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S
imulation is becoming an increasingly common 
tool among biologists, complementing traditional 
experimental techniques. As Hiroaki Kitano ex-
plained,1 experimental data is first used to form a 

hypothesis, which can then be investigated with a simula-
tion. Predictions made by the simulation can, in turn, be 
tested using in vitro and in vivo studies, with new experi-
mental data leading to new hypotheses. This iterative pro-
cess can be applied to basic research on biological systems, 
as well as in the development of drugs and other treatments. 

The simulation of biological systems poses many techni-
cal challenges. Among these are accurate model parameter 

selection, model validation, and code optimization for com-
putational efficiency. Our interests lie in the development 
of well-designed simulation software, which is difficult for 
two reasons: first, the systems (and corresponding models) 
are often complex, and second, realistic simulations might 
require the integration of multiple complex algorithms (such 
as simulating the deformation of a cell membrane surround-
ed by reacting and diffusing chemicals in a changing elec-
tric field).

In most engineering applications, we can address a 
large system’s complexity by partitioning it into simpler 
subsystems. Herbert Sauro and his colleagues2 suggested 
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that complex biological systems be conceptually 
modularized in an analogous manner, and they 
recommend that modeling formalisms be adopted 
to support this approach. The Discrete Event Sys-
tem Specification (DEVS) is one such formalism.3 
Using DEVS, a simulation program is partitioned 
into a simulator and a model—we can address the 
model’s complexity by subdividing it into simpler 
submodels, and those submodels can in turn be 
subdivided in a hierarchical fashion. 

Having selected a modeling formalism (DEVS) 
and a means of addressing complexity (hierarchi-
cal model design), an important question remains: 
How should the system of interest be decom-
posed? Here, we focus on three options: topologi-
cal decomposition, functional decomposition, and 
 spatial decomposition. 

Topological decomposition tries to define separate 
submodels for separate biological entities and then 
link the submodels in a way that resembles real-
world connections. This is the approach that Ro-
land Ewald and colleagues adopted,4 using separate 
DEVS submodels to represent a cell membrane, a 
cytoplasm, and a nucleus, connected in sequence. 
They identified a weakness of this approach: the dif-
ficulty of representing interactions involving three 
or more entities. We argue that drawbacks encoun-
tered using a particular formalism must be consid-
ered in the context of the chosen decomposition 
strategy. It isn’t clear whether interactions among 
three or more entities are difficult to model using 
DEVS if the hierarchy isn’t based on topology.

Functional decomposition involves the sepa-
ration of different aspects of a real-world system. 
These aspects can be functions of biological sys-
tems (such as the transfer of information along a 
nerve cell in the form of an action potential) or 
physical processes (such as diffusion inside a cell 
membrane). Given a hierarchical model based on 
a functional decomposition, a submodel is unlikely 
to represent a single entity; rather, it might repre-
sent a single effect for a large number of entities.

Spatial decomposition partitions the space into 
discrete regions represented by model instances. 
Such decompositions typically take the form of a 
2D grid or 3D rectangular lattice. This technique 
is supported by the Cell-DEVS formalism.5

In our research, which involves the self-as-
sembly and deformation of biological structures 
in 3D, we find it useful to partition spatial re-
gions as described above but only at lower levels in 
a DEVS model hierarchy. At upper levels, we de-
fine  submodels for different simulation algorithms 

 representing aspects of the system. In other words, 
we adopt a function decomposition near the top of 
the hierarchy and spatial decomposition near the 
bottom. To demonstrate this approach, we present 
a hierarchical DEVS model of a presynaptic nerve 
terminal, the compartment in a nerve cell at which 
an action potential can excite an adjacent nerve cell. 

Discrete Event System Specification
In the mid-1970s, with the conviction that a novel 
theory was needed for discrete event simulation, 
Bernard Zeigler invented DEVS, a general mod-
eling formalism that’s essentially a set of conven-
tions for the formal description of a wide range of 
systems. A DEVS model is designed by defining 
certain mathematical sets and functions, collec-
tively called an atomic model. Coupled models are 
composed of submodels that are themselves either 
atomic or coupled. The nesting of coupled models 
within coupled models is the mechanism by which 
DEVS supports hierarchical model design. 

