
Hybrid Systems Modeling and Verification with DEVS (WIP)

Hesham Saadawi1 Gabriel Wainer2
HeshamSaadawi@cmail.carleton.ca gwainer@sce.carleton.ca

1
School of Computer Science, Carleton University, Ottawa, ON, CANADA

2
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, CANADA

Keywords: Hybrid Systems Verification, DEVS, Timed Automata,

Quantized State Systems QSS

Abstract
Hybrid systems (where continuous and discrete phenomena interact)

are found in many natural and artificial systems. An important exam-

ple, real-time embedded systems usually include discrete-event con-

trollers interacting with a continuous plant. Verifying these real-time

systems for correct behavior is of utmost importance, as results of in-

correct behavior are usually catastrophic. To complement the use of

Modeling and Simulation study of such hybrid real-time systems, we

extend here the verification method, based on RTA-DEVS, hybrid

Timed Automata and the QSS that was introduced in [1], which al-

lows verifying real-time hybrid systems modeled by DEVS formal-

ism. This extension allows the transformation of the QSS model into

overapproximation TA model using interval arithmetic to solve the

limitation introduced by the purely integer arithmetic available in

UPPAAL.

I. INTRODUCTION
Real-Time (RT) systems are complex computer systems with hard-

ware and software components with timing constraints. These con-

straints can be “soft” timing (i.e., a deadline can be missed without

serious consequences), or "hard" timing constraints (and a missed

deadline can result in catastrophic consequences). In these highly re-

active systems, correctness is concerned with both system behavior

and its ability to execute its tasks in a timely manner. These systems

are usually hybrid in nature as they are often composed of a digital

computer controller interacting with the physical environment. This

implies the need for an analysis methodology that can deal with both

discrete and continuous models.

Formal analysis is growing as a methodology to enable the full

verification of RT systems. One of the most successful methods of

formal verification is model checking which enables full automation

of the verification process. RT systems have benefited the most from

timed model checking as with the case of Timed Automata TA [2].

As DEVS is formalism for M&S, modeling the RT system with

this formalism, enables testing real life scenarios, even for those cas-

es in which real-life testing might be too costly or impossible to

achieve [3]. If the executable models used for M&S are formal, their

correctness would also be verifiable, and a designer could see the sys-

tem evolution and its inner workings even before starting a simula-

tion [3], then these models can be deployed to the target platform,

thus giving the opportunity to use the model not only for simulations,

but also as the actual implementation deployed on the target hard-

ware. This avoids any new errors that would appear during the im-

plementation from transformation of the verified models into an im-

plementation, thus guaranteeing a high degree of correctness and reli-

ability.

The objective of this paper is to introduce an advanced method-

ology enabling formal verification of hybrid RT systems modeled

with DEVS formalism. This methodology would add the benefit of

rigorous formal correctness checking to the current practice of simu-

lating RT hybrid systems. The main contribution is to extend on the

transformation we presented in [1] to enable the verification of any

general continuous system modeled with QSS through proper trans-

formation to an equivalent TA model. Then, TA can be formally veri-

fied with tools such as UPPAAL.This method would deal with issues

of infinite continuous state space and the limitations of integer arith-

metic in UPPAAL by the use of interval arithmetic to obtain an over-

approximated TA model that preserves safety and reachability prop-

erties of the original RT system. DEVS ability to be executed on em-

bedded DEVS simulators provides the opportunity to use the verified

controller component, from the verified hybrid model, to be the actu-

al implementation code executing on the embedded platform.

II. BACKGROUND

A. Hybrid DEVS Models

A Major problem in hybrid systems verification is the lack of a uni-

fied theory to model and solve both continuous and discrete compo-

nents together [4]. As a result, modeling and simulation is still one of

the most useful methods to verify this kind of systems [5-7]. Hybrid

systems simulation was enabled within DEVS formalism by using a

method, called Quantizes State Systems (QSS) that will be covered in

section B, which allows modeling continuous components [8-10] as

discrete event systems.

To use the model checking method to verify hybrid systems, the

focus would be to find a suitable finite abstraction of the hybrid sys-

tem that can be verified and hence reachability algorithm is guaran-

teed to terminate. Different types of labeled transition systems were

proposed to model hybrid systems abstractions including Petri Nets

[11], hybrid automata and TA [12].

