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ABSTRACT

In recent years, new techniques have been created t
allow practitioners to model real world events gsin
either military training environments or discreteest
simulation tools. Military distributed simulationare
interoperable through interfaces such as High Level
Architecture  (HLA), or Distributed Interactive
Simulation (DIS) Protocol while discrete event
Modeling and Simulation (M&S) are defined through
their tools and formalism. The RESTful Interopeeabl
Simulation Environment (RISE) is a plug and play
paradigm of software tools that has a resource
application interface based on the Uniform Resource
Identifiers (URIs). We show how these diverse
branches of simulation can be joined together to
produce a mash-up of services for distributed
simulations allowing precise discrete event modglm

a military context.
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1. INTRODUCTION

In the logical flow from doctrine through training
operations, the intent of the military is to esisibla
force generating system that is responsive to tipei
demands. Training simulation technology is making
significant  advances in  flexibility, fidelity,
interoperability, networking, portability, reliaky, and
fiscal effectiveness. The aim of the training itpose

a soldier to various battlefield conditions and
environments that will allow the soldier to develop
learn, and confirm skills. Training simulation
technologies can replicate battlefield conditionsd a
equipment platforms to a high degree of fidelitythwi
low cost and are collectively interfaced togetheraa
Live, Virtual or Constructive (LVC) distributed
simulation.

Military simulations can exist as stand alone firajn
platform simulations or stimulators to highly inter
connected real-time functional-level or platformeéé
war-gaming. In the context of war-gaming, these
distributed simulations are connected through
interoperable standards such as the following (NATO
2013):

1. High Level Architecture (HLA): HLA is
defined as “a family of related standards that
together describe the functional elements,
interfaces, and design rules for a unified

approach and common architecture to
constructing interoperable simulation
systems”;

2. Distributed Interactive Simulation (DIS): DIS
is defined as “the protocol used for information
exchange between Synthetic Environment (SE)
components”; and

3. Protocol or Testing and Training Enabling
Architecture (TENA): TENA is defined as “a
distributed simulation communication
protocol, described as middleware, and
designed to enable interoperability among
range systems, facilities, simulations, C4ISR
systems in a quick, cost-efficient manner”.

With a theatre level simulation, a soldier expecgn
the friction, stress and uncertainty of virtual dmah
without the steep cost associated with training iive
combat situation. At the same time, the soldier's
performance can be monitored, recorded, analyzed an
evaluated in order to measure the level of efficjen
Battlefield lessons usually learned painfully amdycat

the start of a deployment campaign can now be éghrn
during peace time allowing effective troop readmfs
deployment.

Within the operational theatre, planning processss
simulation to advance the pre and post plannindesyc
of combat situations. Modeling and Simulation (M&S)
in theatre focuses on the experimentation of known
circumstances and conditions in order to justifyd an
validate the tactics and resources required toesdtc
Portable modular classrooms allow battle spacait@gi

in theatre or on the fly. However, these portable
modular classrooms can only be remotely controlled
through DIS or HLA gateways.

Research has been conducted to provide traditional
modeling paradigms with composed and hierarchical
integrated multi-models that can dynamically change
their structure or behaviour. Cell-DEVS can gererat
this complex behaviour from sets of relatively sienp
underlying rules Ameghino, Troccoli and Wainer
2001). Using this technique, emergent behaviour in a



complex adaptive system is generated without tlesl ne
to include centralized control mechanisms or eguati
Bottom-up rule conditionality allows the interactiof
higher level components. Establishing an experialent
framework is critical to the verification and vadiibn

of a model as it allows the user to precisely est@lla
simulation run with varying input parameters or
conversely, many simulation runs with many variable
input parametersA(-Zoubi and Wainer, 2009).

The RESTful Interoperable Simulation Environment
(RISE) middleware is a REST based server that is a
plug and play software paradigm of software toold a
whose resources are accessed through its resource
Application Interface (APIl) as Uniform Resource
Identifiers (URIs) (Berners-Lee 1996). RISE, folioy

the requirements of statelessness, allows a user to
conduct M&S through the resources named by the
URIs. In doing so, RISE encapsulates the technical
functionality and provides a platform that is
independent of formalism and tools.

