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ABSTRACT 
Parallel Discrete Event System Specification (PDEVS) is a 
well-known formalism used to model and simulate Discrete 
Event Systems. This formalism uses an abstract simulator 
that defines a set of abstract algorithms that are parallel by 
nature. To implement simulators using these abstract algo-
rithms, several architectures were proposed. Most of these 
architectures follow distributed approaches that may not be 
appropriate for single core processors or microcontrollers. 
In order to reuse efficiently PDEVS models in this type of 
systems, we define a new architecture that provides a single 
threaded execution by passing messages in a call/return 
fashion to simplify the execution time analysis. 
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INTRODUCTION 
Discrete Event System Specification (DEVS) is a mathe-
matical formalism for modeling and simulating discrete-
event dynamic systems [1]. To tackle the complexity of the 
system, DEVS decomposes the system into basic (behav-
ioral) models called atomic models and composite (struc-
tural) models called coupled models.  

In classic DEVS, whenever two models are scheduled 
for state transitions at the same time, one of the models is 
chosen according to a select function provided in the cou-
pled model specification. Classic DEVS was extended to 
resolve serialization constraints and allow simultaneous 
events, defining what is called Parallel DEVS (PDEVS) [2].  

Each DEVS specification can be executed by an abstract 
simulator that defines the operational semantics of the mod-
els. Existing PDEVS simulation algorithms are parallel by 
nature, and lead most developers to adopt a concurrent im-
plementation (even in single cores). Nevertheless, a sequen-
tial algorithm could lead to better performance while deal-
ing appropriately with simultaneous events and guarantee-
ing predictability. Moreover, on low-cost single core pro-
cessors, concurrent implementations will be executed se-
quentially by the operating system, and this may introduce 
unpredictability and overhead. In critical systems for in-
stance, reliability and predictability are more important than 
expressiveness and performance. In these cases, it is essen-

tial to produce a program with a predictable execution trace.   
Here, we show new sequential algorithms to run 

PDEVS models, using a modular and flexible architecture. 
The objective is to achieve high performance and provide 
predictability. The algorithms have a small call stack, linear 
to the height of the model hierarchy. This aspect is particu-
larly essential for the previously discussed systems that may 
have limited resources. To demonstrate the quality of the 
proposal, the simulator is compared against other simulators 
in the context of single core execution. 

A simulator that implements the above concepts was 
developed and follows the C++11 standard. Therefore, its 
API can be integrated to Boost, a popular set of libraries for 
C++, providing a library of discrete-event system specifica-
tions using DEVS for the community of C++ standard pro-
grammers. 

BACKGROUND 
Our proposed approach is based on the abstract algorithms 
defined by Chow [2]. The simulation algorithms can be 
found in [2]. Chow also implemented a set of algorithms for 
distributed computation in [3]. 

To the best of our knowledge, the only sequential ap-
proach that also preserves the coordinator/simulator con-
cepts (as defined in the abstract simulator) is JAMES II [4]. 
This approach, which is partially sequential, was compared 
against parallel versions showing that it performed better 
for larger models, and was less efficient for smaller ones. 
The tests used an example of forest fire simulation. 

Several other simulators have implemented PDEVS us-
ing different approaches. We will first discuss adevs (a Dis-
crete Event Simulator) since in [5] it was the fastest of the 
DEVS framework tested. In adevs, coupled models (also 
referred to as network models in [6]) are reduced to an 
equivalent atomic model (called the resultant) whose states, 
transition and output functions are defined by its intercon-
nected components. Adevs exploits the closure property and 
converts coupled models into atomic models with corre-
sponding transition, output and time advance functions [7] 
through the resultant transformation, and hence eliminates 
the need of simulating each component individually. 

Adevs has evolved during the last 15 years, has over 29 
releases, and supports high performance by relying on op-
timized data structures. For instance, the Set implementa-
tion used in adevs is a dynamic array backed by a hash table 
for retrieving specific items. The scheduler is based on an 
array-based binary heap and permits fast rescheduling [8].  

