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ABSTRACT 

Embedded systems are becoming increasingly complex and 

heterogeneous.  Formal methods have proven effective in 

ensuring reliability and safety. However, they are hard to scale up. 

Modeling and Simulation (M&S)-based methods, on the other 

hand, deal effectively with scalability issues and provide the 

benefits of a risk-free testing environment. Yet, they are usually at 

most semi-formal, and models are not directly executed on the 

target hardware. To address the above challenges, we present a 

formal M&S-based kernel that runs on bare-metal and execute the 

original simulation models on the target hardware. 

Categories and Subject Descriptors 

C.3 [Special-Purpose and Application-Based Systems]: Real-

time and embedded systems; D.2.13 [Software Engineering]: 

Reusable Software – Reuse models; D.4.7 [Operating Systems]: 

Organization and Design – Real-time systems and embedded 

systems; I.6.8 [Simulation and Modeling]: Types of Simulation – 

Discrete event; B.1.2 [Control Structure and 

Microprogramming]: Control Structure Performance Analysis 

and Design Aids – Formal Models; B.4.4 [Input/Output and 

Data Communications]: Performance Analysis and Design Aids 

– Formal Methods;  

General Terms 

Design, Experimentation, Theory. 
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Real-Time Embedded Systems; Model Execution Engine; DEVS; 

1. INTRODUCTION 
Embedded systems are everywhere, and they shape the world. 

Any device that runs on electricity either already has, or will soon 

have a computing system embedded within it. An embedded 

system is generally defined as a combination of computer 

hardware and software, designed to perform a dedicated function. 

Real-Time Embedded Systems (RTES) in particular, in addition 

to producing correct responses, are also required to deliver them 

within strict timing constraints [11]. Missing these deadlines may 

lead to significant loss and in some cases catastrophic 

consequences. Other constraints related to these systems are 

limited dimensions, low cost, and low power requirements.  

In addition to dealing with timeliness requirements, RTES design 

needs to deal with hardware/software partition, and cope with 

target systems’ increasing scalability and complexity. However, 

there had been a real shortage of effective design and 

implementation practices. Most design methodologies are ad-hoc 

based, and therefore hard to scale up for larger systems, and/or 

require tremendous testing effort with no guarantee of a bug-free 

software product. Deficiencies come from two main weak areas: 

the development cycle and system verification. Indeed, 

disruptions exist in the development cycle since different artifacts 

and tools are used throughout the various phases [10]. System 

verification, on the other hand, is hardened by these 

discontinuities as well as the absence of robust development 

framework. 

Recently, formal methods have shown great potential in dealing 

with these issues [17], but these methods remain hard to scale up. 

On the other hand, model-based design techniques handle well 

heterogeneity but the lack of formal modeling and effective model 

transformation are major roadblocks. A practical solution to the 

above problems is the use of formal Modeling and Simulation 

(M&S), therefore combining the advantages of a simulation based 

approach with the rigor of a formal methodology [16]. 

Such a M&S-driven approach must, however, ensure efficient 

model transformation, and should especially allow the original 

models to run on the target hardware. In this paper, we will 

present a kernel based on a formal M&S methodology that 

enables the user to run models directly on bare-metal. The 

objective is to be able to execute models directly on the target 

system hardware without the need of an operating system. The 

new model execution engine presented here provides 

functionalities similar to those of a real-time kernel, with formal 

models operating as system processes. This step narrows further 

the gap between the simulation and implementation phases. In 

fact, the same models are used for both simulation and execution 

on the final target. In order to show the feasibility of the approach, 

we present a case study of a line tracking robot using the bare 

metal environment. 

A kernel that allows models to run on bare-metal was developed, 

and tested on ARM Cortex-M boards. As an application, we have 

modeled, simulated and deployed a line tracking robot. The 

results obtained using the new environment are compared and 

validated against another existing embedded environment. 

2. BACKGROUND 
The proposed approach is based on DEMES (Discrete-Event 

Modeling of Embedded Systems) [3] that offers a practical 

method in which models are consistently used throughout the 

development cycle. DEMES is an M&S based development 

methodology based on Discrete-EVent Systems specification 

(DEVS), which is a discrete event simulation formalism for 

modeling and simulating dynamic systems.  The DEVS formalism 

[15] decomposes complex system designs into basic (behavioral) 
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models called atomic, and composite (structural) models called 

coupled. Precise rules are followed to define state changes of the 

modeled system with regards to input events or time delay 

triggers. DEVS is especially suitable for RTES since it provides a 

rich structural representation of components, and formal means 

for explicit time specification, which is essential to RTES. It has 

proven to be successful in different complex systems and can also 

be used alongside with existing real-time techniques such as state-

charts, VHDL, Verilog and Timed Automata [17] [18]. 

2.1 DEMES 
DEMES uses M&S for the initial stages, and replaces models 

incrementally with hardware surrogates without modifying the 

original models. The transition can be done in incremental steps, 

incorporating models in the target environment after thorough 

testing in the simulated platform, allowing model reuse 

throughout the process.  

 

Figure 1. DEMES Development Cycle [17] 

A DEMES based development cycle [17] [18] involves Model 

Specification, Model-Checking, DEVS Simulation, DEVS Real-

Time Execution on a Target platform, and Testing. In the model 

specification stage, we define a specification model of the System 

of Interest (1) using a formal model (using DEVS or alternative 

techniques translated to equivalent DEVS models). After model 

specification, model-checking (2) can be used for model 

properties validation. The same models are then used to run 

DEVS simulations (3) of the behavior of the different sub models 

under specific loads. In brief, we first study system properties 

analytically, and complement the proofs using simulation, which 

can also be used for hardware/software co-design (and for 

training). The same DEVS specification model is used to derive 

test cases (4) (5), which can be also used for the simulation 

studies. Deriving test cases from both the model and from the 

simulation results allows us to check that the models conform to 

the requirements. Once we are satisfied with both analytical and 

simulated results, the models are incrementally moved into a 

target platform. A real-time executive (6) executes the models on 

the particular hardware (9). If the hardware is not readily 

available, the software components can still be developed 

incrementally and tested (7) against a model of the hardware to 

verify viability and take early design decisions. As the design 

process evolves, both software and hardware models can be 

refined, progressively setting checkpoints in real prototypes. At 

this point, those parts that are still unverified in the formal and 

simulated environments are tested, increasing the confidence of 

the engineer into the implemented system. Any modifications 

require going back to the same model specifications (8), which 

ensure that we can provide a consistent set throughout the 

development. This software lifecycle is cyclic, allowing 

refinement following a spiral approach. On each cycle of the 

spiral, we end with a prototype application consisting of 

software/hardware components interacting with simulated 

components. 

Other M&S based frameworks and methodologies such as UML-

RT, Ptolemy II, ECSL and Matlab/Simulink have been developed 

but they are semi-formal (which makes more difficult proving 

valuable properties about the models under development), and do 

not provide model continuity in the RTES development lifecycle 

[12]. Instead, formal modeling methods like DEVS provide sound 

syntax/semantics for structure, behavior, time representation and 

composition, which lend themselves to well-defined computation. 

