
 Sequential PDEVS Architecture
Damián Vicino1, 2 Daniella Niyonkuru1, Gabriel Wainer1 Olivier Dalle2, 3

1Dept. of Systems and Computer Engineering
Carleton University 1125 Colonel By Dr., Ottawa, ON, Canada K1S 5B6

2Université Nice, I3S, UMR CNRS 7271, Sophia Antipolis, France 3INRIA Sophia Antipolis, France
{Damian.Vicino,Daniella.Niyonkuru,Gabriel.Wainer}@carleton.ca olivier.dalle@unice.fr

ABSTRACT
Parallel Discrete Event System Specification (PDEVS) is a
well-known formalism used to model and simulate Discrete
Event Systems. This formalism uses an abstract simulator
that defines a set of abstract algorithms that are parallel by
nature. To implement simulators using these abstract algo-
rithms, several architectures were proposed. Most of these
architectures follow distributed approaches that may not be
appropriate for single core processors or microcontrollers.
In order to reuse efficiently PDEVS models in this type of
systems, we define a new architecture that provides a single
threaded execution by passing messages in a call/return
fashion to simplify the execution time analysis.

Author Keywords
PDEVS; sequential; architecture; simulator;

ACM Classification Keywords
I.6.8 [SIMULATION AND MODELING]: Types of Simu-
lation---Discrete event; D.1.4 [PROGRAMMING TECH-
NIQUES]: Sequential Programming; D.2.11 [SOFTWARE
ENGINEERING]: Sequential Programming

INTRODUCTION
Discrete Event System Specification (DEVS) is a mathe-
matical formalism for modeling and simulating discrete-
event dynamic systems [1]. To tackle the complexity of the
system, DEVS decomposes the system into basic (behav-
ioral) models called atomic models and composite (struc-
tural) models called coupled models.

In classic DEVS, whenever two models are scheduled
for state transitions at the same time, one of the models is
chosen according to a select function provided in the cou-
pled model specification. Classic DEVS was extended to
resolve serialization constraints and allow simultaneous
events, defining what is called Parallel DEVS (PDEVS) [2].

Each DEVS specification can be executed by an abstract
simulator that defines the operational semantics of the mod-
els. Existing PDEVS simulation algorithms are parallel by
nature, and lead most developers to adopt a concurrent im-
plementation (even in single cores). Nevertheless, a sequen-
tial algorithm could lead to better performance while deal-
ing appropriately with simultaneous events and guarantee-
ing predictability. Moreover, on low-cost single core pro-
cessors, concurrent implementations will be executed se-
quentially by the operating system, and this may introduce
unpredictability and overhead. In critical systems for in-
stance, reliability and predictability are more important than
expressiveness and performance. In these cases, it is essen-

tial to produce a program with a predictable execution trace.
Here, we show new sequential algorithms to run

PDEVS models, using a modular and flexible architecture.
The objective is to achieve high performance and provide
predictability. The algorithms have a small call stack, linear
to the height of the model hierarchy. This aspect is particu-
larly essential for the previously discussed systems that may
have limited resources. To demonstrate the quality of the
proposal, the simulator is compared against other simulators
in the context of single core execution.

A simulator that implements the above concepts was
developed and follows the C++11 standard. Therefore, its
API can be integrated to Boost, a popular set of libraries for
C++, providing a library of discrete-event system specifica-
tions using DEVS for the community of C++ standard pro-
grammers.

BACKGROUND
Our proposed approach is based on the abstract algorithms
defined by Chow [2]. The simulation algorithms can be
found in [2]. Chow also implemented a set of algorithms for
distributed computation in [3].

To the best of our knowledge, the only sequential ap-
proach that also preserves the coordinator/simulator con-
cepts (as defined in the abstract simulator) is JAMES II [4].
This approach, which is partially sequential, was compared
against parallel versions showing that it performed better
for larger models, and was less efficient for smaller ones.
The tests used an example of forest fire simulation.

Several other simulators have implemented PDEVS us-
ing different approaches. We will first discuss adevs (a Dis-
crete Event Simulator) since in [5] it was the fastest of the
DEVS framework tested. In adevs, coupled models (also
referred to as network models in [6]) are reduced to an
equivalent atomic model (called the resultant) whose states,
transition and output functions are defined by its intercon-
nected components. Adevs exploits the closure property and
converts coupled models into atomic models with corre-
sponding transition, output and time advance functions [7]
through the resultant transformation, and hence eliminates
the need of simulating each component individually.

