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Abstract  
Computational Fluid Dynamics (CFD) deals with 
computing the equations of fluid flows using numerical 
methods instead of partial differential equations. The 
Discrete-Event System specification (DEVS) theory has 
already been used to approximate various continuous 
systems by applying a quantized state system approach. In 
this research, we experimented with a method based on 
Cell-DEVS theory and CFD, building a uniform set of rules 
for to apply to each cell and execute the state changes of 
the cells asynchronously. We show how this harmonized 
set of state changes can effectively render the dynamics of 
the fluid. To do so, we show an application of the model in 
the narrowing of the coronary arteries due to plaque 
buildup. 

1. INTRODUCTION 
Computational Fluid Dynamics (CFD) solving is the 
process for calculating and describing the physics of the 
movement and interaction of fluid flow with the use of 
numerical methods [1]. Currently there exist no analytical 
solution; however, various numerical methods have been 
proposed, including Cellular Automata (CA) [2]. The 
behavior of the motion is defined with the Navier-Stokes 
equations, which are a representation of Newton’s Second 
Law of motion. These cells are solved for discrete durations 
of time and the results rendered to provide results that are 
more meaningful. 
 Cell-DEVS is a derivative of the DEVS formalism 
that implements CA. The cells execute, which reduces 
unnecessary processing burden, with a continuous time 
base. Each cell is treated as a DEVS atomic model [4] were 
the state changes are event driven. Cell-DEVS was 
originally introduced for modeling and simulation of spatial 
systems however, there has been no research on adopting it 
for CFD. In n this research, we propose using the Cell-
DEVS methodology to implement CFD equations to 
simulate fluid dynamics. The rule-based nature of cellular 
model behavior definition provides a platform for area-wise 
behavior definition, leading to easier and faster adoption 
and implementation of CFD solver algorithms. 
Additionally, simulating with DEVS allows interfacing 

CFD models with other models defined in different 
formalisms with ease.  

The research and solver presented here are an 
improved derivative of the solver presented in [5]. By using 
a new solver and implementing a new strategy for defining 
the rules, it was possible to increase the computational 
efficiency drastically. We will discuss the framework that 
can be used in a real-case application about Coronary 
Artery Disease (CAD), which is trying to  narrow the 
coronary arteries due to plaque buildup will affect the flow 
of blood to the heart muscles.  

2. RELATED WORK 
Fluid dynamic solvers have been used for a wide variety of 
purposes. The goal is to create a realistic representation of a 
naturally occurring fluid system such as rising smoke or 
blowing dust. The flow of fluids can be viewed as solid 
particles interacting with a velocity field, or as a density of 
particles. There are different methods for solving the 
evolution of these fields and densities, such as, Lattice-Gas 
[6], Navier-Stokes Equations [7] and Riemann Solvers [8]. 
In [9], Stam proposed a new method of resolving the 
Navier-Stokes equations. A cell lattice is spanned over the 
simulation window with each cell holding unique 
information regarding that particular area. Each cell stores 
a density value and the horizontal and vertical components 
of velocity. The cell spaces are updated simultaneously at 
discrete time intervals. This algorithm provided realistic 
results with limited computational effort by utilizing a 
rather basic set of rules. 
 We are interested in adapting the algorithms presented 
by Stam [9] and to use the models to define a discrete-event 
CFD solver developed according to the conventions of the 
DEVS and Cell-DEVS formalism. DEVS [1] has several 
characteristics which aide in the development of such 
simulations. The general nature of the specifications of 
DEVS allows it to be used in a wide range of simulation 
methods [2] (parallel, distributed, real-time). DEVS 
provides a hierarchal approach for coupling models to 
create larger, complex models with different methods. 
DEVS separates the model code, which contains the real-
world system, from the simulator and the time advance 
functions, which allows models to be coupled that have 
different time advance functions. This makes the DEVS 
formalism a powerful tool for simulating large complex 
systems, such as biological systems. 

A Cell-DEVS is an extension defined as a lattice of 
cells holding state variables and a computing apparatus, 



which is in charge of updating the cell states according to a 
local rule. This is done using the current cell state and those 
of a finite set of nearby cells (called its neighborhood), as 
done in CA. Each cell is defined as a DEVS atomic model, 
and it can be later integrated into a coupled model 
representing the cell space (Figure 1). 

 
Figure 1. Cell-DEVS Model. 

