
THIN CLIENT DISTRIBUTED SIMULATION OF DISCRETE EVENT MODELS

Colin Timmons, Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario, Canada

{colintimmons, gwainer}@sce.carleton.ca

ABSTRACT
In recent years, new techniques have been created to
allow practitioners to model real world events using
either military training environments or discrete event
simulation tools. Military distributed simulations are
interoperable through interfaces such as High Level
Architecture (HLA), or Distributed Interactive
Simulation (DIS) Protocol while discrete event
Modeling and Simulation (M&S) are defined through
their tools and formalism. The RESTful Interoperable
Simulation Environment (RISE) is a plug and play
paradigm of software tools that has a resource
application interface based on the Uniform Resource
Identifiers (URIs). We show how these diverse
branches of simulation can be joined together to
produce a mash-up of services for distributed
simulations allowing precise discrete event modeling in
a military context.

Keywords: DEVS, Cell-DEVS, Discrete Event Models,
Distributed Simulation, HTML5, military, model, DIS,
Restful-CD++, simulation, WebLVC

1. INTRODUCTION
In the logical flow from doctrine through training to
operations, the intent of the military is to establish a
force generating system that is responsive to operational
demands. Training simulation technology is making
significant advances in flexibility, fidelity,
interoperability, networking, portability, reliability, and
fiscal effectiveness. The aim of the training is to expose
a soldier to various battlefield conditions and
environments that will allow the soldier to develop,
learn, and confirm skills. Training simulation
technologies can replicate battlefield conditions and
equipment platforms to a high degree of fidelity with
low cost and are collectively interfaced together as a
Live, Virtual or Constructive (LVC) distributed
simulation.

Military simulations can exist as stand alone training
platform simulations or stimulators to highly inter-
connected real-time functional-level or platform-level
war-gaming. In the context of war-gaming, these
distributed simulations are connected through
interoperable standards such as the following (NATO
2013):

1. High Level Architecture (HLA): HLA is
defined as “a family of related standards that
together describe the functional elements,
interfaces, and design rules for a unified
approach and common architecture to
constructing interoperable simulation
systems”;

2. Distributed Interactive Simulation (DIS): DIS
is defined as “the protocol used for information
exchange between Synthetic Environment (SE)
components”; and

3. Protocol or Testing and Training Enabling
Architecture (TENA): TENA is defined as “a
distributed simulation communication
protocol, described as middleware, and
designed to enable interoperability among
range systems, facilities, simulations, C4ISR
systems in a quick, cost-efficient manner”.

With a theatre level simulation, a soldier experiences
the friction, stress and uncertainty of virtual combat
without the steep cost associated with training in a live
combat situation. At the same time, the soldier’s
performance can be monitored, recorded, analyzed and
evaluated in order to measure the level of efficiency.
Battlefield lessons usually learned painfully and only at
the start of a deployment campaign can now be learned
during peace time allowing effective troop readiness for
deployment.

Within the operational theatre, planning processes use
simulation to advance the pre and post planning cycles
of combat situations. Modeling and Simulation (M&S)
in theatre focuses on the experimentation of known
circumstances and conditions in order to justify and
validate the tactics and resources required to succeed.
Portable modular classrooms allow battle space training
in theatre or on the fly. However, these portable
modular classrooms can only be remotely controlled
through DIS or HLA gateways.

Research has been conducted to provide traditional
modeling paradigms with composed and hierarchical
integrated multi-models that can dynamically change
their structure or behaviour. Cell-DEVS can generate
this complex behaviour from sets of relatively simple
underlying rules (Ameghino, Troccoli and Wainer
2001). Using this technique, emergent behaviour in a

complex adaptive system is generated without the need
to include centralized control mechanisms or equations.
Bottom-up rule conditionality allows the interaction of
higher level components. Establishing an experimental
framework is critical to the verification and validation
of a model as it allows the user to precisely evaluate a
simulation run with varying input parameters or
conversely, many simulation runs with many variable
input parameters (Al-Zoubi and Wainer, 2009).

The RESTful Interoperable Simulation Environment
(RISE) middleware is a REST based server that is a
plug and play software paradigm of software tools and
whose resources are accessed through its resource
Application Interface (API) as Uniform Resource
Identifiers (URIs) (Berners-Lee 1996). RISE, following
the requirements of statelessness, allows a user to
conduct M&S through the resources named by the
URIs. In doing so, RISE encapsulates the technical
functionality and provides a platform that is
independent of formalism and tools.

