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Abstract 
Nowadays, there is a trend for delivering the Simulation as 
a Service using web-based/cloud-based services. Existing 
simulation services cannot be easily discovered and com-
posed. Although semantic mashups have become popular 
for implementing service composition in the Web 2.0, there 
are yet no semantic mashups applications focusing on mod-
eling and simulation. Here, we propose the first existing 
layered architecture based on semantic mashups improving 
the composition of Simulation as a Service. Besides, we 
propose using ontology learning and tagging systems to 
avoid pre-defined ontology efforts and to increase the au-
tomation of composition through user participation. The 
general idea is to mine tag signatures from the user-
interested simulation-related services automatically, to gen-
erate a tag ontology tree from the mined tag signatures au-
tomatically, and then to compose the services based on the 
learnt tag tree ontology. This unique approach for simula-
tion services mashups can boost the reusability, integration, 
interoperability of Simulation as a Service.   
 
1. INTRODUCTION 
The Modeling and Simulation (M&S) community has used 
web-based simulation for years, invoking simulation servic-
es through the Web (Byrne et al. 2010). Cloud-based simu-
lation, which is derived from web-based simulation, deliv-
ers Simulation as a Service (SimaaS) in the cloud (Cayirci 
and Rong 2011). In recent years, as the Web 2.0 evolved, 
cloud-based and web-based simulation have faced new 
problems: an increasing number of varied technologies 
(SOAP, RESTful Web services, JavaScript, XML-RPC, 
etc.) that need to be integrated, and a number of casual us-
ers who do not have M&S expertise, but want to participate 
in M&S related activities.  
 Another issue brought by the Web 2.0 is the possibility 
of integrating numerous services through service composi-
tion, using mashup technologies. Mashups use content from 
more than one existing source to create a new service, fre-
quently using open APIs for easy, fast integration and com-

position (Balasubramaniam et al. 2008). Mashups should 
guarantee the discovery, selection and automatic or dynam-
ic composition of APIs. In order to do so, the most impor-
tant challenge is to know the “meaning” of the APIs. Se-
mantic mashups methods try to obtain such meanings (Mal-
ki and Benslimane 2012). A Semantic Mashup is one whose 
combined APIs are supported by a semantic layer that al-
lows the user to select and compose them in an unambi-
guous way.  
 Up to now, there has been no research about semantic 
mashups in the M&S community; nevertheless, we believe 
that the use of semantic mashups can help in integrating and 
composing simulation services. However, the current se-
mantic mashups paradigms and technologies are not suita-
ble well for the simulation services because of two issues: 1) 
the over-dependence on a pre-defined ontology (Lee and 
Kim 2011) and 2) the lack of support for user interaction 
and participation (Liu et al. 2013).  
 In this article we will propose a method to deploy, dis-
cover, composite, invocate simulation services and other 
useful open APIs in an automatic and unambiguous way, 
using the tag-based ontology learning and semantic ma-
shups technologies. We will present a novel architecture of 
semantic mashups for multi-types web services in SimaaS. 
The general idea is to automatically mine tag signatures 
from the user-interested simulation-related services, to de-
vise a tag-hierarchy learning algorithm for generating the 
tag tree ontology from the mined tag signatures, then to 
meet the users’ mashups requests by composing services 
based on the learnt tag tree ontology, avoiding the pre-
defined ontology effort and increasing the automation of 
user participation. Besides, we will analyze various web 
services and propose a general web service structure 
(termed API signature) for describing them. We will also 
discuss the semantic issues of automatically mining tags, 
and the way to use the learnt ontology for simulation ser-
vices composition.  
 The rest of the paper is organized as follows: Section 2 
discusses the related work of using ontology in M&S, se-
mantic mashups and tagging system. Section 3 explains our 
understanding of SimaaS. Section 4 presents the new se-
mantic mashups architecture for SimaaS.  