Adevs has evolved during the last 15 years, has over 29
releases, and supports high performance by relying on op-
timized data structures. For instance, the Set implementa-
tion used in adevs is a dynamic array backed by a hash table
for retrieving specific items. The scheduler is based on an
array-based binary heap and permits fast rescheduling [8].

PyPDEVS [9] was recently implemented and its per-

TMS/DEVS 2015, April 12 - 15, 2015, Alexandria, VA, USA
© 2015 Society for Modeling & Simulation International (SCS)

906

formance now comes close to adevs [5][9]. PyPDEVS of-
fers a modular architecture, using a BaseSimulator class to
run both coupled and atomic DEVS models as it applies
symbolic flattening [9][10]. Besides, it offers a variety of
schedulers (namely a sorted list, activity map, and a heap-
set) for speedup. Unlike adevs, PyPDEVS supports dynam-
ic typing; therefore, all the messages are not required to be
of the same type. PyPDEVS has sequential and distributed
variants [11] but both mainly focus on computational activi-
ty information in order to reduce simulation time.

Other PDEVS simulators include VLE (Virtual Labora-
tory Environment) [12] that couples multiple simulators
within a DEVS-Bus architecture and uses PDEVS for coor-
dination; DEVS-Ruby [13], which uses processors to wrap
models, and comes close to PyPDEVS performance [5];
and CD++ [14], whose performance is slower than adevs.

The DEVStone synthetic benchmark [15] has been used
to evaluate the performance of different DEVS simulators.
DEVStone generates a suite of models of different size,
complexity and behavior to mimic applications in the real
world. DEVS supports the construction of hierarchical
models, which may affect performance. DEVStone was
created to study and compare the efficiency of DEVS (and
other discrete event) simulators, to compare different ver-
sions of a specific simulation engine, and to help measuring
and improving DEVS-based software.

The DEVStone model generator allows one focusing on
essential aspects that impact performance: the size of the
model and the workload of its transition functions. The fol-
lowing parameters are used to generate a model: type
(structure and interconnections between components), depth
(number of levels in the hierarchy), width (number of com-
ponents in a coupled model), internal transition time and
external transition time. There are four types of models
available (LI, HI, HO and HOMod), each with a different
internal and external structure
• LI: these models have a low level of interconnections,

i.e. one input and one output port, for each coupled
model. The input port is connected to each component
but only one component produces an output through
the output port.

• HI: these models have a high level of input couplings.
Each atomic component a connects its output port to
the input port of the a+1th component.

• HO and HOmod [15]: these are models with high level
of coupling and numerous outputs. HO models have
two inputs and two outputs at each level while HOmod
have a second set of (width-1) models where each one
of the atomic components triggers the entire first set of
(width-1) atomic models.

As the model structure and the time spent in transition
functions are known (as the transition functions execute the
Dhrystone benchmark), the model execution time can be
computed. Detailed formulas can be found in [15].

Several simulators have been compared using
DEVStone. In [15], adevs outperformed CD++ by a signifi-
cant margin for large models. Several other PDEVS simula-

tors (JAMES II, VLE, PyDEVS, DEVS-Ruby) have been
compared to adevs, in [5], using DEVStone as well and
adevs remains the reference with regards to performance.
Flattening the model [16] is a proposed improvement in
which the model structure is modified so that there are no
more coupled models. Hence, the overhead induced by
passing messages through different levels disappears. The
impact of flattening has also been measured using
DEVStone [15], showing clear performance improvement.

Existing simulators have used various mechanisms to
parallelize the code, but this often results in high overhead.
Likewise, implementing the abstract simulators efficiently
and choosing good data structures methodically are essen-
tial for the simulator’s performance. To tackle these chal-
lenges, we introduce a sequential architecture, and we pro-
vide an effective implementation of the abstract simulator.
The performance is assessed by comparing it to adevs.