The formalism emphasizes the separation 
between simulators and models. A DEVS simulator 
is model-independent in the sense that it should 
carry out a simulation for any well-defined DEVS 
model, regardless of what the model represents. 

Despite the popularity of the DEVS formalism 
and the widespread use of simulation in the study 
of biological systems, the application of DEVS 
to biological models is practiced by relatively few 
researchers. A group led by Adelinde Uhrmach-
er at the University of Rostock applied DEVS to 
various nonspatial models of biological systems. 
Ewald’s team4 compared DEVS to stochastic Pe-
tri nets, stochastic π-calculus, and StateCharts, 
using a DEVS model hierarchy designed by cou-
pling submodels that represent various entities of 
a biological system: a cell’s membrane, nucleus, 
and cytoplasm. The researchers simulated interac-
tions between such entities by passing messages 
between the DEVS models. Because messages are 
passed independently of one another, the research-
ers claim that DEVS is unsuitable for modeling in-
teractions that involve three or more entities. These 
claims might indicate considering alternatives to 
DEVS, but we explored alternatives to topological 
decomposition. 

Numerous variants of DEVS have been de-
veloped. Cell-DEVS,5 for instance, has been used 
to design cellular biological models, representing 
real-world systems as cell spaces in which each cell 
is defined as a DEVS model. This technique facili-
tates the specification of discrete-event cell spaces 
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and improves their definition by making the tim-
ing specification more expressive. Cell-DEVS has 
also been used recently to implement computation-
al fluid dynamics (CFD),6 which has several appli-
cations in large-scale biological models.

Presynaptic Nerve Terminal Models
To demonstrate our approach to hierarchical DEVS 
model design, we focus on the simulation of a com-
partment called the presynaptic nerve terminal (PNT), 
depicted in Figure 1. Numerous PNTs can be found 
on the ends of a single neuron. Inside a PNT are tens 
to hundreds of  neurotransmitter-containing synaptic 

vesicles,7 some of which are docked to a region of the 
membrane called the active zone. When an action 
potential arrives from the nerve cell’s axon, certain 
docked vesicles can release their neurotransmitters 
outside the compartment, which could provoke 
another action potential in an adjacent nerve cell. 
When a docked vesicle releases its neurotransmitters 
in this fashion, it can undergo a process called exocy-
tosis, in which it fuses with the nerve cell membrane. 
In addition, PNTs contain hundreds of protein called 
synapsin,8 which bind with vesicles to form clusters. 
An action potential triggers chemical reactions that 
cause synapsins to lose their affinity for vesicles. 

   Experimental results9 suggest that synapsins 
help maintain several vesicles in the active zone’s 
vicinity, which intuitively should increase the 
chance that a sequence of action potentials is trans-
mitted from one neuron to the next. One rationale 
for modeling a PNT is to quantify the relationship 
between synapsin concentration and the availabili-
ty of docked vesicles, which could aid in investigat-
ing this theory.10 Population-based methods11 that 
track concentrations of particles are inadequate for 
this purpose because they don’t track the locations 
of individual particles.

Discrete-Space PNT Models
An early effort to model vesicle clusters used Cell-
DEVS to predict the number of vesicles released 
from the reserve pool as a function of time under the 
influence of action potentials at differing frequen-
cies.12 The molecular interactions of synapsin and 
vesicles were modeled as they occur inside a nerve 
cell, with the model describing the behavior of syn-
apsin movements until they reached a vesicle and 
bonded to it based on a given onrate. Once synap-
sins become bonded with vesicles, an offrate is used 
to model the breaking of bonds. Figure 2a shows a 
grid at the initial point, and Figure 2b shows how 
bonds were formed and how the corresponding cells 
change their values to represent the binding.

Although the cellular model in Figure 2 is 
simple to modify and describe, it’s a very rough ap-
proximation that, among other limitations, fails to 
capture the membrane enclosing a presynaptic com-
partment. Therefore, we explored enhanced models 
based on cellular models,13 as Figure 3 shows. 