PyPDEVS [9] was recently implemented and its per-
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formance now comes close to adevs [5][9]. PyPDEVS of-
fers a modular architecture, using a BaseSimulator class to 
run both coupled and atomic DEVS models as it applies 
symbolic flattening [9][10]. Besides, it offers a variety of 
schedulers (namely a sorted list, activity map, and a heap-
set) for speedup. Unlike adevs, PyPDEVS supports dynam-
ic typing; therefore, all the messages are not required to be 
of the same type. PyPDEVS has sequential and distributed 
variants [11] but both mainly focus on computational activi-
ty information in order to reduce simulation time.  

Other PDEVS simulators include VLE (Virtual Labora-
tory Environment) [12] that couples multiple simulators 
within a DEVS-Bus architecture and uses PDEVS for coor-
dination; DEVS-Ruby [13], which uses processors to wrap 
models, and comes close to PyPDEVS performance [5]; 
and CD++ [14], whose performance is slower than adevs. 

The DEVStone synthetic benchmark [15] has been used 
to evaluate the performance of different DEVS simulators. 
DEVStone generates a suite of models of different size, 
complexity and behavior to mimic applications in the real 
world. DEVS supports the construction of hierarchical 
models, which may affect performance. DEVStone was 
created to study and compare the efficiency of DEVS (and 
other discrete event) simulators, to compare different ver-
sions of a specific simulation engine, and to help measuring 
and improving DEVS-based software. 

The DEVStone model generator allows one focusing on 
essential aspects that impact performance: the size of the 
model and the workload of its transition functions. The fol-
lowing parameters are used to generate a model: type 
(structure and interconnections between components), depth 
(number of levels in the hierarchy), width (number of com-
ponents in a coupled model), internal transition time and 
external transition time. There are four types of models 
available (LI, HI, HO and HOMod), each with a different 
internal and external structure  
• LI: these models have a low level of interconnections, 

i.e. one input and one output port, for each coupled 
model. The input port is connected to each component 
but only one component produces an output through 
the output port. 

• HI:  these models have a high level of input couplings. 
Each atomic component a connects its output port to 
the input port of the a+1th component.  

• HO and HOmod [15]: these are models with high level 
of coupling and numerous outputs. HO models have 
two inputs and two outputs at each level while HOmod 
have a second set of (width-1) models where each one 
of the atomic components triggers the entire first set of 
(width-1) atomic models.  

As the model structure and the time spent in transition 
functions are known (as the transition functions execute the 
Dhrystone benchmark), the model execution time can be 
computed. Detailed formulas can be found in [15]. 

Several simulators have been compared using 
DEVStone. In [15], adevs outperformed CD++ by a signifi-
cant margin for large models. Several other PDEVS simula-

tors (JAMES II, VLE, PyDEVS, DEVS-Ruby) have been 
compared to adevs, in [5], using DEVStone as well and 
adevs remains the reference with regards to performance. 
Flattening the model [16] is a proposed improvement in 
which the model structure is modified so that there are no 
more coupled models. Hence, the overhead induced by 
passing messages through different levels disappears. The 
impact of flattening has also been measured using 
DEVStone [15], showing clear performance improvement. 

Existing simulators have used various mechanisms to 
parallelize the code, but this often results in high overhead. 
Likewise, implementing the abstract simulators efficiently 
and choosing good data structures methodically are essen-
tial for the simulator’s performance. To tackle these chal-
lenges, we introduce a sequential architecture, and we pro-
vide an effective implementation of the abstract simulator. 
The performance is assessed by comparing it to adevs. 

A SEQUENTIAL ALGORITHM 
In the background section, we briefly mentioned the 
PDEVS abstract simulation algorithms, which uses two 
kinds of components: Simulators (in charge of Atomic 
models), and Coordinators (in charge of Coupled models), 
using a one to one mapping between models and simulation 
components. 

The approach used in the abstract algorithms' definition 
is parallel: all the components are considered to be running 
and waiting for a message at the start. The Root Coordina-
tor starts the simulation by sending an advance request to 
all its children and waits until a response is received from 
all of them. Each Coordinator receiving one of these mes-
sages does the same: it sends the message to each of its 
children and waits for the replies (done and output messag-
es). When a request reaches a Simulator, it runs sequential-
ly the simulation of its Atomic model and sends results to 
its parent Coordinator. Once all the replies are collected at 
the Root level, the Root Coordinator sends the messages to 
advance the simulation once again, until the end. 

