
Section title
Editors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

72 Computing in Science & Engineering 1521-9615/15/$31.00 © 2015 IEEE Copublished by the IEEE CS and the AIP November/December 2015

Computer SimulationS
Editors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.ca

Designing Biological Simulation Models Using
Formalism-Based Functional and Spatial
Decompositions

Rhys Goldstein | Autodesk Research
Gabriel A. Wainer | Carleton University

S
imulation is becoming an increasingly common
tool among biologists, complementing traditional
experimental techniques. As Hiroaki Kitano ex-
plained,1 experimental data is first used to form a

hypothesis, which can then be investigated with a simula-
tion. Predictions made by the simulation can, in turn, be
tested using in vitro and in vivo studies, with new experi-
mental data leading to new hypotheses. This iterative pro-
cess can be applied to basic research on biological systems,
as well as in the development of drugs and other treatments.

The simulation of biological systems poses many techni-
cal challenges. Among these are accurate model parameter

selection, model validation, and code optimization for com-
putational efficiency. Our interests lie in the development
of well-designed simulation software, which is difficult for
two reasons: first, the systems (and corresponding models)
are often complex, and second, realistic simulations might
require the integration of multiple complex algorithms (such
as simulating the deformation of a cell membrane surround-
ed by reacting and diffusing chemicals in a changing elec-
tric field).

In most engineering applications, we can address a
large system’s complexity by partitioning it into simpler
subsystems. Herbert Sauro and his colleagues2 suggested

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise 73

that complex biological systems be conceptually
modularized in an analogous manner, and they
recommend that modeling formalisms be adopted
to support this approach. The Discrete Event Sys-
tem Specification (DEVS) is one such formalism.3
Using DEVS, a simulation program is partitioned
into a simulator and a model—we can address the
model’s complexity by subdividing it into simpler
submodels, and those submodels can in turn be
subdivided in a hierarchical fashion.

Having selected a modeling formalism (DEVS)
and a means of addressing complexity (hierarchi-
cal model design), an important question remains:
How should the system of interest be decom-
posed? Here, we focus on three options: topologi-
cal decomposition, functional decomposition, and
 spatial decomposition.

Topological decomposition tries to define separate
submodels for separate biological entities and then
link the submodels in a way that resembles real-
world connections. This is the approach that Ro-
land Ewald and colleagues adopted,4 using separate
DEVS submodels to represent a cell membrane, a
cytoplasm, and a nucleus, connected in sequence.
They identified a weakness of this approach: the dif-
ficulty of representing interactions involving three
or more entities. We argue that drawbacks encoun-
tered using a particular formalism must be consid-
ered in the context of the chosen decomposition
strategy. It isn’t clear whether interactions among
three or more entities are difficult to model using
DEVS if the hierarchy isn’t based on topology.

Functional decomposition involves the sepa-
ration of different aspects of a real-world system.
These aspects can be functions of biological sys-
tems (such as the transfer of information along a
nerve cell in the form of an action potential) or
physical processes (such as diffusion inside a cell
membrane). Given a hierarchical model based on
a functional decomposition, a submodel is unlikely
to represent a single entity; rather, it might repre-
sent a single effect for a large number of entities.

Spatial decomposition partitions the space into
discrete regions represented by model instances.
Such decompositions typically take the form of a
2D grid or 3D rectangular lattice. This technique
is supported by the Cell-DEVS formalism.5

In our research, which involves the self-as-
sembly and deformation of biological structures
in 3D, we find it useful to partition spatial re-
gions as described above but only at lower levels in
a DEVS model hierarchy. At upper levels, we de-
fine submodels for different simulation algorithms

 representing aspects of the system. In other words,
we adopt a function decomposition near the top of
the hierarchy and spatial decomposition near the
bottom. To demonstrate this approach, we present
a hierarchical DEVS model of a presynaptic nerve
terminal, the compartment in a nerve cell at which
an action potential can excite an adjacent nerve cell.

Discrete Event System Specification
In the mid-1970s, with the conviction that a novel
theory was needed for discrete event simulation,
Bernard Zeigler invented DEVS, a general mod-
eling formalism that’s essentially a set of conven-
tions for the formal description of a wide range of
systems. A DEVS model is designed by defining
certain mathematical sets and functions, collec-
tively called an atomic model. Coupled models are
composed of submodels that are themselves either
atomic or coupled. The nesting of coupled models
within coupled models is the mechanism by which
DEVS supports hierarchical model design.