 However, as Henzinger et al. shows in [13], Hybrid TA verifica-

tion through reachability analysis is not decidable in general. For this

reason, it would be an advantage to model the hybrid system in some

form with a decidable verification such as TA. Many techniques have

been proposed to approximate continuous-time systems into a dis-

crete representation of TA [14-17].

This paper uses another technique to represent the continuous

system in discrete format using DEVS formalism based on Quantized

State Systems (QSS).

B. Quantized State Systems (QSS) Method

In this section, we introduce the QSS method as was explained in

[8,9]. The QSS is an approximation method to model and simulate

continuous systems, which are usually modeled with Ordinary Dif-

ferential Equations (ODE) and Algebraic Equations. Traditional

method to obtain a detailed description of a system behavior entails

solving these equations simultaneously. To do this, a technique of

numerical integration is used to solve ODEs such as Euler, Runge-

Kutta, etc. All these methods rely on discrete-time integration of

ODEs. In this way, time progresses in small steps, and at each step,

an approximation is computed for the ODEs solution. When a system

modeled by ODEs has a discontinuity (i.e. sudden jumps in its varia-

bles values with regard to time), the numerical integration method

may produce unacceptable errors [10]. However, these kinds of dis-

continuity are normal properties in hybrid systems, which can be seen

as operating in different modes, each described with a specific ODE,

for example, a heating system with an on-off thermostat controller.

mailto:HeshamSaadawi@cmail.carleton.ca
mailto:gwainer@sce.carleton.ca

Quantized State Systems QSS is a different method for approxima-

tion. This is a quantization-based method that models hybrid systems

as discrete-event systems and not as discrete-time. This solves the

above problem around discontinuities while solving hybrid system as

discussed in [9]. We consider here a continuous system modeled by

some time-invariant Ordinary differential equation (ODE) and it is in

its State Equation System (SES) representation:

x˙ (t) = f[x(t), u(t))] (Eq.II.1)
Where x(t)  R n represents the system state vector and u(t)  R m

represents an input vector, which is a known piecewise constant func-

tion, and R is the set of Real numbers. With the QSS method, we

simulate an approximate system, which is called Quantized State Sys-

tem:

x˙ (t) = f[q(t), u(t))] (Eq.II.2)

Where q(t) is a vector of quantized variables which are obtained by a

quantization function q(t) from the state variables x(t). Each compo-

nent of q(t) may be related with the corresponding component of x(t)

by a hysteretic quantization function, as given in [9]. A hysteresis

function approximates a continuous linear function xi(t) by outputting

a number of discrete levels. Each level is called a quantization level

Qi. The difference between two successive quantization levels (Qi,
Qi+1) is called the quantum (dq) and it is usually constant. The cross-

ing of the continuous function to a quantization level generates an

output.

A DEVS model that solves (Eq.II.2) by integration is called a

quantized integrator and can be written as follows [9]:

M1 = (X, Y, S, δint, δext, λ, ta), where:

X =  × {inport}

Y =  × {outport}

S = 2× Z× R+
0 ∞

δint(s) = δint(x, dx, k, σ) =

 (x + σ · dx, dx, k + sgn(dx), σ1)

δext(s, e, xu) = δext(x, dx, k, σ, e, xv, port) =

 (x + e · dx, xv, k, σ2)

λ(s) = λ(x, dx, k, σ) = (Qk+sgn(dx), outport)

ta(s) = ta(x, dx, k, σ) = σ

(Eq. II.3)

 Where

{inport}: The set of input ports.

{outport}: The set of output ports

σ1 =





























0

0
)

1
(

0
)

1
(

2

xdif

xdif
xd

k
Q

k
Q

xdif
xd

k
Q

k
Q


 and

σ2 =


























0

0
)().(

0
).(

1

vxif

vxif
vx

k
Qxdex

vxif
vx

xdex
k

Q



 A static function f(z1, . . . , zp) can be represented by the DEVS

model:

M2 = (X, Y, S, δint, δext, λ, ta), where

X =× {inport1, . . . , inportp}

Y =  × {outport}

S = p × +
0 ∞

δint(s) = δint(z1, . . . , zp, σ) =

 (z1, . . . , zp,∞)

δext(s, e, x) = δext(z1, . . . , zp, σ, e, xv, port)

 = (˜z1, . . . , ˜zp,∞)

λ(s) = λ(z1, . . . , zp, σ) =

 (f(z1, . . . , zp, σ), outport)

ta(s) = ta(z1, . . . , zp, σ) = σ

Where



 


otherwisez

inportportifx
z

j

jv~

(Eq. II.4)

As indicated in [9], this combined DEVS model of M1 and M2

simulates the QSS system.