A submodel’s state can represent a vesicle, a 
synapsin, an empty space inside the compartment, 
a part of the membrane, or a part of the active zone 
at the bottom of the membrane. The figure shows 
three snapshots: the left image shows clusters—
here, the first action potential arrived immediately, 

Figure 1. Illustration of a presynaptic nerve terminal 
(PNT). Inside a PNT are tens to hundreds of 
neurotransmitter-containing synaptic vesicles, some of 
which are docked to a region of the membrane called the 
active zone.

Figure 2. Results showing vesicles (blue) and synapsin 
(red) in their initial (left) and final (right) configurations. 
This rough approximation fails to capture the membrane 
enclosing a presynaptic compartment.
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after which the vesicles and synapsins in the large 
clusters dispersed (center image). The clusters later 
reformed (right image). 

These models use a hierarchical decomposi-
tion that partitions the space into rectangular cells 
and considers both how they’re occupied (synapsin, 
vesicles) and their bindings, which influenced the 
continuous-space PNT models.

Continuous-Space PNT Models
The difference between a discrete-space model and 
a continuous-space one is that, in the latter case, 
spatial coordinates aren’t restricted to discrete 
points on a lattice. With a continuous-space PNT 
model, vesicles can be represented as spherical 
particles that can move in any direction. This ap-
proach adds complexity to the model but allows for 
more realistic simulations. 

Our continuous-space algorithm, called the 
tethered particle system (TPS) was invented for 
the simulation of self-assembling deformable bio-
logical structures.14 In TPS, numerous particles of 
different sizes are tracked as they move through 
space. As the simulation progresses, collisions be-
tween pairs of particles are continually detected. 
When a collision occurs, an impulse is calculated 
that alters the trajectories of the particles involved. 
The characteristic that differentiates TPS from 
similar impulse-based methods such as billiard 
simulations is the fact that certain pairs of parti-
cles can become tethered together. A collision be-
tween separating tethered particles can cause them 
to retract inward instead of rebounding outward. 

The distances between certain pairs of particles 
are thus constrained, and these constraints allow a 
variety of deformable structures to be represented. 
TPS provides a relatively simple way to allow de-
formable biological structures to assemble them-
selves from rigid particles representing proteins 
and other biological entities. We can also represent 
the Brownian motion exhibited by these small 
biological objects by applying random impulses, 
randomized changes in momentum applied at ran-
domized times.

Figure 4 illustrates the two types of collisions 
in a TPS: blocking and tethering. A blocking 

Figure 3. A cellular model of a PNT. Vesicles (black cells) form clusters with synapsin (light gray cells) inside a circular compartment. The 
left image shows clusters—here, the first action potential arrived immediately, after which the vesicles and synapsins in the large clusters 
dispersed (center image). The clusters later reformed (right image). 

Figure 4. Two types of collisions in tethered particle system (TPS) 
simulation: (a) blocking collision and (b) tethering collision. A blocking 
collision occurs when two approaching particles reach an inner limiting 
distance Δublocking, causing the particles to rebound outward. If two 
separating tethered particles reach an outer limiting distance Δutethering, 
and if the particles remain tethered, then a tethering collision causes the 
particles to retract.

Δublocking Δutethering

(a) (b)
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 collision occurs when two approaching particles 
reach an inner limiting distance Δublocking, as in 
Figure 4a. This causes the particles to rebound out-
ward. If two separating tethered particles reach an 
outer limiting distance Δutethering, and if the par-
ticles remain tethered, then a tethering collision 
causes the particles to retract. The unraveling cord 
in Figure 4b illustrates this effect, although the 
cord isn’t explicitly modeled. 

It might seem counterintuitive at first to use 
TPS to model deformable structures. With a de-
formable structure, we would expect any sort of 

 inward motion to decelerate gradually as the object 
is compressed. With TPS, however, two approach-
ing particles will continue to move at a constant 
speed until the blocking distance is reached. There’s 
no virtual spring to slow down the particles gradu-
ally. Only when we have a large number of tethered 
particles does deformation-like behavior occur: the 
tethered particles are compressed, and the number 
of internal collisions increases, which in turn slows 
the inward motion. The impulses applied randomly 
to individual particles to simulate Brownian mo-
tion ensure that the overall system becomes real-
istically chaotic, even if the particles are initially 
motionless in a contrived configuration.