Plus, the DEMES approach offers the following advantages [17]:  

 Reliability: logical and timing correctness rely on DEVS 

system theoretical roots and sound mathematical theory. 

 Model Reuse: DEVS has well-defined concepts for coupling 

of components and hierarchical, modular model composition.  

 Hybrid modeling and knowledge reuse: different methods 

can be used while keeping independence at the level of the 

executive, using the most adequate technique on each part of 

system architecture and reusing existing expertise. 

 Process Flexibility: hybrid modeling capabilities are 

transparent for the executive, which is defined by an abstract 

mechanism that is independent from the model itself.  

 Testing: several tests can be carried out and the definition of 

experimental frames can be automated. 

2.2 DEVS-based frameworks 
The DEMES concepts have been applied in the development of 

different tools to offer a unified and consistent development 

environment. Existing DEVS based development environments 

for RTES include DEVSJAVA [7], a Java DEVS-based simulator 

that supports high-level modeling; RTDEVS/CORBA [5], a 

DEVS implementation based on real time CORBA 

communication middleware; PowerDEVS [3] a tool for hybrid 

system modeling and real time simulation; and E-

CD++[12][18],an engine for executing DEVS models in 

embedded systems. The platform limitations remain significant 

compared to the existing methods: In [7], [5], [9] and [4] where 

implementation requires Java, the target hardware should be able 

to support the Java-implemented DEVS real-time execution 

environment. In [8], the authors presented a DEVS based real-

time system on a TINI chip which has limited memory and 

processing ability. However, this requires Java Virtual Memory 

and Java class libraries availability on the chip. In [3], Linux 

RTAI kernel is required for PowerDEVS. In [12], our 

implementation relied on Xenomai/Linux kernel services. 

Therefore, although the DEMES approach offers multiple 

benefits, tools have to be improved to overcome limitations and 

support different hardware. 

The E-CD++ developed by our team [12] was used in various 

applications and relied on a variant of the Linux kernel. Xenomai 

provided hard real-time functionality to the Linux kernel. In this 

paper, we go further with bridging the gap between simulation 

and implementation (enabling the utilization of the same models) 

by removing OS limitations while decreasing the embedded 

application footprint, and increasing efficiency and portability. In 

the next section, E-CD++ software components will be presented 

and its implementation explained. 
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2.3 E-CD++ 
The DEVS formalism proposes a framework for model 

construction and defines an abstract simulation mechanism that is 

independent of the model itself. This mechanism provides a high-

level implementation detail for the DEVS framework, and can be 

feasibly implemented by computer software. 

E-CD++ [18] is a real time implementation, based on the CD++ 

simulator [15] [14] (a DEVS-based framework for M&S), and 

RT-CD++ [16] (an extension of CD++ for real-time simulation). 

E-CD++ supports modeling real-time systems by converting the 

CD++ virtual time-advance function to real-time, and provides an 

RT simulation platform for verification of such models.  

Figure 2 illustrates the E-CD++ development framework. The 

embedded platform with the external environment is shown in this 

layered approach representing the cross-platform development of 

models. The modeller defines models using a high-level DEVS 

language combined with C++ code if needed, which provides the 

application layer. These Real-Time models are then interpreted 

and executed by the DEVS Real-Time (DEVSRT) engine [12]. 

To allow for direct replacement of models with external entities, 

the I/O ports of E-CD++ models implement the formal interfacing 

mechanism of DEVSRT in the Driver Interface layer. The 

underlying middleware is a real-time kernel and the runtime 

objects are imported to this platform as RT tasks. In the previous 

iteration, the E-CD++ execution engine used the Xenomai real-

time kernel [12] with multi-tasking services to implement 

DEVSRT. The user models and the driver objects were merged 

with the E-CD++ core objects; and the entire combination was 

compiled to produce an executable.  

 

Figure 2. E-CD++ Layers [12] 

E-CD++ also include several features also.  The Eclipse IDE layer 

shown in figure 1 also allows for the graphical development of 

models. Through the IDE, the Generic Graphical Advanced 

environment for DEVS modeling and simulation (GGAD) [18] 

allows the developer to use a graph-based representation to 

specify models hierarchy, interconnections and behaviors to 

automate model generation. At the execution engine level, various 

features have been implemented in order to improve the software 

including DEVSRT simulation algorithms, a Flattened 

Coordinator technique and a Time Interval function. The P-DEVS 

simulation algorithms allows for parallel execution of concurrent 

events through the implementation of a messaging behaviour for 

model interaction. The Flattened Coordinator technique improves 

the efficiency of the DEVSRT messaging behaviour through the 

removal of superfluous messages that are generated for 

communication between coupled models. Finally, the Time 

Interval function enforces real-time constraints through the use of 

wall-clock time advancement and execution deadline checking. 

 

Figure 3. Software Components [12] 

CD++ has four main components [Figure 3]: the Main Runtime 

System, the Modeling Subsystem, the Runtime Subsystem and the 

Messaging Subsystem [17]. The Main Runtime System manages 

the overall aspects of the real-time execution and provides timing 

functions with microsecond precision. The Main Runtime System 

is the first object that is created in non-real-time context, and it 

launches the Runtime Subsystem [12]. In general, the Main 

Runtime System first register Atomic component objects, then the 

Top coupled component ports that are connected to the external 

environment, reads in the external events (from an existing event-

file) and builds an external event table. After that, the Main 

Runtime System reads in the model-file and builds the model 

hierarchy. Finally, it spawns the main real-time task in which the 

Root Coordinator (RC) is created to start the DEVSRT execution 

cycle. The Runtime Subsystem consists of Simulators, 

Coordinators, and the Processor Admin. In E-CD++, the 

Simulators work on run-time engines that correspond to atomic 

components, and they perform the main job of executing the 

internal transition and output function after receiving the proper 

messages.  

The RC is a special Coordinator that manages the real-time event 

scheduling. It initializes the global Driver object which launches 

the real-time input driver tasks (associated with input ports of the 

Top coupled component in the DEVS model hierarchy) declared 

by the user. 

The Modeling subsystem is generated in order to define the 

atomic and coupled models, as well as the relationships between 

them. For each of these models, a processor is defined within the 

Runtime Subsystem in order to manage the behavior of the model 

and drive the execution. The Messaging subsystem provides the 

P-DEVS behavior [12]. 

While this implementation reflects DEMES concepts, it is closely 

dependent on the Linux kernel and restricts supported devices. 

We went further and removed this limitation: The new E-CD++ 
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provides a DEVS execution engine that resides in an ARM-based 

microcontroller, and it is OS independent. Today, the ARM 

architecture is the most pervasive 32-bit architecture and is found 

in all types of computing devices from real-time safety systems 

(automotive braking systems) to smartphones [13]. Besides, since 

the new E-CD++ does not rely on a particular OS, it becomes 

applicable to a broader variety of microcontrollers. In order to 

successfully achieve this objective, several changes were required 

and will be presented in the next section. 