 



2. BACKGROUND 
Simulation as a Service (SimaaS) has received a lot of at-
tention in recent years. In particular, cloud computing and 
virtualization techniques have been used in the M&S com-
munity for both military and civilian areas (Cayirci et al. 
2011). Cloud-based simulation, derived from the original 
web-based simulation efforts, delivers SimaaS of computer 
simulation services in the cloud. Lanner group (Laner 
Group 2010) designed the system L-SIM 2.0 to simulate 
business process management systems through RESTful 
web services deployed in the cloud. (Malik et al. 2009) pre-
sented a parallel and distributed simulation environment us-
ing a master/worker design in a cloud platform. However, 
most of existing efforts do not consider service composition 
and mashups.  
 Web Services play major job in SimaaS. These simula-
tion-related services are mainly categorized into two classes: 
REST-based and SOAP-based. Two examples of SimaaS 
using both technologies include the RESTful Interoperabili-
ty Simulation Environment (RISE) and DEVS/SOA. In 
RISE (Al-Zoubi and Wainer 2011), the authors propose a 
RESTful middleware to support interoperability of distri-
buted and heterogeneous simulations. DEVS/SOA (Mittal 
et al. 2009) implements DEVS over the SOAP-based SOA 
framework, supporting a development and testing environ-
ment known as DEVS Unified Process. Both methods focus 
on exposing simulation services to users but they do not 
support methods for mashups. In particular, there are many 
open APIs that can be helpful when composed with SimaaS 
for better user experience and richer applications (e.g. 
weather forecast, GIS information, and big data for simula-
tion inputs). Thanks to the fast development of web tech-
nologies, there are various open APIs emerging (like REST, 
SOAP, JS, XML-RPC and Atom/RSS) (Liu et al. 2013) and 
they need to be composed in order to create new value-
added mashups. 

 

Figure 1. SimaaS in Cloud Computing.   

 We regard SimaaS as a special case of Software as a 
Service (SaaS) in the layered structure of Cloud Computer, 
and we believe that putting Mashups on the top of SimaaS 
can help the automatic discovery and composition of these 
SimaaS. The relationships of the four layers in cloud com-
puting are shown in Figure 1. The Infrastructure as a Ser-
vice (IaaS) delivers computer and storage infrastructure as a 
service for the user, typically using a virtualized data center. 
The Platform as a Service (PaaS) layer provides a compu-
ting platform that facilitates the development, deployment 
and management of the applications needed for SimaaS. 
The SimaaS layer provides simulation related services that 

are built on the PaaS, using the facilities of platform and in-
frastructure of cloud computing. For creating new services 
from SimaaS and realizing the automatic discovery and 
composition of SimaaS, a Mashups layer is needed. In the 
following sections, we will present an architecture built on 
the top of SimaaS to achieve this goal. 
 The consideration of semantics and ontologies in M&S 
has been widely used for many years. DeMO (Discrete-
event Modeling Ontology) provided a precise description of 
simulation models with hard semantics (Miller et al. 2004). 
DeMO is an upper ontology that details events, activities 
and processes. C2IEDM (Tolk 2005) is an evaluation of the 
Command and Control Information Exchange Data Model 
as an interoperability enabling ontology. PIMODES (Lacy 
2006) developed an M&S process ontology for the discrete-
event simulations, providing a vendor-neutral representa-
tion using the proposed ontology to support model inter-
change. COSMO (Teo and Szabo 2008) is an ontology de-
veloped for composing modeling and simulation compo-
nents, aiming to support model reuse among multiple appli-
cation domains. In (Zeigler et al. 2008), the authors propose 
a standard for interoperability based on linguistic categories 
along with the DEVS formalism using domain specific on-
tologies. However, the ontologies mentioned above are do-
main specific and pre-defined by M&S specialists and do-
main experts. Furthermore, they are designed for system 
components but not for the web services composition; thus, 
they are not suitable for the composition of SimaaS.  
 We will show how Semantic Mashups can help us to 
compose those web services/APIs for creating new mashups, 
especially for the composition of SimaaS. The combined 
APIs are supported by a semantic layer that allows selecting 
and composing them in an automatic and unambiguous way. 
There are two general approaches to do the semantic ma-
shups: the semantic web language mashups and the seman-
tic annotation mashups. The semantic web language ma-
shups use a specific ontology language to develop a com-
plete web services ontology just for the APIs that needs to 
be composed. Examples of this include OWL-S (OWL-S 
2013) and WSMO (WSMO 2013). On the other hand, the 
semantic annotation mashups allows annotating web servic-
es with semantic information pertaining to an existing do-
main ontology. Examples of this include WSDL-S (WSDL-
S 2013) and SA-REST (Sheth et al. 2007). The main prob-
lem is that most ontologies should be pre-defined manually 
by highly skilled domain experts, which is time-consuming 
and expensive. Besides, an existing ontology may not cover 
all the concepts for the fast exploration of multi-disciplinary 
services and open APIs. 
 Instead, a tagging system (also called Folksonomies) 
can be used to handle these issues and can benefit the dis-
covery process of web services for semantic mashups (Liu 
et al. 2013). Tagging systems can be seen as a large collec-
tion of informal semantics (Wal 2013). In a tagging system, 
many users cooperate to label objects with free-form tags of 
their choice. They are becoming increasingly popular be-