A SEQUENTIAL ALGORITHM
In the background section, we briefly mentioned the
PDEVS abstract simulation algorithms, which uses two
kinds of components: Simulators (in charge of Atomic
models), and Coordinators (in charge of Coupled models),
using a one to one mapping between models and simulation
components.

The approach used in the abstract algorithms' definition
is parallel: all the components are considered to be running
and waiting for a message at the start. The Root Coordina-
tor starts the simulation by sending an advance request to
all its children and waits until a response is received from
all of them. Each Coordinator receiving one of these mes-
sages does the same: it sends the message to each of its
children and waits for the replies (done and output messag-
es). When a request reaches a Simulator, it runs sequential-
ly the simulation of its Atomic model and sends results to
its parent Coordinator. Once all the replies are collected at
the Root level, the Root Coordinator sends the messages to
advance the simulation once again, until the end.

Coordinator Algorithms
To provide a sequential, single threaded Coordinator, we
removed semaphores and simultaneous executions defined
in the original abstract simulator. We also replaced the top-
down message passing by function calls, and the bottom-up
message passing by return from the called functions. An
additional benefit of this approach is that children are not
aware of their parent coordinators and do not need to keep
track of their parents. Likewise, we are sure that the call
hierarchy is limited to a fixed value that is linear to the
height of our model hierarchy, since calls are only initiated
by the parent coordinators, and they only happen in a top
down fashion.

Because multiple message types are supported, replies
can carry more than the confirmation of execution. We have
encoded the returned message type so that different kind of
messages – done and output messages – can be received
from the children. Afterwards, we use the message type to

907

process the reply and to route messages accordingly. For
instance, if a child sends an output message, the parent will
add this message to the inbox of all other children that are
internally coupled to the one that generated output.

For the messages received from the parent, we define two
functions: advance-simulation and collect-outputs as shown
in Figure 1.

Coordinator
Vars:
 next // Next scheduled event time
 last // Last processed event time
 FEL // Future event list

Method collect_outputs(Time t)

if t != next then return {}
else

 set outputs = empty bag
 for each imminent submodel Coordinator c
 if c is in EOC
 then outputs = Union(outputs,

c.collect_outputs(t))
 end if
 end for
 return outputs
end if

end method

Method advance_simulation(Time t)
assert t in [last, next]
last = t
set external_imminents = empty set

for each Coordinator c of a submodel in EIC

 if self.inbox is not empty and c.next != t
 then add r to external_imminents

 end if
 add self.inbox contents to c.inbox
end for

if t == next then

 for each Coordinator c of a submodel receiv-
ing input from an imminent i because of IC
 set temp = collect_outputs(i)
 if not empty temp and c.next != t
 then add c to external_imminents
 end if

 add temp to c.inbox
 end for
end if

for each Coordinator c in Union(imminents,

external_imminents)
 c.advance_simulation(t)

 if c.next != infinity
 then
 FEL.remove_value(c) //for rescheduling
 FEL.insert(c.next, c)

 end if
end for

if empty FEL then next = infinity
else next = FEL.top.first end if

 imminents = coordinators on top of FEL
 remove imminents from FEL
end method

Figure 1. Coordinator

We added a structure to each Coordinator called inbox,
which is used to collect the messages returned by collect-
output that will be used by the next call to advance-
simulation. This is safe since we know that the two func-
tions will always be called in the same order because of
how the main loop is defined by the Root Coordinator.

In collect_outputs, the coordinator verifies if it has
reached its next state change time. If not, an empty reply is
sent; otherwise, the outputs of each imminent coordinator
of its submodels are collected and added to the output bag.
Hence, all the Y-messages are collected first and then sent
together.

For advance_simulation, the time t is verified to ensure
that it is between the last and next scheduled change. If so, t
is saved as the last change time, and external imminent
models (those that received an input event) are set by add-
ing each receiver of the external coupling set to the external
imminent set, and adding the content of the inbox to the
receiver’s inbox. The previous steps run if the coordinator
inbox is not empty (an input message was received) and the
receiver’s next state change is not t. If it is time for the next
state change (t == next), the outputs of each imminent
model are collected and carried out to any linked coupled
model that is then added to the external imminent set.

In all these cases, the coordinator calls advance_ simu-
lation for each coordinator in the imminent and external_
imminent sets, and their next state change time is added to
the Future Event List (FEL). If this is empty, the next state
change is infinity; otherwise it is picked from the FEL. Fi-
nally, all the imminents are retrieved from the FEL.

