
Towards a DEVS-based Operating System
Daniella Niyonkuru Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University 1125 Colonel By Dr, Ottawa, ON, Canada K1S 5B6

{Daniella.Niyonkuru, Gabriel.Wainer}@carleton.ca

ABSTRACT

Embedded systems are becoming increasingly complex and

heterogeneous. Formal methods have proven effective in

ensuring reliability and safety. However, they are hard to scale up.

Modeling and Simulation (M&S)-based methods, on the other

hand, deal effectively with scalability issues and provide the

benefits of a risk-free testing environment. Yet, they are usually at

most semi-formal, and models are not directly executed on the

target hardware. To address the above challenges, we present a

formal M&S-based kernel that runs on bare-metal and execute the

original simulation models on the target hardware.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-

time and embedded systems; D.2.13 [Software Engineering]:

Reusable Software – Reuse models; D.4.7 [Operating Systems]:

Organization and Design – Real-time systems and embedded

systems; I.6.8 [Simulation and Modeling]: Types of Simulation –

Discrete event; B.1.2 [Control Structure and

Microprogramming]: Control Structure Performance Analysis

and Design Aids – Formal Models; B.4.4 [Input/Output and

Data Communications]: Performance Analysis and Design Aids

– Formal Methods;

General Terms

Design, Experimentation, Theory.

Keywords

Real-Time Embedded Systems; Model Execution Engine; DEVS;

1. INTRODUCTION
Embedded systems are everywhere, and they shape the world.

Any device that runs on electricity either already has, or will soon

have a computing system embedded within it. An embedded

system is generally defined as a combination of computer

hardware and software, designed to perform a dedicated function.

Real-Time Embedded Systems (RTES) in particular, in addition

to producing correct responses, are also required to deliver them

within strict timing constraints [11]. Missing these deadlines may

lead to significant loss and in some cases catastrophic

consequences. Other constraints related to these systems are

limited dimensions, low cost, and low power requirements.

In addition to dealing with timeliness requirements, RTES design

needs to deal with hardware/software partition, and cope with

target systems’ increasing scalability and complexity. However,

there had been a real shortage of effective design and

implementation practices. Most design methodologies are ad-hoc

based, and therefore hard to scale up for larger systems, and/or

require tremendous testing effort with no guarantee of a bug-free

software product. Deficiencies come from two main weak areas:

the development cycle and system verification. Indeed,

disruptions exist in the development cycle since different artifacts

and tools are used throughout the various phases [10]. System

verification, on the other hand, is hardened by these

discontinuities as well as the absence of robust development

framework.

Recently, formal methods have shown great potential in dealing

with these issues [17], but these methods remain hard to scale up.

On the other hand, model-based design techniques handle well

heterogeneity but the lack of formal modeling and effective model

transformation are major roadblocks. A practical solution to the

above problems is the use of formal Modeling and Simulation

(M&S), therefore combining the advantages of a simulation based

approach with the rigor of a formal methodology [16].

Such a M&S-driven approach must, however, ensure efficient

model transformation, and should especially allow the original

models to run on the target hardware. In this paper, we will

present a kernel based on a formal M&S methodology that

enables the user to run models directly on bare-metal. The

objective is to be able to execute models directly on the target

system hardware without the need of an operating system. The

new model execution engine presented here provides

functionalities similar to those of a real-time kernel, with formal

models operating as system processes. This step narrows further

the gap between the simulation and implementation phases. In

fact, the same models are used for both simulation and execution

on the final target. In order to show the feasibility of the approach,

we present a case study of a line tracking robot using the bare

metal environment.

A kernel that allows models to run on bare-metal was developed,

and tested on ARM Cortex-M boards. As an application, we have

modeled, simulated and deployed a line tracking robot. The

results obtained using the new environment are compared and

validated against another existing embedded environment.

2. BACKGROUND
The proposed approach is based on DEMES (Discrete-Event

Modeling of Embedded Systems) [3] that offers a practical

method in which models are consistently used throughout the

development cycle. DEMES is an M&S based development

methodology based on Discrete-EVent Systems specification

(DEVS), which is a discrete event simulation formalism for

modeling and simulating dynamic systems. The DEVS formalism

[15] decomposes complex system designs into basic (behavioral)

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions

from Permissions@acm.org.

SIGSIM-PADS’15, June 10–12, 2015, London, United Kingdom.

© 2015 ACM. ISBN 978-1-4503-3583-6/15/06…$15.00

DOI: http://dx.doi.org/10.1145/2769458.2769465

.

101

models called atomic, and composite (structural) models called

coupled. Precise rules are followed to define state changes of the

modeled system with regards to input events or time delay

triggers. DEVS is especially suitable for RTES since it provides a

rich structural representation of components, and formal means

for explicit time specification, which is essential to RTES. It has

proven to be successful in different complex systems and can also

be used alongside with existing real-time techniques such as state-

charts, VHDL, Verilog and Timed Automata [17] [18].

2.1 DEMES
DEMES uses M&S for the initial stages, and replaces models

incrementally with hardware surrogates without modifying the

original models. The transition can be done in incremental steps,

incorporating models in the target environment after thorough

testing in the simulated platform, allowing model reuse

throughout the process.

Figure 1. DEMES Development Cycle [17]

A DEMES based development cycle [17] [18] involves Model

Specification, Model-Checking, DEVS Simulation, DEVS Real-

Time Execution on a Target platform, and Testing. In the model

specification stage, we define a specification model of the System

of Interest (1) using a formal model (using DEVS or alternative

techniques translated to equivalent DEVS models). After model

specification, model-checking (2) can be used for model

properties validation. The same models are then used to run

DEVS simulations (3) of the behavior of the different sub models

under specific loads. In brief, we first study system properties

analytically, and complement the proofs using simulation, which

can also be used for hardware/software co-design (and for

training). The same DEVS specification model is used to derive

test cases (4) (5), which can be also used for the simulation

studies. Deriving test cases from both the model and from the

simulation results allows us to check that the models conform to

the requirements. Once we are satisfied with both analytical and

simulated results, the models are incrementally moved into a

target platform. A real-time executive (6) executes the models on

the particular hardware (9). If the hardware is not readily

available, the software components can still be developed

incrementally and tested (7) against a model of the hardware to

verify viability and take early design decisions. As the design

process evolves, both software and hardware models can be

refined, progressively setting checkpoints in real prototypes. At

this point, those parts that are still unverified in the formal and

simulated environments are tested, increasing the confidence of

the engineer into the implemented system. Any modifications

require going back to the same model specifications (8), which

ensure that we can provide a consistent set throughout the

development. This software lifecycle is cyclic, allowing

refinement following a spiral approach. On each cycle of the

spiral, we end with a prototype application consisting of

software/hardware components interacting with simulated

components.

Other M&S based frameworks and methodologies such as UML-

RT, Ptolemy II, ECSL and Matlab/Simulink have been developed

but they are semi-formal (which makes more difficult proving

valuable properties about the models under development), and do

not provide model continuity in the RTES development lifecycle

[12]. Instead, formal modeling methods like DEVS provide sound

syntax/semantics for structure, behavior, time representation and

composition, which lend themselves to well-defined computation.