3. A DEVS-based Kernel 
As discussed in Section 2, the development of embedded 

applications using E-CD++ requires several changes to the current 

iteration of the software. Currently, the E-CD++ execution engine 

relies on a RT-Linux OS to implement DEVSRT [12]. Through 

modifications to the existing software architecture, we provide 

now stand-alone operation, i.e. bare-metal execution. To do so, 

we had to leverage multiple existing functions as well as develop 

additional functionality in order to operate without OS support 

and directly interface with hardware devices. 

3.1 Proposed Approach 
As described earlier, the current implementation of E-CD++ is 

based on the assumption that it will be running from a variant of 

the Linux kernel. This imposes memory capacity, processing, and 

portability limitations as the target platform must include the 

memory and processing power necessary for the Linux kernel 

variant, and there must be a Linux kernel that can be compiled for 

the target platform and can interface with the available hardware 

devices. 

As a solution to the above challenges, we propose the new 

architecture shown in figure 4. The modeller defines models using 

the DEVS formalism and C++ code. Note that an Eclipse IDE can 

be used in order to make the development task easier. The defined 

models are then interpreted and executed by the DEVSRT engine 

which directly rest on bare-metal (target platform) in the new 

version. Similarly to the previous version, the driver interface 

layer is used to provide a formal interface for I/O ports. However, 

this layer has been modified to communicate directly with the 

underlying hardware without the need of a real-time kernel 

middleware. 

 

Figure 4. New Layers 

Besides, the simulation platform is only used for model 

development since the DEVSRT execution engine and the I/O 

drivers are moved to the target platform and run on bare-metal. 

This is new when compared to the previous platforms where a 

RTOS was required, and it is especially different from the case 

where commands were sent through a network interface as shown 

in figure 2 and in figure 4. With these changes, models execute in 

real-time on the target platform and model continuity is greatly 

increased providing therefore higher integrity simulation results. 

To develop this DEMES-based design solution that is able to 

execute directly on the target platform, several updates were made 

including the reimplementation of a Driver model, and the use of 

the Flattened Coordinator technique. Plus, the previous 

implementation of E-CD++ used the Xenomai real-time 

framework for the Linux kernel; this dependency was removed by 

interfacing with the hardware clock of the target platform. 

E-CD++ has to be implemented as a stand-alone embedded 

program able to cope with memory limitations of embedded 

platforms and run independently on the generally limited RAM or 

ROM available for program storage and execution. Because of 

this resource limitation, it is necessary to reduce the memory 

footprint of E-CD++ as much as possible.  

More specifically, to implement this novel approach, we have first 

adapted the Driver model and the Flattened Coordinator technique 

for direct I/O interfacing as opposed to the transfer of data over a 

network. The Driver model and Flattened Coordinator concepts 

have been leveraged in the new E-CD++. Because embedded 

devices generally lack high memory limits and processing power, 

the Flattened Coordinator was used to minimize the amount of 

message passing between models. The driver model, on the other 

hand, provides a programming construct to be used with hardware 

components and devices and was adapted to the new architecture. 

Second, to migrate E-CD++ to a bare-metal environment, several 

changes were made. These changes include the removal of the 

RTOS as well as the reimplementation of various OS kernel 

function calls. Since E-CD++ will be implemented directly on an 

embedded platform, the additional functionality provided by the 

RTOS becomes redundant due to the available low level control 

of timing and scheduling and as there is only one application 

running at a time. With these changes, it is possible to move the 

DEVSRT engine as well as the I/O drivers directly onto the target 

platform, eliminating the need for a network interface for 

communication between the simulation platform and the target 

platform as illustrated in figure 4. Hence, the removal of the 

Xenomai/Linux RTOS minimizes the size of the program and 

removes previous Linux dependencies.  

 Last, as the initial E-CD++ was developed for targets with OS 

support, there were various system calls made to the Linux kernel 

in order to handle various functions such as file I/O and memory 

management. In order to minimize the footprint of E-CD++ to 

allow for execution in a low memory embedded platform, these 

functions need to be re-developed with embedded execution in 

mind. As is discussed later, these calls are largely unnecessary as 

the embedded platform will not support multi-processing and does 

not require full file system support; the only file referenced by E-

CD++ is the model file which can be loaded directly into memory. 

The new functions were thus implemented to provide the same 

functionalities as the original system calls without the overhead of 

a full OS kernel. 
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In the following section, the above main changes will be detailed 

and their implementation further explained. 

3.2 Implementation 
In a first phase, two main concepts, namely the driver concept and 

Flattened Coordinator Technique, were adjusted to the new 

structure. The Run-Time Subsystem and Modelling Subsystem 

now include a Flattened Coordinator as well as the integration 

with the Driver model. The Flattened Coordinator has been added 

to the Run-Time Subsystem where it has replaced the many 

Coordinators that were previously used. The Flattened 

Coordinator reduces the number of messages that need to be 

passed between models. This is accomplished through the 

removal of Coordinators for Coupled Models which are replaced 

with a single Flattened Coordinator, which manages the message 

passing between Atomic models enabling direct communication, 

reducing the messages needed. This improves processing power 

and speed, which is a limitation to execution on embedded 

platforms. In order to increase efficiency, the Flattened 

Coordinator analyzes the links between models on initialization 

and generates an influence list, establishing the relationships 

between models. The Flattened Coordinator is able to identify the 

recipient of a message and passes the message directly to the 

Atomic model. In a simple system containing only a few coupled 

models, this will not have a very large effect on the overall 

efficiency of the system; however, as the system complexity 

increases, the increase in performance that is achieved through the 

implementation of the Flattened Coordinator technique can be 

seen to improve [18]. 

Drivers have also been added to the Run-Time Subsystem 

providing an interface to initialize hardware devices as well as to 

interact with the Ports that are associated with the model as it will 

be discussed later. Through the use of the Driver objects, external 

I/O can be controlled through the encapsulation of hardware 

specific functionality, made available by accessing the generic 

functions provided by the Driver model, and not using an 

embedded RTOS. Using this model, we are able to interface a 

wide range of devices and greatly improve portability by simply 

implementing basic hardware drivers that are then accessed by E-

CD++. From an implementation point of view, the driver model 

manages hardware device connections and interfacing through the 

use of two classes: the Port class, and the Driver class. 

Similar to the Models and Processors in the Modelling subsystem 

and Run-time subsystem (seen in section 2.3.), the Port class 

resides in the Modelling subsystem while the Driver class is in the 

Run-time subsystem. Together, they provide a link between the 

DEVS implementation, and the hardware target platform.  

