
Simulation Modelling Practice and Theory 55 (2015) 27–45
Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/ locate/s impat
Distributed simulation of DEVS and Cell-DEVS models using the
RISE middleware
http://dx.doi.org/10.1016/j.simpat.2015.03.010
1569-190X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: kazoubi@connect.carleton.ca (K. Al-Zoubi), gwainer@sce.carleton.ca (G. Wainer).
Khaldoon Al-Zoubi ⇑, Gabriel Wainer
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 November 2014
Received in revised form 28 February 2015
Accepted 30 March 2015
Available online 17 April 2015

Keywords:
Interoperability
Distributed simulation
Web services
REST
SOAP
Middleware
DEVS
Cell-DEVS
CD++
With the expansion of the Web, the desire toward global cooperation in the distributed
simulation technology has also been on the rise. However, since current distributed
simulation interoperability methods are coupled with system implementations, they place
constraints on enhancing interoperability and synchronization algorithms. To enhance sim-
ulation interoperability on the Web, we implemented the RISE (RESTful Interoperability
Simulation Environment) middleware, the first existing simulation middleware to be based
on RESTful Web-services (WS). RISE is a general middleware that serves as a container to
hold different simulation environments without being specific to a certain environment.
RISE can hold heterogeneous simulations, and it exposes them as services via the Web.
One of such services is called Distributed CD++ (DCD++) simulation system, an extension
of the CD++ core engine that allows executing DEVS and Cell-DEVS models. Here, we
introduce a proof-of-concept design and implementation of DCD++ using the distributed
simulation using the RISE environment. We show how the RESTful WS interoperability style
in RISE has improved the design, implementation and the performance of the DCD++
simulator. We also discuss a substantial performance improvement of the implementation
of the RISE-based DCD++ presented here, showing many advantages of the RESTful WS
presented here: improved interoperability, a seamless method to be connected into a
cloud computing environment, and performance improvement when compared to our
SOAP-based DCD++ in a similar testing environment.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Modeling and simulation (M&S) is used extensively in studying complex systems. As simulated systems become
increasingly sophisticated, the simulation software becomes larger and more complex. In these cases, the resources provided
by a single-processor machine often become insufficient to execute these systems. Distributed simulation can expand from a
single building to global networks usually interoperating heterogeneous processors (and software) [15]. With the expansion
of the Internet, the desire toward global cooperation in the distributed simulation technology has also been on the rise as
indicated by a number of surveys such as [9,29]. A focal point of distributed simulation software has been on how to achieve
model reuse via interoperation of different simulation components. Other benefits include [32] connecting geographically
distributed simulation components (without relocating people/equipment to other locations), interoperating different
vendor simulation components (allowing reuse of M&S solutions), and information hiding—including the protection of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2015.03.010&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2015.03.010
mailto:kazoubi@connect.carleton.ca
mailto:gwainer@sce.carleton.ca
http://dx.doi.org/10.1016/j.simpat.2015.03.010
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat


28 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
intellectual property rights, and simulating larger problems via exploiting more available distributed computer resources
(e.g. memory).

Web-enabled simulation is increasingly becoming the norm. These simulation systems can be divided into the following
categories: (1) Web access enabled simulations, and (2) Web-based distributed simulations. The Web access enabled simulation
systems provide users access to simulation systems running on a single machine [18,27] or on multiple machines geographi-
cally distributed [38]. However, the distributed simulation, in this case, is not synchronized via the Web, but according to
those specific architectures. The second category is the Web-based distributed simulation. In such systems, the simulation par-
titions are synchronized partially or fully using Web services. Web-based distributed simulation interoperability methods
are usually based on SOAP-based WS (e.g. [22,28,30,37]) or an HLA [20] with SOAP WS interface (e.g. [10,19,39,40]).
However, such distributed simulation frameworks still have constraints in the structural rules that are placed on the
interoperability design methods. In particular, the way they exchange, structure, and use information is tied to program-
ming, making it difficult to decouple systems implementations and design. In practice, such constraints are difficult to over-
come when interoperating existing heterogeneous simulation systems to synchronize same distributed simulation run. This
is because each system interface is highly coupled to its own software design and programming, hence it is complex to
homogenize different systems interfaces in order to be able to synchronize a distributed simulation.

To provide better solutions to overcome such interoperability constraints, we have proposed the RESTful Interoperability
Simulation Environment (RISE) middleware [2], which is the first existing RESTful WS simulation environment. The objective
was to achieve improved interoperability, as explained in [2], using RESTful WS. The use of RESTful WS is on the rise, and it
has become the standard interoperability method on industrial cloud computing environments such as those in IBM [17] and
Cisco [12]. RISE middleware has been built as a general container of different simulation environments. RISE exposes sim-
ulations as services (as URIs), allowing them to be seamlessly interoperated with other services (simulation and other) on the
Web and cloud computing environments. The Distributed CD++ simulator (DCD++) presented here is one of such services
exposed by RISE. Therefore, the presented DCD++ here is one of the service types exposed via the RISE middleware.
However, RISE can expose more software services in addition to DCD++ like other simulators, visualization etc. [21,35].

In fact, exposing simulation services via the RISE middleware interoperability methods have been proven on different
fronts. For example, as described in [35], RISE exposed DCD++ simulation services via the Amazon elastic compute cloud
(Amazon EC2) [5]. In [35] we also proposed methods for model composition using workflows via RISE. In [21] we proposed
a hybrid simulation and visualization approach where a dedicated mobile application runs on an Android Smartphone and
the RISE-based DCD++ simulation (whose details are presented here) runs the simulation while hosted on the Cloud.

As discussed above, RISE is a general a Web-based interoperability container (i.e. system-of-systems); hence, systems
need to be plugged into RISE before being able to use its services. We extended simulator called CD++ [31] and plugged into
RISE so that it can perform distributed simulation on the Web, called Distributed CD++ (DCD++) [3,4]. It is worth to note that
RISE-based DCD++ is the only distributed simulation system to use RESTful WS interoperability style, hence being part of a
Cloud. Further, performing RISE-based DCD++ distributed simulation comes as the first natural step toward practical DEVS
standardization [34], allowing different DEVS implementation to interoperate in order to reuse each other models and
resources.

In the following sections, we introduce the RISE-based DCD++ simulation design, algorithms, implementation and perfor-
mance. In Section 2, we present background information and summarizes current related work with a comparison to the
presented RISE-based DCD++ simulation. Section 3 presents the RISE-based DCD++ simulation design and synchronization
algorithms. Section 4 presents the RISE-based DCD++ implementation and the middleware implementation with a focus
on the relevant parts to the DCD++. Section 5 compares the performance of the RISE-based DCD++ (presented here) to the
SOAP-based DCD++ [30].
2. Background

This section provides an overview of the RISE middleware and the DEVS formalism, and it discusses related work.
2.1. Overview of the RISE middleware interoperability

RISE (RESTful Interoperability Simulation Environment) [2] is the first existing simulation middleware to be based on the
RESTful Web-services [25]. In the Representational State Transfer (REST) [14] which is used to describe the WWW architec-
tural elements, resources hold representations (states) where these representations are transferable between resources. For
example, the client (e.g. Web browser) uses the GET HTTP method to transfer the HTML representation from the resource
(e.g. Web site) to the client. Therefore, RISE is an interoperability container that can hold different simulation services
regardless of their differences as shown Fig. 1. The presented DCD++ here is one of those services. However, RISE can expose
more software services in addition to DCD++ like other simulators, visualization etc. (Fig. 1). It is worth to note that Fig. 1
only shows one partition of the DCD++ simulation, but DCD++ is often performed between several partitions.

To summarize RISE principles [2], RISE spreads services over a number of resources (resource-oriented), and resources
exchange synchronization information in form of XML messages (message-oriented) via predefined constant virtual chan-
nels (uniform interface). These resources are exposed as URI templates whose instances can be created/destroyed at runtime



Fig. 1. RISE environment on single machine.

K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 29
(by modelers). This leads to a concept of general layered interoperability where different simulation resources (URIs1)
organized at a separate layer above the middleware. The message-oriented principle encapsulates simulation algorithms
semantics, hence decoupling system implementations. Further, each URI is connected to other URIs via constant virtual
channels; hence, this means that these channels are predefined in software (i.e. field in messages header). RISE channels are
based on HTTP methods as follows: (1) The GET channel is used to read information from resources such as simulation status
and results. (2) The PUT channel is to create a resource or update an existing data in a resource such as experiment settings. (3)
The POST channel is used to append new information to an existing resource such as sending an XML synchronization message
in a distributed simulation session. (4) The DELETE channel is used to remove a resource from RISE such as deleting an
experiment URI.

In this style, messages are sent to URIs to manipulate URIs states, or messages are retrieved from URIs to read those URIs
states. Thus, RISE interoperability goes beyond Web-based distributed simulation, but the ability to put anything attached to
the Web (i.e. anything addressed by URIs) within simulation loop. Further, RISE serve as general middleware, allowing vari-
ous systems to operate on the same local machine. These interoperability layers (where various simulation systems can
operate at the same layer level on top of the middleware layer) allow one to have each layer using its own interoperability
methods, and providing services to the layer above it. Following this concept, RISE is organized in three layers: Middleware,
Simulation, and Modeling.