The formalism emphasizes the separation
between simulators and models. A DEVS simulator
is model-independent in the sense that it should
carry out a simulation for any well-defined DEVS
model, regardless of what the model represents.

Despite the popularity of the DEVS formalism
and the widespread use of simulation in the study
of biological systems, the application of DEVS
to biological models is practiced by relatively few
researchers. A group led by Adelinde Uhrmach-
er at the University of Rostock applied DEVS to
various nonspatial models of biological systems.
Ewald’s team4 compared DEVS to stochastic Pe-
tri nets, stochastic π-calculus, and StateCharts,
using a DEVS model hierarchy designed by cou-
pling submodels that represent various entities of
a biological system: a cell’s membrane, nucleus,
and cytoplasm. The researchers simulated interac-
tions between such entities by passing messages
between the DEVS models. Because messages are
passed independently of one another, the research-
ers claim that DEVS is unsuitable for modeling in-
teractions that involve three or more entities. These
claims might indicate considering alternatives to
DEVS, but we explored alternatives to topological
decomposition.

Numerous variants of DEVS have been de-
veloped. Cell-DEVS,5 for instance, has been used
to design cellular biological models, representing
real-world systems as cell spaces in which each cell
is defined as a DEVS model. This technique facili-
tates the specification of discrete-event cell spaces

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

Computer SimulationS

74 November/December 2015

and improves their definition by making the tim-
ing specification more expressive. Cell-DEVS has
also been used recently to implement computation-
al fluid dynamics (CFD),6 which has several appli-
cations in large-scale biological models.

Presynaptic Nerve Terminal Models
To demonstrate our approach to hierarchical DEVS
model design, we focus on the simulation of a com-
partment called the presynaptic nerve terminal (PNT),
depicted in Figure 1. Numerous PNTs can be found
on the ends of a single neuron. Inside a PNT are tens
to hundreds of neurotransmitter-containing synaptic

vesicles,7 some of which are docked to a region of the
membrane called the active zone. When an action
potential arrives from the nerve cell’s axon, certain
docked vesicles can release their neurotransmitters
outside the compartment, which could provoke
another action potential in an adjacent nerve cell.
When a docked vesicle releases its neurotransmitters
in this fashion, it can undergo a process called exocy-
tosis, in which it fuses with the nerve cell membrane.
In addition, PNTs contain hundreds of protein called
synapsin,8 which bind with vesicles to form clusters.
An action potential triggers chemical reactions that
cause synapsins to lose their affinity for vesicles.

 Experimental results9 suggest that synapsins
help maintain several vesicles in the active zone’s
vicinity, which intuitively should increase the
chance that a sequence of action potentials is trans-
mitted from one neuron to the next. One rationale
for modeling a PNT is to quantify the relationship
between synapsin concentration and the availabili-
ty of docked vesicles, which could aid in investigat-
ing this theory.10 Population-based methods11 that
track concentrations of particles are inadequate for
this purpose because they don’t track the locations
of individual particles.

Discrete-Space PNT Models
An early effort to model vesicle clusters used Cell-
DEVS to predict the number of vesicles released
from the reserve pool as a function of time under the
influence of action potentials at differing frequen-
cies.12 The molecular interactions of synapsin and
vesicles were modeled as they occur inside a nerve
cell, with the model describing the behavior of syn-
apsin movements until they reached a vesicle and
bonded to it based on a given onrate. Once synap-
sins become bonded with vesicles, an offrate is used
to model the breaking of bonds. Figure 2a shows a
grid at the initial point, and Figure 2b shows how
bonds were formed and how the corresponding cells
change their values to represent the binding.

Although the cellular model in Figure 2 is
simple to modify and describe, it’s a very rough ap-
proximation that, among other limitations, fails to
capture the membrane enclosing a presynaptic com-
partment. Therefore, we explored enhanced models
based on cellular models,13 as Figure 3 shows.

A submodel’s state can represent a vesicle, a
synapsin, an empty space inside the compartment,
a part of the membrane, or a part of the active zone
at the bottom of the membrane. The figure shows
three snapshots: the left image shows clusters—
here, the first action potential arrived immediately,

Figure 1. Illustration of a presynaptic nerve terminal
(PNT). Inside a PNT are tens to hundreds of
neurotransmitter-containing synaptic vesicles, some of
which are docked to a region of the membrane called the
active zone.