cause they are simple and intuitive. However, tagging sys-
tems for simulation services mashups can produce semantic 
mismatches by the tags freely chosen by different users. 
Likewise, tags are not organized, lacking of an ontology-
like structure/hierarchy (Lin et al. 2009).  
 Ontology learning can help dealing with the semantic 
mismatches of a tagging system. One option is to try to 
learn the ontology based on building semantic information 
and finding the relations among the information (Guo et al. 
2007; Lee and Kim 2011). However, these methods are not 
suitable for simulation services mashups because they are 
based on pre-defined rules and simplified relations, and 
they are designed for particular domains (and not for simu-
lation services). Likewise, the learning performance is li-
mited and still complicated to use.  
  Recently, there have been attempts for combining on-
tologies and tagging systems together, as they are comple-
mentary to each other (Gruber 2007). A tagging system can 
represent the semantics of a wider group people with impli-
cit relations among the tags, while an ontology is built by a 
more restricted group of specialists and exports for a long 
period of time. Current research focused on learning the tag 
structure based on ontology learning. Existing methods for 
this can be organized into four categories: 1) Semantic lin-
guistic resource approaches: they link tags to a concept in 
an ontology (Bernhard 2010); 2) Syntactic distance ap-
proaches: they find relations of tags by checking their simi-
larity based on the syntactic variations (Solskinnsbakk and 
Gulla 2011); 3) Clustering/co-occurrence approaches: they 
use  machine learning techniques to cluster tags into differ-
ent groups (Cattuto et al. 2008); 4) Network-based ap-
proaches (Heymann 2006): they use graph/network tech-
niques with the probability and approximation techniques to  

build the structure. However, these tag structure learning 
methods are not directly suitable for the simulation services 
mashups because they mostly focus on grouping the tags ra-
ther than providing a tree-like hierarchy, which would be 
needed in the case of services and semantic mashups. 
 We share the view of complementary roles of ontology 
and tagging systems by Gruber. We believe that combing 
ontology learning and tagging systems can help building 
semantic mashups for SimaaS. In the following sections, we 
present a tag-based ontology learning method for semantic 
mashups of user-interested simulation related services.  
 
3. AN ARCHITECTURE FOR SEMANTIC MA-

SHUPS OF SIMAAS 
Based on the previous considerations, we decided to use 
semantic mashups technology to provide automatic dep-
loyment, discovery, composition, and invocation of simula-
tion and other web services. The semantic mashups requires 
a semantic layer (ontology) on the top of service APIs. We 
propose a novel architecture for semantic mashups using 
various types of web services (Figure 2).  
 The proposed architecture has five layers, as follows: 
 1) API Component: it is responsible for registering 
API components by extracting their web service API signa-
tures automatically from the descriptions of multi-type si-
mulation services, useful open APIs and other local/online 
sources. Then, it gets the API tag signature for each API us-
ing a tag mining system to handle basic tag variations.  
 2) Tag tree ontology: it is responsible for learning the 
tag tree ontology according to the API tag signatures, based 
on the ontology learning and tag similarity techniques, as 
well as the management of an ontology repository of the 
Tag-tree Knowledge Base. 