The Port class represents the logical connection between models 

and hardware devices. Where the previous implementation saw 

the Port class passing established API commands over a network 

interface, our implementation of the Port class includes Input and 

Output low-level functions that are developed to provide the 

interface directly with the hardware device. In the case of Inputs, 

the receipt of a signal on a Port will cause the generation of a 

PDEVS message which is then added to the message queue 

processed by the Root Coordinator. When configured as an 

output, the Port will receive the data from a PDEVS message from 

the Driver class which will then be translated into a signal that can 

be interpreted by the hardware device. Through bare-metal 

implementation, it is possible to use the hardware and software 

interrupt service routines of the target platform to notify E-CD++ 

of I/O changes. The specific hardware interrupts associated with 

each hardware device can then be used to generate PDEVS 

messages based on the values received from the device. Similarly, 

software interrupts can be programmed based on a division of the 

base clock in order to provide periodic polling. 

Alternatively, the role of the Driver class is to receive PDEVS 

messages from the message queue as well as initialize and close 

hardware devices. As mentioned, when a PDEVS message is 

retrieved from the message queue, the Driver reads the value from 

that message and passes it on to its associated Port for 

interpretation and communication to the device. In the case of 

initialization or termination, the Driver class includes functions 

that interface with hardware devices in order to prepare them for 

operation, or for the end of simulation as required.  

In addition to the above, to effectively model real-world inputs, it 

is necessary to define two types of devices that a Port/Driver may 

be associated with, the first being passive devices. These types of 

devices include sensors which must be polled at specific intervals 

to determine their current state. Interfacing with passive devices 

requires the implementation of a periodic timer interrupt that 

requests the state of the device. This can be accomplished through 

the creation of a software interrupt that is tied to a division of the 

base clock. This allows a software interrupt to be triggered at 

regular intervals, eliminating the need for real-time tasks. The 

state that is returned from these interrupts is then passed to the 

associated Driver which interprets the state, creates, and sends an 

appropriate PDEVS message to the message bag for further 

processing. The second type of hardware device that can be seen 

is an active device. An active device is classified as a hardware 

device that triggers an input event. Active devices can trigger a 

hardware interrupt at which point, they will pass their states to the 

Driver for processing. 

All operating system dependencies needed to be removed. The 

original implementation of E-CD++ was developed on a desktop 

computer for simulation, which would then pass the results of the 

simulation through the OS to a separate application either on the 

same platform or over a network to the target platform. With the 

new version, the DEVSRT execution engine resides directly on 

the target hardware. As embedded platforms are generally limited 

to several megabytes of memory and a processor with a clock 

speed in the megahertz, the OS dependency of the C++ library 

was removed in order to streamline the performance of the 

software as well as increase the portability of the overall system. 

Given that E-CD++ will be the only application that is running on 

the target platform, there is no need for the extra capabilities 

available from OS inclusion. 

We were able to quickly determine the system calls that were 

being made. Based on this list, it was possible to identify the 

purpose and functionality of each of these calls. The functionality 

of each of these functions could then be reproduced through the 

creation of functions with the same signature but with a re-

designed implementation that takes into accounts the limitations 

and environment of the target platform. Among these functions, 

several were deemed unnecessary as they pertained to inter-

process communication within a multi-processing system. While 

they were still required for the compilation of the E-CD++ 

executable, these functions were re-developed to return constant, 

known values that are similar to what would be expected when 

running from within an OS. An example of one of these functions 
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is the getpid function. The purpose of this function is to return the 

process ID of the currently running process. As there is only a 

single process running, the value returned by this function can be 

set to an arbitrary integer that meets the constraints of what would 

be expected from an application launched from an OS. Multi-

processing and multi-programming can be implemented directly 

as a DEVS coupled model, which can be formally verified using 

model-checking, and building individual kernels for particular 

purposes. 

Although the functions related to inter-process communication 

could be easily removed, there were still several functions that 

required significant re-development in order to return appropriate 

values given the context in which they would be called. Some of 

these functions relate directly to the programming language that is 

used, others to the functionality that is provided by the OS. For 

instance, as E-CD++ is developed in C++, an object-oriented 

language, dynamic memory allocation is required in order to 

allow for the instantiation of new objects. While this can be 

accomplished through the run-time modification of pointers to 

heap memory allocation, other OS specific functionalities are not 

so easy to replace, becoming a hurdle to the bare-metal 

implementation of E-CD++.  

We also needed to provide useful functionalities generally 

provided by the OS. This involved the implementation of several 

functions that take advantage of the hardware available to 

replicate the OS functionality. Through the use of hardware 

devices available on the target platform, such as a real-time clock, 

on-board memory, and low power modes, the replication of key 

OS functionalities and complete removal of the OS becomes 

possible.  

In the previous version, Xenomai provided real-time guarantees 

through the implementation of constrained functions as well as a 

real-time scheduler. More specifically, while the previous version 

of E-CD++ used the Xenomai real-time framework for Linux to 

provide real-time constraints and scheduling, E-CD++ will not 

have these capabilities available. Instead, timing can now be 

controlled at the clock level through the creation of periodic 

software timer interrupts in order to manage scheduling, and at the 

model level through model specification and model-checking of 

the timing constraints. As E-CD++ requires microsecond 

precision, a software timer can be defined that is set to trigger at 1 

MHz. By causing this interrupt to commence the next simulation 

cycle, simulation can occur as it normally would. With this, it is 

important to note the introduction of a minimum processing speed 

requirement for the proper execution of E-CD++. Because the 

simulation cycles are defined as 1 sec, the clock speed of the 

microcontroller must be greater than 1 MHz in order to allow the 

execution of each simulation cycle prior to the next timer 

interrupt. 

Regarding hardware I/O, the implementation of drivers provides 

hardware I/O interfacing by implementing basic hardware drivers 

that can be easily accessed by E-CD++. As previously mentioned, 

this is accomplished through the use of interrupts and hardware 

polling. Hardware and software interrupts can be used to generate 

messages from active devices; when the interrupt is triggered, a 

message can be added to the message bag. One complication that 

arises in this case is the object-oriented support that is available in 

C++ but not in C. This is further complicated by the name 

mangling that occurs with C++ functions. For this reason, it was 

necessary to generate a wrapper function written in C++ but with 

a C signature. This function can then call the C++ functions 

necessary to add the message to the message bag. Passive devices 

are simpler in that it is only necessary to develop the initial 

interface functions in C. These functions can be called from C++ 

whenever input is necessary without any problems. 

The only file referenced by E-CD++ during execution (and thus 

needed on the target platform), is the model file. In fact, models 

are loaded into E-CD++ at run-time through the reading and 

interpretation of a model file. This is done by providing E-CD++ 

with the name and location of the model file from the command 

line. Since we do not have a directory structure for OS file I/O 

support, it was necessary to develop a pseudo file system in order 

to maintain continuity between desktop simulation and target 

simulation. In order to mimic this behaviour, the model files are 

loaded directly into memory and the file names are used to 

populate a file register. The file register then determines the 

memory address of the text file using a file table which contains 

the mapping between file names and memory addresses. The file 

table also provides information about the file that is required by 

the C++ library, for example, the file size. 