Figure 2. Results showing vesicles (blue) and synapsin
(red) in their initial (left) and final (right) configurations.
This rough approximation fails to capture the membrane
enclosing a presynaptic compartment.

Axon

Vesicle
cluster

Active zone

Vesicle
docked at the
active zone

Synapsin
bound to
a vesicle

Synapsin

Vesicle

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise 75

after which the vesicles and synapsins in the large
clusters dispersed (center image). The clusters later
reformed (right image).

These models use a hierarchical decomposi-
tion that partitions the space into rectangular cells
and considers both how they’re occupied (synapsin,
vesicles) and their bindings, which influenced the
continuous-space PNT models.

Continuous-Space PNT Models
The difference between a discrete-space model and
a continuous-space one is that, in the latter case,
spatial coordinates aren’t restricted to discrete
points on a lattice. With a continuous-space PNT
model, vesicles can be represented as spherical
particles that can move in any direction. This ap-
proach adds complexity to the model but allows for
more realistic simulations.

Our continuous-space algorithm, called the
tethered particle system (TPS) was invented for
the simulation of self-assembling deformable bio-
logical structures.14 In TPS, numerous particles of
different sizes are tracked as they move through
space. As the simulation progresses, collisions be-
tween pairs of particles are continually detected.
When a collision occurs, an impulse is calculated
that alters the trajectories of the particles involved.
The characteristic that differentiates TPS from
similar impulse-based methods such as billiard
simulations is the fact that certain pairs of parti-
cles can become tethered together. A collision be-
tween separating tethered particles can cause them
to retract inward instead of rebounding outward.

The distances between certain pairs of particles
are thus constrained, and these constraints allow a
variety of deformable structures to be represented.
TPS provides a relatively simple way to allow de-
formable biological structures to assemble them-
selves from rigid particles representing proteins
and other biological entities. We can also represent
the Brownian motion exhibited by these small
biological objects by applying random impulses,
randomized changes in momentum applied at ran-
domized times.

Figure 4 illustrates the two types of collisions
in a TPS: blocking and tethering. A blocking

Figure 3. A cellular model of a PNT. Vesicles (black cells) form clusters with synapsin (light gray cells) inside a circular compartment. The
left image shows clusters—here, the first action potential arrived immediately, after which the vesicles and synapsins in the large clusters
dispersed (center image). The clusters later reformed (right image).

Figure 4. Two types of collisions in tethered particle system (TPS)
simulation: (a) blocking collision and (b) tethering collision. A blocking
collision occurs when two approaching particles reach an inner limiting
distance Δublocking, causing the particles to rebound outward. If two
separating tethered particles reach an outer limiting distance Δutethering,
and if the particles remain tethered, then a tethering collision causes the
particles to retract.

Δublocking Δutethering

(a) (b)

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

Computer SimulationS

76 November/December 2015

 collision occurs when two approaching particles
reach an inner limiting distance Δublocking, as in
Figure 4a. This causes the particles to rebound out-
ward. If two separating tethered particles reach an
outer limiting distance Δutethering, and if the par-
ticles remain tethered, then a tethering collision
causes the particles to retract. The unraveling cord
in Figure 4b illustrates this effect, although the
cord isn’t explicitly modeled.

It might seem counterintuitive at first to use
TPS to model deformable structures. With a de-
formable structure, we would expect any sort of

 inward motion to decelerate gradually as the object
is compressed. With TPS, however, two approach-
ing particles will continue to move at a constant
speed until the blocking distance is reached. There’s
no virtual spring to slow down the particles gradu-
ally. Only when we have a large number of tethered
particles does deformation-like behavior occur: the
tethered particles are compressed, and the number
of internal collisions increases, which in turn slows
the inward motion. The impulses applied randomly
to individual particles to simulate Brownian mo-
tion ensure that the overall system becomes real-
istically chaotic, even if the particles are initially
motionless in a contrived configuration.

TPS differs from most alternative methods. First,
it adheres to a discrete-event simulation approach
instead of a discrete-time approach; there’s no fixed
time step. To implement TPS, we must predict the
time associated with all anticipated future collisions
between particles. When a collision occurs, time ad-
vances to the most imminent future collision time,
resulting in a nonuniform sequence of time steps.