HyperText Markup Language - version 5 (HTMLD5) is a
family of web technologies currently being spedfigy

the World Wide Web Consortium (W3C) and includes
new HTML markup tags, Cascading Style Sheets -
version 3 (CSS3), JavaScript and other supporting
technologies. These other technologies include
Geolocation, WebSockets Web Workers, and local and
web storage. Advances of this technology have atbw
the development of more useful and sophisticated
webpages (Pieters 2013).

With the opportunities created by HTML5, advances
have been made that allow web-based clients tosacce
the traditional distributed simulations. Leveragititg
new WebLVC protocol that harnesses the power of
HTMLS5, a thin client can be developed that creates
means to leverage web-based simulations and pravide
web-based mash-up of services for the traditional
distributed simulations.

2. BACKGROUND

2.1. Distributed Simulation Inter oper ability

Many technologies have been developed in order to
provide an interoperable methodology to interfand a
integrate real-time functional-level and platforewvl
war-gaming. Originally a prototype research systim,
SIMulation  Networking  (SIMNET) application
grandfathered many of today's dynamic
implementations such as Z-Buffering and network
protocols. The use of SIMNET during the Gulf War
demonstrated the success of a real-time interactive
networked cooperative virtual simulatioWilson and
Weatherly 1994). DIS and the Aggregate Level
Simulation Protocol (ALSP) replaced SIMNET with the
purpose of allowing dissimilar autonomous simulatio
nodes to interoperate in real-time, interactive,
distributed simulations (Smith 1995). Advances in
technology led to a follow-on architecture calletdAd

which builds upon the DIS effort by the DIS Stegrin
Committee in 1994 and the ALSP.

Originally conceived as the interoperable methogyplo
for distributed simulation, the Department of Defen
(DoD) mandated the establishment and requirement fo
interoperability of all its simulations through thee of
HLA. Desiring to leverage the advantages of HLAe th
North Atlantic Treaty Organization (NATO) ratified
their M&S Master Plan in 1998 and identified HLA as
the interoperability standard. Further, in order to
provide input into the evolution of HLA, NATO
required DoD to evolve the HLA standard through the
Simulation Interoperability Standards Organization
(SISO). However, by relaxing the policy for the
requirement for the adoption of HLA, transitionHh A
became the decision of DoD components’ priorities,
requirements, and resources. DoD’s neglect to ntanda
and enforce HLA as the only standard provided the
avenue for other distributed simulation architeesuand
protocols such as TENA, and the Combat Training
Instrumentation System (CTIS), Tactical Data Links
(TADIL), Command, Control, Communications,
Computers and Intelligence (C4l) and the survival o
the DIS protocol (Hollenbach 2009).

The majority of these interfaces are developed by
different vendors, requires different techniques fo
achieving their functionality, and requires teclahic
Subject Matter Experts (SME) to install, configuiest,
operate and maintain. Leveraging different monalith
applications together to create LVC simulations tfer
different DoD training domains has resulted in rpldt
types and instances of protocol translators togiatie
the monolithic assets. Research has been undertaken
reduce the number of these protocol translatorauii
Bryan, and Harvey 2006).

However, common to all these interfaces and their
application, is the requirement for a protocol or
architecture framework that allows the monolithic
applications to interface. The data passed is aityen
which is defined as“any distinguishable person,
place, thing, event or concept about which
information is kept” (SISO 2007). Any simulation
designed without these specified architectures or
protocols are not interoperable in a real time fiomal-
level or platform-level war gaming distributed
simulation. Examples of such simulations could be a
flight simulator, a combat information centre, owab-
based simulation.

2.2. Model Development on RISE

The key goals of Representational State Transfer
(REST) is the scalability of component interactioits
generality of interfaces, its independent deployhn
components and its intermediary components to educ
latency delays, compel security implementations and
encapsulate legacy systems (Fielding 2000). RISE is
designed under this architectural style and has its
service URIs structured in a hierarchal tree asvshio
Figure 1.