Simulator Algorithms
For the Simulator, only the return reply mechanism is re-
quired. Since Coordinators and Simulators do not know
their parents, all communications are initiated in a top down
fashion, and the replies are collected using the method re-
turned values. The function names are the same as in the
Coordinator: advance_simulation and collect_outputs. The
algorithms for the Simulator are shown in Figure 2.

Simulator : subclass of Coordinator
Vars:
 next // Next scheduled event time
 last // Last processed event time
 model // atomic model being simulated

Method collect_outputs(Time t)

if t != next then return {}
else return model.out() end if

end method

Method advance_simulation(Time t)

assert t in [last,next]
if self.inbox is empty and t == self.next
then
 model.internal()

 next = last + model.time_advance()
end if

if self.inbox is not empty
then

908

 set local_t = t - last
 if t == next
 then model.confluence(inbox, local_t)
 else model.external(inbox, local_t)
 end if
 next = last + model.time_advance()
end if
last = t

end method

Figure 2. Simulator

The collect_outputs method verifies the parameter time
t. If this is different from the next scheduled event, an emp-
ty bag is returned; otherwise, the output generated by the
model is returned. For advance_simulation, we verify if
time t is legitimate by making sure it is within the last
change and the next expected change. If advance_ simula-
tion was called with a valid time t, the inbox content is
checked. If the inbox is empty and it is time for the next
event, i.e. the next internal transition, the internal function
is executed and the next change is set by adding the last
change time and the delay TA. When inbox is not empty,
(an input has been received), we execute the external func-
tion if the time different from the next state change (internal
transition time). If not, it indicates that the external and
internal transitions are scheduled for the same time and
consequently the confluent function is executed.

SIMULATOR ARCHITECTURE
The architecture of the new simulator consists of modules
that mainly correspond to the modeling and simulation exe-
cution engines. This modular design has the great ad-
vantage of providing simple interfaces to the modeler, who
can easily transition from the PDEVS specification to the
model implementation. The simulation mechanism and the
abstract simulator details are hidden, and they do not need
to be manipulated by the users, but could be extended by an
expert user. The architecture components can be grouped
into three categories: Model classes, Execution classes and
Utility classes as shown in Figure 3.

The Model classes are used to build PDEVS models.
They include the PDEVSAtomic and PDEVSCoupled clas-
ses that inherit from a class named Model. PDEVSAtomic
provides virtual methods for defining PDEVS atomic mod-
els behavior. On the other hand, PDEVSCoupled is for or-
ganizing the models in a hierarchical manner and coupling
components.

The Execution classes provide simulation engines for
the atomic and coupled models defined by the users. The
PDEVSSimulator class executes the simulator’s algorithms
defined in the previous section, and it renders atomic mod-
els behavior. The PDEVSCoordinator class runs the algo-
rithms described in the sequential algorithm in order to exe-
cute coupled models.

The Utility classes are not explicitly defined in the
PDEVS formalism or the abstract simulator, but they have
been included as they provide useful functionalities. These
classes are used to control the input stream that process
input event files. Other useful components are the Message,

Time and FEL (Future Event List) classes.

Model classes Implementation
For model classes (shown in Figure 4), we will first present
the PDEVSAtomic class, which is used to define new atom-
ic models. The constructor requires two template parame-
ters: Time and Message. The functions provided by
PDEVSAtomic correspond to those described in the formal-
ism: internal, external, confluent, time-advance and output
functions. The time-advance, which is commonly included
in the internal and external function in various simulation
implementations, is here clearly separated and has its own
dedicated function.

Coupled models are defined using the PDEVSCoupled
class. This class constructor receives four parameters: the
list of pointers of the components to be coupled; the Exter-
nal Input Couplings (EIC) pointers list for models that re-
ceive inputs from outside of the coupled model; the Internal
Couplings (IC) pointers list for models that are connected
internally; and finally the External Output Couplings (EOC)
pointers list for models that send outputs outside of the
coupled model. PDEVSCoupled provide two implementa-
tions of this constructor: one that takes initialization lists
and another with vectors. This is particularly useful for dy-
namical model construction and certain compilers with un-
implemented initialization lists.