Plus, the DEMES approach offers the following advantages [17]:

 Reliability: logical and timing correctness rely on DEVS

system theoretical roots and sound mathematical theory.

 Model Reuse: DEVS has well-defined concepts for coupling

of components and hierarchical, modular model composition.

 Hybrid modeling and knowledge reuse: different methods

can be used while keeping independence at the level of the

executive, using the most adequate technique on each part of

system architecture and reusing existing expertise.

 Process Flexibility: hybrid modeling capabilities are

transparent for the executive, which is defined by an abstract

mechanism that is independent from the model itself.

 Testing: several tests can be carried out and the definition of

experimental frames can be automated.

2.2 DEVS-based frameworks
The DEMES concepts have been applied in the development of

different tools to offer a unified and consistent development

environment. Existing DEVS based development environments

for RTES include DEVSJAVA [7], a Java DEVS-based simulator

that supports high-level modeling; RTDEVS/CORBA [5], a

DEVS implementation based on real time CORBA

communication middleware; PowerDEVS [3] a tool for hybrid

system modeling and real time simulation; and E-

CD++[12][18],an engine for executing DEVS models in

embedded systems. The platform limitations remain significant

compared to the existing methods: In [7], [5], [9] and [4] where

implementation requires Java, the target hardware should be able

to support the Java-implemented DEVS real-time execution

environment. In [8], the authors presented a DEVS based real-

time system on a TINI chip which has limited memory and

processing ability. However, this requires Java Virtual Memory

and Java class libraries availability on the chip. In [3], Linux

RTAI kernel is required for PowerDEVS. In [12], our

implementation relied on Xenomai/Linux kernel services.

Therefore, although the DEMES approach offers multiple

benefits, tools have to be improved to overcome limitations and

support different hardware.

The E-CD++ developed by our team [12] was used in various

applications and relied on a variant of the Linux kernel. Xenomai

provided hard real-time functionality to the Linux kernel. In this

paper, we go further with bridging the gap between simulation

and implementation (enabling the utilization of the same models)

by removing OS limitations while decreasing the embedded

application footprint, and increasing efficiency and portability. In

the next section, E-CD++ software components will be presented

and its implementation explained.

102

2.3 E-CD++
The DEVS formalism proposes a framework for model

construction and defines an abstract simulation mechanism that is

independent of the model itself. This mechanism provides a high-

level implementation detail for the DEVS framework, and can be

feasibly implemented by computer software.

E-CD++ [18] is a real time implementation, based on the CD++

simulator [15] [14] (a DEVS-based framework for M&S), and

RT-CD++ [16] (an extension of CD++ for real-time simulation).

E-CD++ supports modeling real-time systems by converting the

CD++ virtual time-advance function to real-time, and provides an

RT simulation platform for verification of such models.

Figure 2 illustrates the E-CD++ development framework. The

embedded platform with the external environment is shown in this

layered approach representing the cross-platform development of

models. The modeller defines models using a high-level DEVS

language combined with C++ code if needed, which provides the

application layer. These Real-Time models are then interpreted

and executed by the DEVS Real-Time (DEVSRT) engine [12].

To allow for direct replacement of models with external entities,

the I/O ports of E-CD++ models implement the formal interfacing

mechanism of DEVSRT in the Driver Interface layer. The

underlying middleware is a real-time kernel and the runtime

objects are imported to this platform as RT tasks. In the previous

iteration, the E-CD++ execution engine used the Xenomai real-

time kernel [12] with multi-tasking services to implement

DEVSRT. The user models and the driver objects were merged

with the E-CD++ core objects; and the entire combination was

compiled to produce an executable.

Figure 2. E-CD++ Layers [12]

E-CD++ also include several features also. The Eclipse IDE layer

shown in figure 1 also allows for the graphical development of

models. Through the IDE, the Generic Graphical Advanced

environment for DEVS modeling and simulation (GGAD) [18]

allows the developer to use a graph-based representation to

specify models hierarchy, interconnections and behaviors to

automate model generation. At the execution engine level, various

features have been implemented in order to improve the software

including DEVSRT simulation algorithms, a Flattened

Coordinator technique and a Time Interval function. The P-DEVS

simulation algorithms allows for parallel execution of concurrent

events through the implementation of a messaging behaviour for

model interaction. The Flattened Coordinator technique improves

the efficiency of the DEVSRT messaging behaviour through the

removal of superfluous messages that are generated for

communication between coupled models. Finally, the Time

Interval function enforces real-time constraints through the use of

wall-clock time advancement and execution deadline checking.

Figure 3. Software Components [12]

CD++ has four main components [Figure 3]: the Main Runtime

System, the Modeling Subsystem, the Runtime Subsystem and the

Messaging Subsystem [17]. The Main Runtime System manages

the overall aspects of the real-time execution and provides timing

functions with microsecond precision. The Main Runtime System

is the first object that is created in non-real-time context, and it

launches the Runtime Subsystem [12]. In general, the Main

Runtime System first register Atomic component objects, then the

Top coupled component ports that are connected to the external

environment, reads in the external events (from an existing event-

file) and builds an external event table. After that, the Main

Runtime System reads in the model-file and builds the model

hierarchy. Finally, it spawns the main real-time task in which the

Root Coordinator (RC) is created to start the DEVSRT execution

cycle. The Runtime Subsystem consists of Simulators,

Coordinators, and the Processor Admin. In E-CD++, the

Simulators work on run-time engines that correspond to atomic

components, and they perform the main job of executing the

internal transition and output function after receiving the proper

messages.

The RC is a special Coordinator that manages the real-time event

scheduling. It initializes the global Driver object which launches

the real-time input driver tasks (associated with input ports of the

Top coupled component in the DEVS model hierarchy) declared

by the user.

The Modeling subsystem is generated in order to define the

atomic and coupled models, as well as the relationships between

them. For each of these models, a processor is defined within the

Runtime Subsystem in order to manage the behavior of the model

and drive the execution. The Messaging subsystem provides the

P-DEVS behavior [12].

While this implementation reflects DEMES concepts, it is closely

dependent on the Linux kernel and restricts supported devices.

We went further and removed this limitation: The new E-CD++

103

provides a DEVS execution engine that resides in an ARM-based

microcontroller, and it is OS independent. Today, the ARM

architecture is the most pervasive 32-bit architecture and is found

in all types of computing devices from real-time safety systems

(automotive braking systems) to smartphones [13]. Besides, since

the new E-CD++ does not rely on a particular OS, it becomes

applicable to a broader variety of microcontrollers. In order to

successfully achieve this objective, several changes were required

and will be presented in the next section.

3. A DEVS-based Kernel
As discussed in Section 2, the development of embedded

applications using E-CD++ requires several changes to the current

iteration of the software. Currently, the E-CD++ execution engine

relies on a RT-Linux OS to implement DEVSRT [12]. Through

modifications to the existing software architecture, we provide

now stand-alone operation, i.e. bare-metal execution. To do so,

we had to leverage multiple existing functions as well as develop

additional functionality in order to operate without OS support

and directly interface with hardware devices.