Figure 1 shows a DEVS coupled model for a QSS model as de-

fined by (Eq. II.3) and (Eq. II.4). The Model M1 defines the integrator

and the quantization function.

Figure 1. QSS Block Diagram Model

An example of simulating a continuous system with QSS can be

shown by using the exponential decay formula which is modeled as

follows, using an ODE:

dx/dt = -x(t) (Eq.II.5)

Which has the analytical solution x(t) = e-t, with the initial condition

x(0) =1. Figure 2 shows the exact analytical solution of the exponen-

tial decay formula x(t) = 10 e-t where x(0) =10. This exact solution of

(Eq.II.5) is approximated with linear segments in a discrete-event

form by the following QSS DEVS model:

AMD = <X, Y, S, int, ext ,ta> (Eq.II.6)

X = Ø; S={s | s=(q,)} ; ta(s) = ta(q,) = 

int (s) = int (q,) = (q-0.1, 0 .1/q) ; q,) = q

q: is a quantized variable related to the x(t) system variable by a

quantization function.

Figure 2. Linear approximation of Decay formula

The QSS linear approximation for the decay formula is shown in

Figure 2. Figure 3 shows the quantized representation of the decay

formula as a result of simulating this QSS model.

Figure 3. Quantized representation of Exponential Decay.

III. OVER-APPROXIMATING QSS WITH INTEGER INTERVALS

The main contribution of this paper is a novel approach to trans-

form general QSS models to TA by using interval arithmetic [18-20]

to solve the limitation of UPPAAL in using only integer arithmetic.

To transform a QSS DEVS model (Eq. II.3), (Eq. II.4) to a TA, we

need to solve the following two issues:

1. The TA variables can only be of bounded integer type, in order

to guarantee the finiteness of state space and the termination of

the model-checking algorithm. However, in QSS, state variables

are real numbers and thus have infinite values.

2. Time ( of next quantum event is approximated to an integer

number when transforming to TA. However in doing so we need

to preserve the original behavior of QSS and hence the proper-

ties we need to formally verify.

First, We can obtain a finite system state-space by incorporating

practical system bounds on variable values and identifying the least

precision possible when measuring these variables. This would pro-

duce the finite set of quantization levels Q. Second, these above two

issues are handled by approximating all Real-valued variables in QSS

to some equivalent Integer values. When faced with obtaining an In-

teger approximation to a Real value, we need to round the Real value

to the nearest Integer. However, in doing so, we lose the actual value

as it was in the QSS model, and this may render TA verification re-

sults not applicable to the original QSS system.

To include the actual values of the QSS variables in our approxi-

mation, we replace any QSS Real-value with a closed interval be-

tween two Integers [L,U], where L is the mathematical floor function

of the Real-value, and U is the mathematical ceiling. This would

constitute an overapproximation that contains the true trajectory pro-

duced by the QSS. This overapproximation, when transformed to a

TA model, would contain all possible behaviours in the QSS model.

This way, the Overapproximation preserves safety properties, i.e. any

proof of a safe overapproximation implies the original system is also

safe. However as the overapproximation contains more behaviors

than the original system, its verification may produce safety viola-

tions that does not exist in the original system. In this case, any viola-

tion scenario should also be checked against the original system to

confirm it is a real safety violation [21]. An example of applying this

overapproximation to the quantized decay formula is shown in Figure

4. In this figure, the line marked with x represents the QSS trajectory,

the line marked with c represents the trajectory obtained by taking the

ceiling   of the QSS trajectory, and the line marked with f repre-

sents the trajectory obtained by taking floor  of the QSS trajecto-

ry.

Figure 4. Overapproximation of QSS trace.