 

Each cell of the lattice contains information regarding 
its neighborhood and its local computing function. This 
local computing function has 3 main parts; a 
PostCondition, a Delay and a PreCondition. When defining 
the local computing function, we define the PreCondition 
that must be satisfied so that the PostCondition will be 
applied to that cell, and after the Delay has expired, that 
value is transmitted to other cells in the neighborhood (or to 
other DEVS models). Cell-DEVS allows for the cells to be 
calculated asynchronously and then updated all at once. 
This feature allows for the possibility of parallel 
computing. 

The CD++ software [4] provides a development 
environment to create and navigate through the process of 
Modeling and Simulation (M&S) of a Cell-DEVS model. 
CD++ is an open-source framework that has been used to 
model environmental, biological, physical and chemical 
models as well as many other real-life simulations. The 
toolkit includes a high-level scripting language keyed to 
Cell-DEVS, a simulation engine, a testing interface and a 
basic 2D and 3D graphical interfaces. The following code 
is a sample of the implementation of a Cell-DEVS coupled 
model in CD++.  
 
[cfd] 
type : cell    width : 75   height : 25 
delay : transport  border : wrapped 
neighbors : cfd(-1,-1) cfd(-1,0) cfd(-1,1) 
neighbors : cfd(0,-1)  cfd(0,0)  cfd(0,1) 
neighbors : cfd(1,-1)  cfd(1,0)  cfd(1,1) 
localtransition : Navier-Stokes 
neighborports : value diffusion u v boundary p div
   

In this example, we see the definition of a Cell-DEVS 
coupled model named cfd. We define the model’s 
dimensions, and the number of cells per dimension (in this 
example, two dimensions, 75x25). We then determine the 
behavior of the boundaries (border). In this example, the 
model is continuous along all the boundaries (wrapped). 
The other option is to have unwrapped borders, in which 
case special rules must be used for the cells in the borders. 

During the evolution of a model, the values used in the 
local computing function are taken from the defined set of 
surrounding (the neighborhood), defined next.  

The user can employ a number of state variables in each 
cell, and input/output ports in the cell. Variables are useful 
for storing information locally, to be accessed by the cells 
during the local computing function calculations; however, 
the information stored within them could only be accessed 
by the cell to which it was linked and not by any 
neighboring cells. I/O ports allow transmitting information 
to any of the neighboring cells.  

At this point, all that remains is defining the local 
computing function, that is, the set of rules located in each 
cell that governs cell behavior and determines the state 
changes. The following is an example of such a rule: 
 
rule : { ~value := if((0,-1)~value = 1, 0,1); }  

100 { (0,0)~value = 1 } 
 
Here the PreCondition is that the state of the value port 

must be equal to one. If this is true then the state of the 
value port is equal to zero if the neighboring state is one 
else it would retain the state value of one. This is the 
PostCondition. Finally, the delay is set; in this case a 
delay of 100ms was chosen. In the following section, we 
will introduce the definition of our CFD model, and will 
discuss the model implementation and simulation results. 

3. MODEL DEFINITION 
The Navier-Stokes equations, named after Claude-Louis 
Navier and George Gabriel Stokes, make use of Newton’s 
Second law by applying it to fluid flow, assuming that the 
stress on the fluid is proportional to the diffusing viscous 
and the pressure terms [9]. 
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Equation 1. Velocity and Density Equations  
The first equation is for solving the velocity vectors; the 

sum of which is hereafter referred to as the velocity field. 
The equation is a re-arrangement of the incompressible 
flow of Newtonian fluids. The acceleration ( ∆�

∆�
	
	 is equal 

to the sum of the negative continuity equation  ��. ∇
�  , 
responsible for the conservation of mass),the viscosity 
��∇2	� ) and any body forces present (f). In other words, the 
change in the evolution of the velocity field is based on the 
viscosity and any other forces that may act upon it (such as 
a heating vent). While this is the most important part of any 
good CFD solver, it provides very little visually. To make it 
more useful, we must demonstrate particles moving 
through the velocity fields. To move objects, we must 
simply determine what forces are going to be acting on it, 
and in what direction. These forces are extracted from the 
velocity fields. Most of the objects we wish to move are 
relatively light, such as dust or smoke [9]. One could 
simply apply these forces to the particles, and see how they 
move; however, for more complex models, it would be 



taxing to perform these calculations for a large number of 
particles. Instead, we could treat the matter as a density of 
particles, where instead of either being 0 or 1 (no particle, 
particle respectively), we would treat it as a gradient value 
that ranges from no particles present to some maximum 
number of particles present. The forces on these densities 
are applied using the second equation, which is similar to 
the equation used for evolving velocities, but more 
simplified since the only forces present are solely generated 
from the velocity vector field. 