3.1 Proposed Approach
As described earlier, the current implementation of E-CD++ is

based on the assumption that it will be running from a variant of

the Linux kernel. This imposes memory capacity, processing, and

portability limitations as the target platform must include the

memory and processing power necessary for the Linux kernel

variant, and there must be a Linux kernel that can be compiled for

the target platform and can interface with the available hardware

devices.

As a solution to the above challenges, we propose the new

architecture shown in figure 4. The modeller defines models using

the DEVS formalism and C++ code. Note that an Eclipse IDE can

be used in order to make the development task easier. The defined

models are then interpreted and executed by the DEVSRT engine

which directly rest on bare-metal (target platform) in the new

version. Similarly to the previous version, the driver interface

layer is used to provide a formal interface for I/O ports. However,

this layer has been modified to communicate directly with the

underlying hardware without the need of a real-time kernel

middleware.

Figure 4. New Layers

Besides, the simulation platform is only used for model

development since the DEVSRT execution engine and the I/O

drivers are moved to the target platform and run on bare-metal.

This is new when compared to the previous platforms where a

RTOS was required, and it is especially different from the case

where commands were sent through a network interface as shown

in figure 2 and in figure 4. With these changes, models execute in

real-time on the target platform and model continuity is greatly

increased providing therefore higher integrity simulation results.

To develop this DEMES-based design solution that is able to

execute directly on the target platform, several updates were made

including the reimplementation of a Driver model, and the use of

the Flattened Coordinator technique. Plus, the previous

implementation of E-CD++ used the Xenomai real-time

framework for the Linux kernel; this dependency was removed by

interfacing with the hardware clock of the target platform.

E-CD++ has to be implemented as a stand-alone embedded

program able to cope with memory limitations of embedded

platforms and run independently on the generally limited RAM or

ROM available for program storage and execution. Because of

this resource limitation, it is necessary to reduce the memory

footprint of E-CD++ as much as possible.

More specifically, to implement this novel approach, we have first

adapted the Driver model and the Flattened Coordinator technique

for direct I/O interfacing as opposed to the transfer of data over a

network. The Driver model and Flattened Coordinator concepts

have been leveraged in the new E-CD++. Because embedded

devices generally lack high memory limits and processing power,

the Flattened Coordinator was used to minimize the amount of

message passing between models. The driver model, on the other

hand, provides a programming construct to be used with hardware

components and devices and was adapted to the new architecture.

Second, to migrate E-CD++ to a bare-metal environment, several

changes were made. These changes include the removal of the

RTOS as well as the reimplementation of various OS kernel

function calls. Since E-CD++ will be implemented directly on an

embedded platform, the additional functionality provided by the

RTOS becomes redundant due to the available low level control

of timing and scheduling and as there is only one application

running at a time. With these changes, it is possible to move the

DEVSRT engine as well as the I/O drivers directly onto the target

platform, eliminating the need for a network interface for

communication between the simulation platform and the target

platform as illustrated in figure 4. Hence, the removal of the

Xenomai/Linux RTOS minimizes the size of the program and

removes previous Linux dependencies.

 Last, as the initial E-CD++ was developed for targets with OS

support, there were various system calls made to the Linux kernel

in order to handle various functions such as file I/O and memory

management. In order to minimize the footprint of E-CD++ to

allow for execution in a low memory embedded platform, these

functions need to be re-developed with embedded execution in

mind. As is discussed later, these calls are largely unnecessary as

the embedded platform will not support multi-processing and does

not require full file system support; the only file referenced by E-

CD++ is the model file which can be loaded directly into memory.

The new functions were thus implemented to provide the same

functionalities as the original system calls without the overhead of

a full OS kernel.

104

In the following section, the above main changes will be detailed

and their implementation further explained.

3.2 Implementation
In a first phase, two main concepts, namely the driver concept and

Flattened Coordinator Technique, were adjusted to the new

structure. The Run-Time Subsystem and Modelling Subsystem

now include a Flattened Coordinator as well as the integration

with the Driver model. The Flattened Coordinator has been added

to the Run-Time Subsystem where it has replaced the many

Coordinators that were previously used. The Flattened

Coordinator reduces the number of messages that need to be

passed between models. This is accomplished through the

removal of Coordinators for Coupled Models which are replaced

with a single Flattened Coordinator, which manages the message

passing between Atomic models enabling direct communication,

reducing the messages needed. This improves processing power

and speed, which is a limitation to execution on embedded

platforms. In order to increase efficiency, the Flattened

Coordinator analyzes the links between models on initialization

and generates an influence list, establishing the relationships

between models. The Flattened Coordinator is able to identify the

recipient of a message and passes the message directly to the

Atomic model. In a simple system containing only a few coupled

models, this will not have a very large effect on the overall

efficiency of the system; however, as the system complexity

increases, the increase in performance that is achieved through the

implementation of the Flattened Coordinator technique can be

seen to improve [18].

Drivers have also been added to the Run-Time Subsystem

providing an interface to initialize hardware devices as well as to

interact with the Ports that are associated with the model as it will

be discussed later. Through the use of the Driver objects, external

I/O can be controlled through the encapsulation of hardware

specific functionality, made available by accessing the generic

functions provided by the Driver model, and not using an

embedded RTOS. Using this model, we are able to interface a

wide range of devices and greatly improve portability by simply

implementing basic hardware drivers that are then accessed by E-

CD++. From an implementation point of view, the driver model

manages hardware device connections and interfacing through the

use of two classes: the Port class, and the Driver class.

Similar to the Models and Processors in the Modelling subsystem

and Run-time subsystem (seen in section 2.3.), the Port class

resides in the Modelling subsystem while the Driver class is in the

Run-time subsystem. Together, they provide a link between the

DEVS implementation, and the hardware target platform.

The Port class represents the logical connection between models

and hardware devices. Where the previous implementation saw

the Port class passing established API commands over a network

interface, our implementation of the Port class includes Input and

Output low-level functions that are developed to provide the

interface directly with the hardware device. In the case of Inputs,

the receipt of a signal on a Port will cause the generation of a

PDEVS message which is then added to the message queue

processed by the Root Coordinator. When configured as an

output, the Port will receive the data from a PDEVS message from

the Driver class which will then be translated into a signal that can

be interpreted by the hardware device. Through bare-metal

implementation, it is possible to use the hardware and software

interrupt service routines of the target platform to notify E-CD++

of I/O changes. The specific hardware interrupts associated with

each hardware device can then be used to generate PDEVS

messages based on the values received from the device. Similarly,

software interrupts can be programmed based on a division of the

base clock in order to provide periodic polling.

Alternatively, the role of the Driver class is to receive PDEVS

messages from the message queue as well as initialize and close

hardware devices. As mentioned, when a PDEVS message is

retrieved from the message queue, the Driver reads the value from

that message and passes it on to its associated Port for

interpretation and communication to the device. In the case of

initialization or termination, the Driver class includes functions

that interface with hardware devices in order to prepare them for

operation, or for the end of simulation as required.