The Middleware Layer (discussed in [2]) provides a number of services to the Simulation layer, such as all means of com-
munication and managing all simulation experiments lifecycle and executions. The Simulation Layer deploys different sim-
ulation environment types, each of which supports its own time management. The DCD++ simulator presented here is one of
the systems supported by the RISE middleware. The Modeling Layer operates above the Simulation layer. This represents the
system under study, which is simulated by a specific simulation environment.
2.2. Discrete Event System Specification (DEVS)

Discrete Event System Specification (DEVS) [39] Modeling and Simulation (M&S) specification aims to study discrete
event systems. The formalism expresses a model as a number of connected behavioral (atomic) and structural (coupled)
components. These components are connected together through external ports, and events are exchanged among models
via those ports. The models change their state only upon the occurrence of an event. The basic building component of
DEVS models is the atomic DEVS model, formally defined as M = <X, Y, S, dint, dext, dcon, k, ta>. At any given time, the model
is in some state s 2 S, and it stays in this state for the period specified by the time advance function ta(s). When the lifetime
expires, the model activates the output function k and can generate an output value y 2 Y. It then changes its state as indi-
cated by the internal transition function dint. The model changes its state as defined by the external transition function dext if
it receives one or more external events x 2 X before the expiration of ta(s). The confluent transition function dcon is used to
resolve collisions of external events with internal transitions. A DEVS coupled model is formally defined as: N = <X, Y, D,
{Md|d 2 D}, EIC, EOC, IC>. The model is composed by a number of components Md interconnected. The external input coupling
EIC specifies the connections between external and component inputs, while the external output coupling EOC describes the
connections between component and external outputs. The connections between the components themselves are defined by
the internal coupling IC.

Cell-DEVS [31] is an extension DEVS that defines each cell as an atomic DEVS model. Cell-DEVS describes n-dimensional
cell spaces as discrete-event DEVS coupled models. Furthermore, it defines timing constructions rules for each cell, allowing
explicit timing specification, asynchronous model execution, and integration with other types of models.
1 Resources and URIs are used interchangeably throughout our discussion.



30 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
Both DEVS and Cell-DEVS based modeling are implemented by the CD++ [31] simulation toolkit. CD++ [31] is an
object-oriented modeling and simulation toolkit package capable of executing DEVS and Cell-DEVS models. CD++ offers
various versions to execute DEVS and Cell-DEVS models on different platforms. For each DEVS atomic model, users need
to implement the various functions as required by the DEVS formalism in a C++ class, which is then integrated into the
modeling hierarchy during compilation. On the other hand, for DEVS coupled models and Cell-DEVS models, users can
specify the coupling information as well as other attributes of cell spaces in a model configuration file using a built-in script
specification language.
2.3. Related work

Web-enabled simulation is increasingly becoming the norm these days. These simulation systems can be divided into the
following categories: (1) Web access enabled simulations, and (2) Web-based distributed simulations.

Web access enabled simulation systems provide users access to simulation systems. These systems might be running on a
single machine (e.g. [18,27]) or multiple machines in the form of geographically distributed simulations. The distributed sim-
ulation, in this case, is not synchronized via the Web, but according to those systems specific architectures. For example, the
work described in [38] allows users to access and execute their simulation over typical HLA systems while the work describes
in [6] provides Web access to parallel simulation on local clusters. Note that RISE [2] provides seamless RESTful Web access to
all services (including the DCD++ simulator presented here, which is a Web-based distributed simulation system).

The second category is the Web-based distributed simulation. In such systems, simulation partitions are synchronized par-
tially or fully using Web services. Web-based distributed simulation interoperability methods are either purely based on
SOAP-based WS or an HLA with SOAP WS interface.

Examples of such SOAP-based WS distributed simulation systems can be found in [22,28,30,37]. All of these systems share
the same interoperability principles: SOAP-based WS simulations using a client–server model. In this case, the simulation
components act as both client and server, hence, a simulator becomes a client when it sends information, while the receiver
simulator becomes the server. The information exchanged uses the Remote Procedure Call (RPC) mechanism: the sending
component passes all the simulation information as parameters into a subject procedure (stub), and it makes a procedure
call, and a procedure (service) is invoked in the receiver simulation software. This is exactly like invoking a procedure
directly at the receiving simulation software. In fact, interoperating systems via the RPC-style API can be complex, as it usu-
ally needs homogenizing different implementations. Further, this type of RPC-style API leads to challenges in the areas of
systems composition scalability and dynamic interoperability. The composition scalability problem arises because a proce-
dure stub is needed at the client (sender) side for every unique service at the server (receiver) side. Further, because these
stubs are programming procedures, they need to be written and compiled with the client software. This static approach can
be a problem when we need dynamic interoperability (i.e. having systems join/disjoin simulation at runtime).

The second type of Web-based distributed simulation is the High Level Architecture – HLA (which can also have a SOAP WS
interface). Examples of such systems are described in [10,19,39,40]. In a typical HLA simulation, entities called Federates
communicate with each other using a common middleware, called the Run-Time Infrastructure (RTI). The Web-based
HLA method is similar to the typical HLA, but federates are able to communicate with their RTI via the Internet using
SOAP-based WS. In some works like [38], the SOAP-based interface can be either at the individual federates level or at
the level of multiple federates (Federation).

Table 1 summarizes the key differences between the RISE-based DCD++ and other existing Web-based distributed sim-
ulation efforts.

The first difference is that we use RESTful WS. Row 2 indicates that RISE supports layered interoperability. As previously
stated, this means that the upper layers use/share lower layers services where each layer implements certain functionalities.
This provides various benefits such as middleware services reuse/share by upper layers, functionalities hiding and sep-
aration. Likewise, the middleware becomes independent of specific implementations. For example, DCD++ uses/shares
RISE with other additional systems that are independent of DCD++. However, all existing SOAP-based Web-based distributed
implementations mix the simulation and middleware. This makes such systems specific for certain implementations (e.g.
[22,28,30,37]). Row 3 indicates that since information is always exchanged via a constant number of virtual channels
(specifically the four HTTP methods2), the growing number of partitions does not influence the overall structure in the
RISE-based DCD++. However, this is not the case in the other existing systems, because they interface using programming pro-
cedures, which are variable, hence they change due to software design changes.

Row 4 indicates that DCD++ uses standardized HTTP channels for exchanging information. However, other existing sys-
tems usually use their own designed programming procedures. In practice, RPCs are usually difficult to homogenize between
existing systems since they reflect internal design decisions. Row 5 indicates that DCD++ builds XML messages with the
necessary simulation information and transmits them to remote partitions. This enhances heterogeneous systems imple-
mentations because systems only need to agree on ‘‘what’’ information to exchange in XML. However, ‘‘how’’ to implement
handling of XML messages is left to specific systems design. It is true that SOAP WS describes procedure call as SOAP
2 HTTP methods are actually virtual channels; hence a field in HTTP message header set upon transmission. The Term ‘‘methods’’ is usually used in the
literature since it is the term used in the HTTP standards.



Table 1
Comparing RISE-based DCD++ to current Web-based distributed simulation.

Characteristic RISE-based DCD++ [22,28,30,37] SOAP-based WS
distributed simulation

[10,19,39,40] HLA/SOAP based WS
distributed simulation

1 Interoperability approach RESTful WS (via RISE
middleware)

SOAP WS HLA (with SOAP WS Interface)

2 Layered interoperability Yes No Yes
3 Composition scalability Yes No No
4 Standardized information channels Yes No No
5 Synchronization messages description XML messages

(message-oriented)
Programming parameters (RPCs
in WSDL)

HLA programming attributes and
RPCs described in WSDL

6 Interoperability sensitive to programming No Yes Yes
7 Experiments direct access on the Web

(experiments seen as URIs)
Yes No No

8 Experiments named with modelers choice
of URIs

Yes No No

9 Interoperable with Web 2.0 Yes No No

K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 31
messages, which is an XML message. However, the simulation partitions pass their simulation information as programming
parameters via RPC. This procedure call is converted to XML SOAP message at the sending WS layer, which is reconverted
back to a local procedure call at the receiving WS layer. Thus, simulation systems interoperate via RPC style. This makes sim-
ulation systems interoperability sensitive to programming changes (as indicated in Row 6). If a single parameter in one of the
procedures is changed in a SOAP-based system, all relevant interoperating systems need to upgrade their software, recom-
pile, and install new systems before being able to interoperate. Row 7 indicates that the experiments in RISE-based DCD++
are interfaced on the Web via a number of URIs. These URIs are exactly like any other URIs on the Web. This is important
because anything attached to the Web is in the simulation loop. However, achieving this concept in other existing systems
is more complicated, because experiments in other existing systems are not exposed as URIs; hence, they are not directly
attached to the Web. Specifically, SOAP-based systems expose services via ports. Ports can be viewed as C++ or Java objects
with a number of RPC operations. Each port is addressed by a URI, allowing remote systems to reach it. This complicates
interoperability on the Web because it deviates from the Web interoperability mechanisms. In fact, by interoperating in
the Web style, RISE allows DCD++ to not only expose experiments as URIs (Row 7), but also to be named and created by
modelers (Row 8), and they are interoperable with Web 2.0 [24] (Row 9).