Another key difference between TPS and related
methods is the way particle interactions are handled.
For instance, in the Cellular Dynamic Simulator,15
two colliding particles are often replaced with a sin-
gle product particle. Although TPS could be extend-
ed to accommodate this technique, such reactions
are generally represented by tethering the two collid-
ing particles. The particles are still treated indepen-
dently, however—the fact that they behave as part of
the same structure emerges as a result of subsequent
tethering collisions. This effect is best observed in
animations of TPS simulations, where deformable
structures (such as the vesicle-synapsin clusters in
Figure 5)16 self-assemble from individual particles.

The method most closely related to TPS is dis-
crete-molecular dynamics (DMD).17 Unlike tradi-
tional molecular dynamics, DMD treats potential
fields surrounding atoms as step functions, giving
rise to constant particle velocities that are charac-
teristic of TPS. Note that TPS targets much larger
structures, accommodates greater discrepancies in
particle sizes, and is motivated by the need to en-
force constraints rather than a desire to quantify
electrostatic potentials.

DEVS-Based Continuous-Space PNT Model
Topological decomposition, devoting separate
submodels to separate entities, is an intuitive way
to design a hierarchical DEVS model of a PNT.
Figure 6 illustrates how such a model might be
 structured. The outer presynaptic_nerve_terminal

Figure 5. A continuous-space model of a PNT. Here,
vesicles (large spheres) form clusters with synapsins
inside a compartment.

Figure 6. A hypothetical PNT model featuring a hierarchy
based on topology. The outer presynaptic_nerve_
terminal model is divided into a vesicle, a synapsin, and
a membrane submodel. The membrane is in turn divided
into an active_zone and an axon model. Various links
between the submodels are added based on interactions
between the topologically related biological entities.

Membrane

Vesicle

Synapsin

Presynaptic_nerve_terminal

Vesicle

Membrance

Active_zone
Active_potential

Axon

Bind

Separate
Synapsin

PhosphorylateFuseDock

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise 77

model is divided into a vesicle, a synapsin, and a
membrane submodel. The membrane is in turn di-
vided into an active_zone and an axon model. Vari-
ous links between the submodels are added based
on interactions between the topologically related
biological entities; the binding of vesicles and syn-
apsins, and the propagation of an action potential,
are examples.

Although intuitive, topological decomposi-
tion has several drawbacks for certain models,
in particular, the continuous-space presynaptic
nerve terminal model based on the TPS method.
In TPS, an individual particle has little behavior
on its own. Almost all the complexity pertains to
the detection and resolution of collisions, each of
which involves multiple particles. In Figure 6, it’s
unclear where collision detection and resolution
code should be located. Further issues arise if par-
ticles must be added or removed from the system
during a simulation.

We adopt functional decomposition at upper
levels of our model hierarchy. This approach lets us
track the state of multiple biological entities in a
single DEVS model, thus we can have interactions
between three or more entities. In addition, if we
choose to separate functions or physical processes
at the upper levels, it’s still possible to partition
space at lower levels—this is how we designed a
continuous-space DEVS model of a PNT.

TPS has three distinct aspects: the generation
of random impulses applied to individual particles,
the detection of collisions between particles, and
the calculation of new particle trajectories in re-
sponse to impulses or collisions. Accordingly, we
designed a TPS DEVS model with three submod-
els: RI, which generates random impulses; detector,
which detects collisions; and responder, which cal-
culates new trajectories. Note that this hierarchy is
an example of functional decomposition.

The key interaction of TPS model is represented
by the loop at the bottom right of Figure 7. When
two particles collide, the detector sends a collision
message to the responder, which outputs one re-
sponse message for each affected particle. These
messages describe the particle’s new trajectory, sent
to the detector so that future collision times can
be recalculated. The loading and restitution output
messages allow three or more particles to be involved
in a collision.14

Other interactions include impulses that origi-
nate from either the RI submodel or a TPS input
and alter a particle’s trajectory. These messages en-
ter the responder and result in an impulse output

message and one or more response messages. Par-
ticle collisions can cause two separate particles to
become “tethered,” in which case the responder
outputs an attachment message, or they can cause
two tethered particles to separate, in which case
a detachment message is output. Input transition
messages can affect the nature in which particles
attach or detach. Finally, the detector can output
an escape message if a particle strays too far from
the center of the region represented by the model.