Coordinator Algorithms 
To provide a sequential, single threaded Coordinator, we 
removed semaphores and simultaneous executions defined 
in the original abstract simulator. We also replaced the top-
down message passing by function calls, and the bottom-up 
message passing by return from the called functions. An 
additional benefit of this approach is that children are not 
aware of their parent coordinators and do not need to keep 
track of their parents. Likewise, we are sure that the call 
hierarchy is limited to a fixed value that is linear to the 
height of our model hierarchy, since calls are only initiated 
by the parent coordinators, and they only happen in a top 
down fashion.  

Because multiple message types are supported, replies 
can carry more than the confirmation of execution. We have 
encoded the returned message type so that different kind of 
messages – done and output messages – can be received 
from the children. Afterwards, we use the message type to 
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process the reply and to route messages accordingly. For 
instance, if a child sends an output message, the parent will 
add this message to the inbox of all other children that are 
internally coupled to the one that generated output. 

For the messages received from the parent, we define two 
functions: advance-simulation and collect-outputs as shown 
in Figure 1. 

Coordinator 
Vars: 
    next  // Next scheduled event time 
    last  // Last processed event time 
    FEL   // Future event list 
 
Method collect_outputs(Time t) 

if  t != next then return {} 
else 

      set outputs = empty bag 
      for each imminent submodel Coordinator c  
         if c is in EOC 
         then outputs = Union(outputs,   

c.collect_outputs(t) ) 
      end if 
   end for 
   return outputs 
end if 

end method 
 

Method advance_simulation(Time t) 
assert t in [last, next] 
last = t 
set external_imminents = empty set 
 
for each Coordinator c of a submodel in EIC  

     if self.inbox is not empty and c.next != t  
     then add r to external_imminents 

  end if 
  add self.inbox contents to c.inbox 
end for 
 
if t == next then 

      for each Coordinator c of a submodel receiv-
ing input from an imminent i because of IC  
          set temp = collect_outputs(i) 
          if not empty temp and c.next != t  
          then add c to external_imminents  
          end if 

       add temp to c.inbox  
    end for 
end if 
 
for each Coordinator c in Union(imminents,  

external_imminents) 
    c.advance_simulation(t) 

       if c.next != infinity  
       then  
           FEL.remove_value(c) //for rescheduling 
           FEL.insert(c.next, c) 

    end if 
end for 
 
if empty FEL then  next = infinity 
else next = FEL.top.first end if 
 

   imminents = coordinators on top of FEL 
   remove imminents from FEL  
end method 

Figure 1. Coordinator 

We added a structure to each Coordinator called inbox, 
which is used to collect the messages returned by collect-
output that will be used by the next call to advance-
simulation. This is safe since we know that the two func-
tions will always be called in the same order because of 
how the main loop is defined by the Root Coordinator.  

In collect_outputs, the coordinator verifies if it has 
reached its next state change time. If not, an empty reply is 
sent; otherwise, the outputs of each imminent coordinator 
of its submodels are collected and added to the output bag. 
Hence, all the Y-messages are collected first and then sent 
together. 

For advance_simulation, the time t is verified to ensure 
that it is between the last and next scheduled change. If so, t 
is saved as the last change time, and external imminent 
models (those that received an input event) are set by add-
ing each receiver of the external coupling set to the external 
imminent set, and adding the content of the inbox to the 
receiver’s inbox. The previous steps run if the coordinator 
inbox is not empty (an input message was received) and the 
receiver’s next state change is not t. If it is time for the next 
state change (t == next), the outputs of each imminent 
model are collected and carried out to any linked coupled 
model that is then added to the external imminent set. 

In all these cases, the coordinator calls advance_ simu-
lation for each coordinator in the imminent and external_ 
imminent sets, and their next state change time is added to 
the Future Event List (FEL). If this is empty, the next state 
change is infinity; otherwise it is picked from the FEL. Fi-
nally, all the imminents are retrieved from the FEL.  

Simulator Algorithms 
For the Simulator, only the return reply mechanism is re-
quired. Since Coordinators and Simulators do not know 
their parents, all communications are initiated in a top down 
fashion, and the replies are collected using the method re-
turned values. The function names are the same as in the 
Coordinator: advance_simulation and collect_outputs. The 
algorithms for the Simulator are shown in Figure 2. 
 