In addition, the removal of the Xenomai framework also required 

redevelopment of the behaviour of the Root Coordinator’s 

handling of done messages. With Xenomai, the Root Coordinator 

would wait to receive a message from a Xenomai real-time task 

indicating hardware input. Since this functionality is no longer 

available, the receipt of the done message will cause the Root 

Coordinator to sleep until the next internal transition is scheduled, 

periodically verifying that an external event has not occurred. If 

an external event occurs, the event will be processed prior to the 

internal transition and the cycle will repeat. In the case where 

there are no more internal transitions scheduled, the Root 

Coordinator will place the microcontroller into a low power mode 

and await an external event.  

Finally, early integration of stand-alone E-CD++ was done using 

an MCBSTM32F200 evaluation board. Developed by Keil, the 

board includes the STM32F207IG ARM Cortex-M3 based 

microcontroller. This microcontroller has a clock speed of 120 

MHz and contains 1 MB of ROM and 128 KB of RAM. The 

clock speed meets the 1 MHz requirement and the memory 

capacity is great enough to hold the E-CD++ application and 

associated model files. Through the implementation of drivers for 

the LEDs and buttons contained on the evaluation board, early 

integration testing was performed and proved to be successful, 

demonstrating the feasibility of bare-metal implementation of 

E-CD++. On the software platform side, Eclipse was used along 

with the GNU ARM bare metal tool chain to build applications 

and GDB to debug hardware and software. . 

Overall, a high level of portability and model continuity can be 

achieved, as the DEVS model is not changed throughout 

development. This design is also portable as the software core of 

E-CD++ has not changed; all that has changed is the external 

interfaces. As mentioned, the implementation of the Driver model 

greatly increases this portability through the encapsulation and 

generalization of I/O devices allowing for simple addition of new 

devices. 

In the upcoming section, we will illustrate how the new E-CD++ 

version can be used by implementing a line tracking robot 

behavior and describing the entire software development process 

using our DEMES-based approach 
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4. Case Study: A Line Tracking Robot 
In this section we will show an example of the use of the new 

bare-metal version of E-CD++, by building a case study 

application for a line tracking robot controller. The Robot is 

equipped with a light sensor that faces the ground and absorbs the 

amount of light reflected off a small ground surface. The 

controller considers a medium percentage of reflected light as a 

detected path and initiates the robot to move forward. When the 

robot goes off track and it does not pick up a path trail, it stops, 

turns counter-clockwise slightly, and then tries to detect a trail 

again. If a path is detected, the robot will move forward again; 

otherwise it will continue to turn until it finds a path to follow. 

The destination is considered to be a wide dark ground surface. At 

that point, the light sensor would detect a small amount or no light 

reflection which indicates to the robot’s controller that it has 

reached the destination and causes the robot to stop moving. The 

robot can also receive manual signals to start and stop. 

4.1 System Architecture 
The first step in the DEMES-based development cycle is to 

specify a model of the system of interest using DEVS. Figure 6 

illustrates the resulting DEVS model hierarchy for this example.

 

 

Figure 6. Line Tracking Model Robot Hierarchy Diagram 

The top model has one input port, LIGHT_IN, through which the 

light sensor values are read, and two output ports, MOVEL_OUT 

and MOVER_OUT, used to send commands to the left and right 

motors of the robot. Apart from these ports, other input ports are 

named using the format ToPort_IN_FromModel where ToPort 

represents the name of the input port to which a message is sent 

and FromModel is the coupled model from which the message 

originates. Note that when the signal comes from an atomic 

model, the FromModel part is omitted, and the format becomes 

therefore InputPortName_IN. Hence, motor_in is the input port of 

the motor atomic model. Similarly, for output ports, we use the 

FromPort_OUT_ToModel where FromPort is the port through 

which a message is sent, and ToModel is the coupled model the 

message is adressed to. When the recipient model is atomic, the 

format is reduced to FromPort_OUT. For instance, 

MU_MOVEL_OUT_TOP is the Movement Unit(MU) output port 

designed to send messages from the left motor to the TOP model. 

On the other hand, mctrl_mover_out is the mover (move right) 

Movement Controller(mctrl)’s output port. These formats were 

used in order to rapidly identify the links among models and the 

role of each port. 

In terms of components, the Line Tracking Robot’s top model is a 

coupled model made of three coupled models: Sensor Unit, 

Control Unit and Movement Unit. The Sensor Unit contains an 

atomic model: Light Sensor. The Light Sensor reads the amount 

of light reflected off of a ground surface and transmits the 

readings to the Control Unit for processing. The Control Unit 

contains two atomic models: Sensor Controller and Movement 

Controller. The Sensor Controller activates/stops the light sensor 

through the sctrl_start_out port, receives the light sensor readings 

through sctrl_light_in and sends messages to the movement 

controller through the sctr_mctrl_out output port. These messages 

specify whether the robot is on-track, off-track or has reached the 

destination. Indeed, when the light sensor readings indicate a 

bright surface, the sensor controller sends an off-track signal to 

the movement controller. Likewise, when the sensor readings 

indicate a dark surface, it implies that the line tracking robot is 

properly following the line and an on-track signal is sent instead. 

When the robot reaches its destination, i.e. the light sensor reads 

an all dark surface; the sensor controller sends a stop reading 

command to the light sensor through sctrl_start_out and a stop 

signal to the movement controller. In addition to the above, the 
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sensor controller receives, through the sctr_start_in input port, the 

user signal that starts the line tracking robot and puts the system 

in motion. 

The Movement Controller, on the other hand, receives on/off-

track signals from the sensor controller through the mctrl_sctrl_in 

port, and sends appropriate commands to the motors through 

mctrl_movel_out and mctrl_mover_out. Therefore, when an on-

track signal is received, the movement controller sends a go 

forward command to both motors in order for the robot to stay on 

the right path. Correspondingly, when an off-track signal is 

received, the robot stops and prepares to turn. In this case, a stop 

signal is sent to all motors; then the right motor is instructed to go 

forward while the left motor is commanded to go into reverse.  

Finally, the Movement Unit is made of two atomic models: Motor 

Left and Motor Right. It’s a collection of the robot’s actuators that 

move in response to commands received from the Control Unit. 

The Motor models control the functions of the robot treads. They 

can only move forward, in reverse or stop according to the signals 

they receive from the Control Unit. A combination of a motor 

moving forward and the other motor moving in reverse makes the 

robot turn. 

4.2 DEVS Model Specification 
Once the hierarchical structures of the model have been 

established, components are well defined using DEVS formal 

specification. In this section, we will focus on the Control Unit 

model specification. As mentioned earlier, this latter is a coupled 

model that has two atomic models, the sensor and movement 

controllers. 