In addition to the above, to effectively model real-world inputs, it

is necessary to define two types of devices that a Port/Driver may

be associated with, the first being passive devices. These types of

devices include sensors which must be polled at specific intervals

to determine their current state. Interfacing with passive devices

requires the implementation of a periodic timer interrupt that

requests the state of the device. This can be accomplished through

the creation of a software interrupt that is tied to a division of the

base clock. This allows a software interrupt to be triggered at

regular intervals, eliminating the need for real-time tasks. The

state that is returned from these interrupts is then passed to the

associated Driver which interprets the state, creates, and sends an

appropriate PDEVS message to the message bag for further

processing. The second type of hardware device that can be seen

is an active device. An active device is classified as a hardware

device that triggers an input event. Active devices can trigger a

hardware interrupt at which point, they will pass their states to the

Driver for processing.

All operating system dependencies needed to be removed. The

original implementation of E-CD++ was developed on a desktop

computer for simulation, which would then pass the results of the

simulation through the OS to a separate application either on the

same platform or over a network to the target platform. With the

new version, the DEVSRT execution engine resides directly on

the target hardware. As embedded platforms are generally limited

to several megabytes of memory and a processor with a clock

speed in the megahertz, the OS dependency of the C++ library

was removed in order to streamline the performance of the

software as well as increase the portability of the overall system.

Given that E-CD++ will be the only application that is running on

the target platform, there is no need for the extra capabilities

available from OS inclusion.

We were able to quickly determine the system calls that were

being made. Based on this list, it was possible to identify the

purpose and functionality of each of these calls. The functionality

of each of these functions could then be reproduced through the

creation of functions with the same signature but with a re-

designed implementation that takes into accounts the limitations

and environment of the target platform. Among these functions,

several were deemed unnecessary as they pertained to inter-

process communication within a multi-processing system. While

they were still required for the compilation of the E-CD++

executable, these functions were re-developed to return constant,

known values that are similar to what would be expected when

running from within an OS. An example of one of these functions

105

is the getpid function. The purpose of this function is to return the

process ID of the currently running process. As there is only a

single process running, the value returned by this function can be

set to an arbitrary integer that meets the constraints of what would

be expected from an application launched from an OS. Multi-

processing and multi-programming can be implemented directly

as a DEVS coupled model, which can be formally verified using

model-checking, and building individual kernels for particular

purposes.

Although the functions related to inter-process communication

could be easily removed, there were still several functions that

required significant re-development in order to return appropriate

values given the context in which they would be called. Some of

these functions relate directly to the programming language that is

used, others to the functionality that is provided by the OS. For

instance, as E-CD++ is developed in C++, an object-oriented

language, dynamic memory allocation is required in order to

allow for the instantiation of new objects. While this can be

accomplished through the run-time modification of pointers to

heap memory allocation, other OS specific functionalities are not

so easy to replace, becoming a hurdle to the bare-metal

implementation of E-CD++.

We also needed to provide useful functionalities generally

provided by the OS. This involved the implementation of several

functions that take advantage of the hardware available to

replicate the OS functionality. Through the use of hardware

devices available on the target platform, such as a real-time clock,

on-board memory, and low power modes, the replication of key

OS functionalities and complete removal of the OS becomes

possible.

In the previous version, Xenomai provided real-time guarantees

through the implementation of constrained functions as well as a

real-time scheduler. More specifically, while the previous version

of E-CD++ used the Xenomai real-time framework for Linux to

provide real-time constraints and scheduling, E-CD++ will not

have these capabilities available. Instead, timing can now be

controlled at the clock level through the creation of periodic

software timer interrupts in order to manage scheduling, and at the

model level through model specification and model-checking of

the timing constraints. As E-CD++ requires microsecond

precision, a software timer can be defined that is set to trigger at 1

MHz. By causing this interrupt to commence the next simulation

cycle, simulation can occur as it normally would. With this, it is

important to note the introduction of a minimum processing speed

requirement for the proper execution of E-CD++. Because the

simulation cycles are defined as 1 sec, the clock speed of the

microcontroller must be greater than 1 MHz in order to allow the

execution of each simulation cycle prior to the next timer

interrupt.

Regarding hardware I/O, the implementation of drivers provides

hardware I/O interfacing by implementing basic hardware drivers

that can be easily accessed by E-CD++. As previously mentioned,

this is accomplished through the use of interrupts and hardware

polling. Hardware and software interrupts can be used to generate

messages from active devices; when the interrupt is triggered, a

message can be added to the message bag. One complication that

arises in this case is the object-oriented support that is available in

C++ but not in C. This is further complicated by the name

mangling that occurs with C++ functions. For this reason, it was

necessary to generate a wrapper function written in C++ but with

a C signature. This function can then call the C++ functions

necessary to add the message to the message bag. Passive devices

are simpler in that it is only necessary to develop the initial

interface functions in C. These functions can be called from C++

whenever input is necessary without any problems.

The only file referenced by E-CD++ during execution (and thus

needed on the target platform), is the model file. In fact, models

are loaded into E-CD++ at run-time through the reading and

interpretation of a model file. This is done by providing E-CD++

with the name and location of the model file from the command

line. Since we do not have a directory structure for OS file I/O

support, it was necessary to develop a pseudo file system in order

to maintain continuity between desktop simulation and target

simulation. In order to mimic this behaviour, the model files are

loaded directly into memory and the file names are used to

populate a file register. The file register then determines the

memory address of the text file using a file table which contains

the mapping between file names and memory addresses. The file

table also provides information about the file that is required by

the C++ library, for example, the file size.

In addition, the removal of the Xenomai framework also required

redevelopment of the behaviour of the Root Coordinator’s

handling of done messages. With Xenomai, the Root Coordinator

would wait to receive a message from a Xenomai real-time task

indicating hardware input. Since this functionality is no longer

available, the receipt of the done message will cause the Root

Coordinator to sleep until the next internal transition is scheduled,

periodically verifying that an external event has not occurred. If

an external event occurs, the event will be processed prior to the

internal transition and the cycle will repeat. In the case where

there are no more internal transitions scheduled, the Root

Coordinator will place the microcontroller into a low power mode

and await an external event.

Finally, early integration of stand-alone E-CD++ was done using

an MCBSTM32F200 evaluation board. Developed by Keil, the

board includes the STM32F207IG ARM Cortex-M3 based

microcontroller. This microcontroller has a clock speed of 120

MHz and contains 1 MB of ROM and 128 KB of RAM. The

clock speed meets the 1 MHz requirement and the memory

capacity is great enough to hold the E-CD++ application and

associated model files. Through the implementation of drivers for

the LEDs and buttons contained on the evaluation board, early

integration testing was performed and proved to be successful,

demonstrating the feasibility of bare-metal implementation of

E-CD++. On the software platform side, Eclipse was used along

with the GNU ARM bare metal tool chain to build applications

and GDB to debug hardware and software. .

Overall, a high level of portability and model continuity can be

achieved, as the DEVS model is not changed throughout

development. This design is also portable as the software core of

E-CD++ has not changed; all that has changed is the external

interfaces. As mentioned, the implementation of the Driver model

greatly increases this portability through the encapsulation and

generalization of I/O devices allowing for simple addition of new

devices.