As stated previously, RISE is developed as a phdya
play paradigm of software tools whose resource i&PI
accessed through URIs. The state changes of therser
are issued upon the user transiting through thesUgl
access its different resources. The user navighes
URIs from a thin client application such as a web
browser and accesses the resources through the
HyperText Transfer Protocol - version 1.1 (HTTP)1.1
methods as defined under RFC 2616. HTTP’s methods
DELETE, GET, POST, and PUT are a feature of the
negotiation of data representation which allowsesys

to be built independently of the data being tramsfi

Mach -URI/cdpp

/{accountname}

i Specific service |
i resources |

Figure 1: RISE Common Resource Structure

RISE is a platform and service that was implemertded
provide server resource availability for client
applications. Specifically, RISE was created as a
middleware resource for a RESTful implementation of
the Distributed CD++ (DCD++). CD++ is a toolkit for
discrete event M&S and is based on the DiscretenEVe
System Specifications (DEVS). The design modeled
into the RISE middleware was to provide transparent
sharing of computing power, data models, and
heterogeneous environments on a global scale. RISE
provides a lightweight approach to web services. It
hides internal software implementation as compaoed
the Simple Object Access Protocol (SOAP) based web
services, which rely on Remote Procedural Calls
(RPCs). The simulation data hosted on RISE is Cell-
DEVS (Al-Zoubi and Wainer, 2009).

2.3. New Technologies and Standards

New technologies and standards have developedhdor t
World Wide Web (WWW) which enables highly
interactive, low-latency, real-time  web-based
applications. HTMLS5 is the newest version of the
markup language used for structuring and presenting
content for the World Wide Web. This revision idl st
under development though most modern browsers are
fully compatible of supporting the version. HTMLSaw
designed to provide a single markup language betwee
HyperText Markup Language (HTML) and eXtensible
HyperText Markup Language (XHTML) while also
implementing other new elements such as audio,ovide
and canvas elements to name a few. These new
elements are designed to handle graphical multimedi

rich environments without having to resort to thixatty
plug-ins (Pieters 2013).

The HTML5 File API allows the read-only capabiliby

the user’s system. As a working draft of the FilBIA
specification, the HTML5 File APl was expressly
designed to allow web applications the ability tewess
files which a user may upload to a remote server or
manipulate in a rich web application. Designed to
remove the reliance on third party embedded APIs,
HTML5 standardizes the way to interact with a local
file. As RISE presents its simulation results reseuas

a compressed file for its event transition, thies ficcess
becomes critical to developing a mash-up of sesvice
(Ranganathan and Sicking 2012).

Implemented in HTML5 are WebSockets. WebSockets
allow the bidirectional transportation of the Java®
Object Notation (JSON) objects through
communication channels called WebSockets. They are
somewhat a combination of UDP and TCP in that they
pass messages like UDP but have the reliabilify@P.
With a combination of the two protocols, a cliengable

to create an asynchronous full-duplex channel ® th
host server. This communication allows the cliemt t
send data instantly to the server and have theeserv
communicate to the client concurrently while the
connection is open.

WebSockets, besides defining a new protocol for the
transference of data, also provides a method fmatiorg
secure connections (Lubbers and Greco 2009). &imil
to normal asynchronous calls like TCP, where the
protocol is optimized for accurate delivery rattiean
timely delivery, all bytes received will be iderdldo all
bytes sent and in the correct order. WebSocketsodo
have the problem of TCP as TCP incurs relativehglo
delays while waiting for out-of-order messages or
retransmissions of lost messages using its positive
acknowledgement technique. This TCP technique
requires the receiver and sender to send an
acknowledgement message each time it receives data
segments, preventing the streaming of data. Critra
the accurate delivery technique of TCP is that the
sender is required to keep a timer on the transditt
packet so that if an acknowledgment message ienhiss
the timer will expire and the transmitted datadsemt.
Once the full data is transmitted, the receivetanger
talks to the sender.

Previously, thin clients such as browsers operated
sequentially. In this regard, there is only one rUse
Interface (UIl) thread that processed and manipdlate
the data within a web browser. Though the multi-
threading of web workers are in its infancy, client
applications are no longer single-threaded and maljt

on server generated state information. Processamg ¢
now be off-loaded back to the client, freeing tbever
from computational requirements and state changes.
With web workers, thin clients are now capable of
processing like modern applications with multittdhieay



in that they can produce multiple threads thawvaliata
manipulation and calculation in JavaScript (Hickson
2012).