We preserve the principle of encapsulation, as
each submodel has its own representation of the
entire system. In general, some information will
be common to multiple submodel-specific repre-
sentations, while some information will be specific
to certain representations. For example, each par-
ticle’s mass is relevant to responder and RI, but not
to detector—likewise, each particle’s position and
velocity are relevant to responder and detector, but
not to RI. If a particle’s position or velocity chang-
es in the responder, it’s communicated to the detec-
tor via a message, which preserves encapsulation.

An Atomic Model Example
The DEVS RI model generates random impuls-
es for any particle in TPS. Because the model is
separated from the collision detection and re-
sponse models, its definition is compact and
self-contained.

DEVS atomic models in general take the
form <X, Y, S, dext, dint, l, ta>. At any given time,

Figure 7. Structure of TPS DEVS model. When two
particles collide, the detector sends a collision message
to the responder, which outputs one response message
for each affected particle. These messages describe
the particle’s new trajectory, sent to the detector so that
future collision times can be recalculated.

TPS

Transition

Impulse

RI

Responder

Collision

Detector Escape

Response

Restitution

Loading

Impulse

Detachment

Attachment

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

Computer SimulationS

78 November/December 2015

a DEVS model has a state s ∈ S. After an event,
the simulator evaluates the time advance function
ta to schedule the internal event. Should this time
elapse, the output function l is invoked to obtain
an output value y ∈ Y, and the internal transition
function dint yields a new state. If an input x ∈ X is
received before ta elapses, the simulator applies the
external transition function dext instead to obtain
the new state.

In our case, RI has no inputs, thus X = ∅
and dext is never invoked. The set of output values
Y includes all vectors of the form [id, Δp], where
id identifies a particle and Δp is a randomly gen-
erated impulse to be applied to that particle. The
set of states S includes all vectors of the form [t,
FEL], where the state variable t is the time of the
last transition, and FEL is a list of future events.
The output function l uses these state variables to
construct an output value:

y = l(s)
1. [t, FEL] = s Extracts the state variables
2. [id, t ′] = next_event(FEL) Identifies the next
random impulse
3. Δp = impulse(id) Generates the impulse value
4. y = [id, Δp] Constructs the output value

Once the value l(s) is output, a new state is
obtained from the internal transition function dint:

y = dint(s)
1. [t, FEL] = s Extracts the state variables
2. [id, t ′] = next_event(FEL) Identifies the next
random impulse
3. tFEL = t ′ + detect(id) Calculates a new impulse
time
4. FEL′ = add_event(FEL, id, tFEL) Updates the
future events list
5. s′ = [t ′, FEL’] Constructs the new state

After the state of RI is updated, the time re-
maining before the next transition is obtained
from the time advance function ta:

Δt = ta(s)
1. [t, FEL] = s Extracts the state variables
2. [id, t ′] = next_event(FEL) Identifies the next
random impulse
3. Δt = t ′ – t Calculates the remaining time

Once an atomic model is specified using DEVS
conventions, it can be implemented using a DEVS-
based tool or library. The code for the RI model,

developed for a DEVS library written in Python, is
reproduced in Figure 8.

The four different DEVS functions are defined
in the main function as RI_DEVS, and the four
implemented functions are returned in the struc-
tures right at the end, such as RI = [delta_ext,
delta_int, ta] and [init_RI, RI]. In the selected
Python library, the output function l is absorbed
into the internal transition function delta_int. The
init_RI function initializes the model.

Spatial Decomposition for Collision Detection
As mentioned earlier, even if upper levels of a
DEVS model hierarchy are dedicated to the sepa-
ration of biological functions, it’s still possible to
partition space at lower levels. One advantage is
that different spatial decompositions can be adopt-
ed for different algorithms. In our case, only the
detector can benefit from a spatial decomposition.
The RI and responder submodels are therefore de-
fined as atomic models, whereas the detector is a
coupled model.

Within detector are a set of DEVS submodels
representing different subvolumes of space. Colli-
sions are detected independently in each of these
submodels for the associated subvolume, which is
more computationally efficient than detecting col-
lisions for the entire space. Figure 9 shows this de-
composition of space.