 

 

Figure 2. Semantic Mashups Architecture for Simulation as a Service.  



 3) API composition Layer: it composes APIs availa-
ble in the component layer based on chosen tag tree ontolo-
gy. This layer can provide workflow-like recommendations 
according to the user queries. The service running engine 
provides the run-time configuration and management of 
composed API, playing as a link between this API composi-
tion Layer and the Mashups Layer.  
  4) Mashups Layer: it shows new mashups according 
to the composition results from the API composition Layer. 
A mashup consists of different widgets, each of them cor-
responding to an API. Besides, this layer provides easier 
users participation by different ways of query and widget 
customization.  
 5) Cloud platform Layer: it is in charge of the dep-
loyment of all the other layers in the various cloud plat-
forms, without the cost and complexity of purchasing and 
managing the underlying software stack. Currently, the 
most popular cloud platforms are Amazon EC2, Google 
App Engine, and Microsoft Azure.   
 There are two kinds of users involved in this frame-
work: Providers, who can register any services APIs or 
sources; and Users, who can query the services and see the 
Mashups results. A Provider can simply define the services 
descriptions for their registration, such as the simulation 
APIs (like in the case of RESTful-based simulation); open 
APIs (like in the case of WeatherForcast or Youtube chan-
nels), local/online sources (like in model repositories, or 
documentation repositories). The API Component Layer 
gets these APIs descriptions, registers them as service com-
ponents, and mine the tags from them in order to get their 
API signatures. After that, the Tag Tree Learning Layer 
learns a tag tree ontology from these API signatures, and it 
saves the ontology into a knowledge base.  
 In the case of Users, they query the services by enter-
ing tags of name/input/output; or they can specify an ontol-
ogy for the composition process. After that, the API Com-
position Layer combines related services based on the cho-
sen tag tree ontology in order to meet the user’s query. Fi-
nally, the Mashups Layer shows the composition results as 
new mashups by providing widgets to the User. Each wid-
get corresponds to an API, providing a user-friendly UI for 
user customization.  
 This architecture has many advantages. First, unlike the 
traditional way of requiring a number of users to provide 
tags in a tagging system manually, it can automatically add 
semantic to the APIs by using tag mining techniques explor-
ing the various SimaaS descriptions. These descriptions can 
be easily obtained and freely provided from multi-
disciplinary users. As this mining process can be automated, 
after this process, each API has several tags attached, which 
implicitly maintain the semantic of the API.    
 Furthermore, it can learn the tag tree ontology based on 
the user-interested APIs. Rather than depending on domain 
ontologies (like DeMO) or semantic web ontologies (like 
OWL-S), this architecture uses tag-based ontology learning 
techniques to construct tag tree all by itself. There is no 

need to use an existing ontology or other external resources. 
Besides, unlike many tag clustering methods that are 
coarse-grained, this method can consider most syntactic, 
semantic and structural issues, generating a fine-grained tag 
tree that is better tailored for services composition.  
 Likewise, it can be used to compose the APIs in an au-
tomated and unambiguous way. Most composition methods 
are done by linking different interfaces manually. This ar-
chitecture, instead, uses the APIs’ tag signature and the 
learnt tag tree ontology. This can be done because the regis-
tered APIs have semantic already attached by its tags, and 
the tag tree has been built learnt from these tags, which can 
reflect their relations and hierarchies.  
 Finally, the method has better user participation and 
easy accessibility. The architecture provides different ways 
of querying by the users (by name/input/output), and we 
provide them not only with the matched APIs, but also rec-
ommended API workflows. The architecture is easily ac-
cessible as it is available on the cloud. Anyone with Internet 
access can use this kind of application applying our archi-
tecture, taking advantage of cloud computing in a dynamic 
and scalable manner.  
 
