeled by 

some time-invariant Ordinary differential equation (ODE) and it is in 

its State Equation System (SES) representation: 

x˙ (t) = f[x(t), u(t) ) ] (Eq.II.1) 
Where x(t)  R n represents the system state vector and u(t)  R m  

represents an input vector, which is a known piecewise constant func-

tion, and R is the set of Real numbers. With the QSS method, we 

simulate an approximate system, which is called Quantized State Sys-

tem: 

x˙ (t) = f[q(t), u(t) ) ] (Eq.II.2) 

Where q(t) is a vector of quantized variables which are obtained by a 

quantization function q(t) from the state variables x(t). Each compo-

nent of q(t) may be related with the corresponding component of x(t) 

by a hysteretic quantization function, as given in [9]. A hysteresis 

function approximates a continuous linear function xi(t) by outputting 

a number of discrete levels. Each level is called a quantization level 

Qi. The difference between two successive quantization levels (Qi, 
Qi+1) is called the quantum (dq) and it is usually constant. The cross-

ing of the continuous function to a quantization level generates an 

output. 

A DEVS model that solves (Eq.II.2) by integration is called a 

quantized integrator and can be written as follows [9]: 

M1 = (X, Y, S, δint, δext, λ, ta), where: 

X =  × {inport} 

Y =  × {outport} 

S = 2× Z× R+
0 ∞ 

δint(s) = δint(x, dx, k, σ) =  

   (x + σ · dx, dx, k + sgn(dx), σ1) 

δext(s, e, xu) = δext(x, dx, k, σ, e, xv, port) =  

   (x + e · dx, xv, k, σ2) 

λ(s) = λ(x, dx, k, σ) = (Qk+sgn(dx), outport) 

ta(s) = ta(x, dx, k, σ) = σ 

(Eq. II.3) 

 

 Where  

{inport}:    The set of input ports. 

{outport}: The set of output ports 
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     A static function f(z1, . . . , zp) can be represented by the DEVS 

model: 

 

M2 = (X, Y, S, δint, δext, λ, ta), where 

X =× {inport1, . . . , inportp} 

Y =  × {outport} 

S = p × +
0 ∞ 

δint(s) = δint(z1, . . . , zp, σ) =  

    (z1, . . . , zp,∞) 

δext(s, e, x) =  δext(z1, . . . , zp, σ, e, xv, port)  

              =   (˜z1, . . . , ˜zp,∞) 

λ(s) = λ(z1, . . . , zp, σ) =  

                  (f(z1, . . . , zp, σ), outport) 

ta(s) = ta(z1, . . . , zp, σ) = σ 

Where 
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(Eq. II.4) 

 

 

As indicated in [9], this combined DEVS model of M1 and M2 

simulates the QSS system.  

Figure 1 shows a DEVS coupled model for a QSS model as de-

fined by (Eq. II.3) and (Eq. II.4). The Model M1 defines the integrator 

and the quantization function. 

 
Figure 1. QSS Block Diagram Model 

 
An example of simulating a continuous system with QSS can be 

shown by using the exponential decay formula which is modeled as 

follows, using an ODE: 

dx/dt = -x(t) (Eq.II.5) 

Which has the analytical solution x(t) = e-t, with the initial condition 

x(0) =1. Figure 2 shows the exact analytical solution of the exponen-

tial decay formula x(t) = 10 e-t where x(0) =10. This exact solution of 

(Eq.II.5) is approximated with linear segments in a discrete-event 

form by the following QSS DEVS model: 

AMD = <X, Y, S, int, ext ,ta>  (Eq.II.6) 

X = Ø;           S={s | s=(q,)} ;         ta(s) = ta(q,) =  

int (s) = int (q,) = (q-0.1, 0 .1/q)   ;    q,) = q 

q: is a quantized variable related to the x(t) system variable by a 

quantization function.  

 

 
Figure 2. Linear approximation of Decay formula 
 

The QSS linear approximation for the decay formula is shown in 

Figure 2. Figure 3 shows the quantized representation of the decay 

formula as a result of simulating this QSS model. 



 
Figure 3. Quantized representation of Exponential Decay. 

III. OVER-APPROXIMATING QSS WITH INTEGER INTERVALS 

The main contribution of this paper is a novel approach to trans-

form general QSS models to TA by using interval arithmetic [18-20] 

to solve the limitation of UPPAAL in using only integer arithmetic. 

To transform a QSS DEVS model (Eq. II.3), (Eq. II.4) to a TA, we 

need to solve the following two issues: 

1. The TA variables can only be of bounded integer type, in order 

to guarantee the finiteness of state space and the termination of 

the model-checking algorithm. However, in QSS, state variables 

are real numbers and thus have infinite values. 