HyperText Markup Language - version 5 (HTML5) is a
family of web technologies currently being specified by
the World Wide Web Consortium (W3C) and includes
new HTML markup tags, Cascading Style Sheets -
version 3 (CSS3), JavaScript and other supporting
technologies. These other technologies include
Geolocation, WebSockets Web Workers, and local and
web storage. Advances of this technology have allowed
the development of more useful and sophisticated
webpages (Pieters 2013).

With the opportunities created by HTML5, advances
have been made that allow web-based clients to access
the traditional distributed simulations. Leveraging the
new WebLVC protocol that harnesses the power of
HTML5, a thin client can be developed that creates a
means to leverage web-based simulations and provide a
web-based mash-up of services for the traditional
distributed simulations.

2. BACKGROUND

2.1. Distributed Simulation Interoperability
Many technologies have been developed in order to
provide an interoperable methodology to interface and
integrate real-time functional-level and platform-level
war-gaming. Originally a prototype research system, the
SIMulation Networking (SIMNET) application
grandfathered many of today’s dynamic
implementations such as Z-Buffering and network
protocols. The use of SIMNET during the Gulf War
demonstrated the success of a real-time interactive
networked cooperative virtual simulation (Wilson and
Weatherly 1994). DIS and the Aggregate Level
Simulation Protocol (ALSP) replaced SIMNET with the
purpose of allowing dissimilar autonomous simulation
nodes to interoperate in real-time, interactive,
distributed simulations (Smith 1995). Advances in
technology led to a follow-on architecture called HLA

which builds upon the DIS effort by the DIS Steering
Committee in 1994 and the ALSP.

Originally conceived as the interoperable methodology
for distributed simulation, the Department of Defense
(DoD) mandated the establishment and requirement for
interoperability of all its simulations through the use of
HLA. Desiring to leverage the advantages of HLA, the
North Atlantic Treaty Organization (NATO) ratified
their M&S Master Plan in 1998 and identified HLA as
the interoperability standard. Further, in order to
provide input into the evolution of HLA, NATO
required DoD to evolve the HLA standard through the
Simulation Interoperability Standards Organization
(SISO). However, by relaxing the policy for the
requirement for the adoption of HLA, transition to HLA
became the decision of DoD components’ priorities,
requirements, and resources. DoD’s neglect to mandate
and enforce HLA as the only standard provided the
avenue for other distributed simulation architectures and
protocols such as TENA, and the Combat Training
Instrumentation System (CTIS), Tactical Data Links
(TADIL), Command, Control, Communications,
Computers and Intelligence (C4I) and the survival of
the DIS protocol (Hollenbach 2009).

The majority of these interfaces are developed by
different vendors, requires different techniques for
achieving their functionality, and requires technical
Subject Matter Experts (SME) to install, configure, test,
operate and maintain. Leveraging different monolithic
applications together to create LVC simulations for the
different DoD training domains has resulted in multiple
types and instances of protocol translators to integrate
the monolithic assets. Research has been undertaken to
reduce the number of these protocol translators (Bizub,
Bryan, and Harvey 2006).

However, common to all these interfaces and their
application, is the requirement for a protocol or
architecture framework that allows the monolithic
applications to interface. The data passed is an entity
which is defined as “any distinguishable person,
place, thing, event or concept about which
information is kept” (SISO 2007). Any simulation
designed without these specified architectures or
protocols are not interoperable in a real time functional-
level or platform-level war gaming distributed
simulation. Examples of such simulations could be a
flight simulator, a combat information centre, or a web-
based simulation.

2.2. Model Development on RISE
The key goals of Representational State Transfer
(REST) is the scalability of component interactions, its
generality of interfaces, its independent deployment of
components and its intermediary components to reduce
latency delays, compel security implementations and
encapsulate legacy systems (Fielding 2000). RISE is
designed under this architectural style and has its
service URIs structured in a hierarchal tree as shown in
Figure 1.