4. SEMANTIC MASHUPS BASED ON TAG-BASED 

ONTOLOGY LEARNING 
In this section, we introduce the main features of the archi-
tecture. We use a motivating case to illustrate the process. 
In this case, there are different available APIs. Api1 is a 
SOAP API (which can get geographical information about a 
location). Api2 is a REST API (which can get a wildfire 
Cell-DEVS model). Api3 is a REST API (a simulation ser-
vice for preparing the needed information for a fire simula-
tion). Other APIs are like: IPlocationDetector, Simulatio-
nRuning, SimulationResults, GoogleMapVisualization, etc. 
In the following section, we will discuss the ways to get 
their API signatures, learn tag tree ontology from them and 
compose them based on the learnt tree.  
 
4.1. Web services API signature 
As discussed earlier, there is a variety of simulation-related 
web services and open APIs. In this section, we will intro-
duce a uniform API signature for all kinds of web services, 
and will show how to build them by automatically extract-
ing information from their description files.  
 ProgrammableWeb.com (ProgrammableWeb 2013) is 
currently the most popular API directory. Figure 3 shows 
the protocol usage of the current Open APIs based on the 
10310 APIs available. Currently, there is no standard de-
scription language for RESTful web services. WADL is a 
popular language to describe the syntax of REST web ser-
vices. Other formats like Swagger, WSDL 2.0. Swagger is a 
specification to document and visualize RESTful APIs. 
WSDL is originally designed for describing SOAP web 
services, WSDL 2.0 is its latest version that is extended to 
allow RESTful web services. Besides, many IT companies 
(i.e., Google, Youtube, Flicker, etc.) provide their own 



HTML pages for describing their REST APIs. SOAP web 
services are usually described in standard WSDL files, 
which contain information on how to access the APIs and 
what operations are exposed. There are also other types of 
APIs that are not as popular, such as JavaScript and XML-
RPC. These share similar information as in REST and 
SOAP; however, each type of web service APIs requires 
specific techniques and individual solutions to describe and 
invocate the APIs, which makes the mashup difficult, lack-
ing reusability and automation for composition.  
 

 
Figure 3. Open APIs protocol usage (from Programmab-

leWeb.com)   

 The uniform API signature presented in Definition (1) 
can be used for all types of APIs, in order to facilitate their 
registration and composition.  
 

API Signature= < M, I, O, U >    (Definition 1) 
 

M = < Mn, Mt, Md > is the general information of the 
operation, including method name, type and text de-
scription of the API; 
I = {p} is a set of input parameters;  
O = {p} is a set of output parameters; 
p = < pn, pt, pd > is parameter, including parameter 

name, type (basic or complex) and its description.  
U is the URL for this API (absolute/relative); 

 

 We define each API as a collection of the operation 
method (M), its input (I) and output parameters (O), and the 
URL (U). M is the general information of an operation, in-
cluding its name, type and description. For instance, “Get-
Weather” for an operation name, “REST” for the type and 
“return weather forecast information” for the description; 
I/O are a set of parameters; each parameter can have its pa-
rameter name, type and description. For instance, a input 
parameter has “ServerTitle” as its name, “xsd: string” as its 
type and “server name” as its description; U is a sequence 
of terms that are separated by “/”;  
 This information can be extracted automatically 
through their description files (e.g, WADL for REST, 
WSDL for SOAP). The only assumption here is that the 
web services descriptions that users provide are “meaning-
ful”, i.e., that the users provide enough useful information 
for building an ontology. Please note that the description 
files have to neither be fully well documented, nor have the 
same understandings by different users. Any element of the 
API signature can be optional.   

 Let us consider a REST simulation service as a simple 
example to show how to extract information and building 
the defined API signature (Figure 4). We can get each ele-
ment of our API signature directly from the WADL, and the 
resulting mapping is shown in Table 1. It is a straightfor-
ward process, we extract <Method> and <doc> directly for 
the M in the API signature. The <path> in <resource> is 
the U in the API signature. We get the <param> of <re-
quest>/<response> in order for the I/O in the API signa-
ture, and we put the attribute “name” as the structure name. 
If this involves complex data structures, we iteratively get 
all parameters with basic types from the structure for best 
describing the inputs and outputs.  
 