Although collisions are detected within cu-
bic subvolumes, we need to track which particles
are close to a subvolume to include in its collision
detection. It turns out that it’s somewhat cumber-
some to check whether a spherical particle is in a
cubic subvolume but extremely easy to determine
if it’s in a spherical region. For this reason, each
subvolume features two concentric encompassing
spheres. The inner sphere detects incoming par-
ticles for the collision detection calculations. The
outer sphere detects outgoing particles that can be
excluded from the process.

Figures 10 and 11 illustrate the tracking of par-
ticles in 2D. In Figure 10, particle A is exiting the
outer circle around subvolume [0, 2]. Accordingly,
it becomes excluded from this subvolume’s search
for future collisions. In Figure 11, particles A and B
are both within the inner circles of subvolumes [0,
0] and [1, 0]. Because the collision actually occurs
in [1, 0], this is the only subvolume that schedules
the collision.

The TPS model presented earlier can be used
as the uppermost-level DEVS, but it can also be
incorporated into a larger DEVS hierarchy. When

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise 79

applying TPS to a PNT, our simulation was com-
plicated by action potentials and the fusing of
vesicles with the membrane of the presynaptic
compartment. We therefore embedded the TPS
model in a coupled model named PNT, including

models action, which triggers action potentials, and
fusion, which determines when vesicles fuse with
the nerve cell membrane. Figure 12 shows the
structure of the PNT model (it’s another example
of functional decomposition).

Figure 8. Python code for the DEVS Random Impulse (RI) model.

def RI_DEVS (n_dim, Omega_psi):

empty_FEL = future_events_list["empty_FEL"]

delta_FEL = future_events_list["delta_FEL"]

event_FEL = future_events_list["event_FEL"]

pr_None = DEVS["pr_None"]

detect_RI = tethered_particle_system["detect_RI"]

impulse_RI = tethered_particle_system["impulse_RI"]

def init_RI (Psi):

t = 0

SPC = {}

FEL = empty_FEL()

for id_A in Psi.keys():

SPC[id_A] = Psi[id_A]"spc"][

spc_A = SPC[id_A]

t_A = t + detect_RI(spc_A, Omega_psi)

FEL = delta_FEL(FEL, id_A, t_A, pr_None)

s = [t, SPC, FEL]

return s

def delta_ext (s, Delta_t_el, x):

raise ValueError("invalid input for 'RI', accepts no inputs")

def delta_int(s):

[t, SPC, FEL] = s

[id_A, t_] = event_FEL(FEL)

spc_A = SPC[id_A]

t_A = t_ + detect_RI(spc_A, Omega_psi)

FEL_ = delta_FEL(FEL, id_A, t_A, pr_None)

s_ = [t_, SPC, FEL_]

Delta_p = impulse_RI(n_dim, spc_A, Omega_psi)

Y = [["impulse", [id_A, Delta_p]]]

return [s_, Y]

def ta(s):

[t, SPC, FEL] = s

[id_A, t_A] = event_FEL(FEL)

Delta_t_int = max([0.0, t_A -t])

return Delta_t_int

RI = [delta_ext, delta_int, ta]

return [init_RI, RI]

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

Computer SimulationS

80 November/December 2015

Because links between DEVS submodels are
associated with a coupled model, the submodels
themselves can interoperate without explicitly
referencing one another. For example, although
the action model interacts with the TPS model,
its definition wouldn’t mention the identifier
“TPS.” This convention distinguishes DEVS-based
hierarchies from typical object-oriented networks
in which interacting objects tend to invoke each
other’s methods explicitly.

Simulating Nerve Terminals
We’ve executed numerous simulations in collabora-
tion with a research team led by James Cheetham
in the Department of Biology at Carleton Univer-
sity. His team has explored a variety of simulation
scenarios of interest, the details of which appear
elsewhere.13,14,16,18 Animations of these results ap-
pear online at www.youtube.com/arslab.

Figure 13 shows one of these simulation results
based on the model described earlier. A cluster of
vesicles, bound to one another by synapsin, has
formed in the vicinity of the active zone where the
neurotransmitters are ultimately released. These
behaviors aren’t programmed explicitly but instead
emerge from the execution of the TPS rules.

Figure 14 shows a simulation in which vesicles
in a PNT respond to an action potential. This
is initiated at time 600, after all vesicles have
become bound in a single cluster at the active zone
(Figure 14a). After 20 time units, a vesicle can be
seen escaping the compartment in a simulated
exocytosis (Figure 14b). At time 680, recently freed
synapsin can be seen above the visibly disrupted
cluster (Figure 14c). Many of the freed synapsin
eventually bind with vesicles again, and the cluster
reforms (Figure 14d).