As stated previously, RISE is developed as a plug-and-
play paradigm of software tools whose resource API is
accessed through URIs. The state changes of the server
are issued upon the user transiting through the URIs to
access its different resources. The user navigates the
URIs from a thin client application such as a web
browser and accesses the resources through the
HyperText Transfer Protocol - version 1.1 (HTTP/1.1)
methods as defined under RFC 2616. HTTP’s methods
DELETE, GET, POST, and PUT are a feature of the
negotiation of data representation which allows systems
to be built independently of the data being transferred.

Figure 1: RISE Common Resource Structure

RISE is a platform and service that was implemented to
provide server resource availability for client
applications. Specifically, RISE was created as a
middleware resource for a RESTful implementation of
the Distributed CD++ (DCD++). CD++ is a toolkit for
discrete event M&S and is based on the Discrete EVent
System Specifications (DEVS). The design modeled
into the RISE middleware was to provide transparent
sharing of computing power, data models, and
heterogeneous environments on a global scale. RISE
provides a lightweight approach to web services. It
hides internal software implementation as compared to
the Simple Object Access Protocol (SOAP) based web
services, which rely on Remote Procedural Calls
(RPCs). The simulation data hosted on RISE is Cell-
DEVS (Al-Zoubi and Wainer, 2009).

2.3. New Technologies and Standards
New technologies and standards have developed for the
World Wide Web (WWW) which enables highly
interactive, low-latency, real-time web-based
applications. HTML5 is the newest version of the
markup language used for structuring and presenting
content for the World Wide Web. This revision is still
under development though most modern browsers are
fully compatible of supporting the version. HTML5 was
designed to provide a single markup language between
HyperText Markup Language (HTML) and eXtensible
HyperText Markup Language (XHTML) while also
implementing other new elements such as audio, video
and canvas elements to name a few. These new
elements are designed to handle graphical multimedia

rich environments without having to resort to third party
plug-ins (Pieters 2013).

The HTML5 File API allows the read-only capability of
the user’s system. As a working draft of the File API
specification, the HTML5 File API was expressly
designed to allow web applications the ability to access
files which a user may upload to a remote server or
manipulate in a rich web application. Designed to
remove the reliance on third party embedded APIs,
HTML5 standardizes the way to interact with a local
file. As RISE presents its simulation results resource as
a compressed file for its event transition, this file access
becomes critical to developing a mash-up of services
(Ranganathan and Sicking 2012).

Implemented in HTML5 are WebSockets. WebSockets
allow the bidirectional transportation of the JavaScript
Object Notation (JSON) objects through
communication channels called WebSockets. They are
somewhat a combination of UDP and TCP in that they
pass messages like UDP but have the reliability of TCP.
With a combination of the two protocols, a client is able
to create an asynchronous full-duplex channel to the
host server. This communication allows the client to
send data instantly to the server and have the server
communicate to the client concurrently while the
connection is open.

WebSockets, besides defining a new protocol for the
transference of data, also provides a method for creating
secure connections (Lubbers and Greco 2009). Similar
to normal asynchronous calls like TCP, where the
protocol is optimized for accurate delivery rather than
timely delivery, all bytes received will be identical to all
bytes sent and in the correct order. WebSockets do not
have the problem of TCP as TCP incurs relatively long
delays while waiting for out-of-order messages or
retransmissions of lost messages using its positive
acknowledgement technique. This TCP technique
requires the receiver and sender to send an
acknowledgement message each time it receives data
segments, preventing the streaming of data. Critical to
the accurate delivery technique of TCP is that the
sender is required to keep a timer on the transmitted
packet so that if an acknowledgment message is missed,
the timer will expire and the transmitted data is resent.
Once the full data is transmitted, the receiver no longer
talks to the sender.

Previously, thin clients such as browsers operated
sequentially. In this regard, there is only one User
Interface (UI) thread that processed and manipulated all
the data within a web browser. Though the multi-
threading of web workers are in its infancy, client
applications are no longer single-threaded and must rely
on server generated state information. Processing can
now be off-loaded back to the client, freeing the server
from computational requirements and state changes.
With web workers, thin clients are now capable of
processing like modern applications with multithreading

in that they can produce multiple threads that allow data
manipulation and calculation in JavaScript (Hickson
2012).