The algorithm was broken into two parts: A density 
solver and a velocity solver. Each section represented one 
of the Navier-Stoker equations.  

The diffusion function is responsible for calculating the 
natural flow of the particles regardless of the forces exerted 
by the velocity fields. The density for the cell is calculated 
as the sum of the densities not exiting the cell to the 
surrounding area and the densities entering the cell from its 
neighboring cells, as seen in Equation 2. 
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Equation 2. Diffusion Calculation [9]. 
 

The rate at which the densities radiate between cells is 
referred to as the viscosity and is incorporated into the 
equation as the value for a. By incorporating the viscosity 
into the equation, it is possible to simulate particles with 
different behaviors. A low viscosity would cause the 
densities to have very little diffusion, similar to a liquid; 
while a high viscosity would rapidly radiate to the 
surrounding cells and take the shape of the container, which 
is similar to the behavior of a gas. 

The advection function’s role is to apply the forces 
generated by the velocity fields. The force acting on the 
density at any location is equal to the equivalent velocity 
vector of u and v. To apply the forces is significantly more 
complicated. The simplest approach would be to determine 
the destination based on the magnitude of the forces 
applied. However, since the system is treated as a cell space 
and not all densities will end up in the exact center of the 
cell after moving, this would cause problems. Instead, to 
move the density, one simply traces backwards from the 
cell center to compute where the density. 

The diffusion function is responsible for calculating the 
natural flow of the particles regardless of the forces exerted 
by the velocity fields. This natural flow, or diffusion, is 
represented in the Navier-Stokes equations as the radiation 
term. In addition to resolving the radiation of the densities, 
it is also responsible for resolving the radiation of the 
velocity field. The implementation of equation 2 with the 
Cell-DEVS formalism is straightforward. The x(i,j) term is 
replaced with the port for which the state value is 
calculated. For example when the values stored within the 
diffusion port are being diffused, the x(i,j) term is replaced 
by (0,0)~diffusion, similarly the x(i±1,j±1)  terms are 
replaced by the corresponding neighbors’ diffusion port 

values. Finally, the x’(i,j)  is replaced with the state value 
stored in the value port. 

To calculate the new state value for the cell we must 
first determine two factors: the particles leaving the cell 
and the particles entering the cell from the immediately 
adjacent cells. Therefore the new cell value will be equal to 
the previous state value minus the densities leaving to the 
surrounding cells plus the particles entering the cell, as seen 
in equation 3. 
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 Equation 3. Calculating the new density values 
 
After calculating the diffusion, we invoke an advection 

function whose purpose is to “move” the densities and 
velocity fields. This movement generated is caused by 
either the forces acting upon the density field from the 
velocity fields, or, in the case of the velocity solver, the 
momentum of the velocity fields. The velocity field is 
composed of velocity vectors which are stored in 
component form, hereafter referred to as velocity 
component vectors where u represents the horizontal 
component and v represents the vertical component. In 
other words, the advection function resolves the last term of 
the Navier-Stokes equations. While there are many 
methods for which the forces could be interpreted to 
resulting movements, the method used in this thesis is 
stable and works with the Cell-DEVS.  

The approach to moving densities is to determine the 
densities entering the cell instead of where the densities 
currently in the cell will end up. To implement this process 
we must first ensure that the origin of the densities lie 
within the defined neighborhood.  

If we can ensure that the velocity vectors will remain 
within a set range we can define a neighborhood with 100% 
certainty that the displacements will not exceed the 
neighborhood boundaries. In our model, the maximum 
absolute value of the magnitudes for the velocities is set to 
be one, therefore the neighborhood was defined as the 8 
cells surrounding the cell being computed (called a 
Moore’s Neighborhood). The magnitude of the velocity 
component vectors was limited to one for several reasons. 
First, if the modeler is not careful, large movements can 
cause instability in the model. The backwards tracing 
method is supposed to lead to a more stable model. Second, 
larger velocities would require a larger neighborhood; this 
would result in the need for additional cases and overall 
increase the computational effort.  