2. Time ( of next quantum event is approximated to an integer 

number when transforming to TA. However in doing so we need 

to preserve the original behavior of QSS and hence the proper-

ties we need to formally verify. 

First, We can obtain a finite system state-space by incorporating 

practical system bounds on variable values and identifying the least 

precision possible when measuring these variables. This would pro-

duce the finite set of quantization levels Q. Second, these above two 

issues are handled by approximating all Real-valued variables in QSS 

to some equivalent Integer values. When faced with obtaining an In-

teger approximation to a Real value, we need to round the Real value 

to the nearest Integer. However, in doing so, we lose the actual value 

as it was in the QSS model, and this may render TA verification re-

sults not applicable to the original QSS system. 

To include the actual values of the QSS variables in our approxi-

mation, we replace any QSS Real-value with a closed interval be-

tween two Integers [L,U], where L is the mathematical floor function 

of the Real-value, and U is the mathematical ceiling.  This would 

constitute an overapproximation that contains the true trajectory pro-

duced by the QSS. This overapproximation, when transformed to a 

TA model, would contain all possible behaviours in the QSS model. 

This way, the Overapproximation preserves safety properties, i.e. any 

proof of a safe overapproximation implies the original system is also 

safe. However as the overapproximation contains more behaviors 

than the original system, its verification may produce safety viola-

tions that does not exist in the original system. In this case, any viola-

tion scenario should also be checked against the original system to 

confirm it is a real safety violation [21]. An example of applying this 

overapproximation to the quantized decay formula is shown in Figure 

4. In this figure, the line marked with x represents the QSS trajectory, 

the line marked with c represents the trajectory obtained by taking the 

ceiling   of the QSS trajectory, and the line marked with f repre-

sents the trajectory obtained by taking floor  of the QSS trajecto-

ry. 

 
Figure 4. Overapproximation of QSS trace. 
 

To get the overapproximated QSS model, all calculations would 

then use interval arithmetic. Thus, the QSS system of (Eq. II.3) may 

be written as: 

M1OA = (X, Y, S, δint, δext, λ, ta), where 

X = 2 × {inport} 

Y =  × {outport} 

S = 4× Z× Z2 +
0 ∞ 

δint(s) = δint([xL, xU],  [dxL , dxU],  k, [σL, σH] ) = 

       (Qk+1, [dxL , dxU] , k + sgn(dxL), [ σ1L ,σ1H]) 

δext(s, e, xu) = δext(x, dx, k, σ, e, xv, port) =  

               ([xL, xU], [xvL, xvL ], k, [ σ2L ,σ2H]) 

λ(s) = λ(x, dx, k, σ) = (Qk+sgn(dx), outport) 

ta(s) = ta(x, dx, k, σ) = [σL, σH] 

(Eq.III.1) 
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(Eq. III.2) 
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 (Eq. III.3) 
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and from (Eq.II.2) we calculate current function slope 

as:  

  

dxL = f[q(t), u(t)] 

dxU = f[q(t), u(t)] 

xvL =  f[xL(t), u(t)] 

xvU = f[xU(t), u(t)] 

 (Eq. III.4) 

 

   
Another obstacle in representing general QSS models with TA is 

the nature of the function f of (Eq.II.2). In UPPAAL, users can define 

functions with syntax close to that of the C language. However, the 

available operators are limited to the primary mathematical operators. 

Furthermore, operands and expression results are all integers. This 

puts a limit on the functions that can be expressed in UPPAAL TA. 

Similar restrictions on the system dynamics also exist with other for-

malisms for hybrid systems verification such as Linear Hybrid Au-

tomata [22], where derivatives are limited by linear constraints. To 

model QSS systems whose dynamics are described by complex func-

tion, the modeller would need to approximate the complex function 

with a polynomial formula that uses only preliminary operators of 

UPPAAL. This approximation may use one of the series expansion 

methods such as the Maclaurin Series, and can be done up to the de-

sired precision. This approximation is similar to Taylor models as de-

fined in [23]. 

   

IV. TA MODEL OF GENERAL QSS. 

The integrator automaton representing the QSS model of (Eq.III.1) 

is shown in figure 5. The structure of this automaton is fixed for any 

QSS system, and thus can be considered as a template representing 

the DEVS model of (Eq.III.1). This template has the following pa-

rameters that are part of the QSS model definition: 

• A set of defined quantization levels Q = {Q0,Q1,….Qr}, where 

Q0 is the initial level, Qr is the final level. 

• The quantum dQ = Qk+1 - Qk , such that     0 ≤ k < r 

• Hysteresis value  

• System defined functions:   f [x(t), u(t)], x(t), and u(t). 