A non-related advantage is that the use of RESTful WS has substantially improved performance (discussed later). Easing
the interoperability constraints provide software designers with more room to improve performance.
3. RISE-based DCD++ simulator

In this section, we discuss the distributed architecture of CD++ (DCD++) [3,4] and its model partitioning (Section 3.1), and
the simulation execution and synchronization (Section 3.2). Our focus here is to present the RISE-based DCD++ simulation
progress and activities once a modeler starts the simulation with and Experimental Framework (EF) [2]. The RISE EF is cre-
ated by a modeler to control a simulation experiment lifecycle and to store all necessary information related to that experi-
ment. This creation is done via creating a number of URIs of a modeler naming choice. Thus, the RISE EF is seen on the Web as
a number of URIs, hence anything attached on the Web in within simulation loop. As discussed in [2], the RISE EF is designed
as URI template [16], allowing modelers to have the same experiment interface regardless of the used simulation system, as
shown in Fig. 2.

In this EF (Fig. 2), the modeler first creates an experiment by creating its URI ‘‘. . ./{systemtype}/{framework}’’. In this case,
the {systemtype} is used to select the simulation system type. For example, setting {systemtype} to DCDpp value would
instruct the RISE middleware to use the DCD++ simulation system for this experiment (modelers may select other supported
simulation environments via RISE too). The {framework} template is used to name the experiment, which becomes the
experiment main URI. For example, the URI ‘‘. . ./DCPpp/FireModel’’ indicates that this experiment name is ‘‘FireModel’’
and uses the DCD++ simulation environment. This experiment URI is used by the modeler to submit all necessary informa-
tion to the experiment. For example, in case of DCD++, as discuss in the next sections, the modeler submits all of the subject
CD++ model scripts and the distributed simulation configuration. This configuration is XML document to instruct the RISE
middleware on how the model is partitioned over a number of machines. After that, the modeler executes the simulation
of an experiment by creating the URI ‘‘. . ./DCDpp/{framework}/simulation’’ on the main RISE server3 (i.e. the used server
by modeler to create the main experiment URI). As a result, the main RISE server contacts all other servers in the network
to create all simulation partitions, as discussed in the following sections. This URI ‘‘. . ./simulation’’ is further used by a sim-
ulation partition to receive all XML synchronization messages from other partitions during a distributed simulation sessions.
URIs ‘‘. . ./debug’’ and ‘‘. . ./results’’ are automatically created upon a simulation run completion. The ‘‘. . ./debug’’ resource would
3 Server and Middleware terms are used interchangeably throughout our discussion.



Fig. 2. Simulation experiment framework resources/URIs.

32 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
hold debugging information related to the model implementation that could help the modeler of fixing his model software
issues. The ‘‘. . ./results’’ would hold the last simulation run results, which could be used for replay without running the sim-
ulation over again.
3.1. DCD++ simulation architecture

Once the simulation is started, all of the necessary software components are created in all partitions. These components
are also deleted when the simulation is completed or aborted. Fig. 3 shows an example of a DCD++ experiment with two
partitions during simulation. Each partition contains an instance of the CD++ engine to simulate the DEVS hierarchy models
that belongs to this partition. The simulation manager is the component that manages the distributed activities on behalf of
the CD++ engine with remote partitions.

Note that the CD++ (which is based on P-DEVS [13]) performs the simulation time management while the simulation
manager performs the simulation data distribution on behalf of its CD++ instance. Both Simulation Manager and the
CD++ engine communicate P-DEVS messages through the OS IPC queues. The use of IPC allows integrated software compo-
nents to be separated in components from the RISE middleware. In this case, those components started/deleted as needed. It
is still possible to implement such components within the RISE middleware, but with price of mixing implementations
together. The idea here is that the CD++ executes local simulation events by dropping them directly in their local destination
coordinator/simulator. However, if the destination coordinator/simulator does not exist locally, it is sent to the simulation
manager (on the RISE side), which knows how to distribute it. This allows CD++ to execute the simulation locally as if it
was running on a single-processor machine, while allowing the simulation manager to handle the distributed activities.

The IPC Monitors (Fig. 3) are threads found at both ends of the IPC queues, which are in charge of processing P-DEVS
received from the other end. Once the CD++ IPC Monitor thread receives a message (from the Simulation Manager), it inserts
it in the main CD++ external event list. This relieves the main thread (within CD++) of continually checking the IPC queue.
Further, once the IPC Monitor thread (at the Simulation Manager side) receives a message from the CD++ engine, it buffers it
at the Simulation Manager according to its partition destination. This allows the Simulation Manager to aggregate those
remote messages in XML and transmit them together (via RISE). This not only reduces the number of remote messages
through the Internet, but also avoids causality errors. This incorrect simulation could occur because P-DEVS messages
may arrive in the incorrect order of their transmissions at the distant CD++ (since RISE transmits those messages concur-
rently via the Internet). Thus, these messages may violate the local causality constraint in the distant CD++, starting the
wrong simulation phase, as discussed next in Section 3.2. The final component shown in Fig. 3 is the watchdog component.
A watchdog is a thread that sends periodic messages to other simulation URIs to check their presence. If a partition is pre-
sent, it responds back with the XML message <simulation>ALIVE</simulation>. Otherwise, it responds with HTTP error 401
(Not Found). The watchdog on the main partition watches all other partitions existence, while the watchdog threads on other
partitions watch the main partition. Watchdog threads are necessary because a CD++ engine on a partition may fail during
simulation, leading to inaccurate simulation or deadlocks. For example, assume a CD++ in a partition fails while the CD++
Root coordinator (in the main partition) is waiting for a ‘‘Done’’ message from that dead partition. In this case, the Root
coordinator would wait forever without being able to advance the simulation (and without being aware of the problem).



Fig. 3. Overview of DCD++ simulation architecture.

K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 33
As previously discussed, once the simulation is started, the simulation manager is created, which in turns builds all com-
ponents shown in Fig. 3. Afterward, the model needs to be loaded by the CD++ engine in each partition. In this case, CD++
only needs to simulate a portion of that model. To do so, CD++ in a partition initializes the model in two steps: (1) Load the
model by parsing the CD++ model coupled model file (CD++ assumes that it will simulate the entire model; hence, it parses
the entire model). (2) Build the processors that will simulate all submodels in the DEVS models hierarchy. Before building
each sub-model simulator, CD++ requires permission from the simulation manager to do so (because it knows how the
model is partitioned, as discussed shortly). If permission is granted, the sub-model simulator is built and assigned a unique
ID. However, if permission is not granted, the simulator is not built, but the ID is still generated (and forwarded to the sim-
ulation manager). This is important because DCD++ maintains a unique ID for each processor (i.e. simulator/coordinator) in
all partitions.

The overall DCD++ model is structured across the network based on the model partitioning requirements (which also
helps the simulation manager to perform data distribution on behalf of its CD++ instance). These requirements originally
come from the modeler as part of setting up the experiment. DCD++ supports fine-grained model partitioning by assigning
as low as the atomic and cell models (i.e. indivisible blocks in the overall DEVS and Cell-DEVS models) to the partitions in the
distributed environment. For example, the following XML document splits a 30x30 Cell-DEVS based Fire model into two
partitions:

1 <DCDpp>

2 <Partitions>

3 <Partition IP=‘‘10.0.40.175’’ PORT=‘‘8080’’>

4 <ZONE>fire(0,0). . .(14,29)</ZONE>

5 </Partition>

6 <Partition IP=‘‘10.0.40.162’’ PORT=‘‘8080’’>

7 <ZONE>fire(15,0). . .(29,29)</ZONE>

8 </Partition>

9 </Partitions>

10</DCDpp>

In the previous XML document, Lines 2–4 describe the first partition; Lines 6–8 describe the second partition. Each parti-
tion specifies the RISE middleware identification (IP address and the TCP port number) and the atomic/Cells models belong-
ing to this partition. IP addresses and port numbers enable the machines to calculate each other base URIs. For example,
<http://10.0.40.175:8080/cdpp> is the base URI of the RISE running the first partition (Line #2). The above XML document
also places the cells zone (0, 0) to (14, 29) on the first partition (Line #4) and zone (15, 0). . .(29, 29) on the second partition
(Line #7). This partitioning information is mapped to the DCD++ model hierarchy shown in Fig. 4.

As shown in Fig. 4, the CD++ in Partition 0 (on the left) builds the Root coordinator to manage the overall simulation (the
time management and synchronization according to P-DEVS algorithms [13]). Note that the ‘‘Local communication’’ indi-
cates that all messages are indirectly sent via the local CD++ Event List, as described shortly. This is the case, between the
Head Coordinator and its children Simulators, between the Proxy Coordinator and its children Simulators, and between
the Head Coordinator and the Root Coordinator. However, the ‘‘Communication via RISE’’ indicates that messages are sent

http://10.0.40.175:8080/cdpp


Fig. 4. DCD++ models hierarchy partitioning example.

34 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
through the Internet (which usually aggregated in XML messages as described in next section). This is the case between the
Proxy and the Head Coordinators.