Both PDEVSAtomic and PDEVSCoupled classes inherit
the model class that allows coupled and atomic models to
be connected easily through couplings that can be debugged
with ease since they share a common model interface.

Execution classes implementation
Execution classes, illustrated in Figure 5, implement the
abstract simulator algorithms and execute models. The
PDEVSCoordinator class, in charge of managing coupled
models, requires three template parameters: Time, Message
and Future Event List (FEL). These three parameters will
be detailed in the utility classes.

Constructing coordinator objects is complex, as it re-
quires the coupled model components to be extracted and
embedded in the coordinator. For instance, when the coor-
dinator is built, all the children are constructed, and the
couplings between components that communicate are
saved. The simulation algorithms described previously–
collect_outputs and advance_simulation - are implemented
in this class.

The PDEVSSimulator class implements the simulator’s
algorithms presented in the sequential algorithm. Therefore,
this class is in charge of calling the state transition functions
at the appropriate times, and of returning the outputs of the
atomic models to their coordinators.

In addition to the described function, an init function
setups the model initial state. In addition, an extra variable
keeps a pointer to the simulated model.

Apart from the PDEVSSimulator and PDEVSCoordina-
tor classes, a PDEVSRunner class was implemented. This
class advances the simulation for the Root coordinator and

909

defines the end time of the simulation. It also provides
mechanisms for output and debugging.

Utility classes
The utility classes provide essential data structures to run
the simulation properly. The first class in the utility catego-
ry is called Message. Boost::any is used by default as the
message type, and it allows the exchange of any type of
messages in our models. This data type enables us to define
type agreements between any pair of connected models
without restricting the user to utilize a single data type for
every communication in the simulation.

For the time component, we have developed some com-
plex data types based on other lines of work we are study-
ing at present [17]. In the current implementation, any type
having assignation, equality, order, addition and definition
of infinite can be used, i.e. double is accepted.

The Future Event List (FEL) is also provided as part of
the utility classes. Using an effective FEL is essential in
order to achieve good performance, as exemplified by the
schedulers implemented in PyPDEVS. For the FEL type,
any structure that matches the priority queue signature is
accepted. Hence, the user can define customized schedulers
and increase performance if needed. The default provided

FEL is the standard priority queue for now. This data struc-
ture is part of the language and is suited to store and re-
trieve timed events. Other data structures have been consid-
ered for the FEL [18] and will be implemented in the future.

In addition to the data types provided by the above-
described classes, an input stream model is also provided.
Its role is to allow reading and processing events that origi-
nate from an external source. Indeed, in most of the cases,
models receive inputs that come from the external environ-
ment. A common approach used by many simulators is to
add file reading capabilities to the Root coordinator. How-
ever, we believe that having a specialized module that as-
sumes this responsibility is better. Indeed, having the event
file processed in the root coordinator requires all inputs to
be centralized in the same location and involves additional
routing. In contrast, a separate input stream model is more
flexible and allows the inputs to be placed close to the
model of interest. Therefore, the new simulator provides a
standard atomic model capable of processing standard input
stream. This model receives two constructor parameters: the
input stream to be read and the function to process events in
the stream.

Figure 3. Architecture

Figure 4. Model Classes

910

Figure 5. Execution Classes

Finally, it is essential to remind that we plan to submit
this simulation code to the Boost Library [19]. Therefore,
the Boost coding standards were used and only Boost and
the C++11 standard libraries were included. We compiled
and tested our code on multiple platforms, including vari-
ous distributions of Linux, DragonFlyBSD, FreeBSD, MS
Windows, OSX, and on an ARM platform (using STM32F2
Evaluation Board). Tool chains available in each platform
were used, namely clang, gcc and MS compilers.

In the next section, we present comparisons with adevs
to assess the new simulator performance.

RESULTS
In order to evaluate the performance of the new simulator,
we have designed a set of experiments using the DEVStone
benchmark previously described in the background section.
These experiments run different tests on both HI and LI
models.

The same experiments are also run using the flattened
model version of the new simulator and the results are
compared to adevs for each case. In the following graphs,
we will identify the simulators as adevs, cdevs and cdflat
where cdevs and cdflat both refers to the new simulator, the
first one running the model as defined and the second run-
ning a flattened version of it.