The Control Unit can be formally defined as:  

CM = < X, Y, D, {Md}, EIC, EOC, IC, select >, 

Where 

X = {(CU_START_IN_TOP, N) ; (CU_LIGHT_IN_SU, N)} 

Y = {(CU_START_OUT_SU, N); (CU_MOVEL_OUT_MU, 

N);(CU_MOVER_OUT_MU, N)} 

D = {Sensor Controller, Movement Controller}.  

Md = {M(sensor controller), M(movement controller)} 

EIC ={((Self, CU_START_IN_TOP), (Sensor Controller, 

sctrl_start_in) ); 

((Self, CU_LIGHT_IN_SU), (Sensor Controller, 

sctrl_light_in))} 

EOC= {((Sensor Controller, sctrl_start_out), (Self, 

CU_START_OUT_SU)); 

((Movement Controller, mctrl_movel_out), (Self, 

CU_MOVEL_OUT_MU)); 

((Movement Controller, mctrl_mover_out), (Self, 

CU_MOVER_OUT_MU))} 

IC = { (Sensor Controller, sctrl_mctrl_out); (Movement 

Controller, mctrl_sctrl_in) } 

Select = { Sensor Controller, Movement Controller }. 

In the above specification, X represents the set of input events (N 

being the set of port values), Y the set of output events, D the 

component name of each model, Md the DEVS basic (atomic or 

couple) model, EIC the external input coupling, EOC the external 

output coupling, IC the internal couplings and finally select is the 

tiebreaker function (refer to Appendix A for more details about 

this specification). 

The DEVS formal specification of the Sensor Controller model is 

as follows and shows how atomic models are defined: 

M = <X, S, Y, δext, δint, λ, ta>, 

Where 

X:{(sctrl_light_in,{BRIGHT,DARK,ALL_DARK});(sctrl_start_i

n,{START_PROC,STOP_PROC});(sctrl_mctrl_in, {Ø})} 

S: {“IDLE”, “PREP_RX”, “WAIT_DATA”, “TX_DATA”, 

“PREP_STOP”} 

Y: {(sctrl_mctrl_out, {ON_TRACK, OFF_TRACK, 

STOP_PROC}); (sctrl_start_out, {START_PROC, 

STOP_PROC})} 

δint (s) { 

      switch (s){ 

  case PREP_STOP:     // Stop request 

   state = IDLE; ta(state)=infinity; 

                case PREP_RX:      //Preparing to read data 

                case TX_DATA:    // Sensor transmitting data 

                        state = WAIT_DATA; ta(state)=infinity; 

      } 

δext(s,e,x){ 

      if (x.port() == sctrl_start_in){  // A user command is received 

                if(state == IDLE && x.value()== START_PROC){  

                        state = PREP_RX; ta(state)= scRxPrepTime;     

                } 

                else if (x.value()== STOP_PROC) {   

                        state = PREP_STOP;  ta(state)= ZERO_TIME;  

                 } 

      } 

      else if (x.port() == sctrl_light_in){ // Reading from sensor 

                if(state == WAIT_DATA) { //  Waiting for sensor data 

                       sensor_input = x.value();             

                       if(sensor_input == ALL_DARK) {// Destination  

                               state = PREP_STOP; ta(state)= ZERO_TIME;  

                       }else { 

                               state = TX_DATA;  ta(state)= scTxTime;        

             } 

      } 

} 

λ(s) { 

      switch (s){ 

                case PREP_STOP: 

                        sendOutput( time, sctrl_start_out, STOP_PROC) ;   

                        sendOutput( time, sctrl_mctrl_out, STOP_PROC) ;  

                case PREP_RX: 

                        sendOutput( time, sctrl_start_out, START_PROC)  

                case TX_DATA: { 

                        int output_val; 

                        if(sensor_input == DARK)  

           output_val = ON_TRACK; 

                        else if(sensor_input == BRIGHT) 

           output_val = OFF_TRACK; 

                        sendOutput( time,sctrl_mctrl_out, output_val) ;  

      } 

 } 

ta: S  R+
0,    has been defined in the pseudocode above. 
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To understand the behavior of the Sensor Controller model, the 

following figure illustrates its state transitions using a state 

diagram:  Fig. 7 illustrates the DEVS Graph representing the 

sensor controller’s behavior. The state diagram summarizes the 

behavior of a DEVS atomic component by presenting the states, 

transitions, inputs, outputs and state durations graphically [36]. 

The circles represent states and the double circle is the initial 

state. The name and duration of a state is shown in the circle. The 

continuous edges between the states represent the external 

transitions, which includes the names of the input ports, the input 

value and any condition on the input (with format “port?value”). 

The dotted lines represent the internal transitions and the 

associated outputs (with format “port!value”). 

The Sensor Controller starts in the IDLE state and remains in that 

state until a start command is received. If the user start signal is 

received, an external transition is triggered and the Sensor 

Controller state changes to PREP_RX. At this stage, it waits for a 

defined time ta=scRxPrepTime after which a ‘start’ output signal 

is sent to the Light Sensor and an internal transition is triggered 

changing its state to WAIT_DATA. The Sensor Controller waits 

in this state until it receives a signal from the Light Sensor. When 

a signal is received, if the signal indicates that the robot reached 

the destination (signal value is ALL_DARK), an external 

transition causes the Sensor Controller to go the PREP_STOP 

state, at which it will immediately send a stop signal to the Light 

Sensor and the Movement Controller and then transition back to 

the IDLE state. However, if the received signal is different, the 

Sensor Controller will go to the TX_DATA state at which it will 

wait for a time advance period of ta=scTxTime before it sends an 

output signal to the Movement Controller indicating whether the 

robot is on track or not, and transitions back to the WAIT_DATA 

state. At any point in time, if the Sensor Controller receives a 

manual stop signal (STOP_PROC), it will execute an external 

transition to the PREP_STOP state to stop all activities. 

 

Figure 7. Sensor Controller State Diagram 

After the formal specification phase, we implement the models 

using E-CD++ in order to run simulations, test individual 

components under different loads, gather results and derive 

different test cases. 

4.3 Implementation in E-CD++ 
E-CD++ provides a mechanism to program DEVS models’ 

hierarchical structures. The model definitions and couplings are 

written in a model file following a specific format, and the state 

transitions and output function are overwritten in C++, as part of 

each model’s class definition. 