To allow web-based simulations access the traditional
distributed simulations, MÄk has leveraged their
experience to aid in the development of single entity
simulations (MÄk 2012). Prototyping the protocol and
submitting an initial draft to SISO for study, MÄk has
provided the framework for a consensus-based
interoperability standard using the JSON objects
matched with the built in encodings for DIS and Real-
time Platform Reference Federation Object Model (RPR
FOM) semantics. MÄk’s WebLVC server permits the
protocol to define a standard of passing simulation data
between a web-based client application and a WebLVC
server while remaining independent of the protocol used
within the distributed simulation. Hence, a web-based
client application using the WebLVC server could
participate in distributed simulation exercise such as a
DIS exercise, an HLA federation, a TENA execution or
any other distributed simulation environment.

3. FRAMEWORK FOR SUPPORTING ROBUST

DISTRIBUTED SIMULATIONS
This section introduces the design of the thin client
which manipulates the RISE simulation execution
results file into a format acceptable for dissemination to
a distributed simulation. No implementation can
guarantee total coverage for fault isolation and the focus
of this study was to develop a robust infrastructure that
would allow discrete event simulation such as those
available on RISE to facilitate injection of valid model
simulation execution results into a distributed
simulation. It assumes that the thin client used has the
minimum of capabilities such as WebSockets, file
access and multi-threading.

3.1. Thin Client Distributed Simulation of Discrete
Event Models Architecture

Access to distributed simulations has not been
established by web-based architectures because of
the limited capabilities of previous versions of thin
clients and the latency of reliable data throughput.

Figure 2: Thin Client Distributed Simulation Of
Discrete Event Models Architecture

However, with the combination of new technologies
and standards, monolithic applications present
within a distributed simulation can now be
interfaced by the WebLVC server. The server stands
connected to the distributed simulation similar to a
DIS/HLA gateway but receives and transmits JSON-
based data to web-based simulations through its
WebSockets. Combining this technology and
methodology, we directly interface and integrate
discrete event simulation data as presented on RISE
into a distributed simulation regardless of the type
of distributed simulation environment. This is
illustrated in Figure 2.

3.2. WebSocket Benefits
Use of the WebSocket protocol permits bi-directional
data exchange with the streaming capability of UDP and
the reliability of TCP. It also allows persistent
connections between the client and the server by
providing the reception of responses without polling or
need for requests. Additionally, the use of WebSockets
is efficient in that its header is minimal at two bytes for
small frames and up to ten bytes for large frames, which
compared to HTTP header traffic of up to 2000 bytes is
significant (Lubbers and Greco 2009). In comparison to
TCP, which enables the streaming of bytes,
WebSockets enables the streaming of messages and
therefore reduces unnecessary network traffic,
bandwidth consumption and latency. In this regard,
WebSockets are competitive with the bidirectional
communication channels of distributed simulations as
shown in Figure 3. In this case of a HLA distributed
simulation, data is passed between the federate and the
Real-Time Infrastructure (RTI), which is responsible for
receiving and sending the data to other component
simulations through its callback methods.

Figure 3: Bidirectional Distributed Simulation
Communication Channels

3.3. Multi-Threaded Application
Most applications spawn separate threads for concurrent
processing either by time-division multiplexing on
single core processors or by having every core or
processor executing a separate thread simultaneously on
a multiprocessor or multi-core system. With web
workers, thin clients such as a browser, no longer are
restricted to sequential processing. Parent threads such
as the UI thread of a web browser can spawn child
threads for concurrent processing. Similarly, child
threads can also spawn new child threads. However, as
data is shared by the threads, web workers have been
designed not to be able to access the Document Object

Model (DOM) because of thread-safety, the window
object, the document object, or the parent object. It also
does not have access to create and bind a WebSocket. It
does, however, have access to the navigator object, a
read-only capability of the location object,
XMLHttpRequest, timers, and the application cache.
Aiding in the modular development, threads can also
import external scripts providing a maintainability
aspect to their production and implementation (Hickson
2012).

Concurrent operation by threading increases the power
of the thin client when combined with the advantages of
HTML5. HTML5 was designed to provide a single
markup language between HTML and eXtensible
HyperText Markup Language (XHTML) while also
implementing other new elements such as audio, video
and canvas elements to name a few. These new
elements are designed to handle graphical multimedia
rich environments without having to resort to third party
plug-ins. The HTML5 canvas element allows the client
web browser to inherently manipulate, construct and
layer image data such as 2D or 3D images
(Ranganathan and Sicking 2012). The thin client uses
the Environmental Systems Research Institute
Aeronautical Reconnaissance Coverage Geographic
Information System (ESRI ARCGIS) street map and
the ESRI ARCGIS Imagery World 2D map for user
verification of the entities.