For our first experiment, we used a LI topology with
height 5 and width 1000. We introduced to the simulation
sets of input messages, one message per simulation second.

Figure 6 shows the execution time for running this
simulation in each of the simulators. Figure 7, shows the
results for the same experiment when using HI topology. In
this case, we had to reduce the width to 100 due to hard-
ware limitations. In both cases, adevs and cdevs/cdflat per-
formances are close – the difference is never higher than
1%. From this experiment, we can conclude that the new
simulator has a performance similar to adevs for sequential
events.

Figure 6. LI with Width = 1000, Height = 5, Individual Events

Figure 7. HI with Width = 100, Height = 5, Individual Events

For the next experiment, we used the same models but
introduced all input messages simultaneously. This is main-
ly done in order to verify if our implementation handles
simultaneous events as well as adevs, which uses the clo-
sure property. We show the results for LI topology in Fig-
ure 8 and those for HI topology in Figure 9.

911

Figure 8. LI with Width = 1000, Height = 5,

Simultaneous Events

Figure 9. HI with Width = 100, Height = 5,

Simultaneous Events

In both cases, the new simulator clearly performs better
and handles simultaneous input messages faster than adevs
as shown in figure 8. Moreover, the difference increases
linearly with the number of injected messages.

For the next experiment, we used an LI topology model
with different depths and introduced to it 5000 events. In
Figure 10, we show the execution time when the messages
are introduced sequentially separated by 1 second. In Figure
11, we show execution time when all messages are intro-
duced simultaneously at time 0. We observe a similar pat-
tern as in the previous plots. As illustrated, injecting simul-
taneous messages produces a difference linear to the depth
of the model.

Finally, for our last experiment we use the same LI to-
pology as in the first experiment. We input 10000 messages
to the model. The messages are first delivered 1 at a time,
then 2 at a time, 5 at a time, until 500 is reached. Figure 12
shows the execution time for these experiments.

Notice that the first few increases in the packet of events
size reduce the execution time logarithmically, but when
the packages are larger than twenty, performance hardly
improves, and stays constant.

This experiment shows that the difference is exhibited
when simultaneous events are involved and is proportional
to the depth of the model. This can be explained by the fact
that adevs has to construct atomic models equivalent to
coupled models as per the closure property.

Figure 10. LI with Width = 100, Input Events = 5000,

Sequential

Figure 11. LI with Width = 100, Input Events = 5000,
Simultaneous

From the above experiments, we have observed similar
results for HI and LI models in the presence of sequential
events. When simultaneous events are introduced, the new
simulator has an obvious advantage that increases when the
number of input messages is increased. For LI models, the
difference also increases proportionally to the width.

Figure 12. LI Coupling receiving packs of messages

Hence, the new simulator provides an elegant modular
architecture that preserves the coupled/atomic structure and
allows having a best-in-class performance.

CONCLUSION
The PDEVS formalism was introduced to resolve classic
DEVS serialization constraints and allow simultaneous
events. In this paper, we presented a PDEVS simulator that

912

implements Chow’s abstract simulator. This abstract simu-
lator defines algorithms that are parallel by nature. Yet, a
parallel implementation although intuitive might not be the
best approach for single core processors. We have used a
sequential approach that enables determinism in a simple
and neat way, saves resources and is time efficient. This
approach is particularly useful for time-critical systems
where predictability is of the utmost importance.

A modular architecture that maintains the coordina-
tors/coupled models and simulators/atomic models was also
described. This design preserves the natural structure of
DEVS models. Furthermore, the simulator uses a set of
efficient algorithms for simulators and coordinators and an
implementation based on call/return that allows sequential
execution.

The new simulator was implemented as a library written
in C++, compliant with the C++11 and the Boost library
coding standard. It supports multiple data types for the
Time, FEL and Messages, and compiles in multiple plat-
forms, including BSD, Linux, OS X, MS Windows and
embedded systems.

We compared the new simulator performance against
adevs using the DEVStone benchmark and showed that no
new overheads were introduced. In particular, the new sim-
ulator performs better than the adevs in presence of simul-
taneous events, main purpose for which PDEVS was creat-
ed.