The probability that the location in which the densities 
originated is at the cell center is rare. For this reason, the 
densities that will be “moved” to the new cell location will 
most likely come from 1 or more cells. Therefore, the new 
density state value is calculated as a weighted average of 
the four closest cells to the origin. For example, if we 
assume the velocity component vectors at the current cell 
are u = 0.6 and v = 0.4, the cell from which the densities 
originate from would be at (-1,1) (Figure 2). 

 



 
Figure 2. Results of the advection calculation 

The amount of the densities coming from each cell is 
proportional to the area of each cell enclosed by the square. 
The following equation is used to determine these amounts: 
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Equation  4. Weighted averages for new density 
 
Using the values previously described the results would 

be as follows: 36% of the density originates from the cell 
location (-1,1), while 24% from both (-1,0) and (0,1) cells 
and the remaining 16% comes from (0,1) cell; this totals to 
100% therefore the formula is mass conserving.  

As previously mentioned, the magnitudes for the 
velocity component vectors were restricted to fall between 
1 and -1. These forces would translate to the maximum 
distance traveled to the cell being 1. This means there are 
four different combinations for which the velocity 
components could be. Therefore, four versions of equation 
4 must be defined to represent the possible outcomes.  

 
Figure 3. Possible sources of the density for advection  

 
The first case is for when the velocity component 

vectors are between 0 ≤ u ≥ 1 and 0 ≤ v ≥ 1:  
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Equation 5. Weighted Average for new density Case #1 

The second case is for when the velocity vectors are 
between; -1 < u > 0 and 0 < v > 1: 
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Equation 6. Weighted Average for new density Case #2 

The third case is for when the velocity vectors are 
between; -1 ≤ u ≥ 0 and -1 ≤ v ≥ 0:  
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Equation 7. Weighted Average for new density Case #3 

The final case, case 4, is for when the velocity vectors 
are between; 0 < u > 1 and -1 < v > 0: 

 
"�0,0
 = �	� × �|�| × 4��−1,1
 + �1 − |�|
 × 4��−1,0
� +
�1 − �
 × �	|�| × 4��0,1
 + �1 − |�|
 × 4��0,0
��  
Equation 8. Weighted Average for new density Case #4 

The advection function is therefore represented by these 
4 equations. These same equations are used for moving the 
velocity vectors as well, with the only difference being that 
instead of density values being used, the magnitudes of the 
velocity vectors are being averaged. 

After the advection calculation, the projection function 
is responsible for calculating the first term of the Navier-
Stokes equation. The main role of that term is to ensure the 
solution to the equation remains mass-conserving. The 
projection function is the most complex function of the 
entire model and therefore, the information generated 
during the execution is stored in two separate ports, while 
the remaining information from the function is stored 
within the two vector component ports. These two parts are 
hereafter referred to as the div and p functions. The div 
function is responsible for creating a gradient map. A 
gradient map shows changes in the velocity fields, with 
small values representing a uniform field with little 
variation and large values representing extreme fluctuations 
in the velocity field. To ensure the system remains stable, 
i.e. mass is not lost or created, we want to ensure that 
situations do not arise were the velocity vectors all 
converge to a point or diverge from a point, as seen in 
figure 4. 

 
Figure 4.  Convergent and Divergent Velocity Fields 
 
Figure 4 shows a case of convergence and divergence, 

which could cause instability. For example, while the 
densities can theoretically exceed a value of 1 without 
causing instability this may not be a desired outcome. More 
importantly though is this may cause the magnitude of the 
velocity component vectors to exceed 1 at this location and 
that is not allowed. Similarly, with the divergent case, were 
all the velocities are leading away from the cell, the density 
at the center cell would follow each velocity vector without 
being divided amongst all of the vectors. This would result 
in more mass leaving the cell then was actually present in 
the cell, once again leading to instability. The equation for 
generating the gradient map is as follow: 
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Equation 9. Generating the gradient field 

As we can see, the gradient field is calculated as the 
sum of the differences of the vertical and horizontal 
neighbors. Therefore, a small gradient value will occur 
when the change in values of the neighborhood is small. 
Large gradient values will occur when the values of the 
velocities make extreme changes but still maintained the 
same sign. The largest, and worst case, is when the values 
are opposite signs on either side of the cell. Once we have 
obtained the gradient field, the p function is executed. 
Similar to the diffusion function it helps average the values 
out, reducing large gradient changes. The equation for the p 
function is as follows: 

