

Semantic Mashups for Simulation as a Service with Tag Mining and Ontology
Learning

Sixuan Wang Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University
1125 Colonel By Dr. Ottawa

ON K1S5B6, CANADA
{swang, gwainer}@sce.carleton.ca

Keywords: Semantic Mashups, Simulation as a Service,
Service Composition, Tagging System, Ontology Learning.

Abstract
Nowadays, there is a trend for delivering the Simulation as
a Service using web-based/cloud-based services. Existing
simulation services cannot be easily discovered and com-
posed. Although semantic mashups have become popular
for implementing service composition in the Web 2.0, there
are yet no semantic mashups applications focusing on mod-
eling and simulation. Here, we propose the first existing
layered architecture based on semantic mashups improving
the composition of Simulation as a Service. Besides, we
propose using ontology learning and tagging systems to
avoid pre-defined ontology efforts and to increase the au-
tomation of composition through user participation. The
general idea is to mine tag signatures from the user-
interested simulation-related services automatically, to gen-
erate a tag ontology tree from the mined tag signatures au-
tomatically, and then to compose the services based on the
learnt tag tree ontology. This unique approach for simula-
tion services mashups can boost the reusability, integration,
interoperability of Simulation as a Service.

1. INTRODUCTION
The Modeling and Simulation (M&S) community has used
web-based simulation for years, invoking simulation servic-
es through the Web (Byrne et al. 2010). Cloud-based simu-
lation, which is derived from web-based simulation, deliv-
ers Simulation as a Service (SimaaS) in the cloud (Cayirci
and Rong 2011). In recent years, as the Web 2.0 evolved,
cloud-based and web-based simulation have faced new
problems: an increasing number of varied technologies
(SOAP, RESTful Web services, JavaScript, XML-RPC,
etc.) that need to be integrated, and a number of casual us-
ers who do not have M&S expertise, but want to participate
in M&S related activities.
 Another issue brought by the Web 2.0 is the possibility
of integrating numerous services through service composi-
tion, using mashup technologies. Mashups use content from
more than one existing source to create a new service, fre-
quently using open APIs for easy, fast integration and com-

position (Balasubramaniam et al. 2008). Mashups should
guarantee the discovery, selection and automatic or dynam-
ic composition of APIs. In order to do so, the most impor-
tant challenge is to know the “meaning” of the APIs. Se-
mantic mashups methods try to obtain such meanings (Mal-
ki and Benslimane 2012). A Semantic Mashup is one whose
combined APIs are supported by a semantic layer that al-
lows the user to select and compose them in an unambi-
guous way.
 Up to now, there has been no research about semantic
mashups in the M&S community; nevertheless, we believe
that the use of semantic mashups can help in integrating and
composing simulation services. However, the current se-
mantic mashups paradigms and technologies are not suita-
ble well for the simulation services because of two issues: 1)
the over-dependence on a pre-defined ontology (Lee and
Kim 2011) and 2) the lack of support for user interaction
and participation (Liu et al. 2013).
 In this article we will propose a method to deploy, dis-
cover, composite, invocate simulation services and other
useful open APIs in an automatic and unambiguous way,
using the tag-based ontology learning and semantic ma-
shups technologies. We will present a novel architecture of
semantic mashups for multi-types web services in SimaaS.
The general idea is to automatically mine tag signatures
from the user-interested simulation-related services, to de-
vise a tag-hierarchy learning algorithm for generating the
tag tree ontology from the mined tag signatures, then to
meet the users’ mashups requests by composing services
based on the learnt tag tree ontology, avoiding the pre-
defined ontology effort and increasing the automation of
user participation. Besides, we will analyze various web
services and propose a general web service structure
(termed API signature) for describing them. We will also
discuss the semantic issues of automatically mining tags,
and the way to use the learnt ontology for simulation ser-
vices composition.
 The rest of the paper is organized as follows: Section 2
discusses the related work of using ontology in M&S, se-
mantic mashups and tagging system. Section 3 explains our
understanding of SimaaS. Section 4 presents the new se-
mantic mashups architecture for SimaaS.