 
Figure 4. WADL Example from RISE. 

Table 1. Mapping WADL and API signature 
WADL 
element 

WADL 
attribute 

API sig-
nature 

Example 

<Method> 
<doc> 

id,  
text 

M GetServerInfo, GET, 
server info description 

<request> 
<param> 

name, 
type, doc 

I user_name, xsd: 
string, … 

<response> 
<param> 

name, 
type, doc 

O server_title, xsd: 
string, … 

<resource> path U .. util/ping 
 

4.2. Adding semantic to APIs by tag mining  
The API signatures specify the operations, as well as their 
inputs and outputs. As mentioned before, the most impor-
tant problem is how to get the “meaning” of the APIs in or-
der to discover and compose APIs automatically. In seman-
tic mashups, we usually need to add a semantic layer for the 
APIs to an existing ontology. In our case, we use a tagging 
system and mining techniques to get tags from the API sig-
natures automatically. The APIs are attached with semantic 
by tags. These tags can be found in a tag-tree ontology (to 
be discussed in Section 4.3).  
 The API tag signature is shown in Definition 2. Each 
API signature has a corresponding Tag Signature, and each 
element of the API signature corresponds to a set of tags. 
The reason to introduce a tagging system in our APIs is that 
it lowers the entry barrier to users’ participation and coop-
eration with their own vocabularies, avoiding using the 
complicated domain ontologies. In our definition, the con-
ventional data triple of (user, tag, resource) used in tagging 
systems is (description, tag signature, API signature). The 



difference is that the tags are mined automatically and indi-
rectly from the API signature instead of being directly spe-
cified from users. The users can provide and register any 
kind of description file of web services into the API signa-
tures. Besides, APIs from a company or a community usual-
ly share a similar naming or commenting convention (espe-
cially when the number of APIs becomes huge). 
 

Tag API Signature = < Tm, Ti, To, U > (Definition 2) 
 

Tm is a set of tags for the operation name. 
Ti = {tp} is a set of tag set for the input parameters;  
To= {tp} is a set of tag set for the output parameters;  
tp = < tpn, tpt, tpd > is a set of tags for a parameter, in-

cluding name tags, type tags and description tags. 
U is the same URL as the API signature.  
 

 Now, we need to decide how to mine the tags from the 
API signature to construct the API Tag signature. With this 
purpose, we define the tag mining function Γ (Definition 3), 
a tag mining function that maps a set of terms into a set of 
semantically meaningful tags.  
 

Γ: Sterm -> Stag Tag Mining Function (Definition 3) 
 

Sterm is a term set of elements from the API signature. 
It can consist of any form of terms {e1, e2, ...en}.  
Stag is the tag set after tag mining {t1, t2, … tn}.  

  

 Since a user can give a free form description of web 
services, the tags can include any terms. The tag mining 
function helps us to get tags from the service signature, 
handling their basic syntactic and semantic variations. The 
idea is to reduce the terms in the service signature and to 
generate the tags that can best represent the services. 
 Much research has done for identifying the variation in 
semantic of terms. In (Solskinnsbakk and Gulla 2011), the 
authors identified three main types of tag variations (inflec-
tional, orthographic, semantic), and tried using editing dis-
tance and tag similarity to solve them. In (Lee and Kim 
2011), the authors used a method to handle basic syntax and 
semantics in the inputs/outputs parameters of services, and 
then they tried to find relationships among them. However, 
these methods do not handle all kinds of semantic, syntactic 
and structural problems, and do not take advantage of the 
tagging system itself (in which the frequent tags maintain 
their semantics, from which we can better find the structure 
between tags). Table 2 shows the different variation issues 
of candidate tags that emerged in our API signature. They 
were categorized into three types: syntactic, semantic and 
structural. Tags can have syntactic similarities like tokeni-
zation, camel case, stop words, spelling, and near-synonyms. 
The semantic variations include linguistic relations like 
POS, abbreviation, plural noun, or synonyms. The structur-
al variations focus on the abstraction and association struc-
tures between tags. Note that not all the issues can be 
solved by the tag mining function. The idea is to let the 
function handle as many issues as possible by reducing the 

number of tags, and to leave the remaining to the tag tree 
ontology learning phase. 
 