 
��&, '
 = [	4&��&, '
 + ��& − 1, '
 + ��& + 1, '
 + ��&, ' − 1


+ ��&, ' + 1
	]/4 
Equation 10. Averaging the gradient field 

This equation is run for several iterations. The final step 
is to subtract the gradient field from the velocity field. The 
result will be a more stable field, void of any situations 
such as those shown in figure 4. The following two 
equations represent the gradient field being subtracted from 
the velocity field. 
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Equation 11.  Subtracting the gradient field from the 
horizontal and from the vertical fields 

 
Again, for small changes in the velocity field the p 

values will be equal and therefore the final velocity field 
will not be changed. Even for large differences that occur 
between velocities of the same sign, the p value will have 
been averaged such that the final difference in the p values 
will not be that large, and will not affect the final field 
significantly.  

The projection function is repeated twice for the 
velocity solver in order to ensure that changes made to the 
velocity field during the diffusion or advection functions do 
not cause any convergent or divergent behaviors in the 
velocity field. For example, if two “fronts” are about to 
collide, the diffusion process could bring them close 
enough together. This would cause problems to occur 
during the advection process. Therefore the projection 
function is used to help negate this. However, this would 
only effect the leading edges of these “fronts” and once 
again when advected the fronts may come near enough that 
they are convergent. During the diffusion process these 
fronts would be averaged and the result could be that they 
cancel each other out. This is not the desired effect; 
therefore, we call the projection function once more to 
ensure this does not occur.  

After, we execute the boundary function is to define the 
behavior of fluid-boundary interactions. The no-slip 
condition states that the velocity should average to zero 

along the boundaries. To implement this, we added an 
additional function to both solvers called the boundary 
function. The main goal is to ensure the system remains 
mass conserving and provides the behavior of the fluid-
boundary interactions. The most important role of the 
boundary function is to control the behavior of the velocity 
fields around the boundaries. As previously stated, the no-
slip condition states that the average of the velocity field 
should be zero along the edge of the boundaries. What is 
nice about this model is that the velocities are stored in 
component form. This mean the only boundaries that are of 
interest to the u vectors are the surfaces that run 
perpendicular to the vectors, in this case vertical 
boundaries, while the v vectors look at the horizontal 
boundaries. When running the boundary function for the 
vector ports, you trace along the boundary and set the 
vector ports for those boundary cells to be equal to the 
negative of the neighboring non-boundary cell’s 
corresponding vector port. That way if you were to average 
the two values the result would be zero. This zeroing of the 
velocity field will stop the densities from interacting with 
the boundaries. By ensuring that boundaries are more than 
one cell wide, we reduce the loss that would be generated 
from having to average the values of more than two cells. 
When a boundary is in contact with only one non-boundary 
cell, it is equal and opposite to the state value of the non-
boundary cell. When in contact with two non-boundary 
cells, it needs to assume a state value that is equal and 
opposite to the average of the adjacent cell’s state values. 
This introduces the possibility for some loss of mass to 
occur, however it is minimal.  

As previously mentioned, the other role of the boundary 
function is to ensure the system remain mass conserving, 
i.e. that the presence of boundaries does not negatively 
impact the system. Therefore, the boundary function is 
integrated when the other functions are called. For 
example, to ensure no mass is lost during the diffusion of 
the densities, the boundary cells assume a value that is 
equal to the average of the surrounding non-boundary cells, 
as seen in equation 13.  
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Equation 12. Boundary Equation 

In figure 5, we can see a density focus encountering a 
fixed obstacle. With the viscosity set relatively low for both 
the velocity and the density (0.05), we can see that the 
focus splits into two distinct clouds, mostly by the velocity 
field. With the viscosity of the velocity field being low, we 
see a space of zero velocity directly behind the obstacle, as 
we would expect.  

The projection function was responsible for ensuring 
that the fields remain mass conserving and for adding 
visual effects. First, as can be seen in figure 5, the velocity 
vectors never exceed their allowed size. As we expected the 
velocities were slowed by the presence of barriers. More 
importantly though is how the projection function handled 



the collision between the velocity field and the obstacle. As 
described earlier the velocity value for the “boundary” cells 
should be equal to the negative of the neighboring cells, as 
seen in the first frames of the figure. This would cause a 
convergence in the velocity field, which causes instability. 
It is to handle these situations that this function exists. As 
seen in the second set of frames from figure 5, it handles 
this convergence of forces by taking the forces entering the 
area directly in front of the obstacle from the velocity field, 
and diverting the horizontal forces up and down. 