To allow web-based simulations access the tradition
distributed simulations, MAk has leveraged their
experience to aid in the development of singletgnti
simulations (MAk 2012). Prototyping the protocoldan
submitting an initial draft to SISO for study, MAlas
provided the framework for a consensus-based
interoperability standard using the JSON objects
matched with the built in encodings for DIS and Rea
time Platform Reference Federation Object ModelRRP
FOM) semantics. MAk's WebLVC server permits the
protocol to define a standard of passing simulatiata
between a web-based client application and a WebLVC
server while remaining independent of the protamssd
within the distributed simulation. Hence, a welsdxh
client application using the WebLVC server could
participate in distributed simulation exercise sasha
DIS exercise, an HLA federation, a TENA execution o
any other distributed simulation environment.

3. FRAMEWORK FOR SUPPORTING ROBUST
DISTRIBUTED SIMULATIONS
This section introduces the design of the thinntlie
which manipulates the RISE simulation execution
results file into a format acceptable for disseriarato
a distributed simulation. No implementation can
guarantee total coverage for fault isolation aralftitus
of this study was to develop a robust infrastruetivat
would allow discrete event simulation such as those
available on RISE to facilitate injection of validodel
simulation execution results into a distributed
simulation. It assumes that the thin client uses the
minimum of capabilities such as WebSockets, file
access and multi-threading.

3.1. Thin Client Distributed Simulation of Discrete
Event M odels Architecture

Access to distributed simulations has not been

established by web-based architectures because of

the limited capabilities of previous versions of thin

clients and the latency of reliable data throughput
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Figure 2: Thin Client Distributed Simulation Of
Discrete Event Models Architecture

However, with the combination of new technologies
and standards, monolithic applications present
within a distributed simulation can now be
interfaced by the WebLVC server. The server stands
connected to the distributed simulation similar to a
DIS/HLA gateway but receives and transmits JSON-
based data to web-based simulations through its
WebSockets. Combining this technology and
methodology, we directly interface and integrate
discrete event simulation data as presented on RISE
into a distributed simulation regardless of the type
of distributed simulation environment. This is
illustrated in Figure 2.

3.2. WebSocket Benefits

Use of the WebSocket protocol permits bi-directlona
data exchange with the streaming capability of D&

the reliability of TCP. It also allows persistent
connections between the client and the server by
providing the reception of responses without pgllor
need for requests. Additionally, the use of Web®txk

is efficient in that its header is minimal at twytéds for
small frames and up to ten bytes for large framéaich
compared to HTTP header traffic of up to 2000 byges
significant (Lubbers and Greco 2009). In comparigon
TCP, which enables the streaming of bytes,
WebSockets enables the streaming of messages and
therefore reduces unnecessary network traffic,
bandwidth consumption and latency. In this regard,
WebSockets are competitive with the bidirectional
communication channels of distributed simulatioss a
shown in Figure 3. In this case of a HLA distrikdite
simulation, data is passed between the federatahend
Real-Time Infrastructure (RTI), which is responsibr
receiving and sending the data to other component
simulations through its callback methods.

‘ Federate |

‘ Federate Ambassador

Update y

Reflect

RTI Ambassador ‘

| RTI |

Figure 3. Bidirectional Distributed Simulation

Communication Channels

3.3. Multi-Threaded Application

Most applications spawn separate threads for coecur
processing either by time-division multiplexing on
single core processors or by having every core or
processor executing a separate thread simultaneonsl

a multiprocessor or multi-core system. With web
workers, thin clients such as a browser, no lorager
restricted to sequential processing. Parent threadk

as the Ul thread of a web browser can spawn child
threads for concurrent processing. Similarly, child
threads can also spawn new child threads. Howeser,
data is shared by the threads, web workers have bee
designed not to be able to access the DocumentcObje



Model (DOM) because of thread-safety, the window
object, the document object, or the parent objeetiso
does not have access to create and bind a WebS#écket
does, however, have access to the navigator olgect,
read-only capability of the location object,
XMLHttpRequest, timers, and the application cache.
Aiding in the modular development, threads can also
import external scripts providing a maintainability
aspect to their production and implementation (Kosk
2012).