In this example (Fig. 4), this Root coordinator becomes the parent of the Head coordinator with ID 0, which simulates cells
zone (0,0) locally to (14,29). Since CD++ simulates each cell as an atomic model, CD++ will then run 450 simulators (with IDs
2. . .452). In the same way, the CD++ in Partition 1 (in the right) starts the Proxy coordinator with ID 1. This Proxy coordinator
locally simulates cells zone (15,0). . .(29,29) on behalf of the Head coordinator in the other partition. In this case, the CD++ in
Partition 1 runs 450 simulators with IDs 453. . .902. The CD++ processors pass to each other the P-DEVS messages by first
inserting those messages in the CD++ External Event List (to be executed later by the Administrator). The Administrator
(not shown in the figure) picks the message at the front of the CD++ Event List and checks the destination of the message;
if the destination is a local processor, the message is directly delivered to that processor. However, if the destination proces-
sor does not locally exist, the message is then sent the Simulation Manager, which maintains the necessary partitions infor-
mation to be able to transmit remote messages. Specifically, it stores the remote partitions URIs and the CD++ processors IDs
on those partitions.

DCD++ extends the concept of original DEVS coordinators into a head/proxy structure [30]. The idea of the head/proxy
depends on using two kinds of coordinators for each coupled model: (1) Head Coordinator: is responsible for synchronizing
the coupled model execution, interacting with upper level coordinators and message routing among the local and remote
processors. (2) Proxy Coordinator: is responsible for message routing among the local processors. The advantage of using
proxy coordinators is to avoid remote message transmission between local processors. For example, assume that
Simulator (15,0) needs to send Simulator (29,29) a message. In this case, this message will be routed through the Proxy
coordinator. On the other hand, if the Proxy coordinator were not used, the message would be first sent to the Head
coordinator in Partition 0, which would then route back to Partition 1.

3.2. DCD++ simulation synchronization

Once each CD++ is initialized with the model partitions as described in Section 3.1, models simulation and synchroniza-
tion between partitions starts. During simulation, the CD++ processors discussed in the previous section send each other
P-DEVS messages via inserting them first in the local CD++ External event list. The CD++ administrator processes messages
in the list by dropping them directly in the local CD++ processors or by sending them to the simulation manager (to be
forwarded to remote CD++ processors in remote partitions).

P-DEVS messages can be categorized as follows: (1) Content messages represent events generated by a model. Content
simulation messages include External messages (X) and Output messages (Y). X and Y messages that are exchanged within
a simulation phase are simultaneous, since they are stamped with the same simulation time. (2) Synchronization messages
cause the simulation to move into another simulation phase. In other words, synchronization messages mark the beginning
and the end of each simulation phase. Synchronization messages include the Initialization message (I), the Internal message
(⁄) (to start a transition), the Collect message (@) (to start a collection), and the Done message (D) (to end a phase). In this
case, the I, ⁄, and @ messages are sent from the parent coordinator downward throughout the model hierarchy. On the other
hand, the D messages are generated from simulators upward throughout the model hierarchy. Therefore, there are three
phases: (1) The Initialization phase initializes all models in the hierarchy. (2) The Collection phase to collect Y messages



K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 35
generated to ensure their execution at the same time with internal events (in the transition phase). (3) The Transition phase
executes all X messages (which originally generated as Y messages) alongside the simultaneous internal events (by
simulators). Therefore, at each simulation time, there is at least one mandatory Transition phase and an optional
Collection phase. This means that multiple Transition phases may be executed multiple times (since additional internal
events may continually be generated). However, the initialization phase only exists at the beginning of the simulation.

Because each phase is started by a message (I, @, or ⁄) and ends with a D message, the messages must then be received at
the destination processor in the correct order (to ensure correct simulation progress). However, the RISE middleware trans-
mit all messages concurrently (i.e. each in its own thread). This is necessary because the RISE middleware layer is shared by
various simulation components (that belong to different types and experiments) operating on top of it. Thus, RISE is expected
to balance the workload as well as possible between those components (our RISE workload testing is not included here). In
order to overcome the message-order problem, DCD++ aggregates simultaneous remote P-DEVS messages and sends them
via RISE together (in single XML messages). This solution applies parallelism during the message transmission, ensures the
correct order of P-DEVS messages at destination, and ensures messages execution in the correct simulation phase.

The simulation phases without aggregation progress as follows (Fig. 5A): (1) the first phase is Init (t0) (initialization phase
at time 0). A Message I is sent to the Head coordinator, which passes it to Simulator 1 and the Proxy coordinator.
Consequently, the Proxy routes message I to Simulator 2 and Simulator 3. Each Simulator 2 and 3 reply with the D(2) mes-
sage. This means that both have scheduled an internal change in two time units from now. Further, Simulator 1 replies with
D(1). This means that Simulator 1 has no more events to execute. (2) The second phase is Collection (t2). In this phase, Root
advances time to 2 and starts the collection phase by sending message @ to the Head coordinator, which only sends it to the
proxy. This message is not sent to Simulator 1 because it did not schedule a change in the previous phase; hence, it becomes
irrelevant in this phase. Consequently, the Proxy passes message @ to Simulator 2 and 3, which causes them to send two jobs
(i.e. each sends a Y message) to Simulator 1 (via the Head and Proxy coordinators). The Head coordinator converts those Y
messages to X messages and send them to Simulator 1. Simulator 1 then collects them to be executed in the next phase.
Simulator 2 and Simulator 3 ends this phase by sending D(0) message upward in the hierarchy. This also means that they
Fig. 5. Example of DCD++ simulation phases and time advancement for the same simulation scenario.



36 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
will be involved in the next phase. (3) The third phase is Transition (t2). The Root starts transition phase (by sending ⁄mes-
sage downward) causing Simulator 1 to execute the two previously collected X messages. It further schedules a change at
one time unit from now. In addition, Simulators 2 and 3 schedule a change at two time units from now (when they will pro-
duce their next jobs as Y messages). As shown in Fig. 5B, the only messages that were aggregated and sent together are in the
Collection (t2) phase. These messages are the two Y messages and the D(0) sent from the proxy coordinator to the head
coordinator. However, other remote messages were sent individually. This is because other remote messages must not be
delayed to allow simulation to progress. For example, the @ message sent by Head coordinator to the Proxy coordinator
in Collection (t2) phase must be transmitted to trigger the collection phase on the Proxy portion of the hierarchy.
Otherwise, the simulation does not advance.

The basic idea behind aggregation is that content messages (Y and X) are sent to processors within a simulation phase.
Thus, they are simultaneous messages (messages exchanged within the same timestamp). On the other hand, synchroniza-
tion messages (I, @, ⁄, and D) are sent to start/end a phase. Therefore, content messages that are heading to same processor
can be buffered until the first synchronization message is received to that processor. Further, messages that are heading to
processors in the same remote partition can also be sent together. This is because those messages are heading to the same
destination. Therefore, dispatching and aggregating simulation messages are only performed to remote messages (which
were originally forwarded from the CD++ to its simulation manager). This algorithm is listed in Fig. 6, and an example
described in Fig. 7. In this scheme (Fig. 6), the CD++ (in the local partition) maintains unprocessed events in a Least-
Time-Stamp-First (LTSF) list. The CD++ Administrator executes the first event in the list by sending to a local processor or
by sending it to the simulation manager. The Aggregator (in the simulation manager side), maintains the aggregation mes-
sage queues. These queues are built and destroyed dynamically as needed. The aggregation queues are organized by their
destination partitions and processors.

For example, the Aggregator (Fig. 7) opened queues for Partition 1 and Partition 2. In this case, Partition 1 has two queues
one for Processor 5 while the other for Processor 8. As shown in the figure, Processor 8 queue is complete since it has already
received the synchronized message D(tN). This means that CD++ is not going to generate any messages to Processor 8.
However, Processor 8 messages are not dispatched yet because Processor 5 still has more expected messages. On the other
hand, the Dispatcher sends Processor 2 messages to Partition 2, since all of Partition 2 queues have been completed.
Consequently, the Dispatcher walks over all messages and sends them in single XML message.

On the other hand, the aggregation scheme (Fig. 7) needs to answer two possible situations: (1) The Dispatcher may send
messages to a partition before other processors (belong to that partition) queues even started. In this case, new queues are
Fig. 6. Dispatching and aggregating simulation messages in XML.



Fig. 7. DCD++ aggregation message queues.

K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 37
built for the other processors and transmitted in the same way. The simulation phases still progress correctly even if multiple
XML messages are sent to the same partition. This is because simulation phases are executed per processor rather than per
partition. (2) The order of messages is only guaranteed per processor. This is because the Dispatcher packs them, in XML, as
they were stored in a processor queue. This is the important part, since the simulation phases are executed per processor
rather than per partition.
4. Implementation

In this section, we will provide the implementation of the RISE-based DCD++ (Section 4.2). However, because DCD++
operates on top of the RISE middleware, we also present the RISE middleware implementation, but with a focus on the most
relevant subsystems to the DCD++ (Section 4.2).

4.1. RISE subsystems

Our main interest here is two of RISE subsystems: Resources subsystem and SimulationAdmin subsystem: Resources sub-
system (Fig. 8) processes received messages to RISE URIs while the SimulationAdmin subsystem (Fig. 9) manages active
simulations.