TPS differs from most alternative methods. First, 
it adheres to a discrete-event simulation approach 
instead of a discrete-time approach; there’s no fixed 
time step. To implement TPS, we must predict the 
time associated with all anticipated future collisions 
between particles. When a collision occurs, time ad-
vances to the most imminent future collision time, 
resulting in a nonuniform sequence of time steps. 

Another key difference between TPS and related 
methods is the way particle interactions are handled. 
For instance, in the Cellular Dynamic Simulator,15 
two colliding particles are often replaced with a sin-
gle product particle. Although TPS could be extend-
ed to accommodate this technique, such reactions 
are generally represented by tethering the two collid-
ing particles. The particles are still treated indepen-
dently, however—the fact that they behave as part of 
the same structure emerges as a result of subsequent 
tethering collisions. This effect is best observed in 
animations of TPS simulations, where deformable 
structures (such as the vesicle-synapsin clusters in 
Figure 5)16 self-assemble from individual particles.

The method most closely related to TPS is dis-
crete-molecular dynamics (DMD).17 Unlike tradi-
tional molecular dynamics, DMD treats potential 
fields surrounding atoms as step functions, giving 
rise to constant particle velocities that are charac-
teristic of TPS. Note that TPS targets much larger 
structures, accommodates greater discrepancies in 
particle sizes, and is motivated by the need to en-
force constraints rather than a desire to quantify 
electrostatic potentials.

DEVS-Based Continuous-Space PNT Model
Topological decomposition, devoting separate 
submodels to separate entities, is an intuitive way 
to design a hierarchical DEVS model of a PNT. 
Figure 6 illustrates how such a model might be 
 structured. The outer presynaptic_nerve_terminal 

Figure 5. A continuous-space model of a PNT. Here, 
vesicles (large spheres) form clusters with synapsins 
inside a compartment.

Figure 6. A hypothetical PNT model featuring a hierarchy 
based on topology. The outer presynaptic_nerve_
terminal model is divided into a vesicle, a synapsin, and 
a membrane submodel. The membrane is in turn divided 
into an active_zone and an axon model. Various links 
between the submodels are added based on interactions 
between the topologically related biological entities.
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model is divided into a vesicle, a synapsin, and a 
membrane submodel. The membrane is in turn di-
vided into an active_zone and an axon model. Vari-
ous links between the submodels are added based 
on interactions between the topologically related 
biological entities; the binding of vesicles and syn-
apsins, and the propagation of an action potential, 
are examples.

Although intuitive, topological decomposi-
tion has several drawbacks for certain models, 
in particular, the continuous-space presynaptic 
nerve terminal model based on the TPS method. 
In TPS, an individual particle has little behavior 
on its own. Almost all the complexity pertains to 
the detection and resolution of collisions, each of 
which involves multiple particles. In Figure 6, it’s 
unclear where collision detection and resolution 
code should be located. Further issues arise if par-
ticles must be added or removed from the system 
during a simulation.

We adopt functional decomposition at upper 
levels of our model hierarchy. This approach lets us 
track the state of multiple biological entities in a 
single DEVS model, thus we can have interactions 
between three or more entities. In addition, if we 
choose to separate functions or physical processes 
at the upper levels, it’s still possible to partition 
space at lower levels—this is how we designed a 
continuous-space DEVS model of a PNT. 

TPS has three distinct aspects: the generation 
of random impulses applied to individual particles, 
the detection of collisions between particles, and 
the calculation of new particle trajectories in re-
sponse to impulses or collisions. Accordingly, we 
designed a TPS DEVS model with three submod-
els: RI, which generates random impulses; detector, 
which detects collisions; and responder, which cal-
culates new trajectories. Note that this hierarchy is 
an example of functional decomposition. 