 
Figure 5. TA model of a QSS general Integrator 

 

This automaton starts in S1, and on the transition from S1 to S2, 

it initializes the variables sigmaL, sigmaH, q, and clock t. The inter-

nal transition function δint(s) of (Eq.III.1) is simulated with transitions 

S2  S3, and S3  S2. At S2, the automaton waits for a time t, 

where   σ1L  t  σ1H , then transits to S3. On this transition, value of q 

is updated as Qk+sgn(dx)  = q + (dQ * sgn(dx)), which is equivalent to 

the expression (x + σ · dx) of (Eq. II.3). Then, on transition S3  S2, 

an updated values of dxL, dxU are calculated according to (Eq. III.4), 

then values [σ1L ,σ1H]  are calculated according to (Eq. III.2). Clock t 

is also reset to zero on the transition S3  S2 before waiting in S2 

for the next event. The output function λ(s) is implicit in the TA 

model, as the value of shared variable q can be read by other models 

coupled with this TA model. The definitions of UPPAAL functions 

of these calculations are shown in table 1. These functions are de-

scribed as follows: 

 calc_dx(): Calculates lower & upper bound of dx 

 f(int x,int v): Calculates the slope from the system de-fined 

function.  

 calcSigma1H() , calcSigma1L(): These functions calculate 

the  new upper & lower bounds of Q  based on its current 

value and the quantum dQ in the internal transition. 

 

Table 1. User defined functions for the UPPAAL TA model of 
figure 5 
int sgn(int 

dx){ 

if (dx > 0) 

  return 1; 

else 

  return -1; 

} 

void calc_dx(){    

 dxL = f(xL, v); 

 dxU = f(xU, v); 

} 

int f(int x,int 

v){     

int f = x + v; 

return f; 

} 

int calcSigma1L(){ 

int sigmaL; 

if (dxU > 0) 

  sigmaL = roundDownDiv (dQ, dxU); 

else if (dxU < 0) 

      sigmaL = roundDownDiv (dQ - epsilon, -dxU); 

     else 

      sigmaL = 32767; //infinity in UPPAAL int type. 

return  sigmaL; 

} 
int calcSigma1H(){ 

int sigmaH; 

 

if (dxL > 0) 

  sigmaH = roundUpDiv (dQ, dxL); 

else if (dxL < 0) 

      sigmaL = roundUpDiv (dQ - epsilon, -dxL); 

     else 

      sigmaL = 32767;  // this represents infinity   

                         //in UPPAAL int type. 

return  sigmaH; 

} 

 
To simulate the external transition function δext(s, e, xu) of 

(Eq.III.1), we use the transitions S2  S4  S2. Transition S2  S4 

is enabled only if the automaton receives a synchronization input on 

channel a. This synchronization comes from the automaton generat-

ing the function u(t) as shown in figure 6, and would be described 

later. When this synchronization happens, the automaton moves to 

the committed state S4, and then, without delay, it executes the tran-

sition S4  S2. On this latter transition, the new values of [xL, xU] are 

calculated based on the shared variables SigmaL, SigmaH which are 

passed from the automaton of figure 6. New values of [xvL, xvL ] are 

also calculated to represent a new slope value. Finally, new values for 

[σ2L,σ2H] are calculated. The UPPAAL functions that we defined for 

these calculations are shown in table 2. The functions in this table are 

described as follows: 

 calc_x(int SigmaL, int SigmaH ): calculates current value of x 

from elapsed time which is in the interval [SigmaL,SigmaH]  

passed from the external input, and the slope dx. 



 calcSigma2L(), calcSigma2H(): calculates the lower, and upper 

bounds of sigma in the external transition. 

 

 
Figure 6. TA Model of a QSS Input function generation 
 
For a general QSS system where u(t) ≠ φ, the QSS model would have 

an external transition function to process the input u(t). u(t) is a con-

stant input step function as defined in QSS [9]. To simulate a system 

described with ODE’s as (Eq.II.1), the input u(t) needs to be generat-

ed by a DEVS QSS model. This DEVS QSS model does not have ex-

ternal inputs, and it generates a sequence of quantized events to rep-

resent the step function u(t). Such a system can be described by an 

overapproximated QSS model MuOA where we use closed integer in-

tervals instead of Real numbers, for the same reason we did with the 

integrator QSS model above. The overapproximated model of the in-

put function is shown in (Eq. IV.1) -   (Eq. IV.3). As this model has 

no external input, then we know, from the semantics of QSS method, 

that the state variable u would always take a value from the set Q of 

the quantization levels. Thus the term [uL, uU], of the state, would be 

the current quantization level Qk+1. 