The file selection mechanism of the HTML5 File API
allows the read-only selection of a simulation results
file selected by the user on RISE for manipulation and
publishing into the distributed simulation. As an
example of the benefits of multi-threading, the RISE
simulation results file was decompressed and data was
extracted from the specific textual log file. The
concurrent action of decompressing and data extraction
is readily apparent by the use of threads.
Decompression and extraction processing requirements
occurred as background processes during the image
loading times of the document. Manipulation and
calculations were processed concurrently with the user’s
selection of the simulation results compressed file.

3.4. Data Extraction and Manipulation
Distributed simulations require unique identifiers for
any existing entities which are defined as any
component in a system that requires explicit
representation. Such a requirement necessitates
examination of the possibilities of injecting data into the
distributed simulation. One option was to inject the
discrete event simulation as a single entity, or
conversely, each populated cell in the Moore’s
neighbourhood of the Cell-DEVS simulation data
becomes an entity. The latter method would allow the
depopulation of the cells along with the population of
cells. In order to accomplish this requirement,
elimination of any duplicate lines in the text log file was
mandatory.

The simulation data hosted by RISE is formatted in
such a manner that data extraction is dependent on the
format of each textual line. As each element in the log
file is separated by a white space, the element is
extracted and stored in containers indexed by the line
number of the text file. Positional reference of the cell
in the Moore’s neighbourhood is based on the Cell-
DEVS grid cell origin and can be selected as a latitude
and longitude origin. Distance and bearing is linearly
calculated for the specific cell from the grid cell origin.
This is illustrated in Figure 4. Scaling of the distance
and thus altering the bearing on the grid cell is selected
by the user and calculations are concurrently performed
during the file selection process which has the greatest
delay because of the destruction of the modal open
/save dialog. Because the Cell-DEVS discrete event
models are oriented from a heads up perspective, the
models are not oriented to the mapping structure of the
ERSI ARCGIS maps.

Figure 4: Cell-DEVS Moore’s Neighbourhood with
Positional Bearing and Distance

3.5. Time Management
Cell-DEVS operates as a sequence of distinct events
where each event marks a change of state in the system.
In this capacity, the simulation results may have zero up
to the grid size of the Moore’s neighbourhood in state
changes occurring at every event. Problematic in the
event space is the time period of execution and its
correlation to real-time. Execution time of the
simulation is usually minimized in its measurement
units to benefit the Cell-DEVS modeler. For example,
though a real-world system process may take days to
occur, a Cell-DEVS modeler will model and simulate
the system with a time measurement unit of
milliseconds, or conversely, the simulation time occurs
in days when the desired real-time is in hours.
Distributed simulations are real-time simulations where
the simulated time advances at the same rate as real
time, thus a scalability factor is required to advance the
sequence of events into the distributed simulation to
control the speed of the population of entities.

Actual control of the population and removal of the
entities into the distributed simulation is user selectable
through command button functionality. This command
button functionality also commands the thin client’s
variable states and creation point for the child
manipulation processing threads.

3.6. WebLVC
There is currently no standard interoperability protocol
to adequately link new web-based applications with
each other and with traditional distributed simulations.
MÄk’s WebLVC protocol attempts to correct this lack
of interoperability. The company’s WebLVC server has
become the bridge through which web based
simulations interoperate with distributed simulations
over the WebLVC protocol while remaining transparent
to the intricacies of the distributed simulation
interoperability standards. The type of JSON message
interchanged with the WebLVC server can be the
following: 1.Any, 2. Other, 3. Attribute update, 4.
interaction, 5. connect, or 6. object deletion.

For clarification and differentiation between an attribute
update and interaction message, an interaction message
would inform the distributed simulation applications
that a F18 is circling with a radius of 1000 around a
specified world positional coordinate while the attribute
update is the default type of message for instantiating
and updating an entity. The draft specification of the
WebLVC protocol, version 0.1, only documents the
attribute update (MÄk 2012).