To get the overapproximated QSS model, all calculations would

then use interval arithmetic. Thus, the QSS system of (Eq. II.3) may

be written as:

M1OA = (X, Y, S, δint, δext, λ, ta), where

X = 2 × {inport}

Y =  × {outport}

S = 4× Z× Z2 +
0 ∞

δint(s) = δint([xL, xU], [dxL , dxU], k, [σL, σH]) =

 (Qk+1, [dxL , dxU] , k + sgn(dxL), [σ1L ,σ1H])

δext(s, e, xu) = δext(x, dx, k, σ, e, xv, port) =

 ([xL, xU], [xvL, xvL], k, [σ2L ,σ2H])

λ(s) = λ(x, dx, k, σ) = (Qk+sgn(dx), outport)

ta(s) = ta(x, dx, k, σ) = [σL, σH]

(Eq.III.1)

xL = x + e • dxL

xU = x + e • dxU

σ1L =



























0

0
)(

0
)(

1

12

xU

xU

xU

kk

xU

Ux

kk

dif

dif
d

QQ

dif
d

QQ



(Eq. III.2)

σ1U =



























0

0
)(

0
)(

1

12

xL

xL

xL

kk

xL

Lx

kk

dif

dif
d

QQ

dif
d

QQ



σ2L =























0

0
)().(

0
).(1

vL

vL

vL

kxLL

Lv

vL

xLLk

xif

xif
x

Qdex

xif
x

dexQ



 (Eq. III.3)

σ2U =























0

0
)().(

0
).(1

vU

vU

vU

kxUU

Uv

vL

xUUk

xif

xif
x

Qdex

xif
x

dexQ



and from (Eq.II.2) we calculate current function slope

as:

dxL = f[q(t), u(t)]

dxU = f[q(t), u(t)]

xvL =  f[xL(t), u(t)]

xvU = f[xU(t), u(t)]

 (Eq. III.4)

Another obstacle in representing general QSS models with TA is

the nature of the function f of (Eq.II.2). In UPPAAL, users can define

functions with syntax close to that of the C language. However, the

available operators are limited to the primary mathematical operators.

Furthermore, operands and expression results are all integers. This

puts a limit on the functions that can be expressed in UPPAAL TA.

Similar restrictions on the system dynamics also exist with other for-

malisms for hybrid systems verification such as Linear Hybrid Au-

tomata [22], where derivatives are limited by linear constraints. To

model QSS systems whose dynamics are described by complex func-

tion, the modeller would need to approximate the complex function

with a polynomial formula that uses only preliminary operators of

UPPAAL. This approximation may use one of the series expansion

methods such as the Maclaurin Series, and can be done up to the de-

sired precision. This approximation is similar to Taylor models as de-

fined in [23].

IV. TA MODEL OF GENERAL QSS.

The integrator automaton representing the QSS model of (Eq.III.1)

is shown in figure 5. The structure of this automaton is fixed for any

QSS system, and thus can be considered as a template representing

the DEVS model of (Eq.III.1). This template has the following pa-

rameters that are part of the QSS model definition:

• A set of defined quantization levels Q = {Q0,Q1,….Qr}, where

Q0 is the initial level, Qr is the final level.

• The quantum dQ = Qk+1 - Qk , such that 0 ≤ k < r

• Hysteresis value 

• System defined functions: f [x(t), u(t)], x(t), and u(t).

Figure 5. TA model of a QSS general Integrator

This automaton starts in S1, and on the transition from S1 to S2,

it initializes the variables sigmaL, sigmaH, q, and clock t. The inter-

nal transition function δint(s) of (Eq.III.1) is simulated with transitions

S2  S3, and S3  S2. At S2, the automaton waits for a time t,

where σ1L  t  σ1H , then transits to S3. On this transition, value of q

is updated as Qk+sgn(dx) = q + (dQ * sgn(dx)), which is equivalent to

the expression (x + σ · dx) of (Eq. II.3). Then, on transition S3  S2,

an updated values of dxL, dxU are calculated according to (Eq. III.4),

then values [σ1L ,σ1H] are calculated according to (Eq. III.2). Clock t

is also reset to zero on the transition S3  S2 before waiting in S2

for the next event. The output function λ(s) is implicit in the TA

model, as the value of shared variable q can be read by other models

coupled with this TA model. The definitions of UPPAAL functions

of these calculations are shown in table 1. These functions are de-

scribed as follows:

 calc_dx(): Calculates lower & upper bound of dx

 f(int x,int v): Calculates the slope from the system de-fined

function.

 calcSigma1H() , calcSigma1L(): These functions calculate

the new upper & lower bounds of Q based on its current

value and the quantum dQ in the internal transition.