 

  
Figure 5. Velocity Component Vectors u and v: initial 

values and mid simulation values with an obstacle 
 
This is a solution reflects the real-world behavior of 

such a fluid-boundary interaction. The final goal of the 
projection function is to create visual effects such as eddies. 
In the real world, forces would be drawn into the null 
region created behind an obstacle. As seen in figure 6, the 
projection function causes forces created to drive the 
densities into this space.  

 
Figure 6. Vertical velocity component with obstacle. 
 
Figure 6 shows the vertical forces acting on the 

densities. As we can see, upon initial contact with the 
obstacle the projection function creates a force that pushes 

the densities around the obstacles and pulls them back in 
behind the obstacle to the area of low pressure. 

4. APPLICATION  
In this section we discuss a real-world application for the 
model. We will look at the effect the narrowing of the 
coronary arteries due to plaque buildup will affect the flow 
of blood to the heart muscles. The simulations are uploaded 
and executed remotely on the RISE server [10] using the 
CD++ simulator presented in the introduction. The results 
are then downloaded and visualized using a 2D tool, as 
seen in the different figures presented in this section.  

Coronary Artery Disease (CAD) is the leading form of 
heart disease and the leading cause of heart attacks, 
resulting in the most deaths world-wide. CAD happens 
when plaque builds up on the artery walls. This 
accumulation of plaque hardens, and thus narrows the 
arteries. This narrowing restricts blood flow through the 
arteries, and since these arteries are supplying blood to your 
heart, the restriction of blood flow weakens it. The 
dangerous part of CAD is that typically patients suffering 
do not show any immediate signs or symptoms. Eventually, 
the myocardial cells will become ischemic from the lack of 
oxygen and potentially cause a heart attack [11].  

To detect for CAD, doctors often perform an angiogram. 
In an angiogram, dye is injected into the coronary artery via 
a catheter and a rapid series of x-ray images are used to 
track the flow of the dye through the arteries and detect any 
narrowing or blockages [12]. 

CFD is used to simulate the interaction between blood 
flow, artery walls, and the plaque that can lead to CAD [13]. 
This application of CFD may benefit from the possibility of 
generating patient-specific models of arterial geometry 
using angiogram data [14]. The example presented here 
differs from studies found in medical literature in that 
blood flow is modeled with a rule-based approach using 
Cell-DEVS methodology. 

The following simulation is an attempt to demonstrate 
how the narrowing of the arteries affects the blood flow. 
Several scenarios will be run: a control test blockage (0%), 
a minor blockage (17%), a medium blockage (35%), a 
major blockage (52%), and a late stage CAD blockage 
(70%). A single bolus of dye will be “injected” into the 
artery that is initialized with a uniform velocity field.  

Figure 7 shows the results for all the scenarios after 25 
iterations have passed. There is no significant difference 
between 0% and 17% blockage manly due to the size of the 
bolus and the size of the blockage. The 35% blockage 
shows the bolus being more concentrated and not being 
allowed to diffuse as much, however there is still little 
effect on the velocity field. The 52% and 70% blockage 
show a decrease in the velocity field due to the narrowed 
arteries. 



 
Figure 7. Simulation of CAD after 25 iterations: 0%, 

17%, 35%, 53% and 70% blockage respectively 
 
Figure 8 shows the results after 50 iterations have 

passed. Again there is no significant difference between the 
first three scenarios; however, the larger blockages are 
slowed significantly and have not passed through the 
blockage site yet. This is expected since the behavior of the 
fluid-boundary interactions is such that flow decreases near 
the boundary walls and with a narrow channel the flow is 
slowed across the width of it. 

 
Figure 8. Simulation of CAD after 50 iterations 

 
The following shows the vertical velocities at this point 

in time for the 53% blockage. During the second pass of the 
bolus, we start to see the most significant results.  

 

 
Figure 9. Simulation of CAD after 125 iterations 
 
By the 100th iteration the first three scenarios are 

making their second pass through the blocked section of 

artery. The 35% blockage scenario is showing a decreased 
velocity field along the edges of the artery resulting in the 
bolus being longer. Also, the bolus has fallen behind from 
the control signifying a slight decrease in the flow rate. The 
last two scenarios show a large decrease in the flow rate 
and in the concentration of the bolus that has made it 
through. This demonstrates that at these levels of blockage 
we would most likely see a drop in the amount of oxygen 
being delivered to the nearby heart muscle which could 
result in a weakening of the heart function. In Figure 10 we 
see what would happen if there was a second blockage 
downstream of the first, of equal size. 