As the WebLVC protocol is still in development and
being presented to SISO as a standard, work still needs
to be accomplished with regard to the distributed
simulation interoperability standards. Specifically, as
the WebLVC protocol is a JSON-based wire protocol
and leverages on creating non Federation Object Model
(FOM) specific clients, work has yet to be completed on
the WebLVC-to-HLA mappings and the HLA-to-
WebLVC mappings; however, the DIS protocol
capability is instantiated.

3.7. Entity Generation Implementation
Enclosed within the JSON entity is the specifics of the
entity which uniquely describes the entity. In order to
allow diverse entity types, the thin client provides an
alterable numeric enumeration array that specifies the
entity type. In Figure 5, an example of the JSON entity
message is illustrated and shows the required attributes
of an entity within a DIS environment. Its size is
dependent on the attributes size but in this case was no
more than 448 bytes. The attributes such as entity type,
marking, entity identifier and object name are selectable
and can be altered prior to selecting the compressed
simulation results file from RISE. These attributes may
also be entered as a query string upon the loading of the
thin client.

Figure 5: WebLVC Protocol JSON Entity

A deletion message which informs the WebLVC server
to remove entities from the distributed simulation is
characterized by the entity identifier, message type and
the entity’s unique object name as shown in Figure 6.

Figure 6: WebLVC Entity Deletion Message

3.8. Experiments and Results
In order to verify the correctness and investigate the
performance incurred in the proposed thin client
manipulation and parsing of Cell-DEVS data, a series of
investigations was conducted to detail the robustness
and the performance of the thin client platform. The
hardware platform used for the experiments was a
custom built Intel platform. The computer housed a Z68
motherboard containing 16 Gigs of memory, a K7-2600
CPU, a Radeon HD 6850 video card and a gigabit
Ethernet connection. The network was connected to a
high-speed cable modem via CAT6 Ethernet cable. The
WebLVC server was hosted on a server containing 2
Gigs of memory, a Pentium 4, and a gigabit Ethernet
connection.

Paramount to any application is its responsiveness. The
de facto standard from a user’s perspective for delay is
300 milliseconds. In order to minimize the effect of
browser delays, the thin client harnessed the Dojo API
library to provide Asynchronous JavaScript and XML
(AJAX) capability so that processes to do not depend on
other processes’ outcomes. Similarly, Cell-DEVS data
manipulation and processing were offloaded into child
threads in order to provide efficient concurrent
operations. In particular, the manipulation of data was
designed to provide the user with the option of selecting
an epoch or non-epoch process.

Non-epoch processing, when selected, manipulated and
parsed the data as a background thread concurrent with

the Dojo event handler. However, data generation of the
entities remained available to the UI thread in the case
where the time period of the simulation execution is
minimal, thus requiring a high demand of messages to
be passed between the threads. Epoch processing,
conversely, utilized the concurrent processing of the
threads to create the entity data as timings of the
messages passed between the threads was
advantageous.

Table 1: UI Thread Function Timing

In examining the performance data of the function
operations and to allow modification of code

specifically to discrete event simulations, the JavaScript
code was not compressed as it inhibits the developer’s
understanding and debugging ability by renaming
variables. With this in mind, the timing evaluation of
the functions of an entity’s lifecycle from parsing to
deletion on the UI thread was examined and is
presented in Table 1.

Unlike other languages, JavaScript’s pass-by-reference
only allows one owner at a time. Though it is faster to
pass data as a reference, evaluation of the largest Cell-
DEVS simulation results file demonstrated that passing
the uncompressed data between threads by value took
1600 milliseconds generating a thread communication
speed of 17000 kB/s. The uncompressed data size was
28 MBytes and was determined by a developed
JavaScript function similar to C’s sizeof function.

Figure 7: Data Grid View of the Thin Client’s
Generated Entities

 Figure 8: WebLVC Server Entity Population

Figure 9: WebLVC Server Entity Population

Figure 10: Verification of Multiple Clients With Different Discrete Event Models

Because of the amount of entities generated, a data view
pane was developed to allow the user to inspect the
Cell-DEVS grid cells. The pane displays the textual file
line number after all duplicates are eliminated, the
simulation time since the thin client was loaded, the
discrete event simulation time, the graphic layer, its

Cell-DEVS population value, its latitude and longitude
position, and the bearing and distance from the Cell-
DEVS grid origin. This is illustrated in Figure 7.