RISE starts a thread (from a pool) to handle each incoming request to a URI. Afterward, the following steps are taken: (1)
an instance of a Java class (Fig. 8) is created based on the destined URI template (previously discussed in Section 3). Thus,
there is a Java class (in Fig. 8) corresponds to each URI template in RISE, as shown in Table 2. (2) The appropriate virtual chan-
nel operation of the subject resource class is invoked depending on the message access channel (previously discussed in
Section 3). In this case, channels are indicated by the listed HTTP method in the HTTP envelop header. The channels are
implemented by the following Java operations (if supported) in each Java class: (1) GET channel is handled by the represent
operation. (2) PUT channel is handled by the storeRepresentation operation. (3) POST channel is handled by the
acceptRepresentation operation. (4) DELETE channel is handled by the removeRepresentations operation.

As discussed in Section 3.1 (Fig. 3), the DCD++ XML synchronization messages (wrapped within HTTP envelope) are sent
to the active simulation URI of a partition. Afterward, this URI resource parses the XML message content and forwards the
information to the simulation manager of that partition (which in turn forwards the DEVS messages to its correspondent
CD++ engine via the IPC queues). To put these steps in the implementation context, let us suppose, for example, an HTTP
message is just received to URI ‘‘. . ./cdpp/sim/workspaces/Bob/DCDpp/FireModel/simulation’’. To process this message,
RISE starts a Java thread and creates for that thread an instance of Java class SimulationResource (Fig. 8). This is because
the destined URI instance matches the URI template associated with class SimulationResource (as shown in Table 2). Part
of the class initialization (i.e. in the class constructor), URI templates variables are assigned as follows:
{userworkspace} = Bob, {servicetype} = DCDpp, and {framework} = FireModel. This information allows RISE to retrieve the
Java object associated with this experiment instance. Further, the password associated with username Bob is also retrieved.
Note that database objects are cached upon the first access (for simplicity, we do not discuss database implementation here).
Once the class is initialized, the acceptRepresentation operation of that class is invoked by RISE, since POST is the listed chan-
nel in the HTTP header. This operation first authenticates the received message (based on HTTP Basic Authentication). It then
retrieves and parses the embedded XML in the HTTP envelope.



Fig. 8. Resources subsystem implementation overview.

Fig. 9. SimulationAdmin subsystem implementation overview.

38 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
This parsed XML information are stored in SimulationMessage (Fig. 9) objects and passed to operation
receiveRemoteMessage of class DCDppSimulationManager (Fig. 9). Of course, the information needs to be passed to the cor-
rect DCDppSimulationManager object associated with the subject experiment. In this case, RISE maintains all simulation
managers (with unique IDs) in array structures within class SimulationManagersAdmin (Fig. 9). Since RISE also stores each



Table 2
Resources URI templates mapping to Java classes.

URI Java class

/cdpp/admin/log ServerLogResource
/cdpp/admin/config ServerConfigResource
/cdpp/admin/accounts AccountsResource
/cdpp/admin/accounts/{accountname} AccountResource
/cdpp/util/ping PingResource
/cdpp/sim SimBranchResource
/cdpp/sim/workspaces WorkspacesResource
/cdpp/sim/workspaces/{userworkspace} UserWorkspaceResource
/cdpp/sim/workspaces/{userworkspace}/{servicetype} ServiceTypeResource
/cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework} FrameworkResource
/cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}/simulation SimulationResource
/cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}/results ResultsResource
/cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}/debug ModelDebugResource

K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 39
manager ID in the experiment framework object, the SimulationResource class can then use this ID to locate the correct man-
ager object. Note that the SimulationManager ((Fig. 9) object of a simulation run is created upon simulation start by method
CreateSimulationManager in SimulationResource class (Fig. 8).

The DCDppSimulationManager class is extended from the generic SimulationManager class to handle DCD++ simulation
management in geographically distributed environment. The DCDppSimulationManager class keeps track of all information
related to other remote simulations and their model partitions. Some of these tasks are summarized as follows: (1) it passes
received messages from remote simulation to its correspondent CD++ engine. This is done with the help of the
SimulationManagerProxy class. The SimulationManagerProxy class (written in C++) handles the IPC communication between
a CD++ engine and its associated simulation manager. Thus, there is an instance of the SimulationManagerProxy class for
each DCDppSimulationManager instance. (2) It handles the message transmissions with all remote simulation partitions
(as discussed in Section 3). This is done with the help of class MessageDispatcher. The MessageDispatcher class is used to
dispatch messages where each message transmission lives in a separate thread. In this case, a simulation manager is able
to transmit many messages simultaneously. (3) It starts/stops watchdog thread to watch the participant in the distributed
simulation environment. This is done with the help of the DCDppGridWatchdog class. (4) If it is the main simulation, it starts
and stops simulation on all support partitions (via operation startSupportiveSimulation). It further collects results and
debugging data from support entities. Note that the RISE middleware uses the Restlet API [26] (which is realized by the
Noelios Restlet Engine (NRE) implementation [23]) to provide set of APIs, mainly allowing the RISE resources to access
the received HTTP information in a consistent way.
4.2. Interfacing CD++ With RISE

In Section 4.1, we indicated that the SimulationManagerProxy class (Fig. 9) forwards all messages via the IPC queues to
the CD++ engine within a partition. This class also forwards received messages from the CD++ to class
DCDppSimulationManager (Fig. 9) to be distributed remotely.

In a similar way, the CPPManager class (Fig. 10) is responsible for interfacing the CD++ simulation engine with the
SimulationManagerProxy class via IPC queues. The CPPManager class creates two message queues: send_queue_id (for send-
ing messages to the simulation manager) while receive_queue_id (for receiving messages from the simulation manager). The
functionality of the CPPManager includes: (1) Initializing the message queues used for communication with the simulation
manager (i.e. operation initializeMessageQueues). (2) Querying and retrieving the model partitions from the simulation
manager in RISE side (i.e. operations machineForModel, and addZonePartition). (3) Querying the current execution time
and inserting external events while the simulation is running (i.e. operations getCurrentSimTime, and
insertExternalEvent). (4) Sending remote messages while running distributed simulations (i.e. operation
sendRemoteMessage). This method takes a CD++ message and sends it to the simulation manager to be sent to the remote
machine. (5) Receiving remote messages while running distributed simulations (i.e. operation receiveRemoteMessage). This
method receives a message from the simulation manager and constructs a CD++ message to be processed by the simulator.
(6) Stopping the simulation when receiving a stop message from the simulation manager (i.e. operation stop).

During CD++ simulation of a DEVS model, each processor (in Fig. 10) keeps track of the atomic/coupled model that is
responsible of executing. The Processor class is the parent of all the classes in charge of executing the model. Those include
the Simulator, Coordinator, and Root classes. The Processor class implements the basic functionality required by all sim-
ulation classes: (1) Receiving and processing the different simulation messages, (2) Sending messages and scheduling sim-
ulation events via class MessageAdmin. The Simulator class extends the Processor class and executes the functions of the
atomic DEVS model corresponding to the type of the received message. The Coordinator class is responsible for forwarding
messages among the Simulators and for synchronizing the events taking place during the simulation. The
FlatCellCoordinator class is in charge of executing flat Cell-DEVS models, which differ from Cell-DEVS models in that they



Fig. 10. CD++ processors hierarchy.

40 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
are executed by one processor instead of using a processor for each cell in the cell space. The Root coordinator is in charge of
starting and stopping the simulation, interacting with the environment, and clock advancement. Example of simulation
phases and messages flow between coordinators and simulators was previously described in Fig. 5.

The MessageAdmin class executes events from the UnprocessedMsgQueue by forwarding local events directly to the
appropriate processers (i.e. Simulators or Coordinators). On the other hand, the MessageAdmin sends remote events through
the CPPManager, which in turns sends it to the RISE middleware via the operating system IPC queues. The CPPManager also
inserts received remote messages from RISE (via IPC queues) directly into the UnprocessedMsgQueue (to be later processed
by the MessageAdmin).
5. Performance

The main objective of the RISE middleware is the improvement of simulation access and interoperability on the Web.
Particularly, decoupling systems design and implementations while allowing composition scalability (i.e. any number of sys-
tems can join the distributed environment) and dynamicity (i.e. systems can be created and destroyed at runtime). However,
performance still matters, particularly in RISE-based distributed simulation like the presented DCD++ here. This is because
distributed simulation is usually performed on the Internet between different partitions over wide geographical area. It is
worth to note that the RISE middleware (as a general container) is expected to manage various simulation experiments of
different types simultaneously. Thus, managing and balancing the workload (at the RISE middleware level) is highly impor-
tant to provide best practical performance for those competing sessions above it.