Figure 11. The same scenario as in Figure 10, but at the
later time when the two particles collide. A and B are
both within the inner circles of subvolumes [0, 0] and [1,
0]. Because the collision actually occurs in [1, 0], this is
the only subvolume that schedules the collision.

Figure 12. The structure of the PNT DEVS model.
Because links between DEVS submodels are associated
with a coupled model, the submodels themselves can
interoperate without explicitly referencing one another.

Figure 9. The spatial decomposition used to detect
collisions in the DEVS-based implementation of the TPS
algorithm.

Figure 10. A scenario in which two particles approach
one another. Particle A is exiting the outer circle around
subvolume [0, 2]. Accordingly, it becomes excluded from
this subvolume’s search for future collisions.

Regions represented
by DEVS models

Vesicle

Synapsin

(0, 0) (0, 1)

A

B

(0, 2)

(1, 0) (1, 1) (1, 2)

(0, 0) (0, 1) (0, 2)

(1, 0)

B

A

(1, 1) (1, 2)

PNT

Action
Transition

Impulse
Fusion

TPS

Response

Impulse

Loading

Restitution

Escape

Attachment

Detachment

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise 81

Figure 15 shows several action potentials af-
fecting a number of vesicles in the PNT (which
decreases with each action potential) and the aver-
age normalized distance of vesicles from the active
zone. The distance generally decreases as vesicles
cluster at the active zone. When action potentials
occur, vesicles released from the cluster cause a
temporary increase in this distance.

S imulations like the ones presented here help bi-
ologists investigate the role of synapsin in the

human brain. Experimental results suggest that
synapsin helps maintain several vesicles in the vi-
cinity of the active zone, which in turn increases
the chance that a sequence of action potentials will
be transmitted from one neuron to the next. Simu-
lations can be used to quantify the relationship be-
tween synapsin concentration and the availability
of docked vesicles. An iterative research process,
involving both simulation and experimentation,
could lead to a better understanding of neurotrans-
mission coupled with an ability to predict behavior
inside presynaptic compartments.

By applying DEVS to TPS, we designed the
first continuous-space DEVS models intended for
the simulation of biological systems. We adopted an
alternative formalism to address the shortcomings
of previous approaches. We used a spatial decom-
position at a lower level in our hierarchy; at upper
levels, our hierarchy exhibits a functional decompo-
sition that separates various real-world effects. This

approach can be useful for the design of biological
systems: separate different functions or algorithms
at upper levels in a model hierarchy, partition space
at lower levels, and refrain from associating particu-
lar models with specific biological entities.

Figure 13. Simulation snapshot of a TPS model of a PNT.

Figure 14. Four snapshots of a vesicle cluster reacting to an action potential in
a simulated presynaptic nerve terminal: (a) [t = 600], (b) [t = 620],
(c) [t = 680], and (d) [t = 900].

Figure 15. Simulated depletion of vesicles and their average distance from
the active zone, in response to action potentials.

(a) (b)

(c) (d)

Distribution of remaining vesicles
70

1.0

0.8

0.6

0.4

0.2

0.0

60

50

40

30

N
o.

 v
es

ic
le

s
A
ve

ra
ge

 n
or

m
al

iz
ed

 d
is

ta
nc

e

20

10

0
600 900 1200 1500 1800 2100 2400 2700

600 900 1200 1500 1800 2100

Time

2400 2700

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

Computer SimulationS

82 November/December 2015

In the near future, systems biologists will likely
wish to simulate the dynamics of deformable struc-
tures in combination with the reaction and diffu-
sion of chemicals, and perhaps the propagation of
electric fields as well. The DEVS formalism pro-
vides a means to achieve this integration. Separate
DEVS models can be defined for different simula-
tion algorithms—by linking these models togeth-
er, the algorithms themselves can be combined.

References
1. H. Kitano, “Computational Systems Biology,”

Nature, vol. 420, 2002, pp. 206–210.
2. H.M. Sauro et al., “Challenges for Modeling and

Simulation Methods in Systems Biology,” Proc.
Winter Simulation Conf. (WSC), 2006,
pp. 1720–1730.