2. BACKGROUND
Simulation as a Service (SimaaS) has received a lot of at-
tention in recent years. In particular, cloud computing and
virtualization techniques have been used in the M&S com-
munity for both military and civilian areas (Cayirci et al.
2011). Cloud-based simulation, derived from the original
web-based simulation efforts, delivers SimaaS of computer
simulation services in the cloud. Lanner group (Laner
Group 2010) designed the system L-SIM 2.0 to simulate
business process management systems through RESTful
web services deployed in the cloud. (Malik et al. 2009) pre-
sented a parallel and distributed simulation environment us-
ing a master/worker design in a cloud platform. However,
most of existing efforts do not consider service composition
and mashups.
 Web Services play major job in SimaaS. These simula-
tion-related services are mainly categorized into two classes:
REST-based and SOAP-based. Two examples of SimaaS
using both technologies include the RESTful Interoperabili-
ty Simulation Environment (RISE) and DEVS/SOA. In
RISE (Al-Zoubi and Wainer 2011), the authors propose a
RESTful middleware to support interoperability of distri-
buted and heterogeneous simulations. DEVS/SOA (Mittal
et al. 2009) implements DEVS over the SOAP-based SOA
framework, supporting a development and testing environ-
ment known as DEVS Unified Process. Both methods focus
on exposing simulation services to users but they do not
support methods for mashups. In particular, there are many
open APIs that can be helpful when composed with SimaaS
for better user experience and richer applications (e.g.
weather forecast, GIS information, and big data for simula-
tion inputs). Thanks to the fast development of web tech-
nologies, there are various open APIs emerging (like REST,
SOAP, JS, XML-RPC and Atom/RSS) (Liu et al. 2013) and
they need to be composed in order to create new value-
added mashups.

Figure 1. SimaaS in Cloud Computing.

 We regard SimaaS as a special case of Software as a
Service (SaaS) in the layered structure of Cloud Computer,
and we believe that putting Mashups on the top of SimaaS
can help the automatic discovery and composition of these
SimaaS. The relationships of the four layers in cloud com-
puting are shown in Figure 1. The Infrastructure as a Ser-
vice (IaaS) delivers computer and storage infrastructure as a
service for the user, typically using a virtualized data center.
The Platform as a Service (PaaS) layer provides a compu-
ting platform that facilitates the development, deployment
and management of the applications needed for SimaaS.
The SimaaS layer provides simulation related services that

are built on the PaaS, using the facilities of platform and in-
frastructure of cloud computing. For creating new services
from SimaaS and realizing the automatic discovery and
composition of SimaaS, a Mashups layer is needed. In the
following sections, we will present an architecture built on
the top of SimaaS to achieve this goal.
 The consideration of semantics and ontologies in M&S
has been widely used for many years. DeMO (Discrete-
event Modeling Ontology) provided a precise description of
simulation models with hard semantics (Miller et al. 2004).
DeMO is an upper ontology that details events, activities
and processes. C2IEDM (Tolk 2005) is an evaluation of the
Command and Control Information Exchange Data Model
as an interoperability enabling ontology. PIMODES (Lacy
2006) developed an M&S process ontology for the discrete-
event simulations, providing a vendor-neutral representa-
tion using the proposed ontology to support model inter-
change. COSMO (Teo and Szabo 2008) is an ontology de-
veloped for composing modeling and simulation compo-
nents, aiming to support model reuse among multiple appli-
cation domains. In (Zeigler et al. 2008), the authors propose
a standard for interoperability based on linguistic categories
along with the DEVS formalism using domain specific on-
tologies. However, the ontologies mentioned above are do-
main specific and pre-defined by M&S specialists and do-
main experts. Furthermore, they are designed for system
components but not for the web services composition; thus,
they are not suitable for the composition of SimaaS.
 We will show how Semantic Mashups can help us to
compose those web services/APIs for creating new mashups,
especially for the composition of SimaaS. The combined
APIs are supported by a semantic layer that allows selecting
and composing them in an automatic and unambiguous way.
There are two general approaches to do the semantic ma-
shups: the semantic web language mashups and the seman-
tic annotation mashups. The semantic web language ma-
shups use a specific ontology language to develop a com-
plete web services ontology just for the APIs that needs to
be composed. Examples of this include OWL-S (OWL-S
2013) and WSMO (WSMO 2013). On the other hand, the
semantic annotation mashups allows annotating web servic-
es with semantic information pertaining to an existing do-
main ontology. Examples of this include WSDL-S (WSDL-
S 2013) and SA-REST (Sheth et al. 2007). The main prob-
lem is that most ontologies should be pre-defined manually
by highly skilled domain experts, which is time-consuming
and expensive. Besides, an existing ontology may not cover
all the concepts for the fast exploration of multi-disciplinary
services and open APIs.
 Instead, a tagging system (also called Folksonomies)
can be used to handle these issues and can benefit the dis-
covery process of web services for semantic mashups (Liu
et al. 2013). Tagging systems can be seen as a large collec-
tion of informal semantics (Wal 2013). In a tagging system,
many users cooperate to label objects with free-form tags of
their choice. They are becoming increasingly popular be-