In the upcoming section, we will illustrate how the new E-CD++

version can be used by implementing a line tracking robot

behavior and describing the entire software development process

using our DEMES-based approach

106

4. Case Study: A Line Tracking Robot
In this section we will show an example of the use of the new

bare-metal version of E-CD++, by building a case study

application for a line tracking robot controller. The Robot is

equipped with a light sensor that faces the ground and absorbs the

amount of light reflected off a small ground surface. The

controller considers a medium percentage of reflected light as a

detected path and initiates the robot to move forward. When the

robot goes off track and it does not pick up a path trail, it stops,

turns counter-clockwise slightly, and then tries to detect a trail

again. If a path is detected, the robot will move forward again;

otherwise it will continue to turn until it finds a path to follow.

The destination is considered to be a wide dark ground surface. At

that point, the light sensor would detect a small amount or no light

reflection which indicates to the robot’s controller that it has

reached the destination and causes the robot to stop moving. The

robot can also receive manual signals to start and stop.

4.1 System Architecture
The first step in the DEMES-based development cycle is to

specify a model of the system of interest using DEVS. Figure 6

illustrates the resulting DEVS model hierarchy for this example.

Figure 6. Line Tracking Model Robot Hierarchy Diagram

The top model has one input port, LIGHT_IN, through which the

light sensor values are read, and two output ports, MOVEL_OUT

and MOVER_OUT, used to send commands to the left and right

motors of the robot. Apart from these ports, other input ports are

named using the format ToPort_IN_FromModel where ToPort

represents the name of the input port to which a message is sent

and FromModel is the coupled model from which the message

originates. Note that when the signal comes from an atomic

model, the FromModel part is omitted, and the format becomes

therefore InputPortName_IN. Hence, motor_in is the input port of

the motor atomic model. Similarly, for output ports, we use the

FromPort_OUT_ToModel where FromPort is the port through

which a message is sent, and ToModel is the coupled model the

message is adressed to. When the recipient model is atomic, the

format is reduced to FromPort_OUT. For instance,

MU_MOVEL_OUT_TOP is the Movement Unit(MU) output port

designed to send messages from the left motor to the TOP model.

On the other hand, mctrl_mover_out is the mover (move right)

Movement Controller(mctrl)’s output port. These formats were

used in order to rapidly identify the links among models and the

role of each port.

In terms of components, the Line Tracking Robot’s top model is a

coupled model made of three coupled models: Sensor Unit,

Control Unit and Movement Unit. The Sensor Unit contains an

atomic model: Light Sensor. The Light Sensor reads the amount

of light reflected off of a ground surface and transmits the

readings to the Control Unit for processing. The Control Unit

contains two atomic models: Sensor Controller and Movement

Controller. The Sensor Controller activates/stops the light sensor

through the sctrl_start_out port, receives the light sensor readings

through sctrl_light_in and sends messages to the movement

controller through the sctr_mctrl_out output port. These messages

specify whether the robot is on-track, off-track or has reached the

destination. Indeed, when the light sensor readings indicate a

bright surface, the sensor controller sends an off-track signal to

the movement controller. Likewise, when the sensor readings

indicate a dark surface, it implies that the line tracking robot is

properly following the line and an on-track signal is sent instead.

When the robot reaches its destination, i.e. the light sensor reads

an all dark surface; the sensor controller sends a stop reading

command to the light sensor through sctrl_start_out and a stop

signal to the movement controller. In addition to the above, the

107

sensor controller receives, through the sctr_start_in input port, the

user signal that starts the line tracking robot and puts the system

in motion.

The Movement Controller, on the other hand, receives on/off-

track signals from the sensor controller through the mctrl_sctrl_in

port, and sends appropriate commands to the motors through

mctrl_movel_out and mctrl_mover_out. Therefore, when an on-

track signal is received, the movement controller sends a go

forward command to both motors in order for the robot to stay on

the right path. Correspondingly, when an off-track signal is

received, the robot stops and prepares to turn. In this case, a stop

signal is sent to all motors; then the right motor is instructed to go

forward while the left motor is commanded to go into reverse.

Finally, the Movement Unit is made of two atomic models: Motor

Left and Motor Right. It’s a collection of the robot’s actuators that

move in response to commands received from the Control Unit.

The Motor models control the functions of the robot treads. They

can only move forward, in reverse or stop according to the signals

they receive from the Control Unit. A combination of a motor

moving forward and the other motor moving in reverse makes the

robot turn.

4.2 DEVS Model Specification
Once the hierarchical structures of the model have been

established, components are well defined using DEVS formal

specification. In this section, we will focus on the Control Unit

model specification. As mentioned earlier, this latter is a coupled

model that has two atomic models, the sensor and movement

controllers.

The Control Unit can be formally defined as:

CM = < X, Y, D, {Md}, EIC, EOC, IC, select >,

Where

X = {(CU_START_IN_TOP, N) ; (CU_LIGHT_IN_SU, N)}

Y = {(CU_START_OUT_SU, N); (CU_MOVEL_OUT_MU,

N);(CU_MOVER_OUT_MU, N)}

D = {Sensor Controller, Movement Controller}.

Md = {M(sensor controller), M(movement controller)}

EIC ={((Self, CU_START_IN_TOP), (Sensor Controller,

sctrl_start_in));

((Self, CU_LIGHT_IN_SU), (Sensor Controller,

sctrl_light_in))}

EOC= {((Sensor Controller, sctrl_start_out), (Self,

CU_START_OUT_SU));

((Movement Controller, mctrl_movel_out), (Self,

CU_MOVEL_OUT_MU));

((Movement Controller, mctrl_mover_out), (Self,

CU_MOVER_OUT_MU))}

IC = { (Sensor Controller, sctrl_mctrl_out); (Movement

Controller, mctrl_sctrl_in) }

Select = { Sensor Controller, Movement Controller }.

In the above specification, X represents the set of input events (N

being the set of port values), Y the set of output events, D the

component name of each model, Md the DEVS basic (atomic or

couple) model, EIC the external input coupling, EOC the external

output coupling, IC the internal couplings and finally select is the

tiebreaker function (refer to Appendix A for more details about

this specification).

The DEVS formal specification of the Sensor Controller model is

as follows and shows how atomic models are defined:

M = <X, S, Y, δext, δint, λ, ta>,

Where

X:{(sctrl_light_in,{BRIGHT,DARK,ALL_DARK});(sctrl_start_i

n,{START_PROC,STOP_PROC});(sctrl_mctrl_in, {Ø})}

S: {“IDLE”, “PREP_RX”, “WAIT_DATA”, “TX_DATA”,

“PREP_STOP”}

Y: {(sctrl_mctrl_out, {ON_TRACK, OFF_TRACK,

STOP_PROC}); (sctrl_start_out, {START_PROC,

STOP_PROC})}

δint (s) {

 switch (s){

 case PREP_STOP: // Stop request

 state = IDLE; ta(state)=infinity;

 case PREP_RX: //Preparing to read data

 case TX_DATA: // Sensor transmitting data

 state = WAIT_DATA; ta(state)=infinity;

 }

δext(s,e,x){

 if (x.port() == sctrl_start_in){ // A user command is received

 if(state == IDLE && x.value()== START_PROC){

 state = PREP_RX; ta(state)= scRxPrepTime;