Concurrent operation by threading increases theepow
of the thin client when combined with the advantage
HTML5. HTML5 was designed to provide a single
markup language between HTML and eXtensible
HyperText Markup Language (XHTML) while also
implementing other new elements such as audio,ovide
and canvas elements to name a few. These new
elements are designed to handle graphical multinedi
rich environments without having to resort to thpatty
plug-ins. The HTML5 canvas element allows the ¢lien
web browser to inherently manipulate, construct and
layer image data such as 2D or 3D images
(Ranganathan and Sicking 2012). The thin cliensuse
the Environmental Systems Research Institute
Aeronautical Reconnaissance Coverage Geographic
Information System (ESRI ARCGIS) street map and

the ESRI ARCGIS Imagery World 2D map for user
verification of the entities.

The file selection mechanism of the HTML5 File API
allows the read-only selection of a simulation tesu
file selected by the user on RISE for manipulatorm
publishing into the distributed simulation. As an
example of the benefits of multi-threading, the RIS
simulation results file was decompressed and dais w
extracted from the specific textual log file. The
concurrent action of decompressing and data extract
is readily apparent by the wuse of threads.
Decompression and extraction processing requiresnent
occurred as background processes during the image
loading times of the document. Manipulation and
calculations were processed concurrently with ter's
selection of the simulation results compressed file

3.4. Data Extraction and M anipulation

Distributed simulations require unique identifieicr
any existing entities which are defined as any
component in a system that requires explicit
representation. Such a requirement necessitates
examination of the possibilities of injecting datto the
distributed simulation. One option was to injece th
discrete event simulation as a single entity, or
conversely, each populated cell in the Moore's
neighbourhood of the Cell-DEVS simulation data
becomes an entity. The latter method would allow th
depopulation of the cells along with the populatiafn
cells. In order to accomplish this requirement,
elimination of any duplicate lines in the text lidlg was
mandatory.

The simulation data hosted by RISE is formatted in
such a manner that data extraction is dependetihen
format of each textual line. As each element inldge

file is separated by a white space, the element is
extracted and stored in containers indexed by itie |
number of the text file. Positional reference o tell

in the Moore’s neighbourhood is based on the Cell-
DEVS grid cell origin and can be selected as auidé

and longitude origin. Distance and bearing is lihea
calculated for the specific cell from the grid cetigin.
This is illustrated in Figure 4. Scaling of the tdisce
and thus altering the bearing on the grid celiected

by the user and calculations are concurrently peréol
during the file selection process which has thegst
delay because of the destruction of the modal open
/save dialog. Because the Cell-DEVS discrete event
models are oriented from a heads up perspectiee, th
models are not oriented to the mapping structurgnef
ERSI ARCGIS maps.

Cell-DEVS gfid cell
(5,0,0) bearing = 0,
reference distance = 5

Event 1 W . q
\

4 L J
Event3
Cell-DEVS grid cell Event 2 )
origin (o%_o) Cell-DEVS grid cell Cell-DEVS grid cell (5,5,0)

bearing = 45, reference

(0.2,0) bearing = 90, distance = 7.07

reference distance = 2

Figure 4: Cell-DEVS Moore’s Neighbourhood with
Positional Bearing and Distance

3.5. Time Management

Cell-DEVS operates as a sequence of distinct events
where each event marks a change of state in thensys

In this capacity, the simulation results may hagezaip

to the grid size of the Moore’s neighbourhood iatest
changes occurring at every event. Problematic & th
event space is the time period of execution and its
correlation to real-time. Execution time of the
simulation is usually minimized in its measurement
units to benefit the Cell-DEVS modeler. For example
though a real-world system process may take days to
occur, a Cell-DEVS modeler will model and simulate
the system with a time measurement unit of
milliseconds, or conversely, the simulation timews

in days when the desired real-time is in hours.
Distributed simulations are real-time simulationisene

the simulated time advances at the same rate &s rea
time, thus a scalability factor is required to athathe
sequence of events into the distributed simulation
control the speed of the population of entities.