cause they are simple and intuitive. However, tagging sys-
tems for simulation services mashups can produce semantic
mismatches by the tags freely chosen by different users.
Likewise, tags are not organized, lacking of an ontology-
like structure/hierarchy (Lin et al. 2009).
 Ontology learning can help dealing with the semantic
mismatches of a tagging system. One option is to try to
learn the ontology based on building semantic information
and finding the relations among the information (Guo et al.
2007; Lee and Kim 2011). However, these methods are not
suitable for simulation services mashups because they are
based on pre-defined rules and simplified relations, and
they are designed for particular domains (and not for simu-
lation services). Likewise, the learning performance is li-
mited and still complicated to use.
 Recently, there have been attempts for combining on-
tologies and tagging systems together, as they are comple-
mentary to each other (Gruber 2007). A tagging system can
represent the semantics of a wider group people with impli-
cit relations among the tags, while an ontology is built by a
more restricted group of specialists and exports for a long
period of time. Current research focused on learning the tag
structure based on ontology learning. Existing methods for
this can be organized into four categories: 1) Semantic lin-
guistic resource approaches: they link tags to a concept in
an ontology (Bernhard 2010); 2) Syntactic distance ap-
proaches: they find relations of tags by checking their simi-
larity based on the syntactic variations (Solskinnsbakk and
Gulla 2011); 3) Clustering/co-occurrence approaches: they
use machine learning techniques to cluster tags into differ-
ent groups (Cattuto et al. 2008); 4) Network-based ap-
proaches (Heymann 2006): they use graph/network tech-
niques with the probability and approximation techniques to

build the structure. However, these tag structure learning
methods are not directly suitable for the simulation services
mashups because they mostly focus on grouping the tags ra-
ther than providing a tree-like hierarchy, which would be
needed in the case of services and semantic mashups.
 We share the view of complementary roles of ontology
and tagging systems by Gruber. We believe that combing
ontology learning and tagging systems can help building
semantic mashups for SimaaS. In the following sections, we
present a tag-based ontology learning method for semantic
mashups of user-interested simulation related services.

3. AN ARCHITECTURE FOR SEMANTIC MA-

SHUPS OF SIMAAS
Based on the previous considerations, we decided to use
semantic mashups technology to provide automatic dep-
loyment, discovery, composition, and invocation of simula-
tion and other web services. The semantic mashups requires
a semantic layer (ontology) on the top of service APIs. We
propose a novel architecture for semantic mashups using
various types of web services (Figure 2).
 The proposed architecture has five layers, as follows:
 1) API Component: it is responsible for registering
API components by extracting their web service API signa-
tures automatically from the descriptions of multi-type si-
mulation services, useful open APIs and other local/online
sources. Then, it gets the API tag signature for each API us-
ing a tag mining system to handle basic tag variations.
 2) Tag tree ontology: it is responsible for learning the
tag tree ontology according to the API tag signatures, based
on the ontology learning and tag similarity techniques, as
well as the management of an ontology repository of the
Tag-tree Knowledge Base.

Figure 2. Semantic Mashups Architecture for Simulation as a Service.

 3) API composition Layer: it composes APIs availa-
ble in the component layer based on chosen tag tree ontolo-
gy. This layer can provide workflow-like recommendations
according to the user queries. The service running engine
provides the run-time configuration and management of
composed API, playing as a link between this API composi-
tion Layer and the Mashups Layer.
 4) Mashups Layer: it shows new mashups according
to the composition results from the API composition Layer.
A mashup consists of different widgets, each of them cor-
responding to an API. Besides, this layer provides easier
users participation by different ways of query and widget
customization.
 5) Cloud platform Layer: it is in charge of the dep-
loyment of all the other layers in the various cloud plat-
forms, without the cost and complexity of purchasing and
managing the underlying software stack. Currently, the
most popular cloud platforms are Amazon EC2, Google
App Engine, and Microsoft Azure.
 There are two kinds of users involved in this frame-
work: Providers, who can register any services APIs or
sources; and Users, who can query the services and see the
Mashups results. A Provider can simply define the services
descriptions for their registration, such as the simulation
APIs (like in the case of RESTful-based simulation); open
APIs (like in the case of WeatherForcast or Youtube chan-
nels), local/online sources (like in model repositories, or
documentation repositories). The API Component Layer
gets these APIs descriptions, registers them as service com-
ponents, and mine the tags from them in order to get their
API signatures. After that, the Tag Tree Learning Layer
learns a tag tree ontology from these API signatures, and it
saves the ontology into a knowledge base.
 In the case of Users, they query the services by enter-
ing tags of name/input/output; or they can specify an ontol-
ogy for the composition process. After that, the API Com-
position Layer combines related services based on the cho-
sen tag tree ontology in order to meet the user’s query. Fi-
nally, the Mashups Layer shows the composition results as
new mashups by providing widgets to the User. Each wid-
get corresponds to an API, providing a user-friendly UI for
user customization.
 This architecture has many advantages. First, unlike the
traditional way of requiring a number of users to provide
tags in a tagging system manually, it can automatically add
semantic to the APIs by using tag mining techniques explor-
ing the various SimaaS descriptions. These descriptions can
be easily obtained and freely provided from multi-
disciplinary users. As this mining process can be automated,
after this process, each API has several tags attached, which
implicitly maintain the semantic of the API.
 Furthermore, it can learn the tag tree ontology based on
the user-interested APIs. Rather than depending on domain
ontologies (like DeMO) or semantic web ontologies (like
OWL-S), this architecture uses tag-based ontology learning
techniques to construct tag tree all by itself. There is no