Table 1. User defined functions for the UPPAAL TA model of
figure 5
int sgn(int

dx){

if (dx > 0)

 return 1;

else

 return -1;

}

void calc_dx(){

 dxL = f(xL, v);

 dxU = f(xU, v);

}

int f(int x,int

v){

int f = x + v;

return f;

}

int calcSigma1L(){

int sigmaL;

if (dxU > 0)

 sigmaL = roundDownDiv (dQ, dxU);

else if (dxU < 0)

 sigmaL = roundDownDiv (dQ - epsilon, -dxU);

 else

 sigmaL = 32767; //infinity in UPPAAL int type.

return sigmaL;

}
int calcSigma1H(){

int sigmaH;

if (dxL > 0)

 sigmaH = roundUpDiv (dQ, dxL);

else if (dxL < 0)

 sigmaL = roundUpDiv (dQ - epsilon, -dxL);

 else

 sigmaL = 32767; // this represents infinity

 //in UPPAAL int type.

return sigmaH;

}

To simulate the external transition function δext(s, e, xu) of

(Eq.III.1), we use the transitions S2  S4  S2. Transition S2  S4

is enabled only if the automaton receives a synchronization input on

channel a. This synchronization comes from the automaton generat-

ing the function u(t) as shown in figure 6, and would be described

later. When this synchronization happens, the automaton moves to

the committed state S4, and then, without delay, it executes the tran-

sition S4  S2. On this latter transition, the new values of [xL, xU] are

calculated based on the shared variables SigmaL, SigmaH which are

passed from the automaton of figure 6. New values of [xvL, xvL] are

also calculated to represent a new slope value. Finally, new values for

[σ2L,σ2H] are calculated. The UPPAAL functions that we defined for

these calculations are shown in table 2. The functions in this table are

described as follows:

 calc_x(int SigmaL, int SigmaH): calculates current value of x

from elapsed time which is in the interval [SigmaL,SigmaH]

passed from the external input, and the slope dx.

 calcSigma2L(), calcSigma2H(): calculates the lower, and upper

bounds of sigma in the external transition.

Figure 6. TA Model of a QSS Input function generation

For a general QSS system where u(t) ≠ φ, the QSS model would have

an external transition function to process the input u(t). u(t) is a con-

stant input step function as defined in QSS [9]. To simulate a system

described with ODE’s as (Eq.II.1), the input u(t) needs to be generat-

ed by a DEVS QSS model. This DEVS QSS model does not have ex-

ternal inputs, and it generates a sequence of quantized events to rep-

resent the step function u(t). Such a system can be described by an

overapproximated QSS model MuOA where we use closed integer in-

tervals instead of Real numbers, for the same reason we did with the

integrator QSS model above. The overapproximated model of the in-

put function is shown in (Eq. IV.1) - (Eq. IV.3). As this model has

no external input, then we know, from the semantics of QSS method,

that the state variable u would always take a value from the set Q of

the quantization levels. Thus the term [uL, uU], of the state, would be

the current quantization level Qk+1.

MuOA = (X, Y, S, δint, δext, λ, ta), where
X = φ

Y =  × {outport}

S = 4× Z× Z2 +0 ∞

δint(s) = δint([uL, uU], [duL , duU], k, [σL, σH]) =

(Qk+1, [duL , duU] , k + sgn(duL), [σ1L ,σ1H])

δext(s, e, xu) = φ

λ(s) = λ(x, du, k, σ) = (Qk+sgn(du), outport)

ta(s) = ta(x, du, k, σ) = [σL, σH]

(Eq. IV.1)

σ1L =



























0

0
)(

0
)(

1

12

uU

uU

uU

kk

uU

Uu

kk

dif

dif
d

QQ

dif
d

QQ



(Eq. IV.2)

σ1U =



























0

0
)(

0
)(

1

12

uL

uL

uL

kk

uL

Lu

kk

dif

dif
d

QQ

dif
d

QQ



and current function slope as:

duL = u(t)

duU = u(t)

(Eq. IV.3)

Table 2. User defined functions for the UPPAAL TA model of
figure 6
void calc_x(int SigmaL, int

SigmaH){

//xL: Lower integer bound of

//x variable

 xL += SigmaL * dxL;

// xU:Upper integer bound of

//x variable

 xU += SigmaH * dxU;

}

void calc_dx(){

 dxL = f(xL, v);

 dxU = f(xU, v);

}

int calcSigma2L(){

int sigmaL, xvL;

xvL = calc_xv(xL);

if (dxL > 0)

 sigmaL = roundDownDiv ((q + dQ) - xL, xvL);

else if (dxL < 0)

 sigmaL = roundDownDiv (xL - (q - epsilon) , -

xvL);

 else

 sigmaL = 32767;//infinity for int type.

return sigmaL;