The key interaction of TPS model is represented 
by the loop at the bottom right of Figure 7. When 
two particles collide, the detector sends a collision 
message to the responder, which outputs one re-
sponse message for each affected particle. These 
messages describe the particle’s new trajectory, sent 
to the detector so that future collision times can 
be recalculated. The loading and restitution output 
messages allow three or more particles to be involved 
in a collision.14

Other interactions include impulses that origi-
nate from either the RI submodel or a TPS input 
and alter a particle’s trajectory. These messages en-
ter the responder and result in an impulse  output 

message and one or more response messages. Par-
ticle collisions can cause two separate particles to 
become “tethered,” in which case the responder 
outputs an attachment message, or they can cause 
two tethered particles to separate, in which case 
a detachment message is output. Input transition 
messages can affect the nature in which particles 
attach or detach. Finally, the detector can output 
an escape message if a particle strays too far from 
the center of the region represented by the model.

We preserve the principle of encapsulation, as 
each submodel has its own representation of the 
entire system. In general, some information will 
be common to multiple submodel-specific repre-
sentations, while some information will be specific 
to certain representations. For example, each par-
ticle’s mass is relevant to responder and RI, but not 
to detector—likewise, each particle’s position and 
velocity are relevant to responder and detector, but 
not to RI. If a particle’s position or velocity chang-
es in the responder, it’s communicated to the detec-
tor via a message, which preserves encapsulation.

An Atomic Model Example
The DEVS RI model generates random impuls-
es for any particle in TPS. Because the model is 
separated from the collision detection and re-
sponse models, its definition is compact and 
self-contained. 

DEVS atomic models in general take the 
form <X, Y, S, dext, dint, l, ta>. At any given time, 

Figure 7. Structure of TPS DEVS model. When two 
particles collide, the detector sends a collision message 
to the responder, which outputs one response message 
for each affected particle. These messages describe 
the particle’s new trajectory, sent to the detector so that 
future collision times can be recalculated.
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a DEVS model has a state s ∈ S. After an event, 
the simulator evaluates the time advance function 
ta to schedule the internal event. Should this time 
elapse, the output function l is invoked to obtain 
an output value y ∈ Y, and the internal transition 
function dint yields a new state. If an input x ∈ X is 
received before ta elapses, the simulator applies the 
external transition function dext instead to obtain 
the new state. 

In our case, RI has no inputs, thus X = ∅ 
and dext is never invoked. The set of output values 
Y includes all vectors of the form [id, Δp], where 
id identifies a particle and Δp is a randomly gen-
erated impulse to be applied to that particle. The 
set of states S includes all vectors of the form [t, 
FEL], where the state variable t is the time of the 
last transition, and FEL is a list of future events. 
The output function l uses these state variables to 
construct an output value:

y = l(s)
1. [t, FEL] = s Extracts the state variables
2. [id, t ′] = next_event(FEL) Identifies the next 
random impulse
3. Δp = impulse(id) Generates the impulse value
4. y = [id, Δp] Constructs the output value

Once the value l(s) is output, a new state is 
obtained from the internal transition function dint:

y = dint(s)
1. [t, FEL] = s Extracts the state variables
2. [id, t ′] = next_event(FEL) Identifies the next 
random impulse
3. tFEL = t ′ + detect(id) Calculates a new impulse 
time
4. FEL′ = add_event(FEL, id, tFEL) Updates the 
future events list
5. s′ = [t ′, FEL’] Constructs the new state

After the state of RI is updated, the time re-
maining before the next transition is obtained 
from the time advance function ta:

Δt = ta(s)
1. [t, FEL] = s Extracts the state variables
2. [id, t ′] = next_event(FEL) Identifies the next 
random impulse
3. Δt = t ′ – t Calculates the remaining time

Once an atomic model is specified using DEVS 
conventions, it can be implemented using a DEVS-
based tool or library. The code for the RI model, 

developed for a DEVS library written in Python, is 
reproduced in Figure 8.

The four different DEVS functions are defined 
in the main function as RI_DEVS, and the four 
implemented functions are returned in the struc-
tures right at the end, such as RI = [delta_ext,  
delta_int, ta] and [init_RI, RI]. In the selected 
Python library, the output function l is absorbed 
into the internal transition function delta_int. The 
init_RI function initializes the model.