need to use an existing ontology or other external resources.
Besides, unlike many tag clustering methods that are
coarse-grained, this method can consider most syntactic,
semantic and structural issues, generating a fine-grained tag
tree that is better tailored for services composition.
 Likewise, it can be used to compose the APIs in an au-
tomated and unambiguous way. Most composition methods
are done by linking different interfaces manually. This ar-
chitecture, instead, uses the APIs’ tag signature and the
learnt tag tree ontology. This can be done because the regis-
tered APIs have semantic already attached by its tags, and
the tag tree has been built learnt from these tags, which can
reflect their relations and hierarchies.
 Finally, the method has better user participation and
easy accessibility. The architecture provides different ways
of querying by the users (by name/input/output), and we
provide them not only with the matched APIs, but also rec-
ommended API workflows. The architecture is easily ac-
cessible as it is available on the cloud. Anyone with Internet
access can use this kind of application applying our archi-
tecture, taking advantage of cloud computing in a dynamic
and scalable manner.

4. SEMANTIC MASHUPS BASED ON TAG-BASED

ONTOLOGY LEARNING
In this section, we introduce the main features of the archi-
tecture. We use a motivating case to illustrate the process.
In this case, there are different available APIs. Api1 is a
SOAP API (which can get geographical information about a
location). Api2 is a REST API (which can get a wildfire
Cell-DEVS model). Api3 is a REST API (a simulation ser-
vice for preparing the needed information for a fire simula-
tion). Other APIs are like: IPlocationDetector, Simulatio-
nRuning, SimulationResults, GoogleMapVisualization, etc.
In the following section, we will discuss the ways to get
their API signatures, learn tag tree ontology from them and
compose them based on the learnt tree.

4.1. Web services API signature
As discussed earlier, there is a variety of simulation-related
web services and open APIs. In this section, we will intro-
duce a uniform API signature for all kinds of web services,
and will show how to build them by automatically extract-
ing information from their description files.
 ProgrammableWeb.com (ProgrammableWeb 2013) is
currently the most popular API directory. Figure 3 shows
the protocol usage of the current Open APIs based on the
10310 APIs available. Currently, there is no standard de-
scription language for RESTful web services. WADL is a
popular language to describe the syntax of REST web ser-
vices. Other formats like Swagger, WSDL 2.0. Swagger is a
specification to document and visualize RESTful APIs.
WSDL is originally designed for describing SOAP web
services, WSDL 2.0 is its latest version that is extended to
allow RESTful web services. Besides, many IT companies
(i.e., Google, Youtube, Flicker, etc.) provide their own

HTML pages for describing their REST APIs. SOAP web
services are usually described in standard WSDL files,
which contain information on how to access the APIs and
what operations are exposed. There are also other types of
APIs that are not as popular, such as JavaScript and XML-
RPC. These share similar information as in REST and
SOAP; however, each type of web service APIs requires
specific techniques and individual solutions to describe and
invocate the APIs, which makes the mashup difficult, lack-
ing reusability and automation for composition.

Figure 3. Open APIs protocol usage (from Programmab-

leWeb.com)

 The uniform API signature presented in Definition (1)
can be used for all types of APIs, in order to facilitate their
registration and composition.