}
int calcSigma2H(){

int sigmaH, xvU;

xvU = calc_xv(xU);

if (dxL > 0)

 sigmaL = roundUpDiv ((q + dQ) - xL, xvU);

else if (dxU < 0)

 sigmaH = roundUpDiv (xU - (q - epsilon) , -

xvU);

 else

 sigmaH = 32767; //infinity for int type.

return sigmaH;

}

In figure 6, the transition L1 L2 initializes clock z, the lower and

upper time constraints [σ1L ,σ1H], the quantized output variable v , and

calculates the initial slope from the function definition of u(t) by in-

voking user defined function calc_dV(v). The slope is calculated as a

closed integer interval [dvL,dvU] to represent the overapproximation

of slope value, as defined in (Eq. IV.3). δint(s) is simulated by transi-

tions L2L3L2. On these two transitions, new value of v is calcu-

lated, the function calc_dV(v) calculates the values of u(t), then the

new values of next event timing is calculated [σ1L ,σ1H]. We note here

that to calculate u(t) we need the current value of time t. At any time

during the model execution, the total elapsed time t after j number of

internal transitions is given by:





10 ji

ijt 

And as we have an estimate of  in the interval [σ1L ,σ1H], we get:





10 ji

iLLjt  , 



10 ji

iUUj
t 

This gives an estimate of time at current iteration j as shown on

transition L2L3 with the integer interval [tL,tU].

On the transition from L3 to L2, after the automaton calculates

the next values of shared variables SigmaL and SigmaH, it synchro-

nizes on channel “a” to the integrator automaton shown in figure 5 ,

so the latter can read the values of v, SigmaL, and SigmaH which are

used in the external transition definition to recalculate a new function

slope xv.

V. CONCLUSION

We showed a methodology to verify hybrid DEVS models. This is

an extension of previous results verifying discrete DEVS [1][24-26],

and this was obtained by using QSS method to model continuous

components in a discrete representation. Enabling approximation of

system dynamics in timed automata models using QSS opens the

door to more complex verification queries and better controller de-

signs. For example, the following research directions can be built on

results of hybrid systems verification using QSS:

• System dynamics are presented in a fine-grain in the TA model.

This would enable verification of more advanced types of controllers

than an On-Off controller. For example, advanced control algorithms

could use the information about the state variable change with respect

to time.

• TA controller synthesis techniques could use the fine-grained in-

formation of system dynamics to synthesis advanced controllers

based on QSS environment models.

Some limitations, however, for this method of overapproximation is

that for systems described with nonlinear derivatives, the overapprox-

imation can lead to a wide flow pipe around the actual system trajec-

tory. This can lead to more spurious safety violations because of this

wide overapproximation. Other limitation is the inherit problem with

model checking technique of state-space explosion that limits the

ability to scale verification to larger models.

REFERENCES

[1] H.Saadawi, G. Wainer. 2012. “On the verification of hybrid DEVS

models”. In Proceedings of the 2012 Symposium on Theory of Modeling

and Simulation - DEVS Integrative M&S Symposium (TMS/DEVS '12),

Orlando, FL,USA. March 26-28.

[2] R. Alur, D. Dill. 1994. “Theory of Timed Automata". Theoretical Com-

puter Science, 126: 183-235.
[3] G. Wainer, E. Glinsky, and P. MacSween. 2005. “A Model-Driven

Technique for Development of Embedded Systems Based on the DEVS

Formalism”. In Model-driven Software Development - Volume II of Re-
search and Practice in Software Engineering, edited by S. Beydeda and

V. Gruhn. Springer-Verlag.

[4] M. S Branicky. 2005. “Introduction to Hybrid Systems” D. Hristu-
Varsakelis and W.S. Levine (eds.), Handbook of Networked and Embed-

ded Control Systems, 91-116. Boston: Birkhauser.

[5] A. Donzé, O. Maler. 2007. “Systematic simulation using sensitivity
analysis”. In Proceedings of the 10th international conference on Hybrid

systems: computation and control (HSCC'07) :174-189.

[6] A. Donzé. 2007. “Trajectory-Based Verication and Controller Synthesys
for Continuous and Hybrid Systems”. PhD thesis, University Joseph

Fourier.