Actual control of the population and removal of the
entities into the distributed simulation is uselest@ble
through command button functionality. This command
button functionality also commands the thin clisnt’
variable states and creation point for the child
manipulation processing threads.

3.6. WebLVC

There is currently no standard interoperabilitytpcol

to adequately link new web-based applications with
each other and with traditional distributed simioias.
MAk’'s WebLVC protocol attempts to correct this lack
of interoperability. The company’s WebLVC servesha
become the bridge through which web based
simulations interoperate with distributed simulato
over the WebLVC protocol while remaining transparen
to the intricacies of the distributed simulation
interoperability standards. The type of JSON messag
interchanged with the WebLVC server can be the
following: 1.Any, 2. Other, 3. Attribute update, . 4
interaction, 5. connect, or 6. object deletion.

For clarification and differentiation between atribtite
update and interaction message, an interactionagess
would inform the distributed simulation applicatson
that a F18 is circling with a radius of 1000 aroumd
specified world positional coordinate while theriatite
update is the default type of message for insténga
and updating an entity. The draft specificationtloé
WebLVC protocol, version 0.1, only documents the
attribute update (MAk 2012).

As the WebLVC protocol is still in development and
being presented to SISO as a standard, work si@tis

to be accomplished with regard to the distributed
simulation interoperability standards. Specificalls
the WebLVC protocol is a JSON-based wire protocol
and leverages on creating non Federation ObjecteMod
(FOM) specific clients, work has yet to be complieta

the WebLVC-to-HLA mappings and the HLA-to-
WebLVC mappings; however, the DIS protocol
capability is instantiated.

3.7. Entity Generation | mplementation

Enclosed within the JSON entity is the specificshef
entity which uniquely describes the entity. In orde
allow diverse entity types, the thin client provddan
alterable numeric enumeration array that specifies
entity type. In Figure 5, an example of the JSOhtgn
message is illustrated and shows the requiredatérs
of an entity within a DIS environment. Its size is
dependent on the attributes size but in this ceese vo
more than 448 bytes. The attributes such as etyfity,
marking, entity identifier and object name are cialble
and can be altered prior to selecting the compdesse
simulation results file from RISE. These attributeay
also be entered as a query string upon the loaxfitige
thin client.

{

"AccelerationVector™: "[0,0,0]",
"Angularvelacty": "[0,0,00",
"DamageState™ O,
"DeadReckaningalgarithm™ 4,
"Entityldentifier”: "[1,1,920]",

"Entity Type": "[4,1,0,0,0,0,00",

"Forceldentifier": 0,

"Marking" "WebLvC-CDpp",

"Messagekind": "AttributeUpdate (17",

"ChjectMame" "CDpp 69354_9_2_0",

"OhjectType™ 1,

"Crientation”: "[1.818082012506282,
-0.7780143250425958,
-3.1398728077441]",

"Timestamp™ 1358.63041601181,

" elocityvectar": "[0,0,01",

"“WarldLocation": "[1108268.6801076215,

-4345117 870447308,
4520465.02507074]"

}
Figure 5: WebLVC Protocol JSON Entity

A deletion message which informs the WebLVC server
to remove entities from the distributed simulatiisn
characterized by the entity identifier, message tspd
the entity’s unique object name as shown in Figure

"Entityldentifier; "[1,1,28270]",
"Messagekind”: "ChjectDeletion (4)",
"ObjectMarme": "COppl1_42842 28 27 0"

b
Figure 6: WebLVC Entity Deletion Message

3.8. Experiments and Results

In order to verify the correctness and investigtte
performance incurred in the proposed thin client
manipulation and parsing of Cell-DEVS data, a seoie
investigations was conducted to detail the robusstne
and the performance of the thin client platform.eTh
hardware platform used for the experiments was a
custom built Intel platform. The computer housetb8
motherboard containing 16 Gigs of memory, a K7-2600
CPU, a Radeon HD 6850 video card and a gigabit
Ethernet connection. The network was connected to a
high-speed cable modem via CAT6 Ethernet cable. The
WebLVC server was hosted on a server containing 2
Gigs of memory, a Pentium 4, and a gigabit Ethernet
connection.