API Signature= < M, I, O, U > (Definition 1)

M = < Mn, Mt, Md > is the general information of the
operation, including method name, type and text de-
scription of the API;
I = {p} is a set of input parameters;
O = {p} is a set of output parameters;
p = < pn, pt, pd > is parameter, including parameter

name, type (basic or complex) and its description.
U is the URL for this API (absolute/relative);

 We define each API as a collection of the operation
method (M), its input (I) and output parameters (O), and the
URL (U). M is the general information of an operation, in-
cluding its name, type and description. For instance, “Get-
Weather” for an operation name, “REST” for the type and
“return weather forecast information” for the description;
I/O are a set of parameters; each parameter can have its pa-
rameter name, type and description. For instance, a input
parameter has “ServerTitle” as its name, “xsd: string” as its
type and “server name” as its description; U is a sequence
of terms that are separated by “/”;
 This information can be extracted automatically
through their description files (e.g, WADL for REST,
WSDL for SOAP). The only assumption here is that the
web services descriptions that users provide are “meaning-
ful”, i.e., that the users provide enough useful information
for building an ontology. Please note that the description
files have to neither be fully well documented, nor have the
same understandings by different users. Any element of the
API signature can be optional.

 Let us consider a REST simulation service as a simple
example to show how to extract information and building
the defined API signature (Figure 4). We can get each ele-
ment of our API signature directly from the WADL, and the
resulting mapping is shown in Table 1. It is a straightfor-
ward process, we extract <Method> and <doc> directly for
the M in the API signature. The <path> in <resource> is
the U in the API signature. We get the <param> of <re-
quest>/<response> in order for the I/O in the API signa-
ture, and we put the attribute “name” as the structure name.
If this involves complex data structures, we iteratively get
all parameters with basic types from the structure for best
describing the inputs and outputs.

Figure 4. WADL Example from RISE.

Table 1. Mapping WADL and API signature
WADL
element

WADL
attribute

API sig-
nature

Example

<Method>
<doc>

id,
text

M GetServerInfo, GET,
server info description

<request>
<param>

name,
type, doc

I user_name, xsd:
string, …

<response>
<param>

name,
type, doc

O server_title, xsd:
string, …

<resource> path U .. util/ping

4.2. Adding semantic to APIs by tag mining
The API signatures specify the operations, as well as their
inputs and outputs. As mentioned before, the most impor-
tant problem is how to get the “meaning” of the APIs in or-
der to discover and compose APIs automatically. In seman-
tic mashups, we usually need to add a semantic layer for the
APIs to an existing ontology. In our case, we use a tagging
system and mining techniques to get tags from the API sig-
natures automatically. The APIs are attached with semantic
by tags. These tags can be found in a tag-tree ontology (to
be discussed in Section 4.3).
 The API tag signature is shown in Definition 2. Each
API signature has a corresponding Tag Signature, and each
element of the API signature corresponds to a set of tags.
The reason to introduce a tagging system in our APIs is that
it lowers the entry barrier to users’ participation and coop-
eration with their own vocabularies, avoiding using the
complicated domain ontologies. In our definition, the con-
ventional data triple of (user, tag, resource) used in tagging
systems is (description, tag signature, API signature). The

difference is that the tags are mined automatically and indi-
rectly from the API signature instead of being directly spe-
cified from users. The users can provide and register any
kind of description file of web services into the API signa-
tures. Besides, APIs from a company or a community usual-
ly share a similar naming or commenting convention (espe-
cially when the number of APIs becomes huge).

Tag API Signature = < Tm, Ti, To, U > (Definition 2)

Tm is a set of tags for the operation name.
Ti = {tp} is a set of tag set for the input parameters;
To= {tp} is a set of tag set for the output parameters;
tp = < tpn, tpt, tpd > is a set of tags for a parameter, in-

cluding name tags, type tags and description tags.
U is the same URL as the API signature.

 Now, we need to decide how to mine the tags from the
API signature to construct the API Tag signature. With this
purpose, we define the tag mining function Γ (Definition 3),
a tag mining function that maps a set of terms into a set of
semantically meaningful tags.

Γ: Sterm -> Stag Tag Mining Function (Definition 3)

Sterm is a term set of elements from the API signature.
It can consist of any form of terms {e1, e2, ...en}.
Stag is the tag set after tag mining {t1, t2, … tn}.