[7] A. Donzé, B. Krogh, and A. Rajhans. 2009. “Parameter synthesis for
hybrid systems with an application to simulink models”. In Proceedings

of the 12th International Conference on Hybrid Systems : Computation

and Control (HSCC'09), San Francisco, CA, USA, April 13-15, 2009.
[8] E. Kofman, S. Junco. 2001."Quantized State Systems. A DEVS Ap-

proach for Continuous Systems Simulation". Transactions of SCS.

18(3): 123-132.
[9] E. Kofman. 2004. "Discrete Event Simulation of Hybrid Systems". SI-

AM Journal on Scientific Computing 25(5): 1771-1797.

[10] M. Otter, F. Cellier. 1996. The Control Handbook, chapter Software for
Modeling and Simulating Control Systems, 415–428. CRC Press, Boca

Raton, FL.

[11] G Decknatel, R. Slovák, E. Schnieder. 2002. “Definition of a Type of
Continuous-Discrete High-Level Petri Nets and Its Application to the

Performance Analysis of Train Protection Systems In S. Engell,

G. Frehse, and E. Schnieder (Eds.), Modelling, Analysis, and Design of
Hybrid Systems, Lecture Notes in Control and Information Sciences 279:

355–367.

[12] S. Kowalewski. 2002. “Introduction to the Analysis and Verification of

Hybrid Systems”. Modelling, Analysis, and Design of Hybrid Systems.
Lecture Notes in Control and Information Sciences, 279: 153-171.

[13] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. 1995. “What's

decidable about hybrid automata?”. In Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing, STOC ’95, New York,

NY, USA, 373–382.

[14] J. Lunze and J. Raisch. 2002. “Discrete Models for Hybrid Systems.
Modelling, Analysis, and Design of Hybrid Systems”. Lecture Notes in

Control and Information Sciences, 279: 67-80.

[15] R. Alur, T.A. Henzinger, G. Lafferriere, G.J. Pappas. 2000. “Discrete
abstractions of hybrid systems”. Proceedings of the IEEE, 88(7): 971-

984.

[16] E. Barke, D. Grabowski, H. Graeb, L. Hedrich, S. Heinen, R. Popp, S.
Steinhorst, and Y. Wang. 2009. “Formal approaches to analog circuit

verification”. In Proceedings of the Conference on Design, Automation

and Test in Europe (DATE '09), European Design and Automation As-
sociation, 3001 Leuven, Belgium, Belgium, 724-729.

[17] Oded Maler and Grégory Batt. 2008. “Approximating Continuous Sys-

tems by Timed Automata”. In Proceedings of the 1st international
workshop on Formal Methods in Systems Biology (FMSB '08), Cam-

bridge, UK, Jasmin Fisher (Ed.). Springer-Verlag, Berlin, Heidelberg,

77-89.
[18] B. Hayes, 2003."Lucid Interval", Scientific American, November-

December 2003, 91(6): 484.

[19] J. G. Rokne. 2001." Interval arithmetic and interval analysis: an intro-
duction". In Granular computing, Witold Pedrycz (Ed.). Physica-Verlag

GmbH, Heidelberg, Germany.
[20] R. E. Moore, R. B. Kearfott, and M. J. Cloud, 2009."Introduction to In-

terval Analysis". Society for Industrial and Applied Math., Philadelphia,

PA, USA.
[21] B. Berard, , M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,

Ph. Schnoebelen and P. McKenzie. 2001. Systems and Software Verifi-

cation: Model-Checking Techniques and Tools. Springer Verlag.
[22] T. Henzinger. 1996. “The Theory of Hybrid Automata”. Lecture Notes

in Computer Science 278.

[23] X. Chen, E. Abraham, S. Sankaranarayanan, 2012, "Taylor Model
Flowpipe Construction for Non-linear Hybrid Systems," In Proceedings

of Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd , 183-192,

San Juan, PR, USA, Dec. 4-7.

[24] H. Saadawi, G. Wainer. 2009. “Verification of real-time DEVS mod-

els”. In Proceedings of DEVS Symposium 2009. San Diego, CA, March

22 – 27.
[25] H. Saadawi, G. Wainer. 2010. “Rational time-advance DEVS (RTA-

DEVS). In Proceedings of DEVS Symposium 2010, Orlando, FL., April

11-15.
[26] H. Saadawi, G. Wainer. 2010. “From DEVS to RTA-DEVS”. In Pro-

ceedings of the 2010 IEEE/ACM 14th International Symposium on Dis-

tributed Simulation and Real Time Applications (DS-RT '10). IEEE
Computer Society, Washington, DC, USA, 207-210.