 

MuOA = (X, Y, S, δint, δext, λ, ta), where 
X = φ 

Y =  × {outport} 

S = 4× Z× Z2 +0 ∞ 

δint(s) = δint([uL, uU],  [duL , duU],  k, [σL, σH] )  =    

(Qk+1, [duL , duU] , k + sgn(duL), [ σ1L ,σ1H]) 

δext(s, e, xu) = φ 

λ(s) = λ(x, du, k, σ) = (Qk+sgn(du), outport) 

ta(s) = ta(x, du, k, σ) = [σL, σH] 

(Eq. IV.1) 
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(Eq. IV.2) 
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and current function slope as: 

duL = u(t) 

duU = u(t) 

   
(Eq. IV.3) 

 
 

Table 2. User defined functions for the UPPAAL TA model of 
figure 6 
void calc_x(int SigmaL, int 

SigmaH ){ 

 

//xL: Lower integer bound of       

//x variable 

 

 xL += SigmaL * dxL; 

 

// xU:Upper integer bound of       

//x variable 

 

 xU += SigmaH * dxU;  

} 

void calc_dx(){   

  

 dxL = f(xL, v); 

 dxU = f(xU, v); 

 

} 

int calcSigma2L(){      

 

int sigmaL, xvL; 

xvL = calc_xv(xL); 

if (dxL > 0)    

  sigmaL = roundDownDiv ((q + dQ) - xL, xvL); 

else if (dxL < 0) 

  sigmaL = roundDownDiv ( xL - (q - epsilon) , -

xvL);   

     else 

      sigmaL = 32767;//infinity for int type. 

return  sigmaL; 

} 
int calcSigma2H(){      

   

int sigmaH, xvU; 

xvU = calc_xv(xU); 

 

if (dxL > 0) 

  sigmaL = roundUpDiv ((q + dQ) - xL, xvU); 

else if (dxU < 0) 

    sigmaH = roundUpDiv ( xU - (q - epsilon) , -

xvU); 

     else 

      sigmaH = 32767;      //infinity for int type. 

return  sigmaH; 

} 
 

In figure 6, the transition L1 L2 initializes clock z, the lower and 

upper time constraints [σ1L ,σ1H], the quantized output variable v , and 

calculates the initial slope from the function definition of u(t) by in-

voking user defined function calc_dV(v). The slope is calculated as a 

closed integer interval [dvL,dvU] to represent the overapproximation 

of slope value, as defined in   (Eq. IV.3). δint(s) is simulated by transi-

tions L2L3L2. On these two transitions, new value of v is calcu-

lated, the function calc_dV(v) calculates the values of u(t), then the 

new values of next event timing is calculated [ σ1L ,σ1H]. We note here 

that to calculate u(t) we need the current value of time t. At any time 

during the model execution, the total elapsed time t after j number of 

internal transitions is given by: 





10 ji

ijt   

And as we have an estimate of   in the interval [σ1L ,σ1H], we get: 





10 ji

iLLjt     , 



10 ji

iUUj
t   

This gives an estimate of time at current iteration j as shown on 

transition L2L3 with the integer interval [tL,tU]. 

On the transition from L3 to L2, after the automaton calculates 

the next values of shared variables SigmaL and SigmaH, it synchro-

nizes on channel “a” to the integrator automaton shown in figure 5 , 



so the latter can read the values of v, SigmaL, and SigmaH which are 

used in the external transition definition to recalculate a new function 

slope xv.  

V. CONCLUSION 

We showed a methodology to verify hybrid DEVS models. This is 

an extension of previous results verifying discrete DEVS [1][24-26], 

and this was obtained by using QSS method to model continuous 

components in a discrete representation.  Enabling approximation of 

system dynamics in timed automata models using QSS opens the 

door to more complex verification queries and better controller de-

signs. For example, the following research directions can be built on 

results of hybrid systems verification using QSS: 

• System dynamics are presented in a fine-grain in the TA model. 

This would enable verification of more advanced types of controllers 

than an On-Off controller. For example, advanced control algorithms 

could use the information about the state variable change with respect 

to time. 

• TA controller synthesis techniques could use the fine-grained in-

formation of system dynamics to synthesis advanced controllers 

based on QSS environment models. 

Some limitations, however, for this method of overapproximation is 

that for systems described with nonlinear derivatives, the overapprox-

imation can lead to a wide flow pipe around the actual system trajec-

tory. This can lead to more spurious safety violations because of this 

wide overapproximation. Other limitation is the inherit problem with 

model checking technique of state-space explosion that limits the 

ability to scale verification to larger models. 
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