Simulator : subclass of Coordinator 
Vars: 
    next  // Next scheduled event time 
    last  // Last processed event time 
    model // atomic model being simulated  
 
Method collect_outputs(Time t) 

if  t != next then return {} 
else return model.out() end if 

end method 
 
Method advance_simulation(Time t) 

assert t in [last,next] 
if self.inbox is empty and t == self.next  
then  
    model.internal() 

       next = last + model.time_advance() 
end if 
 
if self.inbox is not empty  
then 
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    set local_t = t - last 
    if t == next  
    then model.confluence(inbox, local_t) 
    else model.external(inbox, local_t) 
    end if 
    next = last + model.time_advance() 
end if 
last = t 

end method 

Figure 2. Simulator 

The collect_outputs method verifies the parameter time 
t. If this is different from the next scheduled event, an emp-
ty bag is returned; otherwise, the output generated by the 
model is returned. For advance_simulation, we verify if 
time t is legitimate by making sure it is within the last 
change and the next expected change. If advance_ simula-
tion was called with a valid time t, the inbox content is 
checked. If the inbox is empty and it is time for the next 
event, i.e. the next internal transition, the internal function 
is executed and the next change is set by adding the last 
change time and the delay TA. When inbox is not empty, 
(an input has been received), we execute the external func-
tion if the time different from the next state change (internal 
transition time). If not, it indicates that the external and 
internal transitions are scheduled for the same time and 
consequently the confluent function is executed. 

SIMULATOR ARCHITECTURE 
The architecture of the new simulator consists of modules 
that mainly correspond to the modeling and simulation exe-
cution engines. This modular design has the great ad-
vantage of providing simple interfaces to the modeler, who 
can easily transition from the PDEVS specification to the 
model implementation. The simulation mechanism and the 
abstract simulator details are hidden, and they do not need 
to be manipulated by the users, but could be extended by an 
expert user. The architecture components can be grouped 
into three categories: Model classes, Execution classes and 
Utility classes as shown in Figure 3. 

The Model classes are used to build PDEVS models. 
They include the PDEVSAtomic and PDEVSCoupled clas-
ses that inherit from a class named Model. PDEVSAtomic 
provides virtual methods for defining PDEVS atomic mod-
els behavior. On the other hand, PDEVSCoupled is for or-
ganizing the models in a hierarchical manner and coupling 
components. 

The Execution classes provide simulation engines for 
the atomic and coupled models defined by the users. The 
PDEVSSimulator class executes the simulator’s algorithms 
defined in the previous section, and it renders atomic mod-
els behavior. The PDEVSCoordinator class runs the algo-
rithms described in the sequential algorithm in order to exe-
cute coupled models. 

The Utility classes are not explicitly defined in the 
PDEVS formalism or the abstract simulator, but they have 
been included as they provide useful functionalities. These 
classes are used to control the input stream that process 
input event files. Other useful components are the Message, 

Time and FEL (Future Event List) classes. 

Model classes Implementation 
For model classes (shown in Figure 4), we will first present 
the PDEVSAtomic class, which is used to define new atom-
ic models. The constructor requires two template parame-
ters: Time and Message. The functions provided by 
PDEVSAtomic correspond to those described in the formal-
ism: internal, external, confluent, time-advance and output 
functions. The time-advance, which is commonly included 
in the internal and external function in various simulation 
implementations, is here clearly separated and has its own 
dedicated function. 

Coupled models are defined using the PDEVSCoupled 
class. This class constructor receives four parameters: the 
list of pointers of the components to be coupled; the Exter-
nal Input Couplings (EIC) pointers list for models that re-
ceive inputs from outside of the coupled model; the Internal 
Couplings (IC) pointers list for models that are connected 
internally; and finally the External Output Couplings (EOC) 
pointers list for models that send outputs outside of the 
coupled model. PDEVSCoupled provide two implementa-
tions of this constructor: one that takes initialization lists 
and another with vectors. This is particularly useful for dy-
namical model construction and certain compilers with un-
implemented initialization lists. 

Both PDEVSAtomic and PDEVSCoupled classes inherit 
the model class that allows coupled and atomic models to 
be connected easily through couplings that can be debugged 
with ease since they share a common model interface. 

Execution classes implementation 
Execution classes, illustrated in Figure 5, implement the 
abstract simulator algorithms and execute models. The 
PDEVSCoordinator class, in charge of managing coupled 
models, requires three template parameters: Time, Message 
and Future Event List (FEL). These three parameters will 
be detailed in the utility classes.  