3. B.P. Zeigler, T.G. Kim, and H. Praehofer, Theory of
Modeling and Simulation, Academic Press, 2000.

4. R. Ewald et al., “Discrete Event Modelling and
Simulation in Systems Biology,” J. Simulation,
vol. 1, no. 2, 2007, pp. 81–96.

5. G.A. Wainer, Discrete-Event Modeling and Simula-
tion: A Practitioner’s Approach, CRC Press, 2009.

6. M. Van Schyndel et al., “On the Definition of a
Computational Fluid Dynamic Solver Using Cel-
lular Discrete-Event Simulation,” J. Computational
Science, June 2014, pp. 882–890.

7. T.C. Sudhof and K. Starke, Pharmacology of Neu-
rotransmitter Release, Springer, 2008.

8. W.S. Trimble, M. Linial, and R.H. Scheller, “Cel-
lular and Molecular Biology of the Presynaptic
Nerve Terminal,” Annual Rev. Neuroscience, vol. 14,
1991, pp. 93–122.

9. P. De Camilli, “Keeping Synapses up to Speed,”
Nature, vol. 375, 1995, pp. 450–451.

10. F. Benfenati, F. Valtorta, and P. Greengard, “Com-
puter Modelling of Synapsin 1 Binding to Synaptic
Vesicles and F-actin: Implications for Regulation
of Neurotransmitter Release,” Proc. Nat’ l Academy
Science, vol. 88, no. 2, 1990, pp. 575–579.

11. D.T. Gillespie, “A General Method for Numeri-
cally Simulating the Stochastic Time Evolution of
Coupled Chemical Reactions,” J. Computational
Physics, vol. 22, Dec. 1976, p. 403.

12. G. Wainer et al., “Advanced DEVS Models with
Application to Biomedicine,” Proc. Artificial Intel-
ligence, Simulation and Planning Conf. (AIS), 2007;
http://cell-devs.sce.carleton.ca/publications/2007/
WJADBDC07/FinalPaper.pdf.

13. R. Goldstein et al., “Vesicle-Synapsin Interactions
Modeled with Cell-DEVS,” Proc. Winter Simula-
tion Conf. (WSC), 2008, pp. 813–821.

14. R. Goldstein and G. Wainer, “Impulse-Based
Dynamic Simulation of Deformable Biological
Structures,” Trans. Computational Systems Biology,”
vol. 6575, 2011, pp. 39–60.

15. M.J. Byrne, M.N. Waxham, and Y. Kubota, “Cel-
lular Dynamic Simulator: An Event Driven Molec-
ular Simulation Environment for Cellular Biology,”
Neuroinform, vol. 8, no. 2, 2010, pp. 63–82.

16. R. Goldstein and G. Wainer, “Simulation of
Deformable Biological Structures with a Tethered
Particle System Model,” Proc. 32nd Conf. Canadian
Medical and Biological Eng. Soc. (CMBEC), 2009;
http://cell-devs.sce.carleton.ca/publications/2009/
GW09/Goldstein__TPS__2009-03-17_CMBEC.
pdf.

17. D. Shirvanyants et al., “Discrete Molecular
Dynamics: An Efficient and Versatile Simulation
Method for Fine Protein Characterization,” J.
Physical Chemistry B, vol. 116, no. 29, 2012,
pp. 8375–8382.

18. R. Goldstein and G. Wainer, “Simulation of a Pre-
synaptic Nerve Terminal with a Tethered Particle
System Model,” Proc. 31st Annual Int’ l Conf. IEEE
Eng. Medicine and Biology Soc. (EMBC), 2009,
pp. 3877–3880.

Rhys Goldstein is a principal research scientist at Au-
todesk Research in Toronto, Canada. His interests
include discrete-event simulation and its use in the ar-
chitectural, building science, and biological domains.
Goldstein has a MASc in biomedical engineering from
Carleton University. Contact him at rhys.goldstein@
autodesk.com.

Gabriel A. Wainer is a professor in the Department of
Systems and Computer Engineering at Carleton Univer-
sity. His research interests are in modeling, simulation,
and real-time embedded systems. Wainer has a PhD in
computer science from the Université d’Aix-Marseille
III, France. Contact him at gwainer@sce.carleton.ca or
via www.sce.carleton.ca/faculty/wainer.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

Authorized licensed use limited to: Carleton University. Downloaded on April 11,2020 at 00:32:37 UTC from IEEE Xplore. Restrictions apply.