 }

 else if (x.value()== STOP_PROC) {

 state = PREP_STOP; ta(state)= ZERO_TIME;

 }

 }

 else if (x.port() == sctrl_light_in){ // Reading from sensor

 if(state == WAIT_DATA) { // Waiting for sensor data

 sensor_input = x.value();

 if(sensor_input == ALL_DARK) {// Destination

 state = PREP_STOP; ta(state)= ZERO_TIME;

 }else {

 state = TX_DATA; ta(state)= scTxTime;

 }

 }

}

λ(s) {

 switch (s){

 case PREP_STOP:

 sendOutput(time, sctrl_start_out, STOP_PROC) ;

 sendOutput(time, sctrl_mctrl_out, STOP_PROC) ;

 case PREP_RX:

 sendOutput(time, sctrl_start_out, START_PROC)

 case TX_DATA: {

 int output_val;

 if(sensor_input == DARK)

 output_val = ON_TRACK;

 else if(sensor_input == BRIGHT)

 output_val = OFF_TRACK;

 sendOutput(time,sctrl_mctrl_out, output_val) ;

 }

 }

ta: S  R+
0,  has been defined in the pseudocode above.

108

To understand the behavior of the Sensor Controller model, the

following figure illustrates its state transitions using a state

diagram: Fig. 7 illustrates the DEVS Graph representing the

sensor controller’s behavior. The state diagram summarizes the

behavior of a DEVS atomic component by presenting the states,

transitions, inputs, outputs and state durations graphically [36].

The circles represent states and the double circle is the initial

state. The name and duration of a state is shown in the circle. The

continuous edges between the states represent the external

transitions, which includes the names of the input ports, the input

value and any condition on the input (with format “port?value”).

The dotted lines represent the internal transitions and the

associated outputs (with format “port!value”).

The Sensor Controller starts in the IDLE state and remains in that

state until a start command is received. If the user start signal is

received, an external transition is triggered and the Sensor

Controller state changes to PREP_RX. At this stage, it waits for a

defined time ta=scRxPrepTime after which a ‘start’ output signal

is sent to the Light Sensor and an internal transition is triggered

changing its state to WAIT_DATA. The Sensor Controller waits

in this state until it receives a signal from the Light Sensor. When

a signal is received, if the signal indicates that the robot reached

the destination (signal value is ALL_DARK), an external

transition causes the Sensor Controller to go the PREP_STOP

state, at which it will immediately send a stop signal to the Light

Sensor and the Movement Controller and then transition back to

the IDLE state. However, if the received signal is different, the

Sensor Controller will go to the TX_DATA state at which it will

wait for a time advance period of ta=scTxTime before it sends an

output signal to the Movement Controller indicating whether the

robot is on track or not, and transitions back to the WAIT_DATA

state. At any point in time, if the Sensor Controller receives a

manual stop signal (STOP_PROC), it will execute an external

transition to the PREP_STOP state to stop all activities.

Figure 7. Sensor Controller State Diagram

After the formal specification phase, we implement the models

using E-CD++ in order to run simulations, test individual

components under different loads, gather results and derive

different test cases.

4.3 Implementation in E-CD++
E-CD++ provides a mechanism to program DEVS models’

hierarchical structures. The model definitions and couplings are

written in a model file following a specific format, and the state

transitions and output function are overwritten in C++, as part of

each model’s class definition.

The following lines describe the Sensor and Movement

Controllers specification as components of the Control Unit in the

model file (also called the MA file), in accordance with the model

diagram in figure 6:

1 [ControlUnit]

2 components : SCtrl@SensorController

MCtrl@MovementController

3

4 in : CU_START_IN_TOP CU_LIGHT_IN_SU

5 out : CU_START_OUT_SU CU_MOVER_OUT_MU

CU_MOVEL_OUT_MU

6

7 %input connections

8 Link : CU_START_IN_TOP

sctrl_start_in@SCtrl

9 Link : CU_LIGHT_IN_SU

sctrl_light_in@SCtrl

10
11 %output connections
12 Link : sctrl_start_out@SCtrl

CU_START_OUT_SU

13 Link : mctrl_moveR_out@MCtrl
CU_MOVER_OUT_MU

14 Link : mctrl_moveL_out@MCtrl
CU_MOVEL_OUT_MU

15
16 %internal connections
17 Link : sctrl_mctrl_out@SCtrl

mctrl_sctrl_in@MCtrl

The MA snippet starts by defining the Control Unit as a coupled

model composed of two instances: SCtrl and MCtrl, of Sensor and

Movement Controller respectively. Then, the input

(CU_START_IN_TOP and CU_LIGHT_IN_SU) and

output(CU_MOVEL_OUT_MU and CU_MOVER_OUT_MU)

ports of the Control Unit are defined. Finally, the input and output

connections between the ports of the Control Unit and those of

SCtrl and MCtrl are described, as well as the internal connections

between SCtrl and MCtrl. The direction of the connection is read

as FROM port  TO port.

The following code describes the transition and output functions

of the Sensor Controller, in accordance with the state diagram in

figure 7:

1 Model

&SensorController::externalFunction(

const ExternalMessage &msg) {

2 …

3 if (msg.port() == sctrl_light_in){

// Light sensor signal received

4 if(state == WAIT_DATA) {

// Sensor controller was waiting for data

5 sensor_input= msg.value();

// Get the light sensor input

6 if(sensor_input==ALL_DARK) {

// Destination Reached

7 state=PREP_STOP;

// Prepare to stop immediately

8 holdIn(Atomic::active,ZERO_TIME);

9 } else {

// Robot is not at destination yet

109

10 state = TX_DATA;

// Sensor goes into transmitting state

11 holdIn(Atomic::active, scTxTime);

// after scTxTime,send data to MCtrl

12 }

13 }
14 }
15 return *this;

16 }
17
18 Model

&SensorController::internalFunction(

const InternalMessage &) {

19 switch (state){

20 …

21 case TX_DATA:

// Just transmitted data to movement

controller

22 state = WAIT_DATA;

// Wait for new data from the sensor

23 passivate();

// stay in this state until new event

24 break;

25 }

26 return *this;

27 }
28
29 Model &SensorController::outputFunction(

const InternalMessage &msg) {

30 switch (state){

31 …

32 case TX_DATA: {

// in transmitting state

33 int output_val;

34

35 if(sensor_input==DARK)

// light sensor indicates a dark line

36 output_val = ON_TRACK;
// output signal to MCtrl is ON_TRACK

37 else if(sensor_input==BRIGHT)

// light sensor reads a bright surface

38 output_val = OFF_TRACK;
// send off_track signal to MCtrl

39
sendOutput(msg.time(),sctrl_mctrl_out,

output_val); // Output sent to MCtrl

40 break;

41 }

42 };

43 return *this ;

44 }

The code snippet first shows a portion of the external transition

function that describes the transition from state WAIT_DATA to

either TX_DATA or PREP_STOP depending on the value

(sensor_input) of the incoming signal from the Light Sensor

received on port sctrl_light_in. Lines 18 to 28 show a portion of

the internal transition function describing the transition from

TX_DATA to WAIT_DATA. Finally, lines 29 to 43 show a

portion of the output function’s behaviour at state TX_DATA.