The following lines describe the Sensor and Movement 

Controllers specification as components of the Control Unit in the 

model file (also called the MA file), in accordance with the model 

diagram in figure 6: 

 

1 [ControlUnit] 

2 components : SCtrl@SensorController 

MCtrl@MovementController 

3  

4 in : CU_START_IN_TOP CU_LIGHT_IN_SU 

5 out : CU_START_OUT_SU CU_MOVER_OUT_MU 

CU_MOVEL_OUT_MU 

6  

7 %input connections 

8 Link : CU_START_IN_TOP 

sctrl_start_in@SCtrl 

9 Link : CU_LIGHT_IN_SU 

sctrl_light_in@SCtrl 

10  
11 %output connections 
12 Link : sctrl_start_out@SCtrl 

CU_START_OUT_SU 

13 Link : mctrl_moveR_out@MCtrl 
CU_MOVER_OUT_MU 

14 Link : mctrl_moveL_out@MCtrl 
CU_MOVEL_OUT_MU 

15  
16 %internal connections 
17 Link : sctrl_mctrl_out@SCtrl 

mctrl_sctrl_in@MCtrl 

The MA snippet starts by defining the Control Unit as a coupled 

model composed of two instances: SCtrl and MCtrl, of Sensor and 

Movement Controller respectively. Then, the input 

(CU_START_IN_TOP and CU_LIGHT_IN_SU) and 

output(CU_MOVEL_OUT_MU and CU_MOVER_OUT_MU) 

ports of the Control Unit are defined. Finally, the input and output 

connections between the ports of the Control Unit and those of 

SCtrl and MCtrl are described, as well as the internal connections 

between SCtrl and MCtrl. The direction of the connection is read 

as FROM port  TO port.  

The following code describes the transition and output functions 

of the Sensor Controller, in accordance with the state diagram in 

figure 7: 

 

1 Model 

&SensorController::externalFunction( 

const ExternalMessage &msg ) { 

2 … 

3 if (msg.port() == sctrl_light_in){              

// Light sensor signal received 

4    if(state == WAIT_DATA) {                     

// Sensor controller was waiting for data 

5     sensor_input= msg.value();          

// Get the light sensor input 

6   if(sensor_input==ALL_DARK) {               

// Destination Reached                   

7     state=PREP_STOP;                         

// Prepare to stop immediately 

8     holdIn(Atomic::active,ZERO_TIME ); 

9   } else {                                  

// Robot is not at destination yet 
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10     state = TX_DATA;                        

// Sensor goes into transmitting state 

11     holdIn(Atomic::active, scTxTime );      

// after scTxTime,send data to MCtrl 

12   } 

13    } 
14  } 
15  return *this; 

16 } 
17  
18 Model 

&SensorController::internalFunction( 

const InternalMessage & ) { 

19  switch (state){ 

20   … 

21   case TX_DATA:                 

// Just transmitted data to movement 

controller 

22    state = WAIT_DATA;     

// Wait for new data from the sensor 

23    passivate();           

// stay in this state until new event 

24    break; 

25  } 

26  return *this; 

27 } 
28  
29 Model &SensorController::outputFunction( 

const InternalMessage &msg ) { 

30  switch (state){ 

31     …   

32    case TX_DATA: {                   

// in transmitting state 

33      int output_val; 

34     

35      if(sensor_input==DARK)          

// light sensor indicates a dark line  

36          output_val = ON_TRACK;         
// output signal to MCtrl is ON_TRACK 

37      else if(sensor_input==BRIGHT)   

// light sensor reads a bright surface 

38          output_val = OFF_TRACK;        
// send off_track signal to MCtrl 

39        
sendOutput(msg.time(),sctrl_mctrl_out, 

output_val); // Output sent to MCtrl  

40       break; 

41     } 

42  }; 

43  return *this ; 

44 } 

The code snippet first shows a portion of the external transition 

function that describes the transition from state WAIT_DATA to 

either TX_DATA or PREP_STOP depending on the value 

(sensor_input) of the incoming signal from the Light Sensor 

received on port sctrl_light_in. Lines 18 to 28 show a portion of 

the internal transition function describing the transition from 

TX_DATA to WAIT_DATA. Finally, lines 29 to 43 show a 

portion of the output function’s behaviour at state TX_DATA. 

The output function sets the output signal (ON_TRACK or 

OFF_TRACK) to send to the Movement Controller through port 

sctrl_mctrl_out.  

Using these classes and the core components of E-CD++, different 

scenarios can be tested early on the development platform namely 

by using event files that generates event for the input ports. Once 

the developer is satisfied with the results, the components can be 

incrementally moved to the target platform. In order to do this, 

each driver is associated with specific commands related to the 

hardware component it interacts with. 

For the previous version of E-CD++, the Lego’s NXT++ library 

was used to interface the models with hardware i.e. the light 

sensor and motors. Through a C++ API for Lego NXT robot 

controller, communication can be established over USB and 

Bluetooth. Therefore, hardware events can be monitored and 

events mapped to external transition functions. USB 

communication was done using Xenomai 2.6 and NXT++ v4.0 

since v0.6 does not support Linux. In the same way, the E-CD++ 

to NXT++ interface can be used for translating hardware 

commands by having output functions mapped to NXT++ API. 

However, the NXT robot must be tethered and the DEVS models 

weren’t compiled to the native NXT byte code.  

The same models were deployed on the ARM board. This time, 

the native code was directly downloaded in memory via ST-

LINK, an in-circuit programmer for the STM32 microcontroller 

families. This interface module is enabled with JTAG/serial wire 

debugging (SWD) interfaces that can be used to communicate 

with the target platform and debug via an OpenOCD client/server 

connection.  Interfacing E-CD++ with hardware peripherals is 

made easy by the available port/driver concept and the 

comprehensive standard peripheral libraries offered by 

STMicroelectronics in this case. These two elements can be 

seamlessly integrated, compiled to the native byte code, and result 

in a DEVS-based firmware able to control the peripherals and 

respond to diverse external stimuli. 

Once the models were implemented, different tests were done by 

progressively integrating hardware components and testing the 

entire system. The final deployment was made on the final target 

and models run on the microcontroller. Section 5 presents the 

results of our experiments and compares them with the Lego’s 

version. 

5. RESULTS 
Each model component was first tested using virtual-time 

simulation. Then, multiple scenarios were simulated in order to 

observe the behavior of the robot in different environment settings 

and in real-time. To carry out these experiments, an event file that 

specifies the event time, input port and its value is used. Table 1 

shows the port mapping table and the description of each value.  

 

Table 1: Port Mapping 

Port Name 
Port 

Value 

Hardware 

Command 
Description 

START_IN 

10 START 
Manual Start 

Command 

11 STOP 
Manual Stop 

Command 

LIGHT_IN 

0 BRIGHT No line detected 

1 DARK Line detected 

2 ALL_DARK 
Destination 

Reached 
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MOVER_OUT/ 

MOVEL_OUT 

0 

1 

2 

STOP 

FORWARD 

REVERSE 

Stops the motor 

Spins Clockwise 

Spins Anticlockwise 

An example of events that were injected into the system follows: 

00:00:01:000  START_IN  10 

00:00:02:000  LIGHT_IN  1 

00:00:02:500  LIGHT_IN  0 

00:00:02:700  START_IN  11 

00:00:03:000  LIGHT_IN  1 

00:00:03:500  LIGHT_IN  0 

00:00:05:000  START_IN  10 

00:00:05:500  LIGHT_IN  0 

00:00:06:000  LIGHT_IN  0 

00:00:06:500  LIGHT_IN  1 

00:00:07:000  LIGHT_IN  1 

00:00:07:500  LIGHT_IN  1 

00:00:08:000  LIGHT_IN  2 

00:00:08:500  LIGHT_IN  1 

00:00:09:000  LIGHT_IN  1 

00:00:09:300  START_IN  11 

After 1s, the system is started by sending an input to the 

START_IN input port.  Then, at 2s, a value of 1, meaning the line 

is detected, is sent through the LIGHT_IN input port. To illustrate 

situations when the robot gets off-track, a value of 0 is sent 

through the LIGHT_IN port. The system is then manually stopped 

by sending 11 through the START_IN port.  Different values are 

sent through the LIGHT_IN port to test how the system behaves 

after a manual stop.  Afterwards, the system is started again, and 

bright (0), dark (1) and all dark (2) surfaces are alternately sensed 

through the LIGHT_IN port. ALL_DARK signals that the robot 

has reached its destination and acts as an automatic stop signal. 