Our approach here is to compare the RISE-based DCD++ (discussed in Section 3) against the SOAP-based DCD++ (dis-
cussed in [30]) over a number of different CD++ models using different experiment environment settings. Of course, when
comparing two systems always the issue of fairness comes in mind. In our case, because both systems development is under
our control, we tried as much as possible to make this comparison as fair as possible, as shortly discussed. It is worth to note
that the use of RESTful WS interoperability principles have indirectly contributed to the presented results because REST does
not place restrictions on implementations, allowing the programmers to introduce their ideas freely. In REST (which is the
Web method), senders build a message and transmit to a URI on the Web, according to the Web standards (without restrict-
ing implementation to a certain style). On the other hand, the use of SOAP-based WS is tied to existing software imple-
mentations, which usually makes it difficult to introduce new improvements without major software changes. Therefore,
it is worth to note that the performance bottleneck in both REST and SOAP based distributed simulation system are the same,
which is the network messages latency. In both systems, network messages are still transmitted in HTTP. So, both should
perform almost the same in similar environments. However, our point is the flexibility of REST interoperability opens the
door for more algorithm enhancement, which lead to better performance.

Both systems deployment (i.e. simulation partition on a machine) are shown in Fig. 11. Fig. 11A shows the RISE middle-
ware running as a Servlet (i.e. a program running within an HTTP container) inside the Apache Tomcat HTTP server container
[7]. In this case, Tomcat forwards all of the HTTP messages to RISE while RISE processes the messages according to their
destination URIs (as discussed in Section 3). In these tests, the RISE middleware is deployed as a Servlet within a Tomcat



Fig. 11. RISE-based and SOAP-based partition on a machine.

K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 41
HTTP server. Such deployment is similar to the SOAP-based DCD++, as shown in Fig. 11. It is worth to note that RISE can also
be deployed as a standalone HTTP server without the use of HTTP container. Fig. 11B shows the Apache AXIS SOAP engine
[36] running as a Servlet inside Apache Tomcat [7]. The SOAP engines translate RPCs to SOAP messages and vice versa, hence
they implement the SOAP standards [32]. In this case, Tomcat forwards the HTTP messages to the AXIS engine, which trans-
lates the contained SOAP message into a local procedure call in the RPCs Web-service port, which then communicates the
passed-in parameters to the CD++ engine.

The experiments in this section used the following five CD++ models (see [11] for more details): (1) Barbershop is a DEVS
model simulates a retail barbershop store activities. In this model, customers arrive to the store and have their hair cut by the
available barber in First Come First Serve (FCFS) order. (2) Fire is a 2-D 30 � 30 Cell-DEVS model used to simulate forest fire.
The simulation allows foreseeing the propagation and intensity of the fire. Three parameters are involved in the ratio of
spread: (A) particles properties (amount of heat, minerals and density), (B) type of fuel (includes the size of the vegetation)
and (C) values involved with the natural environment (wind speed, territory inclination and humidity). (3) Ship evacuation is
a 2-D 49 � 27 Cell-DEVS model used to simulate the evacuation of a ship in an emergency. This model has two phases. In
Phase 1, each cell calculates its shortest path toward the exit. In Phase 2, people run in their initial direction until they
encounter another person or an obstacle (e.g. wall) causing them to change direction. The simulation is completed once
all persons leave the ship. (4) Cancer is a 2-D 20 � 20 Cell-DEVS model is used study cancer spreading on different types
of tissue. In this model, cancer tumors invade normal tissues (replacing healthy cells with cancer cells) until cancer is spread
over other parts of the body. (5) Battlefield is 3-D 10 � 10 � 6 Cell-DEVS model used to simulate a battle between two armies
trying to capture the other flag. This model also simulates different activities such as soldiers’ injuries, deaths, movements,
and fight engagements.

The presented results were conducted using three different distributed environment setups, as shown in Table 3. In each
setup, each model is partitioned into two or more partitions where each partition is assigned to a machine; hence, each par-
tition is simulated by a single CD++ engine on a machine. This allows each run of simulation experiments performance met-
rics to be collected independently. Note that the RISE-based DCD++ model partitioning mechanism is discussed in Section 3
while the SOAP-based DCD++ partitioning is discussed in [30].

Both systems were compared by setting up the same simulation experiments where a simulation is repeated alternately
between both systems over a number of runs. The same experiment setup means that the CD++ model under simulation is
partitioned in the same way over the same physical machines. The performance results were then collected based on the
following metrics: (1) Number of Remote Messages (NRM) exchanged in a simulation run. This counts the messages that
travel through the network within HTTP envelopes. The NRM is the same over the same experiment setup using the same
system, because the simulation always executes the same events (deterministic simulation). However, because the
RISE-based DCD++ system aggregates remote messages in XML (Section 3), the NRM values are usually different between
RISE-based and SOAP-based systems. (2) Total Execution Time (TET) is the average time to complete the simulation of an
experiment. The simulation is repeated over a number of runs (usually 25 or more) to achieve at least a 95% Confidence
Table 3
Test environments settings.

Test environment No. of machines (partitions) Machines geographical locations

First 2, 3 and 4 All machines attached to the same Ethernet
Second 2 and 3 Placed machines at different locations within the city of Ottawa, Canada
Third 2 One is placed in Ottawa, Canada while the other is placed in Amman, Jordan



42 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
Interval (CI). The CI is calculated as the following [8]: the model follows the normal distribution with mean h and variance r2

and the goal is to estimate h. The natural estimator of h is the overall mean of R independent replications (runs), that is:
Table 4
Numbe

Mod

Barb

Fire

Ship

Canc

Battl
Y ¼ 1
R

XR

i¼1

Yi
where Y is the sample mean (average). However, Y is not h but an estimate within (±l). Thus, the usual CI, which assumes the
Yi values are normally distributed, is:
Y � l Where l ¼ ta=2;R�1
rffiffiffi
R
p

Here, r is the standard deviation of all runs while ta=2;R�1 is the quantile of the t normal distribution with R � 1 degrees of
freedom that cuts off a/2 of the area of each tail (with probability a). For example, suppose 120 runs have been repeated with
Y of 5.80 and r of 1.6. Since, our objective is a 95% of CI, thus, t0.025, 119 = 1.98 (this value is based on the normal distribution
tables in [8]). Therefore, in this case the CI is 5.80 ± 0.29.

(NRM) to complete a simulation run for all models with different partitions. The table shows the number of partitions
used in the experiment, the RISE NRM, the SOAP NRM, and the RISE Aggregation Effect (RAA). The RAA was calculated as
follows: RAA = (SOAP NRM � RISE NRM). Thus, the RAA value measures how much remote messages have been reduced
via aggregation. Note that the NRM stays the same of each simulation run for the same experiment setup. On the other hand,
the NRM results show the effect of aggregating simultaneous events in XML messages by RISE. The RAA value in Table 4 var-
ies from a model simulation to another or from a setup (e.g. partitions) to another. This is because the DCD++ synchroniza-
tion algorithms only aggregate the simultaneous simulation events (i.e. events executed at the same simulation cycle), which
vary from a simulation setup to another. For example, the aggregation is able to reduce remote messages by 1.3 and 1.95
times for the Barbershop model with 2 and 3 partitions respectively. On the other hand, the aggregation is able to reduce
remote messages by 10.30, 11.53 and 14.89 times for the Battlefield model with 2, 3, and 4 partitions respectively. The pre-
sented results also show that the NRM values change when changing the number of partitions in the simulation environment
for the same model. This is mainly because the more partitions, the more remote synchronization messages are required. For
example, some of the local messages in a partition might become remote messages when this partition is repartitioned fur-
ther into more partitions.

The TET results clearly show substantial performance improvement for DCD++ simulation via RISE comparing to using
SOAP-based WS regardless of the used model or environment setup. For example, in the first environment settings results
(Table 5), RISE Speedup ranges from 1.31 to 60.55 times (with 2 partitions setup), 1.56 to 60.40 times (with 3 partitions
setup), and 6.62 to 65.15 times (with 4 partitions). Further, the second and third environments showed similar results as
shown in Tables 6 and 7 respectively.

Tables (Tables 5–7) show the simulation Total Execution Time (TET) results obtained for the first, second, and third
environment settings respectively (see Table 3). The tables results show the model used in the simulation, the number of
partitions applied to the model where each partition is assigned to a machine, and both RISE and SOAP TET averages of
all repeated runs (in seconds). In this case, the CI (with 95%) is presented in addition to the standard deviation (r) of all
repeated runs. The tables also show the RISE Speedup, which is calculated as SOAP TET � RISE TET. The tables further show
the New Partitions Effect for both systems, which is calculated as (Current Partition TET � Previous Partition TET) � Current
Partition TET.

The TET results also showed that adding more partitions into the simulation has slowed down the simulation in most
cases, but the effect on RISE was much less. For example, adding a third partition to the Ship model simulation (for the
r of Remote Messages (NRM) values.

el No. machines (partition per machine) RISE NRM SOAP NRM RAA = (SOAP NRM � RISE NRM)

ershop 2 661 861 1.30
3 745 1451 1.95

2 1676 1796 1.07
3 1915 2540 1.33
4 2198 3891 1.77

2 1266 3166 2.50
3 1911 3861 2.02
4 2172 4994 2.30

er 2 12 192 16.00
3 18 378 21.00
4 58 656 11.31

efield 2 86 886 10.30
3 156 1798 11.53
4 208 3098 14.89



Table 5
First environment test setting TET results.