Spatial Decomposition for Collision Detection
As mentioned earlier, even if upper levels of a 
DEVS model hierarchy are dedicated to the sepa-
ration of biological functions, it’s still possible to 
partition space at lower levels. One advantage is 
that different spatial decompositions can be adopt-
ed for different algorithms. In our case, only the 
detector can benefit from a spatial decomposition. 
The RI and responder submodels are therefore de-
fined as atomic models, whereas the detector is a 
coupled model. 

Within detector are a set of DEVS submodels 
representing different subvolumes of space. Colli-
sions are detected independently in each of these 
submodels for the associated subvolume, which is 
more computationally efficient than detecting col-
lisions for the entire space. Figure 9 shows this de-
composition of space.

Although collisions are detected within cu-
bic subvolumes, we need to track which particles 
are close to a subvolume to include in its collision 
detection. It turns out that it’s somewhat cumber-
some to check whether a spherical particle is in a 
cubic subvolume but extremely easy to determine 
if it’s in a spherical region. For this reason, each 
subvolume features two concentric encompassing 
spheres. The inner sphere detects incoming par-
ticles for the collision detection calculations. The 
outer sphere detects outgoing particles that can be 
excluded from the process.

Figures 10 and 11 illustrate the tracking of par-
ticles in 2D. In Figure 10, particle A is exiting the 
outer circle around subvolume [0, 2]. Accordingly, 
it becomes excluded from this subvolume’s search 
for future collisions. In Figure 11, particles A and B 
are both within the inner circles of subvolumes [0, 
0] and [1, 0]. Because the collision actually occurs 
in [1, 0], this is the only subvolume that schedules 
the collision.

The TPS model presented earlier can be used 
as the uppermost-level DEVS, but it can also be 
incorporated into a larger DEVS hierarchy. When 
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applying TPS to a PNT, our simulation was com-
plicated by action potentials and the fusing of 
vesicles with the membrane of the presynaptic 
compartment. We therefore embedded the TPS 
model in a coupled model named PNT,  including 

models action, which triggers action potentials, and 
fusion, which determines when vesicles fuse with 
the nerve cell membrane. Figure 12 shows the 
structure of the PNT model (it’s another example 
of functional decomposition).

Figure 8. Python code for the DEVS Random Impulse (RI) model.

def RI_DEVS (n_dim, Omega_psi):

empty_FEL = future_events_list["empty_FEL"]

delta_FEL = future_events_list["delta_FEL"]

event_FEL = future_events_list["event_FEL"]

pr_None = DEVS["pr_None"]

detect_RI = tethered_particle_system["detect_RI"]

impulse_RI = tethered_particle_system["impulse_RI"]

def init_RI (Psi):

t = 0

SPC = {}

FEL = empty_FEL()

for id_A in Psi.keys(): 

SPC[id_A] = Psi[id_A]"spc"][

spc_A = SPC[id_A]

t_A = t + detect_RI(spc_A, Omega_psi)

FEL = delta_FEL(FEL, id_A, t_A, pr_None)

s = [t, SPC, FEL]

return s

def delta_ext (s, Delta_t_el, x):

raise ValueError("invalid input for 'RI', accepts no inputs")

def delta_int(s):

[t, SPC, FEL] = s

[id_A, t_] = event_FEL(FEL)

spc_A = SPC[id_A]

t_A = t_ + detect_RI(spc_A, Omega_psi)

FEL_ = delta_FEL(FEL, id_A, t_A, pr_None)

s_ = [t_, SPC, FEL_]

Delta_p = impulse_RI(n_dim, spc_A, Omega_psi)

Y = [["impulse", [id_A, Delta_p]]]

return [s_, Y]

def ta(s):

[t, SPC, FEL] = s

[id_A, t_A] = event_FEL(FEL)

Delta_t_int = max([0.0, t_A -t])

return Delta_t_int

RI = [delta_ext, delta_int, ta]

return [init_RI, RI]
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Because links between DEVS submodels are 
associated with a coupled model, the submodels 
themselves can interoperate without explicitly 
referencing one another. For example, although 
the action model interacts with the TPS model, 
its definition wouldn’t mention the identifier 
“TPS.” This convention distinguishes DEVS-based 
hierarchies from typical object-oriented networks 
in which interacting objects tend to invoke each 
other’s methods explicitly.