The output function sets the output signal (ON_TRACK or

OFF_TRACK) to send to the Movement Controller through port

sctrl_mctrl_out.

Using these classes and the core components of E-CD++, different

scenarios can be tested early on the development platform namely

by using event files that generates event for the input ports. Once

the developer is satisfied with the results, the components can be

incrementally moved to the target platform. In order to do this,

each driver is associated with specific commands related to the

hardware component it interacts with.

For the previous version of E-CD++, the Lego’s NXT++ library

was used to interface the models with hardware i.e. the light

sensor and motors. Through a C++ API for Lego NXT robot

controller, communication can be established over USB and

Bluetooth. Therefore, hardware events can be monitored and

events mapped to external transition functions. USB

communication was done using Xenomai 2.6 and NXT++ v4.0

since v0.6 does not support Linux. In the same way, the E-CD++

to NXT++ interface can be used for translating hardware

commands by having output functions mapped to NXT++ API.

However, the NXT robot must be tethered and the DEVS models

weren’t compiled to the native NXT byte code.

The same models were deployed on the ARM board. This time,

the native code was directly downloaded in memory via ST-

LINK, an in-circuit programmer for the STM32 microcontroller

families. This interface module is enabled with JTAG/serial wire

debugging (SWD) interfaces that can be used to communicate

with the target platform and debug via an OpenOCD client/server

connection. Interfacing E-CD++ with hardware peripherals is

made easy by the available port/driver concept and the

comprehensive standard peripheral libraries offered by

STMicroelectronics in this case. These two elements can be

seamlessly integrated, compiled to the native byte code, and result

in a DEVS-based firmware able to control the peripherals and

respond to diverse external stimuli.

Once the models were implemented, different tests were done by

progressively integrating hardware components and testing the

entire system. The final deployment was made on the final target

and models run on the microcontroller. Section 5 presents the

results of our experiments and compares them with the Lego’s

version.

5. RESULTS
Each model component was first tested using virtual-time

simulation. Then, multiple scenarios were simulated in order to

observe the behavior of the robot in different environment settings

and in real-time. To carry out these experiments, an event file that

specifies the event time, input port and its value is used. Table 1

shows the port mapping table and the description of each value.

Table 1: Port Mapping

Port Name
Port

Value

Hardware

Command
Description

START_IN

10 START
Manual Start

Command

11 STOP
Manual Stop

Command

LIGHT_IN

0 BRIGHT No line detected

1 DARK Line detected

2 ALL_DARK
Destination

Reached

110

MOVER_OUT/

MOVEL_OUT

0

1

2

STOP

FORWARD

REVERSE

Stops the motor

Spins Clockwise

Spins Anticlockwise

An example of events that were injected into the system follows:

00:00:01:000 START_IN 10

00:00:02:000 LIGHT_IN 1

00:00:02:500 LIGHT_IN 0

00:00:02:700 START_IN 11

00:00:03:000 LIGHT_IN 1

00:00:03:500 LIGHT_IN 0

00:00:05:000 START_IN 10

00:00:05:500 LIGHT_IN 0

00:00:06:000 LIGHT_IN 0

00:00:06:500 LIGHT_IN 1

00:00:07:000 LIGHT_IN 1

00:00:07:500 LIGHT_IN 1

00:00:08:000 LIGHT_IN 2

00:00:08:500 LIGHT_IN 1

00:00:09:000 LIGHT_IN 1

00:00:09:300 START_IN 11

After 1s, the system is started by sending an input to the

START_IN input port. Then, at 2s, a value of 1, meaning the line

is detected, is sent through the LIGHT_IN input port. To illustrate

situations when the robot gets off-track, a value of 0 is sent

through the LIGHT_IN port. The system is then manually stopped

by sending 11 through the START_IN port. Different values are

sent through the LIGHT_IN port to test how the system behaves

after a manual stop. Afterwards, the system is started again, and

bright (0), dark (1) and all dark (2) surfaces are alternately sensed

through the LIGHT_IN port. ALL_DARK signals that the robot

has reached its destination and acts as an automatic stop signal.

More values are sent through the LIGHT_IN port and finally a

manual stop signal is sent through the START_IN port.

The resulting behavior is similar to the one defined in the

controller models. Indeed, when the robot goes off track and does

not detect the line, it stops, turns counter-clockwise slightly, and

then tries to detect a trail again. If the line is detected, the robot

will move forward again; otherwise it will continue to turn until it

finds a path to follow. The destination is considered to be a wide

dark ground surface. Once this surface is detected, the robot will

stop and go into an idle state.

The same inputs were used on the ARM board. Simulation results

are below. Inputs are shown as well as their corresponding results

(in bold). The format used is <time> <port> <signal_value>.

Microseconds are shown in the logs since we used a 32 bit timer

that allows such precision. Inputs are numbered and hardware

commands instead of signal value. Output are shown in bold.

1. 00:00:01:000:023 START_IN START

2. 00:00:02:000:030 LIGHT_IN DARK

 00:00:02:200:119 mover_out 1

 00:00:02:200:119 movel_out 1

3. 00:00:02:500:021 LIGHT_IN BRIGHT

 00:00:02:600:115 mover_out 0

 00:00:02:600:115 movel_out 0

 00:00:02:700:115 mover_out 1

 00:00:02:700:115 movel_out 2

4. 00:00:02:700:027 START_IN STOP

 00:00:02:700:124 mover_out 0
 00:00:02:700:124 movel_out 0

5. 00:00:03:000:019 LIGHT_IN DARK

6. 00:00:03:500:030 LIGHT_IN BRIGHT

7. 00:00:05:000:027 START_IN START

8. 00:00:05:500:021 LIGHT_IN BRIGHT

 00:00:05:700:115 mover_out 1

 00:00:05:700:115 movel_out 2

9. 00:00:06:000:028 LIGHT_IN BRIGHT

10. 00:00:06:500:022 LIGHT_IN DARK

 00:00:06:650:115 mover_out 0

 00:00:06:650:115 movel_out 0

11. 00:00:07:000:029 LIGHT_IN DARK

 00:00:07:200:122 mover_out 1

 00:00:07:200:122 movel_out 1

12. 00:00:07:500:031 LIGHT_IN DARK

13. 00:00:08:000:020 LIGHT_IN ALL_DARK

 00:00:08:050:112 mover_out 0

 00:00:08:050:112 movel_out 0

14. 00:00:08:500:021 LIGHT_IN DARK

15. 00:00:09:000:028 LIGHT_IN DARK

16. 00:00:09:300:027 START_IN STOP

 00:00:09:300:126 mover_out 0

 00:00:09:300:126 movel_out 0

The results of this simulation were found identical within a reason

for both the Linux and the bare-metal version.