Paramount to any application is its responsivenEss.
de facto standard from a user’s perspective foayded
300 milliseconds. In order to minimize the effedt o
browser delays, the thin client harnessed the Béjo
library to provide Asynchronous JavaScript and XML
(AJAX) capability so that processes to do not dejpam
other processes’ outcomes. Similarly, Cell-DEVSadat
manipulation and processing were offloaded intddchi
threads in order to provide efficient concurrent
operations. In particular, the manipulation of datas
designed to provide the user with the option oéctihg

an epoch or non-epoch process.

Non-epoch processing, when selected, manipulatdd an
parsed the data as a background thread concurignt w



the Dojo event handler. However, data generaticihef
entities remained available to the Ul thread in ¢hse
where the time period of the simulation executien i
minimal, thus requiring a high demand of messages t
be passed between the threads. Epoch processing,
conversely, utilized the concurrent processing fof t
threads to create the entity data as timings of the

messages passed between the threads was
advantageous.
Multi-layer Creation Function 39654 17.19 12.28
File Selection Function 402.60 21.29 15.22
RestfulResource initComms Function 19.00 125 0.89
Start Button Function 16.60 3.06 2.19
Zoom To Scale Function 3.40 L17 0.84
Change State Function (start) 24.00 4.47 3.20
Entity Initialization Function 4.40 1.65 1.18
CDppEntity Initialization Funetion L.00 0.47 0.34
Create Entity Graphic Function 2.20 0.92 0.66
Set Grid Data Function 7.00 L28 089
Update Entity Graphics Function 23.90 5.09 3.64
Change State Function (End) (a and b) 25.90 8.98 6.42
a. Unload CDpp 2530 8.46 6.05
b. Unload Application 0.60 0.52 0.37
Unload CDpp (composed of a and b) 45.00 14.17 10.12
a. Clear Stored Entities Function 23.20 7.21 5.15
b.Remove All Graphics Fundtion 21.80 8,96 4.97

Table 1: Ul Thread Function Timing

In examining the performance data of the function

specifically to discrete event simulations, thea®aript
code was not compressed as it inhibits the devekpe
understanding and debugging ability by renaming
variables. With this in mind, the timing evaluatiof
the functions of an entity’s lifecycle from parsing
deletion on the Ul thread was examined and
presented in Table 1.

is

Unlike other languages, JavaScript's pass-by-refare
only allows one owner at a time. Though it is faste
pass data as a reference, evaluation of the la@mbst
DEVS simulation results file demonstrated that pegss

the uncompressed data between threads by value took
1600 milliseconds generating a thread communication
speed of 17000 kB/s. The uncompressed data size was
28 MBytes and was determined by a developed
JavaScript function similar to C’s sizeof function.

Wiap | RISE Server WebPage | Seasence Gails| Processed Data
index | Cont[SiTSN] RiSE Time | Layer | Vaiue Position Bro | Distance
1707 2000 00723000 070053405 3 139890 4541030 7560100 18000 224000
1706 2010 001710000 oess23630 7 419977 4satess 7seste0 17002 252130

. a17602 .
1705 2700 001711000 065636563 7 41752 4541040 7569190  180.00 216,000
1794 2810 001659000 OB4s057er 7 4099%0 4saieso rsests0  177.es 224143
o |2 . — 104205 . ,
1703 2600 ootsv000 oeastszzz 7 A99795 4saiens 7nce190  180.00 208000
1792 2020 o0tes3000 06334031 7 39957 ssatess 7seotro  17eos 252551
1701 2710 oote4zoso oestaross 7 32707 asatoss 7scotso  177.88 216148
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Figure 7: Data Grid View of the Thin Client's
Generated Entities

operations and to allow maodification of code
"4 VR-Exchange culi=)
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Figure 8: WebLVC Server Entity Population



CD++ Entity Simulation

format to position the CD++ entity before browsing
and parsing RISE data.
Using Netscape - with WebSockets and WebWorkers