Simulating Nerve Terminals
We’ve executed numerous simulations in collabora-
tion with a research team led by James Cheetham 
in the Department of Biology at Carleton Univer-
sity. His team has explored a variety of simulation 
scenarios of interest, the details of which appear 
elsewhere.13,14,16,18 Animations of these results ap-
pear online at www.youtube.com/arslab.

Figure 13 shows one of these simulation results 
based on the model described earlier. A cluster of 
vesicles, bound to one another by synapsin, has 
formed in the vicinity of the active zone where the 
neurotransmitters are ultimately released. These 
behaviors aren’t programmed explicitly but instead 
emerge from the execution of the TPS rules.

Figure 14 shows a simulation in which vesicles 
in a PNT respond to an action potential. This 
is initiated at time 600, after all vesicles have 
become bound in a single cluster at the active zone 
(Figure 14a). After 20 time units, a vesicle can be 
seen escaping the compartment in a simulated 
exocytosis (Figure 14b). At time 680, recently freed 
synapsin can be seen above the visibly disrupted 
cluster (Figure 14c). Many of the freed synapsin 
eventually bind with vesicles again, and the cluster 
reforms (Figure 14d).

Figure 11. The same scenario as in Figure 10, but at the 
later time when the two particles collide. A and B are 
both within the inner circles of subvolumes [0, 0] and [1, 
0]. Because the collision actually occurs in [1, 0], this is 
the only subvolume that schedules the collision.

Figure 12. The structure of the PNT DEVS model. 
Because links between DEVS submodels are associated 
with a coupled model, the submodels themselves can 
interoperate without explicitly referencing one another.

Figure 9. The spatial decomposition used to detect 
collisions in the DEVS-based implementation of the TPS 
algorithm.

Figure 10. A scenario in which two particles approach 
one another. Particle A is exiting the outer circle around 
subvolume [0, 2]. Accordingly, it becomes excluded from 
this subvolume’s search for future collisions.
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Figure 15 shows several action potentials af-
fecting a number of vesicles in the PNT (which 
decreases with each action potential) and the aver-
age normalized distance of vesicles from the active 
zone. The distance generally decreases as vesicles 
cluster at the active zone. When action potentials 
occur, vesicles released from the cluster cause a 
temporary increase in this distance.

S imulations like the ones presented here help bi-
ologists investigate the role of synapsin in the 

human brain. Experimental results suggest that 
synapsin helps maintain several vesicles in the vi-
cinity of the active zone, which in turn increases 
the chance that a sequence of action potentials will 
be transmitted from one neuron to the next. Simu-
lations can be used to quantify the relationship be-
tween synapsin concentration and the availability 
of docked vesicles. An iterative research process, 
involving both simulation and experimentation, 
could lead to a better understanding of neurotrans-
mission coupled with an ability to predict behavior 
inside presynaptic compartments.

By applying DEVS to TPS, we designed the 
first continuous-space DEVS models intended for 
the simulation of biological systems. We adopted an 
alternative formalism to address the shortcomings 
of previous approaches. We used a spatial decom-
position at a lower level in our hierarchy; at upper 
levels, our hierarchy exhibits a functional decompo-
sition that separates various real-world  effects. This 

approach can be useful for the design of biological 
systems: separate different functions or algorithms 
at upper levels in a model hierarchy, partition space 
at lower levels, and refrain from associating particu-
lar models with specific biological entities. 

Figure 13. Simulation snapshot of a TPS model of a PNT.

Figure 14. Four snapshots of a vesicle cluster reacting to an action potential in 
a simulated presynaptic nerve terminal: (a) [t = 600], (b) [t = 620],  
(c) [t = 680], and (d) [t = 900].  

Figure 15. Simulated depletion of vesicles and their average distance from 
the active zone, in response to action potentials.
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In the near future, systems biologists will likely 
wish to simulate the dynamics of deformable struc-
tures in combination with the reaction and diffu-
sion of chemicals, and perhaps the propagation of 
electric fields as well. The DEVS formalism pro-
vides a means to achieve this integration. Separate 
DEVS models can be defined for different simula-
tion algorithms—by linking these models togeth-
er, the algorithms themselves can be combined. 
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