Table 2. The three types of tag variation 

 
 

4.3. Tag tree ontology learning 
At this point, we have all the API tag signatures for all the 
web services. The next steps include defining the tag tree 
ontology, and then using ontology learning techniques to 
build a tag hierarchy ontology based on the tags available, 
considering all kinds of relationship between these tags, in-
cluding the frequent graph, syntactic and semantic similari-
ties. The tag tree ontology is as in Definition 4.  
 

Tag hierarchy Tree TR = (T, E)  (Definition 4) 
 

TR is a Directed Acyclic Graph. It consists of T and E. 
T is a set of vertex represent tags {t1,t2,...,tn}, and E is 
the set of edges represented “subTag” relationship be-
tween two tags (formally t1 ≺ t2).  
 

 Currently, the only relationship considered is “subTag”, 
which was learned from the input of web services descrip-
tions provided by the users. The “subTag” relationship 
shows the semantically equivalence of tags. It implies that if 
an API can be described as a child tag, it will also be cor-
rect if described as the parent tag. The learning process is 
under the assumption that the frequent tags maintain the 
semantics of their web services. Therefore, the learning 
process depends on the co-occurrence of tags. We can build 
a co-occurrence graph for these tags (see Figure 5-a), in 
which each vertex of the graph represents a tag and each 
edge of two tags represents the frequency indicating how 
often the two tag appear. 
 The learning process for the structured tag tree is an 
iterative process, and each iteration has two major steps: 1) 
to select a right tag to be added into the tree; and 2) to find 
a position in the tree for the selected tag. A popular algo-
rithm for this was defined in (Heymann 2006), which com-
bined the graph centrality theorem with basic tag similarity 



measurement to derive a greedy hierarchical method. How-
ever, this algorithm cannot be directly used for simulation 
services. The algorithm does not work for weighted and 
disconnected graphs, which makes it inaccurate and hard to 
calculate the closeness centrality. Furthermore, the tag simi-
larity is based on the cosine similarity, which is not suitable 
for our web service tag purpose, and it does not consider 
the syntactic distance or the semantic linguistic resources.  
 

 
 

Figure 5. Co-occurrence graph (a) & Tag tree ontology (b). 

 We improved Heymann’s algorithm to solve these 
problems. In our case, during the step in which we select 
the right tag, we use centrality theory (we pick a tag each 
time from a list in a descending order of their centrality val-
ue). We developed a method to convert the co-occurrence 
graph into a centrality graph. The more central a tag is the 
lower its total distance to all other nodes. Our method 
works with the weighted and disconnected graph. In order 
to place the tag in the right position into the tree, we use a 
similarity function that will consider the distance of the two 
tags in the co-occurrence graph; the syntactic similarity of 
the two tags based on the editing distance; and the semantic 
similarity of the two tags based on whether the two tags are 
synonyms.  
 The new algorithm can handle variation issues. Firstly, 
the tag tree itself with the closeness centrally list that de-
rives from co-occurrence graph can answer the structural is-
sues. The more general a tag is, so the higher hierarchy the 
tag will be. Secondly, the expanded similarity function 
compares two tags, taking consideration of semantic syn-
onym and syntactic variations in the Table 2 that remain af-
ter the processing of tag mining. 
 For the motivated case mentioned above, the upper-
right part of Figure 6 has shown a part of the tree learnt us-
ing our algorithm.  
 