[ stop ) /Sim Time: 09:33:23 T s
Adapted from VT MAK by Colin Timmons 2013

Object Name | CDpp 2654_28_0_0 I [] T »

Warking || webLve-copp RISE Time Advance

EntiyID [11.2300
Force ‘ Mot Applicable
Type 4100000

Location (lat,

long) negative | 45.41939, -75.69190

West, South

Speed (m/s) 1 0.007
Relative Bearing - |

East of North 200
Scale Factor ‘ 5

Time Advance

Factor &

Enter COD++ Type || DCDpp =
Delete Entity 'UV

Value

‘Hsatmap Selection [ Epoch Selection =
[Rise Resource Selection URI:

hittp:4/134.117 53.66:8080/cdpp/sim

ClleclipseiworkspacslCDppEnti | Browss..

Data processing completed:
results_fire.zip Type: (application/x-zip-compressed)
Size: 224417 bytes, |ast modified: 9-Mar-13
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Figure 9: WebLVC Server Entity Population
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Because of the amount of entities generated, aviiata
pane was developed to allow the user to inspect the
Cell-DEVS grid cells. The pane displays the texfial

line number after all duplicates are eliminatede th
simulation time since the thin client was loadduk t
discrete event simulation time, the graphic lays,

FOWERED BY @

esrli

Figure 10: Verification of Multiple Clients With Berent Discrete Event Models

Cell-DEVS population value, its latitude and lomgié
position, and the bearing and distance from thd- Cel
DEVS grid origin. This is illustrated in Figure 7.

Using multiple thin clients to populate geographic
entities, examination can be performed on the WebLV
server's acceptance of the data. This is confirimed



Figure 8 and shows the recording of the entitiebdo
passed into a distributed simulation from the rpieti
thin clients.

Figure 9 illustrates the HTML5 webpage and thetenti
generation of the developed thin client while npéi
discrete event simulations are illustrated in Fegao.
The verification of the multiple discrete event ratsdin

a distributed simulation in Figure 10 uses MAK's 2D
viewer.

3.9. Conclusion and Future Work

In this paper, we introduce a technique for injegti
discrete event simulations into traditional disfitdxd
simulations. Through new technologies and standards
thin client was used to access, extract, manipulate
calculate and format the discrete event simulatiata
located on the RISE. This data was formatted into a
structure acceptable for bridging web based sirariat
and distributed simulations via MAk’s WebLVC server

The thin client techniqgue was successful in acogssi
and manipulating the different service types of eisd
and their respective simulation executions in order
generate entities based on the models and deviedop t
entity’'s parameters that would be of significanoeat
distributed simulation. Multiple discrete event
simulations were independently injected into the
distributed simulation and monitored on a separate
platform.

The WebSocket technology of HTML5 and the new
semantic and syntactic elements of HTML5 combine to
generate an operating platform that is equal tohihe
directional communication channels and visual
representations employed in distributed simulations
The HTML5 multi-threading capability and the File
API deserve credit as they promote the thin clierthe
level of traditional modern language applicatiohatt
have successfully employed these technologies.

No longer is there a clear distinction between the
distributed simulations and high performance of new
HTML5 web-based simulations as WebLVC protocol
attempts to become the standard interoperability
protocol to adequately link new web-based appliceti
with each other and with traditional distributed
simulations.

Future work in this technique of the thin clienhdake
many different paths. Firstly, with respect to this
technique, once the 3D CSS becomes standardized and
thus portable across thin clients, the orientatbrthe
discrete event simulation can be re-calculated hase
the location and orientation of structures on tI®RE
ARCGIS map. With respect to the capabilities of the
WebLVC protocol, the mapping of the HLA-to-
WebLVC and WebLVC-to-HLA must first be
accomplished and then the discrete event modelbean
injected into a HLA-only distributed simulation as

federate without the
specific.

requirement of being FOM

Another area of interest is to apply the technigoe
inject other simulation types into the distributed
simulation. Conversely, traditional distributed
simulation data can now be exported into web-based
simulations. This would be advantageous for new
distributed simulations attempting to deliver cailitds

via the Service Oriented Architecture (SOA) and the
user’s selection of the structured collections istikte
modules that would be available.
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