 Since a user can give a free form description of web
services, the tags can include any terms. The tag mining
function helps us to get tags from the service signature,
handling their basic syntactic and semantic variations. The
idea is to reduce the terms in the service signature and to
generate the tags that can best represent the services.
 Much research has done for identifying the variation in
semantic of terms. In (Solskinnsbakk and Gulla 2011), the
authors identified three main types of tag variations (inflec-
tional, orthographic, semantic), and tried using editing dis-
tance and tag similarity to solve them. In (Lee and Kim
2011), the authors used a method to handle basic syntax and
semantics in the inputs/outputs parameters of services, and
then they tried to find relationships among them. However,
these methods do not handle all kinds of semantic, syntactic
and structural problems, and do not take advantage of the
tagging system itself (in which the frequent tags maintain
their semantics, from which we can better find the structure
between tags). Table 2 shows the different variation issues
of candidate tags that emerged in our API signature. They
were categorized into three types: syntactic, semantic and
structural. Tags can have syntactic similarities like tokeni-
zation, camel case, stop words, spelling, and near-synonyms.
The semantic variations include linguistic relations like
POS, abbreviation, plural noun, or synonyms. The structur-
al variations focus on the abstraction and association struc-
tures between tags. Note that not all the issues can be
solved by the tag mining function. The idea is to let the
function handle as many issues as possible by reducing the

number of tags, and to leave the remaining to the tag tree
ontology learning phase.

Table 2. The three types of tag variation

4.3. Tag tree ontology learning
At this point, we have all the API tag signatures for all the
web services. The next steps include defining the tag tree
ontology, and then using ontology learning techniques to
build a tag hierarchy ontology based on the tags available,
considering all kinds of relationship between these tags, in-
cluding the frequent graph, syntactic and semantic similari-
ties. The tag tree ontology is as in Definition 4.

Tag hierarchy Tree TR = (T, E) (Definition 4)

TR is a Directed Acyclic Graph. It consists of T and E.
T is a set of vertex represent tags {t1,t2,...,tn}, and E is
the set of edges represented “subTag” relationship be-
tween two tags (formally t1 ≺ t2).

 Currently, the only relationship considered is “subTag”,
which was learned from the input of web services descrip-
tions provided by the users. The “subTag” relationship
shows the semantically equivalence of tags. It implies that if
an API can be described as a child tag, it will also be cor-
rect if described as the parent tag. The learning process is
under the assumption that the frequent tags maintain the
semantics of their web services. Therefore, the learning
process depends on the co-occurrence of tags. We can build
a co-occurrence graph for these tags (see Figure 5-a), in
which each vertex of the graph represents a tag and each
edge of two tags represents the frequency indicating how
often the two tag appear.
 The learning process for the structured tag tree is an
iterative process, and each iteration has two major steps: 1)
to select a right tag to be added into the tree; and 2) to find
a position in the tree for the selected tag. A popular algo-
rithm for this was defined in (Heymann 2006), which com-
bined the graph centrality theorem with basic tag similarity

measurement to derive a greedy hierarchical method. How-
ever, this algorithm cannot be directly used for simulation
services. The algorithm does not work for weighted and
disconnected graphs, which makes it inaccurate and hard to
calculate the closeness centrality. Furthermore, the tag simi-
larity is based on the cosine similarity, which is not suitable
for our web service tag purpose, and it does not consider
the syntactic distance or the semantic linguistic resources.

Figure 5. Co-occurrence graph (a) & Tag tree ontology (b).

 We improved Heymann’s algorithm to solve these
problems. In our case, during the step in which we select
the right tag, we use centrality theory (we pick a tag each
time from a list in a descending order of their centrality val-
ue). We developed a method to convert the co-occurrence
graph into a centrality graph. The more central a tag is the
lower its total distance to all other nodes. Our method
works with the weighted and disconnected graph. In order
to place the tag in the right position into the tree, we use a
similarity function that will consider the distance of the two
tags in the co-occurrence graph; the syntactic similarity of
the two tags based on the editing distance; and the semantic
similarity of the two tags based on whether the two tags are
synonyms.
 The new algorithm can handle variation issues. Firstly,
the tag tree itself with the closeness centrally list that de-
rives from co-occurrence graph can answer the structural is-
sues. The more general a tag is, so the higher hierarchy the
tag will be. Secondly, the expanded similarity function
compares two tags, taking consideration of semantic syn-
onym and syntactic variations in the Table 2 that remain af-
ter the processing of tag mining.
 For the motivated case mentioned above, the upper-
right part of Figure 6 has shown a part of the tree learnt us-
ing our algorithm.

4.4. API composition
At this point, the APIs are attached with semantic by tags in
the API Composition Layer, and we have a tag tree ontolo-
gy for the tags used in these APIs. In this section, we show
how to compose two APIs together. Definition 5 presents
the Composable API based on the tag tree ontology:

A1 -> A2 Composable APIs (Definition 5)

 A1 = <Tm1, Ti1, To1, U1> and A2 = <Tm2, Ti2, To2, U2> are
two API tag signatures for a given a tag tree ontology TR =
(T, E). A1 -> A2 are said composable if they satisfy ∀ t2 ∈
Ti2; ∃ t1∈ To1; ∃ t1 = t2 or t1≺ t2 in T.