Constructing coordinator objects is complex, as it re-
quires the coupled model components to be extracted and 
embedded in the coordinator. For instance, when the coor-
dinator is built, all the children are constructed, and the 
couplings between components that communicate are 
saved. The simulation algorithms described previously– 
collect_outputs and advance_simulation - are implemented 
in this class. 

The PDEVSSimulator class implements the simulator’s 
algorithms presented in the sequential algorithm. Therefore, 
this class is in charge of calling the state transition functions 
at the appropriate times, and of returning the outputs of the 
atomic models to their coordinators.  

In addition to the described function, an init function 
setups the model initial state. In addition, an extra variable 
keeps a pointer to the simulated model. 

Apart from the PDEVSSimulator and PDEVSCoordina-
tor classes, a PDEVSRunner class was implemented. This 
class advances the simulation for the Root coordinator and 
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defines the end time of the simulation. It also provides 
mechanisms for output and debugging. 

Utility classes 
The utility classes provide essential data structures to run 
the simulation properly. The first class in the utility catego-
ry is called Message. Boost::any is used by default as the 
message type, and it allows the exchange of any type of 
messages in our models. This data type enables us to define 
type agreements between any pair of connected models 
without restricting the user to utilize a single data type for 
every communication in the simulation. 

For the time component, we have developed some com-
plex data types based on other lines of work we are study-
ing at present [17].  In the current implementation, any type 
having assignation, equality, order, addition and definition 
of infinite can be used, i.e. double is accepted. 

The Future Event List (FEL) is also provided as part of 
the utility classes. Using an effective FEL is essential in 
order to achieve good performance, as exemplified by the 
schedulers implemented in PyPDEVS. For the FEL type, 
any structure that matches the priority queue signature is 
accepted. Hence, the user can define customized schedulers 
and increase performance if needed. The default provided 

FEL is the standard priority queue for now. This data struc-
ture is part of the language and is suited to store and re-
trieve timed events. Other data structures have been consid-
ered for the FEL [18] and will be implemented in the future. 

In addition to the data types provided by the above-
described classes, an input stream model is also provided. 
Its role is to allow reading and processing events that origi-
nate from an external source. Indeed, in most of the cases, 
models receive inputs that come from the external environ-
ment. A common approach used by many simulators is to 
add file reading capabilities to the Root coordinator. How-
ever, we believe that having a specialized module that as-
sumes this responsibility is better. Indeed, having the event 
file processed in the root coordinator requires all inputs to 
be centralized in the same location and involves additional 
routing. In contrast, a separate input stream model is more 
flexible and allows the inputs to be placed close to the 
model of interest. Therefore, the new simulator provides a 
standard atomic model capable of processing standard input 
stream. This model receives two constructor parameters: the 
input stream to be read and the function to process events in 
the stream. 

 
Figure 3. Architecture 

 
Figure 4. Model Classes 
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Figure 5. Execution Classes 

Finally, it is essential to remind that we plan to submit 
this simulation code to the Boost Library [19]. Therefore, 
the Boost coding standards were used and only Boost and 
the C++11 standard libraries were included. We compiled 
and tested our code on multiple platforms, including vari-
ous distributions of Linux, DragonFlyBSD, FreeBSD, MS 
Windows, OSX, and on an ARM platform (using STM32F2 
Evaluation Board). Tool chains available in each platform 
were used, namely clang, gcc and MS compilers.  

In the next section, we present comparisons with adevs 
to assess the new simulator performance. 

RESULTS 
In order to evaluate the performance of the new simulator, 
we have designed a set of experiments using the DEVStone 
benchmark previously described in the background section. 
These experiments run different tests on both HI and LI 
models.   

The same experiments are also run using the flattened 
model version of the new simulator and the results are 
compared to adevs for each case. In the following graphs, 
we will identify the simulators as adevs, cdevs and cdflat 
where cdevs and cdflat both refers to the new simulator, the 
first one running the model as defined and the second run-
ning a flattened version of it. 

For our first experiment, we used a LI topology with 
height 5 and width 1000. We introduced to the simulation 
sets of input messages, one message per simulation second. 