Future work will consist in submitting the library for re-
view to Boost, introducing the concept of ports in the simu-
lator and optimizing the data structures used for the bag
data type that carries messages.

REFERENCES
1. B. P. Zeigler, H. Praehofer and T. G. Kim, Theory of

modeling and simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems, San
Diego, CA: Academic Press, 2000.

2. A. C. Chow, B. P. Zeigler and D. H. Kim, "Abstract
simulator for the parallel DEVS formalism". Proc. of
the Fifth Conference on AI, Simulation, and Planning
in High Autonomy Systems, Gainesville, FL, 1994.

3. A. C. Chow, “Parallel DEVS: A parallel, hierarchical,
modular modeling formalism and its distributed simu-
lator,” TRANSACTIONS of the Society for Computer
Simulation, vol. 13, no. 2, pp. 55-68, 1996.

4. J. Himmelspach and A. M. Uhrmacher, “Sequential
processing of PDEVS models,” in Proceedings of the
3rd EMSS, Barcelona, Spain, 2006.

5. R. Franceschini, P.-A. Bisgambiglia, L. Touraille, P.
Bisgambiglia, D. Hill, R. Neykova and N. Ng "A sur-
vey of modelling and simulation software frameworks
using Discrete Event System Specification," in 2014
Imperial College Computing Student Workshop,
London, England, 2014.

6. J. Nutaro. (2014, Feb 19). A Discrete EVent system
Simulator. [Online]. Available:

http://web.ornl.gov/~1qn/adevs/adevs-docs/manual.pdf
7. J. J. Nutaro, Building software for simulation: theory

and algorithms, with applications in C++. Hoboken,
NJ: Wiley. 2011.

8. A. Muzy and J. J. Nutaro, “Algorithms for efficient
implementations of the DEVS & DSDEVS abstract
simulator” 1st Open International Conference on Mod-
eling & Simulation (OICMS), Clermont-Ferrand,
France, 2005.

9. Y. Van Tendeloo and H. Vangheluwe, "The modular
architecture of the python (P)DEVS simulation kernel”
Proceedings of the Symposium on Theory of Modeling
& Simulation, 2014.

10. B. Chen and H. Vangheluwe, "Symbolic flattening of
devs models," in Proceedings of the 2010 Summer
Computer Simulation Conference, Ottawa, Canada,
2010.

11. Y. Van Tendeloo and H. Vangheluwe, "Activity in
PythonPDEVS," ITM Web of Conferences, vol. 3, p.
01002, 2014.

12. G. Quesnel, R. Duboz, E. Ramat and M. K. Traore,
"VLE: a multimodeling and simulation environment,"
in Proceedings of the 2007 summer computer
simulation conference, San Diego, CA, 2007.

13. R. Franceschini, P.-A. Bisgambiglia, P. Bisgambiglia
and D. Hill, "DEVS-ruby: a domain specific language
for DEVS modeling and simulation (WIP)," in
Proceedings of the Symposium on Theory of Modeling
& Simulation-DEVS Integrative, Tampa, FL, 2014.

14. G. Wainer, "CD++: A Toolkit to Develop DEVS
Models," Software: Practice and Experience, vol. 32,
no. 13, pp. 1261-1306, 2002.

15. G. Wainer, E. Glinsky and M. Gutierrez-Alcaraz,
"Studying performance of DEVS modeling and
simulation environments using the DEVStone
benchmark," Simulation, vol. 87, no. 7, pp. 555-580,
2011.

16. K. Kim, W. Kang, B. Sagong and H. Seo, "Efficient
Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-Hierarchical
One," in Proceedings of the 33rd Annual Simulation
Symposium, Washington, DC, 2000.

17. D. Vicino, O. Dalle and G. Wainer, "A Data Type for
Discretized Time Representation in DEVS," in
Proceedings of the 7th International ICST Conference
on Simulation Tools and Techniques, Lisbon, Portugal,
2014.

18. J. Himmelspach and A. M. Uhrmacher, "The event
queue problem and PDevs," in Proceedings of the 2007
Spring Simulation Multiconference - Volume 2,
Norfolk, VA, 2007.

19. B. Karlsson, Beyond the C++ Standard Library: An
Introduction to Boost, Addison Wesley, Aug 31, 2005,
p. 432.

913