 That is, for two API tag signature A1 and A2, if any tag
t2∈ A2’s input tag set Ti, and there is a tag object t1∈ A1’s
output tag set To, such that t1 is equivalent to t2 or t1 is a
“sub-tag” of t2 (formally t1 ≺ t2), then A1 can be composed
with A2 (formally A1 -> A2). In other words, if all the tags
consumed by A2 can be semantically produced by A1, we
can construct a link between the two APIs.
 As discussed earlier, service composition using ontolo-
gy is a very active area. For instance, Wei et al. (2013) pro-
posed a web services composition algorithm based on se-
mantic similarity of APIs to ontology. Han et al. (2013)
proposed a service composition model using a policy ontol-
ogy using semantic web languages. The way they perform
the service composition shares a similar idea: to annotate
the available services to an existing ontology, taking the
advantages of experts associated with the ontology to com-
pose the services. Similarly, service composition is one of
the most important features in Semantic Mashups. From the
Section 4.3, we saw that the tag tree ontology for the APIs
needed to compose together. This kind of tree-like ontology
makes the API composition easier (Liu et al. 2013).
 The composition based on tags can promote a more
complicated “workflow” method. In other words, the com-
position of API has transitivity, which can help us to build
workflows of APIs. If A1 -> A2, and A2 -> A3, a workflow
among A1, A2, A3 is A1 -> A2 -> A3.

Figure 6. An example of API composition based on a tag
tree ontology

 Let us show how the API composition works based on
the tag tree ontology (see Figure 6). For the motivated case
mentioned above, there are three APIs (Api1, Api2, and
Api3) with their Tag Signatures (left part of Figure 6) and a
learnt tag-tree from the previous step (upper-right part of
Figure 6). Since there is a “subTree” relation between geo-
graphy (an output tag of Api1) and layout (an input tag of
Api2), it satisfies our conditions of determining if two APIs
are composable, so we can say Api1 is composable to Api2
(formally Api1 -> Api2); similarly, we can say Api2 ->
Api3 since (wildfire ≺ fire, model = model, celldevs ≺ devs).
Because the transitivity of APIs, a workflow Api1 -> Api2 -
> Api3 can be built automatically.

5. CONCLUSION
Simulation as a Service has attracted attention in the cloud-
based and web-based simulation communities. In order to
deploy, discover, compose and invoke simulation web ser-
vices and open APIs automatically, we propose using se-
mantic mashups technology. We presented a novel architec-
ture of semantic mashups of multi-types web services for
SimaaS, with the following advantages:
 1) It defines a layered architecture of semantic mashups
for SimaaS. This architecture is a one-stop and lightweight
approach for the simulation services composition. We pre-
sented the architecture with its basic process functionalities.
 2) It can include multiple types of web services as well
as their descriptions. This analysis can automate the data
extraction process for building general API signatures.
 3) It considers semantic, syntactic and structural issues
in the web services, and defines a unified API signature, an
API tag signature and a tag tree ontology. These definitions
can facilitate the processes of tag-based ontology learning
and API composition.
 4) It introduces new domains, like semantic mashups,
tagging systems and ontology learning for M&S. These si-
mulation services mashups can boost reusability, integration,
interoperability of simulation-related services and realize
truly SimaaS.

In the future stages of this research we will focus on the
detailed design of tag tree ontology learning algorithm, im-
plement the API component layer and the API composition
layer; and focus on widgets visualization.

 REFERENCES
Al-Zoubi, K. and Wainer, G. 2011. Distributed simulation using

restful interoperability simulation environment (rise) middle-
ware. In Intelligence-Based Systems Engineering (pp. 129-
157). Springer Berlin Heidelberg.

Balasubramaniam S, Lewis G, Simanta S. 2008. Situated soft-
ware: concepts, motivation, technology, and the future. IEEE
Software, 25: 50–55.

Bernhard, D. 2010. Morphonet: Exploring the use of community
structure for unsupervised morpheme analysis. In Multilingual
Information Access Evaluation I. Text Retrieval Experi-
ments (pp. 598-608). Springer Berlin Heidelberg.

Byrne, J., Heavey, C., and Byrne, P. J. 2010. A review of Web-
based simulation and supporting tools. Simulation modelling
practice and theory, 18(3), 253-276.

Cattuto, C., Benz, D., Hotho, A., & Stumme, G. 2008. Semantic
grounding of tag relatedness in social bookmarking systems.
In The Semantic Web-ISWC 2008 (pp. 615-631). Springer.