Using multiple thin clients to populate geographic
entities, examination can be performed on the WebLVC
server’s acceptance of the data. This is confirmed in

Figure 8 and shows the recording of the entities to be
passed into a distributed simulation from the multiple
thin clients.

Figure 9 illustrates the HTML5 webpage and the entity
generation of the developed thin client while multiple
discrete event simulations are illustrated in Figure 10.
The verification of the multiple discrete event models in
a distributed simulation in Figure 10 uses MÄk’s 2D
viewer.

3.9. Conclusion and Future Work
In this paper, we introduce a technique for injecting
discrete event simulations into traditional distributed
simulations. Through new technologies and standards, a
thin client was used to access, extract, manipulate,
calculate and format the discrete event simulation data
located on the RISE. This data was formatted into a
structure acceptable for bridging web based simulations
and distributed simulations via MÄk’s WebLVC server.

The thin client technique was successful in accessing
and manipulating the different service types of models
and their respective simulation executions in order to
generate entities based on the models and develop the
entity’s parameters that would be of significance to a
distributed simulation. Multiple discrete event
simulations were independently injected into the
distributed simulation and monitored on a separate
platform.

The WebSocket technology of HTML5 and the new
semantic and syntactic elements of HTML5 combine to
generate an operating platform that is equal to the bi-
directional communication channels and visual
representations employed in distributed simulations.
The HTML5 multi-threading capability and the File
API deserve credit as they promote the thin client to the
level of traditional modern language applications that
have successfully employed these technologies.

No longer is there a clear distinction between the
distributed simulations and high performance of new
HTML5 web-based simulations as WebLVC protocol
attempts to become the standard interoperability
protocol to adequately link new web-based applications
with each other and with traditional distributed
simulations.

Future work in this technique of the thin client can take
many different paths. Firstly, with respect to this
technique, once the 3D CSS becomes standardized and
thus portable across thin clients, the orientation of the
discrete event simulation can be re-calculated based on
the location and orientation of structures on the ESRI
ARCGIS map. With respect to the capabilities of the
WebLVC protocol, the mapping of the HLA-to-
WebLVC and WebLVC-to-HLA must first be
accomplished and then the discrete event models can be
injected into a HLA-only distributed simulation as a

federate without the requirement of being FOM
specific.

Another area of interest is to apply the technique to
inject other simulation types into the distributed
simulation. Conversely, traditional distributed
simulation data can now be exported into web-based
simulations. This would be advantageous for new
distributed simulations attempting to deliver capabilities
via the Service Oriented Architecture (SOA) and the
user’s selection of the structured collections of discrete
modules that would be available.

REFERENCES
Al-Zoubi, K., Wainer, G., 2009. Using REST Web-

Services Architecture for Distributed
Simulation. 23rd Workshop on Principles of

Advanced and Distributed Simulation. pp. 114-
121. June 22-25, Lake Placid, NY, USA.

Ameghino, J., Troccoli, A., Wainer, G., 2001. Models of
complex physical systems using Cell-DEVS.
Proceedings of the 34th Annual Simulation

Symposium. pp. 266-273. April 26, Seattle, WA,
USA.

Berners-Lee, T, 1996. Universal Resource Identifiers –

Axioms of Web Architecture. World Wide Web
Consortium. Available from:
http://www.w3.org/DesignIssues/Axioms.html
[accessed 6 October 2012]

Bizub, W., Bryan, D., Harvey, E., 2006. The Joint Live
Virtual Constructive Data Translator
Framework – Interoperability for a Seamless
Joint Training Environment. Meeting

Proceedings RTO-MP-MSG-045, pp. 9-1-9-8.
September 1. Neuilly-sur-Seine, France.

Fielding, R.T., 2000. Architectural Styles and the

Design of Network-based Software Architectures.
Thesis (PhD). University of California.