4.4. API composition 
At this point, the APIs are attached with semantic by tags in 
the API Composition Layer, and we have a tag tree ontolo-
gy for the tags used in these APIs. In this section, we show 
how to compose two APIs together. Definition 5 presents 
the Composable API based on the tag tree ontology: 
 

A1 -> A2   Composable APIs (Definition 5) 
 

 A1 = <Tm1, Ti1, To1, U1> and A2 = <Tm2, Ti2, To2, U2> are 
two API tag signatures for a given a tag tree ontology TR = 
(T, E). A1 -> A2 are said composable if they satisfy ∀ t2 ∈ 
Ti2; ∃ t1∈ To1; ∃ t1 = t2 or t1≺ t2 in T. 

 That is, for two API tag signature A1 and A2, if any tag 
t2∈ A2’s input tag set Ti, and there is a tag object t1∈ A1’s 
output tag set To, such that t1 is equivalent to t2 or t1 is a 
“sub-tag” of t2 (formally t1 ≺ t2), then A1 can be composed 
with A2 (formally A1 -> A2). In other words, if all the tags 
consumed by A2 can be semantically produced by A1, we 
can construct a link between the two APIs.  
 As discussed earlier, service composition using ontolo-
gy is a very active area. For instance, Wei et al. (2013) pro-
posed a web services composition algorithm based on se-
mantic similarity of APIs to ontology. Han et al. (2013) 
proposed a service composition model using a policy ontol-
ogy using semantic web languages. The way they perform 
the service composition shares a similar idea: to annotate 
the available services to an existing ontology, taking the 
advantages of experts associated with the ontology to com-
pose the services. Similarly, service composition is one of 
the most important features in Semantic Mashups. From the 
Section 4.3, we saw that the tag tree ontology for the APIs 
needed to compose together. This kind of tree-like ontology 
makes the API composition easier (Liu et al. 2013). 
 The composition based on tags can promote a more 
complicated “workflow” method. In other words, the com-
position of API has transitivity, which can help us to build 
workflows of APIs. If A1 -> A2, and A2 -> A3, a workflow 
among A1, A2, A3 is A1 -> A2 -> A3. 
 

Figure 6. An example of API composition based on a tag 
tree ontology 

 Let us show how the API composition works based on 
the tag tree ontology (see Figure 6). For the motivated case 
mentioned above, there are three APIs (Api1, Api2, and 
Api3) with their Tag Signatures (left part of Figure 6) and a 
learnt tag-tree from the previous step (upper-right part of 
Figure 6). Since there is a “subTree” relation between geo-
graphy (an output tag of Api1) and layout (an input tag of 
Api2), it satisfies our conditions of determining if two APIs 
are composable, so we can say Api1 is composable to Api2 
(formally Api1 -> Api2); similarly, we can say Api2 -> 
Api3 since (wildfire ≺ fire, model = model, celldevs ≺ devs). 
Because the transitivity of APIs, a workflow Api1 -> Api2 -
> Api3 can be built automatically. 
 



5. CONCLUSION 
Simulation as a Service has attracted attention in the cloud-
based and web-based simulation communities. In order to 
deploy, discover, compose and invoke simulation web ser-
vices and open APIs automatically, we propose using se-
mantic mashups technology. We presented a novel architec-
ture of semantic mashups of multi-types web services for 
SimaaS, with the following advantages:  
 1) It defines a layered architecture of semantic mashups 
for SimaaS. This architecture is a one-stop and lightweight 
approach for the simulation services composition. We pre-
sented the architecture with its basic process functionalities.  
 2) It can include multiple types of web services as well 
as their descriptions. This analysis can automate the data 
extraction process for building general API signatures.  
 3) It considers semantic, syntactic and structural issues 
in the web services, and defines a unified API signature, an 
API tag signature and a tag tree ontology. These definitions 
can facilitate the processes of tag-based ontology learning 
and API composition.  
 4) It introduces new domains, like semantic mashups, 
tagging systems and ontology learning for M&S. These si-
mulation services mashups can boost reusability, integration, 
interoperability of simulation-related services and realize 
truly SimaaS.   

In the future stages of this research we will focus on the 
detailed design of tag tree ontology learning algorithm, im-
plement the API component layer and the API composition 
layer; and focus on widgets visualization. 
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