After running various scenarios to verify the model behavior on

the board, the driver interfaces were mapped with the robot

sensors and actuators. The START_IN driver is attached to a

button for starting/stopping the robot, and acts as an active device

in this case. The LIGHT_IN driver is associated with a reflectance

sensor for sensing the surface brightness and acts as a passive

device since polling is needed to collect the sensor values. The

output drivers MOVER_OUT and MOVEL_OUT are connected

to two servomotors. The same behavior was observed, and the

robot followed the line as expected. It is essential to emphasize

here that the same models were used in both the Linux and the

bare-metal versions. Only drivers had to be adapted. Videos for

the Lego[1] and STM32-based[2] robot are available.

6. CONCLUSION
A new version of E-CD++ was presented. This version allows E-

CD++ to run on bare-metal. It also provides a DEVSRT based

execution engine that acts as a microkernel while models behave

like processes. The main purpose of the new version was to have

an OS independent platform that would be fully portable and

loadable onto various development boards by removing its Linux

dependency. The required system calls have all been replaced

with implementation specific to the needs of E-CD++ and the

system has proven to execute on target platforms.

A Line Tracking Robot example was developed and E-CD++ used

throughout the entire development. The system was decomposed

into several atomic and coupled models connected via a well-

defined hierarchical scheme, where simply the Robot consisted of

three main components: Sensor Unit, Control Unit and Movement

Unit. The Sensor Unit receives light reflection readings then sends

them to the Control Unit. The Control Unit analyses the data

received and determines in whether the Robot is on a valid path or

not and sends movement signals to the Movement Unit

accordingly. The Control Unit commands the Movement Unit to

111

either move forward, turn or stop. To illustrate our approach, the

Sensor Controller was modeled according to DEVS formal

specification. Then, a corresponding implementation was

presented. Finally, a simulation of the implemented model was

run using ECD++. Tests were carried in both virtual and real

environments. The results were satisfactory and followed the

models’ specification.

Based on the case study results, it can be seen that the

implementation of E-CD++ as stand-alone software provides

results that are identical to those of the simulated system. The case

study has demonstrated the full range of abilities of E-CD++

through the use of internal and external transitions, as well as the

execution of output functions and the interaction with hardware

devices. Through the use of this tool, the simulation and

implementation phases are linked as the initial models are

deployed on the target hardware. We were also able to execute the

engine on bare-metal on different ARM-based boards without the

need of middleware RTOS.

The current version still needs to be ported onto a broader variety

of platforms. Although the main modules are easy to port onto

new platforms, the user will need to find appropriate drivers for

the desired platform and be familiar with low-level programming.

One of our future objectives is to provide a set of libraries and

drivers for multiple microcontrollers to ease development task and

only require the definition of DEVS models.

Another goal is to explore IoT applications. Indeed, provided

hardware with connectivity capabilities, input/output ports can be

associated with a network instead of traditional sensors therefore

allowing I/O to be received and sent from any connected device.

For instance, data could be sent by the DEVS-based kernel to a

cloud based simulator or to any other connected hardware. Our

execution engine could be used to connect small data and big

data, and build diverse IoT applications.

7. REFERENCES
[1] Advanced Real­Time Simulation Laboratory. 2013. Line

Tracking Robot on Lego Hardware. Video. Retrieved

March 1,2015 from

https://www.youtube.com/watch?v=mTtlSV7WbuI

[2] Advanced Real­Time Simulation Laboratory. 2015. Line

Tracking Robot on STM32 (Early Debug Version). Video.

Retrieved March 1,2015 from

https://www.youtube.com/watch?v=X2itlznkoVw

[3] Bergero, F. and Kofman, E. 2010. PowerDEVS: a tool for

hybrid system modeling and real-time simulation.

Simulation 87, 1­2 (2010), 113­132.

[4] Cho, S. M. and Kim, T. G. 1998. Real-Time DEVS

Simulation: Concurrent, Time-Selective Execution of

Combined RT-DEVS Model and Interactive Environment.

In Proceeding of 1998 Summer Simulation Conference

(Reno, NV, USA, July 19 - 22). SCSC '98. Society for

Computer Simulation International, Vista, CA. 410-415.

[5] Cho, Y., Hu, X., and Zeigler, B. P. 2003. The

RTDEVS/CORBA Environment for Simulation­Based

Design of Distributed Real­Time Systems. Simulation 79, 4

(2003), 197­210

[6] Edwards, S., Lavagno, L., Lee, E. A., and Sangiovanni-

Vincentelli, A. 2001. Design of embedded systems: formal

models, validation, and synthesis. In Readings in

hardware/software co-design, De Micheli G., Ernst R. and

Wolf W. (Eds.). Kluwer Academic Publishers, Norwell,

MA, USA, 86-107.

[7] Furfaro, A. and Nigro, L. 2009. A development

methodology for embedded systems based on RT­DEVS.

Innovations in Systems and Software Engineering 5, 2

(2009), 117­127.

[8] Hu, X., Zeigler B.P. and Couretas J. 2001. DEVS-On-A-

Chip: implementing DEVS in embedded java on a tiny

internet interface for scalable factory automation. In

Proceedings of the 2001 IEEE Systems, Man, and

Cybernetics Conference (Tucson, AZ, USA, July 14 - 18,

2001). IEEE, New York, NY, 3051-3056.

[9] Hu, X., and Zeigler, B. 2004. Model Continuity to Support

Software Development for Distributed Robotic Systems: A

Team Formation Example. Journal of Intelligent and

Robotic Systems 39, 1 (2004), 71­87.

[10] Hu, X., and Zeigler, B. 2005. Model Continuity in the

Design of Dynamic Distributed Real-Time Systems. IEEE

Transactions on Systems, Man, and Cybernetics Part A 35,

6 (2005), 867­878.

[11] Li, Q., and Yao, C. 2003. Real­Time Concepts for

Embedded Systems. CMP Books, San Francisco, CA.

[12] Moallemi, M., and Wainer, G. 2013. Modeling and

simulation­driven development of embedded real­time

systems. Simulation Modelling Practice and Theory. 38, 0

(2013), 115­131.

[13] Sloss, A., Symes, D., and Wright, C. 2004. ARM system

developer's guide. Elsevier/ Morgan Kaufman, San

Francisco, CA.

[14] Wainer, G. 2002. CD++: a toolkit to develop DEVS

models. Software: Practice and Experience. 32, 13

(November 2002), 1261-1306.

[15] Wainer, G. A. 2009. Discrete-event modeling and

simulation: a practitioner’s approach, CRC Press, Boca

Raton, FL.

[16] Wainer, G. A., Glinsky E. and MacSween P. 2005. A

Model-Driven Technique for Development of Embedded

Systems Based on the DEVS Formalism. In Model-Driven

Software Development, Beydeda S., Book M. and Gruhn,

V. (Eds.). Springer, Berlin, Heidelberg, 363-383.

[17] Wainer, G. and Castro, R. 2011. DEMES: a Discrete-Event

Methodology for Modeling and Simulation of Embedded

Systems. Modeling and Simulation Magazine. 2 (April

2011), 65-73.

[18] Yu, H. Y., and Wainer, G. 2007. eCD++: an engine for

executing DEVS models in embedded platforms.

In Proceedings of the 2007 Summer Computer Simulation

Conference (San Diego, CA, USA, July 15 - 18, 2007).

SCSC '07. Society for Computer Simulation International,

Vista, CA, 323-330.

112