Hollenbach, J.W., 2009. Inconsistency, Neglect, and

Confusion; A Historical Review of DoD

Distributed Simulation Architecture Policies.
Available from: http://www.sisostds.org/
DesktopModules/Bring2mind/DMX/Download.as
px?Command=Core_Download&EntryId=28991&
PortalId=0&TabId=105 [accessed 8 August 2013]

Hickson, I., 2012. Web Workers. W3C Working Draft

01May 2012. World Wide Web Consortium.
Available from: http://www.w3.org/TR/workers/
[accessed 29 Devember 2012]

Lubbers, P.; Greco, F., 2009. HTML5 Web Sockets: A

Quantum Leap in Scalability for the Web.
Available from: http://www.websocket.org/
quantum.html [accessed 29 December 2012]

MÄk, 2012. WebLVC. Cambridge, MA, USA. Available
from: http://www.mak.com/weblvc/.
[accessed 15 October 2012]

NATO, 2013. NATO M&S Glossary Version 0.3, North
Atlantic Treaty Organization (NATO) Modeling

and Simulation Subgroup (MS3) of the NATO
M&S Group (NMSG).

Pieters, S., 2013. Differences from HTML4. W3C

Working Draft 28 May 2013. World Wide Web
Consortium. Available from: http://www.w3.
org/TR/html5-diff/ [accessed 9 August 2013]

Ranganathan, A., Sicking J., 2012. File API. W3C

Working Draft 25 October 2012. World Wide
Web Consortium. Available from:
http://www.w3.org/TR/FileAPI/ [accessed 28
December 2012]

SISO, 2007. Distributed Interactive Simulation

Product Development Group (SISO), Guide for:

DIS Plain and Simple. SISO-REF-020-2007.
Available from: http://www.sisostds.org/
DesktopModules/Bring2mind/DMX/Download.
aspx?Command=Core_Download&EntryId=293
02&PortalId=0&TabId=105 [accessed 15
October 2012].

Smith, K. 1995. Distributed Interactive Simulation

Network Manager. ARL-TR-780. Army Research
Laboratory. USA. Available from:
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=
ADA298053 [accessed 28 December 2012]

Wilson, A., Weatherly, R., 1994. “The Aggregate Level
Simulation Protocol: An Evolving System”.
Proceedings of the 1994 Simulation Conference
pp. 781-787. Orlando, FL, USA.

AUTHORS BIOGRAPHY
Colin Timmons is an Aerospace Engineering Officer in
the Canadian Armed Forces and is presently employed
in the Department of National Defence / Canadian
Armed Forces (DND/CAF) Synthetic Environment
Coordination Office (SECO). Responsible for the
standards and architecture of M&S in defence, he
maintains national and international interoperability in
joint and combined force generation. Colin Timmons
has over 25 years of experience with computer
hardware, computer software and systems engineering
design practices, project management and system
implementations. Presently, he is completing his MASc
in Modeling and Simulation at Carleton University in
Ottawa, ON, Canada.

Gabriel A. Wainer (SMSCS, SMIEEE) received the
M.Sc. (1993) and Ph.D. degrees (1998, with highest
honors) at the University of Buenos Aires (UBA),
Argentina, and Université d’Aix-Marseille III, France.
In July 2000, he joined the Department of Systems and
Computer Engineering at Carleton University, where he
is now Full Professor. He has been a visiting scholar at
ACIMS (The University of Arizona); LSIS (CNRS),
and INRIA (Sophia-Antipolis), France. He has been
invited professor at the UCM, UPC (Spain), Université
Paul Cézanne, Université de Nice (France). He is the
author of three books and over 270 research papers; he
edited nine other books, and was a PC
member/organizer of over 120 conferences, being one
of the founders of SIMUTools, SimAUD and the

Symposium of Theory of Modeling and Simulation. He
has been appointed as Program Chair of the Winter
Simulation Conference in 2017. Prof. Wainer is the VP
Conferences, Was VP Publications, and a member of
the Board of Directors of the SCS. He is Special Issues
Editor of SIMULATION, member of the Editorial
Board of IEEE Computing in Science and Engineering,
Wireless Networks (Elsevier), and Journal of Defense
Modeling and Simulation. He has been the recipient of
various awards, including the IBM Eclipse Innovation
Award, SCS Leadership Award, and various Best Paper
awards. He has been awarded Carleton University's
Research Achievement Award (2005-2006), the First
Bernard P. Zeigler DEVS Modeling and Simulation
Award, the SCS Outstanding Professional Award
(2011), Carleton University’s Mentorship Award (2013)
and the SCS Distinguished Professional Award (2013).
His e-mail and web addresses are
<gwainer@sce.carleton.ca> and
<www.sce.carleton.ca/faculty/wainer>.