Figure 6 shows the execution time for running this 
simulation in each of the simulators. Figure 7, shows the 
results for the same experiment when using HI topology. In 
this case, we had to reduce the width to 100 due to hard-
ware limitations. In both cases, adevs and cdevs/cdflat per-
formances are close – the difference is never higher than 
1%. From this experiment, we can conclude that the new 
simulator has a performance similar to adevs for sequential 
events. 

 
Figure 6. LI with Width = 1000, Height = 5, Individual Events 

 
Figure 7. HI with Width = 100, Height = 5, Individual Events 

For the next experiment, we used the same models but 
introduced all input messages simultaneously. This is main-
ly done in order to verify if our implementation handles 
simultaneous events as well as adevs, which uses the clo-
sure property. We show the results for LI topology in Fig-
ure 8 and those for HI topology in Figure 9. 

911



 
Figure 8. LI with Width = 1000, Height = 5,          

Simultaneous Events 

 
Figure 9. HI with Width = 100, Height = 5,            

Simultaneous Events 

In both cases, the new simulator clearly performs better 
and handles simultaneous input messages faster than adevs 
as shown in figure 8. Moreover, the difference increases 
linearly with the number of injected messages. 

For the next experiment, we used an LI topology model 
with different depths and introduced to it 5000 events. In 
Figure 10, we show the execution time when the messages 
are introduced sequentially separated by 1 second. In Figure 
11, we show execution time when all messages are intro-
duced simultaneously at time 0. We observe a similar pat-
tern as in the previous plots. As illustrated, injecting simul-
taneous messages produces a difference linear to the depth 
of the model.  

Finally, for our last experiment we use the same LI to-
pology as in the first experiment. We input 10000 messages 
to the model. The messages are first delivered 1 at a time, 
then 2 at a time, 5 at a time, until 500 is reached. Figure 12 
shows the execution time for these experiments.  

Notice that the first few increases in the packet of events 
size reduce the execution time logarithmically, but when 
the packages are larger than twenty, performance hardly 
improves, and stays constant. 

This experiment shows that the difference is exhibited 
when simultaneous events are involved and is proportional 
to the depth of the model. This can be explained by the fact 
that adevs has to construct atomic models equivalent to 
coupled models as per the closure property. 

 
Figure 10. LI with Width = 100, Input Events = 5000, 

Sequential 

 

Figure 11. LI with Width = 100, Input Events = 5000, 
Simultaneous 

From the above experiments, we have observed similar 
results for HI and LI models in the presence of sequential 
events. When simultaneous events are introduced, the new 
simulator has an obvious advantage that increases when the 
number of input messages is increased. For LI models, the 
difference also increases proportionally to the width.   

 
Figure 12. LI Coupling receiving packs of messages 

Hence, the new simulator provides an elegant modular 
architecture that preserves the coupled/atomic structure and 
allows having a best-in-class performance.  

CONCLUSION 
The PDEVS formalism was introduced to resolve classic 
DEVS serialization constraints and allow simultaneous 
events. In this paper, we presented a PDEVS simulator that 

912



implements Chow’s abstract simulator. This abstract simu-
lator defines algorithms that are parallel by nature. Yet, a 
parallel implementation although intuitive might not be the 
best approach for single core processors. We have used a 
sequential approach that enables determinism in a simple 
and neat way, saves resources and is time efficient. This 
approach is particularly useful for time-critical systems 
where predictability is of the utmost importance.  

A modular architecture that maintains the coordina-
tors/coupled models and simulators/atomic models was also 
described.  This design preserves the natural structure of 
DEVS models. Furthermore, the simulator uses a set of 
efficient algorithms for simulators and coordinators and an 
implementation based on call/return that allows sequential 
execution. 

The new simulator was implemented as a library written 
in C++, compliant with the C++11 and the Boost library 
coding standard. It supports multiple data types for the 
Time, FEL and Messages, and compiles in multiple plat-
forms, including BSD, Linux, OS X, MS Windows and 
embedded systems. 

We compared the new simulator performance against 
adevs using the DEVStone benchmark and showed that no 
new overheads were introduced. In particular, the new sim-
ulator performs better than the adevs in presence of simul-
taneous events, main purpose for which PDEVS was creat-
ed. 

Future work will consist in submitting the library for re-
view to Boost, introducing the concept of ports in the simu-
lator and optimizing the data structures used for the bag 
data type that carries messages. 
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