In Figure 10 we see that with a second blockage of 35% 
there is a further decrease in the flow rate, resulting in less 
dye passing through the blockage. With 53% and 70% 
blockage would see very little of the bolus making it 
through the blocked region and the flow rate being further 
reduced.  

 

 
Figure 10. Simulation of CAD after 150 iterations 
 
As stated before, there exists no analytical solution for 

fluid flow. The goal of all CFDs is to provide results that 
accurately portray reality. The goal of this research was to 
create a CFD solver that could be integrated to solve these 
flows for any system, specifically for use in biological 
systems. What we simulated here was a part of a larger 
system. We looked at how the model would behave if the 
passage width was decreased by a blockage; the real-world 
equivalent being CAD and its effect on blood flow through 
the arteries of the heart. The results generated matched 
what we expected to see and even helped provide a visual 
explanation of the dangers of CAD. As we increased the 
size of the blockage we saw progressively larger decreases 
in blood flow rate and in the amount of dye that passed 
through the blockage. However, it was never to the point 
that the flow was completely cut off and there was still a 
significant amount of flow passed through the blockages. In 
the real-world this would signify that oxygen is still being 
delivered to the muscles in the heart and an increase in 
blood pressure could offset the slight oxygen shortage due 
to the blockage. This decreased flow would still likely be 
enough to maintain regular heartbeat during restful 
activities, but what happens when the heart rate increases? 
The muscles will require more oxygen. However, as we see 



with the 53% and 70% blockages any increase in pressure 
upstream of the blockage would not result in a change in 
the rate of flow downstream of the blockage. This would 
result in the heart muscles becoming ischemic and cause a 
cardiac event to occur, such as a heart attack. We know that 
people suffering from CAD show no real symptoms until a 
cardiac event occurs, which would most likely occur after a 
period of high exertion.  

 The model presented in this research met many of the 
goals we wished to achieve. The rule-based nature of the 
model code is significantly easy to understand. This means 
users will be able to easily adjust the parameters of the 
rules to modify the model so it best fits their needs. The 
model included a function for defining the behavior of fluid 
barrier-interactions which will ensure it can be used for a 
wide range of application. Finally, the method of 
simulation allowed for only the results at the end of each 
iteration to be stored, and only the density values stored, or 
whichever values you are interested in. 

As previously mentioned, by restricting the velocity 
vector magnitudes it gave rise to the idea of varying time 
steps. What this means is that during periods of velocities 
with large magnitudes the equivalent time an iteration 
represents is decreased. During periods of low flow, the 
length of time an iteration represents is increased. This 
variance of time can be handled by the DEVS simulator, 
which is an important feature, and can help reduce the 
computational load when it is implemented into a 
biological system that has periods of high and low flow, a 
beating heart for example.  

The results presented in this give a small glimpse into 
the possible application of the CFD model presented in this 
research.  

Once again, the benefits of the DEVS formalism are 
such that, if a new simulator is developed, by keeping the 
model and the simulator separate, the model will not 
require any adjustments to run on this theoretical simulator. 

5. CONCLUSION 
Fluid dynamic solvers are used in a wide variety of 
application ranging from video games and entertainment to 
modeling of environmental events and biological systems. 
In this research, a CFD solver is proposed that uses the 
parameters of a CA in Cell-DEVS. The asynchronous and 
more efficient computing grid of Cell-DEVS with the 
continuous time-base allowed for more realistic simulation 
of fluid dynamics. We showed how CD++ toolkit was used 
to implement the Cell-DEVS model of the Navier-Stokes 
equations for CFD. We were able to create a fluid dynamic 
solver that met the requirements of a Cellular Automata, 
demonstrating that it is possible to create models of vary 
complex phenomenon using a relatively simple technique. 
The model was a significant improvement to the first 
version, in that it was able to provide results with a better 

resolution in a significantly shorter time. The model also 
improved the size of the log files generated which was a 
major concern of the last model, without sacrificing the 
ability to access the high level of detail generated during 
the evolution of both the density and velocity field. The 
results shown in this paper demonstrate that it is possible 
for a CFD model to be created and coupled to help resolve 
the physics of the fluid flow in any system; biological, 
environmental, etc. 
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