Model No. of partitions RISE TET (s) SOAP TET (s) RISE Speedup New Partitions
Effect

CI = Y � l r CI = Y � l r RISE SOAP

Barbershop 2 10.21 ± 0.44 1.07 13.41 ± 0.65 1.57 1.31
3 31.47 ± 0.72 1.74 49.10 ± 0.79 1.91 1.56 2.08 2.66

Fire 2 10.89 ± 0.33 0.81 20.06 ± 0.87 2.11 1.84
3 33.30 ± 0.70 1.70 147.01 ± 3.13 7.60 4.42 2.05 6.33
4 81.47 ± 0.72 1.75 539.51 ± 7.79 18.90 6.62 1.45 2.67

Ship 2 26.87 ± 0.42 1.02 47.02 ± 1.90 4.60 1.75
3 31.15 ± 0.82 1.98 59.65 ± 1.31 3.18 1.91 0.16 0.27
4 71.23 ± 0.31 0.75 247.12 ± 2.51 6.10 3.47 1.29 3.14

Cancer 2 13.12 ± 0.40 0.98 31.98 ± 0.87 2.11 2.44
3 9.54 ± 0.42 1.01 51.78 ± 1.57 3.81 5.43 �0.27 0.62
4 18.19 ± 0.70 1.71 109.74 ± 3.90 9.46 6.03 0.91 1.12

Battlefield 2 6.29 ± 0.20 0.49 380.84 ± 7.09 17.21 60.55
3 9.23 ± 0.30 0.72 557.47 ± 8.00 19.42 60.40 0.47 0.46
4 13.11 ± 0.39 0.95 854.17 ± 8.90 21.60 65.15 0.42 0.53

Table 6
Second environment test setting TET results.

Model No. of partitions RISE TET (s) SOAP TET (s) RISE Speedup New Partitions
Effect

CI = Y � l r CI = Y � l r RISE SOAP

Barbershop 2 13.54 ± 0.50 1.21 30.70 ± 0.98 2.37 2.27
3 37.76 ± 1.19 2.89 86.12 ± 2.02 4.91 2.28 1.79 1.81

Fire 2 16.10 ± 0.50 1.21 29.45 ± 1.36 3.31 1.83
3 41.27 ± 0.82 1.98 194.05 ± 5.52 13.41 4.70 1.56 5.59

Ship 2 34.34 ± 0.72 1.75 73.00 ± 1.75 4.24 2.13
3 46.79 ± 0.83 2.01 144.10 ± 4.69 11.39 3.08 0.36 0.97

Cancer 2 14.21 ± 0.46 1.11 48.40 ± 1.72 4.18 3.41
3 13.56 ± 0.51 1.23 109.64 ± 3.75 9.10 8.09 �0.05 1.27

Battlefield 2 09.12 ± 0.43 1.05 532.45 ± 11.95 29.01 58.38
3 15.87 ± 0.59 1.42 941.78 ± 13.93 33.80 59.34 0.74 0.77

Table 7
Third environment test setting TET results.

Model No. of partitions RISE TET (s) SOAP TET (s) RISE Speedup

CI = Y � l r CI = Y � l r

Barbershop 2 16.25 ± 0.73 1.76 41.45 ± 1.69 4.11 2.55
Fire 2 27.10 ± 1.20 2.91 109.45 ± 4.63 11.23 4.04
Ship 2 40.83 ± 1.24 3.00 96.36 ± 4.25 10.31 2.36
Cancer 2 16.35 ± 0.70 1.70 70.47 ± 3.63 8.80 4.31
Battlefield 2 10.72 ± 0.46 1.11 805.06 ± 29.35 71.24 75.10

K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 43
second environment shown in Table 6) slowed down the simulation by 0.36 and 0.97 for the RISE and SOAP systems respec-
tively. This simulation slowdown is mainly because the communication synchronization overhead is larger than the local
computation overhead by machines.

However, few cases showed that adding another partition (machine) sped up the simulation. For example, adding a third
partition for the Cancer model has speeded up the simulation a little bit in the RISE-based simulation as shown in Tables 6
and 7. This means that the synchronization overhead is not large enough to overweigh the benefits of adding more com-
putation power via splitting the model between more machines. Particularly that the Cancer model was able to reduce
the NRM value via aggregation by a factor of 21 times as shown in Table 4. Thus, speeding up simulation is possible in dis-
tributed simulation but it depends on the environment and the model under simulation characteristics.

Indeed, these results compare both systems implementations and distributed simulation algorithms. As previously men-
tioned, we tried to make this compression as far as possible by deploying both systems in Tomcat, by using exactly the same
CD++ engines, and the same physical machines. However, we are still using the AXIS engine to process the SOAP messages



44 K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45
(not needed in RISE), since we need software to realize the SOAP standards. We further tried to introduce multithreading to
the SOAP system by invoking each RPC stub within a thread. This not only proved to be difficult because of the way RPC stubs
are structured in AXIS, but also because it requires rebuilding the entire DCD++ WS component. This new implementation
would also need to aggregate simulation messages to ensure accurate simulation because of the reasons discussed in
Section 3. Consequently, this message aggregation also needs to be sent via the RPC as an array (which proved to be non-
trivial to implement), or within an XML message (sent as an attachment). These solutions depend on the use of AXIS; there-
fore, replacing AXIS with a different vendor implementation would affect our WS solutions. It is worth to note that the
implementation coupling between different software solutions in the RPC-style based SOAP WS is a none-trivial issue in
practice when introducing new interoperability protocols and algorithms. For example, we had to redesign a new SOAP
WS solution in [1] (and put aside the original SOAP WS described in [30]) to ease interoperability between CD++ and other
DEVS-based implementations using SOAP WS, as part of DEVS standardization process [33]. These issues show one of the
REST major contributions: REST does not place restrictions on implementations, allowing the programmers to introduce
their ideas freely. In REST (which is the Web method), senders build a message and transmit to a URI on the Web, according
to the Web standards (without restricting implementation to a certain style). On the other hand, the use of SOAP-based WS is
tied to existing software implementations, which usually makes it difficult to introduce new improvements without major
software changes.
6. Conclusion

We presented the design and implementation of the distributed CD++ (DCD++) simulation, which operates via the RISE
middleware. RISE is a general middleware that serves as a container to hold different simulation environments without
being specific to a certain environment. We discussed that the RISE middleware three design principles (i.e. general
resource-oriented, uniform-interface, and messages-oriented) can enhances distributed simulation interoperability and
experimentation. Particularly, hiding interoperating systems heterogeneities (by decoupling systems APIs from internal
implementations), composition scalability (by advocating uniform-interface), and dynamicity (since information channels
automatically exist). We also showed how these principles have been used in the DCD++ design, particularly, enhancing
algorithms performance via simulation message aggregation in XML.

Thus, the RISE-based DCD++ presented here is a proof-of-concept showing that RISE principles ease interoperability
(when compared to existing Web-based distributed simulation tools). Those principles include:

(1) Decoupled simulation algorithms from the middleware versus the mixed approach in other existing systems. The RISE
middleware is a general container that is not specific to any system [2].

(2) All of the exchanged information between simulation partitions is transmitted via uniform, universal standardized,
constant virtual channels. Each component in the distributed environment is always connected with other component
with the same number of channels. This is important to achieve scalability when the number of simulation partitions
increases. Further, virtual channels are represented as fields in the exchanged message headers, hence putting the
channels’ representations outside the components’ implementations, which is important for decoupling the compo-
nent implementations. In contrast, existing approaches use Remote Procedure Call (RPCs) channels to exchange infor-
mation. RPCs are usually a part of the systems implementation, making it difficult to decoupling the components from
their implementations. They are also variable and heterogeneous since they are designed by different programmers.

(3) All of the exchanged information is described in Extensible Markup Language (XML) messages while other approaches
exchange information as programming parameters. XML is important to enhance systems decoupling and make it less
sensitive to programming.

(4) Experiments are dynamically created and attached to the Web. This is because experiments are interfaced with stan-
dard URIs where those URIs are created on the fly with any value. In fact, easing interoperability by decoupling imple-
mentations from algorithms and exchanging semantics in XML has also showed substantial performance
improvements when compared to other interoperability approaches as we show here.

To summarize, easing interoperability constraints open the way for further simulation algorithms enrichment even when
interoperating similar systems. RISE-based DCD++ simulation system is the first system to perform distributed simulation
using the RESTful Web-services (WS) interoperability style, hence being part of a Cloud. It does so by operating as a service
on top of the RISE (RESTful Interoperability Simulation Environment) middleware. RISE is a general middleware that serves
as a container to hold different simulation environments without being specific to a certain environment. RISE-based DCD++
shows as a ‘‘proof-of-concept’’ that RISE easing interoperability principles are not only achievable but also can open the way
for more algorithms innovation, which can lead to better performance. These principles are important in the area of DEVS
standardization because they decouple implementations, leaving standards to focus only on semantics. It is worth to note
that this is an article on the extensions to the CD++ tool in order to be able to execute distributed simulation models using
the RISE middleware. This is the first (and as far as we know) the only system to perform distributed simulation based on
RESTful WS style. The other system named DCD++ described in [30] is one of our previous work from 2008 to 2010, and this
was a completely different middleware, based on SOAP-based WS.



K. Al-Zoubi, G. Wainer / Simulation Modelling Practice and Theory 55 (2015) 27–45 45
Finally, as we discussed throughout this paper that current SOAP-based WS interoperability constraints can complicate
interoperability in Web-based distributed simulation. On the other hand, using the RESTful WS (which is the Web interoper-
ability style) can achieve Web-based distributed simulation, but without such constraints.