Cayirci E., C. Rong. Intercloud for Simulation Federations. 2011.
The Second International Workshop on Cloud Computing In-
teroperability and Services.

Gruber T., 2007. Ontology of folksonomy: a mash-up of apples
and oranges, International Journal On Semantic Web and In-
formation Systems 3 (2) (2007) 1–11.

Guo H., Ivan A., Akkiraju R., and Goodwin R., 2007. Learning
Ontologies to Improve the Quality of Automatic Web Service
Matching, Proceedings of IEEE International Conference on
Web Services (ICWS).

Han, S. N., Lee, G. M., & Crespi, N. 2012,. Towards Automated
Service Composition Using Policy Ontology in Building Au-
tomation System. In Services Computing (SCC), 2012 IEEE
Ninth International Conference on (pp. 685-686). IEEE.

Heymann, P., & Garcia-Molina, H. 2006. Collaborative creation
of communal hierarchical taxonomies in social tagging sys-
tems.

Lacy LW. Interchanging discrete-event simulation process-
interaction models using the web ontology language – OWL.
2006. PhD Dissertation, Department of Industrial Engineering
and Management Systems, University of Central Florida.

Laner Group. 2010. Simulation as a Service to business process
management (BPM).

Lee, Y. J., & Kim, C. S. 2011. A learning ontology method for
restful semantic web services. In Web Services (ICWS), 2011
IEEE International Conference on (pp. 251-258). IEEE.

Lin, H., Davis, J., & Zhou, Y. (2009). An integrated approach to
extracting ontological structures from folksonomies. In The
semantic web: research and applications (pp. 654-668). Sprin-
ger Berlin Heidelberg.

Liu, X., Huang, G., Zhao, Q., Mei, H., & Blake, M. B. 2013. iMa-
shup: a mashup-based framework for service composi-
tion. Science China Information Sciences, 1-20.

Malki, A., and Benslimane, S. M. 2012. Building Semantic Ma-
shup. In ICWIT (pp. 40-49).

Malik, A., A. Park, and R. Fujimoto. 2009. Optimistic Synchroni-
zation of Parallel Simulations in Cloud Computing Environ-
ments. pp. 49-56: IEEE.

Miller J, Baramidze G and Fishwick P. Investigating ontologies
for simulation and modeling. In:Proceedings of the 37th An-
nual Simulation Symposium, 2004, pp.55–71.

Mittal, S., Risco-Martín, J. L., & Zeigler, B.P. 2009. DEVS/SOA:
A cross-platform framework for net-centric modeling and si-
mulation in DEVS unified process. Simulation,85(7),419-450.

OWL-S: Semantic Markup for Web Services. 2013. Accessed Nov
10. http://www.w3.org/Submission/OWL-S/.

ProgrammableWeb. 2013. Accessed Nov 10.
http://www.programmableweb.com/

Sheth, A. P., Gomadam, K., & Lathem, J. 2007. SA-REST: se-
mantically interoperable and easier-to-use services and ma-
shups. Internet Computing, IEEE, 11(6), 91-94.

Solskinnsbakk, G., & Gulla, J. A. 2011. Mining tag similarity in
folksonomies. In Proceedings of the 3rd international work-
shop on Search and mining user-generated contents (pp. 53-
60). ACM.

Tolk A. 2005. Evaluation of the C2IEDM as an interoperability
enabling ontology. European Simulation Interoperability
Workshop.

Teo, Y. M., & Szabo, C. 2008. CoDES: An integrated approach to
composable modeling and simulation. In Simulation Sympo-
sium, 2008. ANSS 2008. 41st Annual (pp. 103-110). IEEE.

Wal T. V. 2013. Accessed Nov 10. Folksonomy coinage and defi-
nition. http://vanderwal.net/folksonomy.html.

Wei, X., Jian-Guo, C., & Tao, H. (2013, June). Service Composi-
tion Algorithm Based on Ontology Semantic.
In Computational and Information Sciences (ICCIS), 2013
Fifth International Conference on (pp. 1886-1889). IEEE.

Web Service Modeling Ontology (WSMO). 2013. Accessed Nov 10.
http://www.w3.org/Submission/WSMO/

Web Service Semantics – WSDL-S. 2013. Accessed Nov 10.
http://www.w3.org/Submission/WSDL-S/

Zeigler, B. P., Mittal, S., & Hu, X. 2008. Towards a formal stan-
dard for interoperability in M&S/system of systems integra-
tion. In GMU-AFCEA Symposium on Critical Issues in C4I.