More values are sent through the LIGHT_IN port and finally a 

manual stop signal is sent through the START_IN port. 

The resulting behavior is similar to the one defined in the 

controller models. Indeed, when the robot goes off track and does 

not detect the line, it stops, turns counter-clockwise slightly, and 

then tries to detect a trail again. If the line is detected, the robot 

will move forward again; otherwise it will continue to turn until it 

finds a path to follow. The destination is considered to be a wide 

dark ground surface. Once this surface is detected, the robot will 

stop and go into an idle state. 

The same inputs were used on the ARM board. Simulation results 

are below. Inputs are shown as well as their corresponding results 

(in bold). The format used is <time> <port> <signal_value>. 

Microseconds are shown in the logs since we used a 32 bit timer 

that allows such precision. Inputs are numbered and hardware 

commands instead of signal value. Output are shown in bold. 

 

1.    00:00:01:000:023 START_IN START 

2.    00:00:02:000:030 LIGHT_IN DARK 

       00:00:02:200:119 mover_out  1 

       00:00:02:200:119 movel_out  1 

3.    00:00:02:500:021 LIGHT_IN BRIGHT 

       00:00:02:600:115 mover_out  0 

       00:00:02:600:115 movel_out  0 

       00:00:02:700:115 mover_out  1 

       00:00:02:700:115 movel_out  2 

4.    00:00:02:700:027 START_IN STOP 

       00:00:02:700:124 mover_out  0 
       00:00:02:700:124 movel_out  0 

5.    00:00:03:000:019 LIGHT_IN DARK 

6.    00:00:03:500:030 LIGHT_IN BRIGHT 

7.    00:00:05:000:027 START_IN START 

8.    00:00:05:500:021 LIGHT_IN BRIGHT 

       00:00:05:700:115 mover_out  1 

       00:00:05:700:115 movel_out  2 

9.    00:00:06:000:028 LIGHT_IN BRIGHT 

10.  00:00:06:500:022 LIGHT_IN DARK 

       00:00:06:650:115 mover_out  0 

       00:00:06:650:115 movel_out  0 

11.  00:00:07:000:029 LIGHT_IN DARK 

       00:00:07:200:122 mover_out  1 

       00:00:07:200:122 movel_out  1 

12.  00:00:07:500:031 LIGHT_IN DARK 

13.  00:00:08:000:020 LIGHT_IN ALL_DARK 

       00:00:08:050:112 mover_out  0 

       00:00:08:050:112 movel_out  0 

14.  00:00:08:500:021 LIGHT_IN DARK 

15.  00:00:09:000:028 LIGHT_IN DARK 

16.  00:00:09:300:027 START_IN STOP 

       00:00:09:300:126 mover_out  0 

       00:00:09:300:126 movel_out  0 

The results of this simulation were found identical within a reason 

for both the Linux and the bare-metal version. 

After running various scenarios to verify the model behavior on 

the board, the driver interfaces were mapped with the robot 

sensors and actuators. The START_IN driver is attached to a 

button for starting/stopping the robot, and acts as an active device 

in this case. The LIGHT_IN driver is associated with a reflectance 

sensor for sensing the surface brightness and acts as a passive 

device since polling is needed to collect the sensor values. The 

output drivers MOVER_OUT and MOVEL_OUT are connected 

to two servomotors. The same behavior was observed, and the 

robot followed the line as expected. It is essential to emphasize 

here that the same models were used in both the Linux and the 

bare-metal versions. Only drivers had to be adapted. Videos for 

the Lego[1] and STM32-based[2] robot are available. 

6. CONCLUSION 
A new version of E-CD++ was presented. This version allows E-

CD++ to run on bare-metal. It also provides a DEVSRT based 

execution engine that acts as a microkernel while models behave 

like processes. The main purpose of the new version was to have 

an OS independent platform that would be fully portable and 

loadable onto various development boards by removing its Linux 

dependency. The required system calls have all been replaced 

with implementation specific to the needs of E-CD++ and the 

system has proven to execute on target platforms. 

A Line Tracking Robot example was developed and E-CD++ used 

throughout the entire development. The system was decomposed 

into several atomic and coupled models connected via a well-

defined hierarchical scheme, where simply the Robot consisted of 

three main components: Sensor Unit, Control Unit and Movement 

Unit. The Sensor Unit receives light reflection readings then sends 

them to the Control Unit. The Control Unit analyses the data 

received and determines in whether the Robot is on a valid path or 

not and sends movement signals to the Movement Unit 

accordingly. The Control Unit commands the Movement Unit to 
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either move forward, turn or stop. To illustrate our approach, the 

Sensor Controller was modeled according to DEVS formal 

specification. Then, a corresponding implementation was 

presented. Finally, a simulation of the implemented model was 

run using ECD++. Tests were carried in both virtual and real 

environments. The results were satisfactory and followed the 

models’ specification.  

Based on the case study results, it can be seen that the 

implementation of E-CD++ as stand-alone software provides 

results that are identical to those of the simulated system. The case 

study has demonstrated the full range of abilities of E-CD++ 

through the use of internal and external transitions, as well as the 

execution of output functions and the interaction with hardware 

devices. Through the use of this tool, the simulation and 

implementation phases are linked as the initial models are 

deployed on the target hardware. We were also able to execute the 

engine on bare-metal on different ARM-based boards without the 

need of middleware RTOS. 

The current version still needs to be ported onto a broader variety 

of platforms. Although the main modules are easy to port onto 

new platforms, the user will need to find appropriate drivers for 

the desired platform and be familiar with low-level programming. 

One of our future objectives is to provide a set of libraries and 

drivers for multiple microcontrollers to ease development task and 

only require the definition of DEVS models. 

Another goal is to explore IoT applications. Indeed, provided 

hardware with connectivity capabilities, input/output ports can be 

associated with a network instead of traditional sensors therefore 

allowing I/O to be received and sent from any connected device. 

For instance, data could be sent by the DEVS-based kernel to a 

cloud based simulator or to any other connected hardware. Our 

execution engine could be used to connect small data and big 

data, and build diverse IoT applications. 
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