References

[1] K. Al-Zoubi, G. Wainer, Interfacing and coordination for a DEVS simulation protocol standard, in: Proc. 12th IEEE Int’l Symp. Distributed Simulation and
Real-Time Applications (DS-RT2008), 2008, pp. 300–307.

[2] K. Al-Zoubi, G. Wainer, RISE: a general simulation interoperability middleware container, J. Parallel Distrib. Comput. Elsevier 73 (5) (2013) 580–594.
[3] K. Al-Zoubi, G. Wainer, Performing distributed simulation with RESTful Web-services, in: Proc. 2009 Winter Simulation Conference (WSC 2009), 2009,

pp. 1323–1334.
[4] K. Al-Zoubi, G. Wainer, Using REST Web services architecture for distributed simulation, in: Proc. 23rd ACM/IEEE/SCS Proceedings of Principles of

Advanced and Distributed Simulation (PADS2009), 2009.
[5] Amazon elastic compute cloud (Amazon EC2), <http://aws.amazon.com/ec2/> (accessed February 2015).
[6] K. Anderson, J. Du, A. Narayan, A. El Gamal, GridSpice: a distributed simulation platform for the smart grid, IEEE Trans. Industr. Inf. 10 (4) (2014).
[7] Apache Tomcat, <http://tomcat.apache.org/> (accessed February 2015).
[8] J. Banks, J. Carson, B. Nelson, D. Nicol, Discrete-Event System Simulation, Pearson Prentice Hall, Upper Saddle River, NJ, 2009.
[9] C. Boer, A. Bruin, A. Verbraec, A survey on distributed simulation in industry, J. Simul. 3 (1) (2009) 3–16.

[10] A. Boukerche, F. Iwasaki, R. Araujo, E. Pizzolato, Web-based distributed simulations visualization and control with HLA and Web services, in: Proc. 12th
IEEE Int’l Symp. Distributed Simulation and Real-Time Applications (DS-RT ’08), 2008, pp. 17–23.

[11] CD++ toolkit, <http://cell-devs.sce.carleton.ca> (accessed January 2015).
[12] Cisco Cloud Computing, <http://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/restapi/restapi.html> (accessed June 2014).
[13] A. Chow, B. Zeigler, Parallel DEVS: a parallel, hierarchical, modular modeling formalism, in: Proc. 1994 Winter Simulation Conference (WSC1994),

1994, pp. 716–722.
[14] R. Fielding, Architectural Styles and the Design of Network-based Software Architectures, PhD dissertation, Dept. of Computer Science, Univ. of

California, Irvine, CA, USA, 2000.
[15] R. Fujimoto, Parallel and Distribution Simulation Systems, John Wiley & Sons, New York, 2000.
[16] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, URI Templates, <http://tools.ietf.org/html/draft-gregorio-uritemplate-04. 2010> (accessed June

2011).
[17] IBM cloud Computing, <http://www.ibm.com/developerworks/cloud/library/cl-RESTfulAPIsincloud/index.html?ca=dat> (accessed June 2014).
[18] D. Kimmig, T. Brenner, K. Bittner, A. Schmidt, Towards a Web based modelling and simulation tool for research, engineering and education in the field

of hydrogen and fuel cell technology, in: Proc. 2014 IEEE Computational Science and Computational Intelligence (CSCI2014), 2014, pp. 193–196.
[19] P. Ke, S. Turner, C. Wentong, L. Zengxiang, A service oriented HLA RTI on the grid, in: Proc. 2007 IEEE International Conference on Web Services (ICWS

2007), 2007, pp. 984–992.
[20] F. Khul, R. Weatherly, J. Dahmann, Creating Computer Simulation Systems: An Introduction to High Level Architecture, Prentice Hall, 1999.
[21] E. Mancini, G. Wainer, K. Al-Zoubi, O. Dalle, ‘‘Simulation in the cloud using handheld devices, in: Proc. 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid2012), 2012.
[22] M. Jarrah, B. Zeigler, A modeling and simulation-based methodology to support dynamic negotiation for web service applications, J. Simul. 88 (3)

(2012).
[23] Noelios Restlet Engine (NRE), <http://www.noelios.com/products/restlet-engine> (accessed January 2015).
[24] T. O’Reilly, What Is Web 2.0, <http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html> (accessed January 2015).
[25] L. Richardson, S. Ruby, RESTful Web Services, O’Reilly Media Inc, Sebastopol, California, 2007.
[26] Restlet API, <http://www.restlet.org/> (accessed January 2015).
[27] D. Rorich, M. Bernhard, T. Handte, S. Brink, Webdemos: an interactive, web-based visualization and simulation framework for open access, in: Proc. of

the 2014 IEEE International Conference on Web and Open Access to Learning (ICWOAL2014), 2014, pp. 1–6.
[28] Y. Shi, D. Zhang, M. Xiao, M. Lu, SOA-based simulation framework: a way to simulation composability, in: Proc. 2012 IEEE International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2012, pp. 232–236.
[29] S. Strassburger, T. Schulze, R. Fujimoto, Future trends in distributed simulation and distributed virtual environments: results of a peer study, in: Proc.

2008 Winter Simulation Conference (WSC2008), 2008, pp. 777–785.
[30] G. Wainer, R. Madhoun, K. Al-Zoubi, Distributed simulation of DEVS and Cell-DEVS models in CD++ using Web services, Simul. Model. Pract. Theory 16

(9) (2008) 1266–1292.
[31] G. Wainer, Discrete-Event Modeling and Simulation: A Practitioner’s Approach, CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2009.
[32] G. Wainer, K. Al-Zoubi, An introduction to distributed simulation, in: C. Banks, J. Sokolowski (Eds.), Modeling and Simulation Fundamentals:

Theoretical Underpinnings and Practical Domains, Wiley, New York, 2010, pp. 373–402.
[33] G. Wainer, K. Al-Zoubi, S. Mittal, J. RiscoMartín, H. Sarjoughian, B. Zeigler, in: G. Wainer, P. Mosterman (Eds.), Discrete-Event Modeling and Simulation:

Theory and Applications, CRC Press. Taylor and Francis, 2010, pp. 389–494. Chapters 15–18.
[34] G. Wainer, K. Al-Zoubi, S. Mittal, J. RiscoMartín, H. Sarjoughian, B. Zeigler, in: G. Wainer, P. Mosterman (Eds.), Discrete-Event Modeling and Simulation:

Theory and Applications, CRC Press. Taylor and Francis, 2010, pp. 389–494.
[35] S. Wang, G. Wainer, A simulation as a service methodology with application for crowd modeling, simulation and visualization, Simulation 9 (1) (2015)

71–95.
[36] Web-services AXIS, <http://ws.apache.org/axis/java/user-guide.html> (accessed February 2015).
[37] Q. Xiang, G. Chen; Y. Wang, Distributed simulation based on web enabling HLA, in: Proc. 2nd IEEE International Conference on Artificial Intelligence,

Management Science and Electronic Commerce, 2011.
[38] W. Xiong, W. Tsai, HLA-based SaaS-oriented simulation frameworks, in: Proc. of the 2014 IEEE 8th International Symposium on Service Oriented

System Engineering (SOSE2014), 2014, pp. 376–383.
[39] B. Zeigler, H. Praehofer, T. Kim, Theory of Modeling and Simulation, Academic Press, San Diego, CA, 2000.
[40] S. Zhu, Z. Du, X. Chai, GDSA: a grid-based distributed simulation architecture, in: Proc. 6th IEEE Int’l Symp. on Cluster Computing and the Grid

Workshops (CCGRID2006), 2006, pp. 66–71.

http://refhub.elsevier.com/S1569-190X(15)00051-9/h0230
http://aws.amazon.com/ec2/
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0030
http://tomcat.apache.org/
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0040
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0040
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0045
http://cell-devs.sce.carleton.ca
http://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/restapi/restapi.html
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0080
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0080
http://tools.ietf.org/html/draft-gregorio-uritemplate-04.%202010
http://www.ibm.com/developerworks/cloud/library/cl-RESTfulAPIsincloud/index.html?ca=dat
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0110
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0110
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0125
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0125
http://www.noelios.com/products/restlet-engine
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0140
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0140
http://www.restlet.org/
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0170
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0170
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0175
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0175
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0235
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0235
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0235
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0235
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0235
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0240
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0240
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0240
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0240
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0240
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0245
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0245
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0245
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0245
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0245
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0195
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0195
http://ws.apache.org/axis/java/user-guide.html
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0215
http://refhub.elsevier.com/S1569-190X(15)00051-9/h0215

	Distributed simulation of DEVS and Cell-DEVS models using the RISE middleware
	1 Introduction
	2 Background
	2.1 Overview of the RISE middleware interoperability
	2.2 Discrete Event System Specification (DEVS)
	2.3 Related work

	3 RISE-based DCD++ simulator
	3.1 DCD++ simulation architecture
	3.2 DCD++ simulation synchronization

	4 Implementation
	4.1 RISE subsystems
	4.2 Interfacing CD++ With RISE

	5 Performance
	6 Conclusion
	References


