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ABSTRACT 

Modeling allows us to focus on the important components 

of a system under study, leaving aside the non-meaningful 

information. To study metabolic networks, we need to cre-

ate a new model of the phenomena in order to start the sim-

ulations. Here, we propose a method for automating model-

ing and simulation of biological cell processes using DEVS. 

We have built a parser and a model-generator in order to 

read SBML files and generate the model from the data. We 

also defined a generic model container for a biological cell 

including essential attributes of a cell, which can be instan-

tiated using SBML to generate individual models. 

INTRODUCTION 

In the past decades, the need to understand biological pro-

cesses has increased. In medicine, better understanding of 

these processes, allows improving drugs and treatments. In 

biology and biochemistry, biological cells play a fundamen-

tal roll and their study is essential. Studies of biological 

processes are expensive and time-consuming. Often, it is 

not possible to conduct experiments in the natural environ-

ment. Those in-vitro studies can also be expensive and take 

time. In those cases, Modeling and simulation (M&S) be-

comes a powerful tool. M&S allows abstracting the phe-

nomena, discarding the non-relevant parts.  

We are interested in studying different biological cells. 

They are divided by the prokaryotic and eukaryotic cells. 

Differences exist between the large amounts of existing 

cells, for example, some cells have organelles, and some 

others have not. Furthermore, several biological processes 

do not follow the rules that the majority of them do. Taking 

in consideration these obstacles, it is hard to consider a sin-

gle model structure. We aim to achieve a flexible structure 

model that helps modelers by offering a framework that can 

easily be improved and adapted. This would allow modelers 

to integrate different models (i.e., a signaling path model 

with a metabolic network simulated together in order to 

study their interaction). To do so, we define a mechanism to 

obtain biological information from SBML files, and use 

them to generate instances and automate model generation.  

Many existing biological processes were traditionally mod-

eled using rigid structures. Making changes in their struc-

ture implies restructuring the whole model and new valida-

tion process. These models are not ready to be reused in 

other similar phenomena. Some examples of this are shown 

in [7,31]. Instead, we merged the M&S process with a 

DEVS [4,34] generic model in order to obtain an automated 

procedure where multiple models can be integrated easily.  

We propose a DEVS structure of a biological cell that al-

lows the integration of different models even if they have 

different levels. The proposed model can be seen as a mod-

el container. Once the model is added to the structure, we 

can use SBML files to get different scenarios. The model 

structure is defined hierarchically so any modification can 

be done in a particular sub-component of the structure 

without affecting the rest. This hierarchical structure also 

allows adding new components to the model with the only 

need of linking them to the rest of the structure. The parser 

can be extended in order to automate the instantiation pro-

cess of new models that were included.  

In order to show a simple example of application, we pro-

pose a theoretical case of a metabolic network in a cell with 

no organelles. In this example, we want to show how the 

M&S process structure works with SBML files. To do so, 

we have considered a basic metabolic network where we 

know the expected model and simulation results. 

RELATED WORK 

There are many different computational approaches for 

modeling biological systems. A review of computational 

versus mathematical approaches is shown in [9]. Neverthe-

less, complex biological processes can be better explained 

combining different approaches as each sub-processes can 

be better describer with a different technique. Recently, 

XML-based technologies have made possible exchanging 

remote messages on the Internet [10] and it also improved 

the way that models are saved and reconstructed. For in-

stance, in [20], the authors showed how to use XML to save 

and reconstruct PDEVS models automatically.  

As shown in [26,28] combining macro and micro levels has 

advantages. The abstraction at different levels allows the 

models to describe each part in a more customized and ac-

curate way [24]. Hierarchical modeling and composition in 

system biology is presented in [17] and the idea of model 

re-usability is defined in [27]. Also, since spatial modeling 

in biological cells play an important role and different ap-

proaches are used for this purpose [2]. Models that are more 

realistic can be achieved integrating these spatial models. 



Regarding M&S in biological systems, some new methods 

use computational techniques to automate some parts of the 

work. In [21] a stochastic simulation environment that fo-

cus in the spatial aspect of biological processes was pro-

posed. In [35] a methodology for automatically detecting 

signaling pathways from a source of data allowed modelers 

to find pathways on large reaction networks. JAMES II [6] 

allows different formalism and plug-ins to be included in 

order to find more accurate tools for each model. A review 

of different computational tools can be found in [5]. 

The System Biology Markup Language (SBML) is now the 

standard for biology representations. It allows saving and 

exchanging models, and it is useful for visualization and 

validation [11]. There has been some recent work on the au-

tomation for biological systems using SBML. For instance, 

in [33], SBML-DEVS introduced a framework for model-

ing reaction kinetics of biological systems using SBML for 

the model’s data. They used LibSBML [3] to translate the 

chemical reactions into differential equations. 

The research above focuses on the particular systems and 

levels, but integration of different models using those 

methods is complex. In order to allow integration of differ-

ent biological processes in cells to be modeled together, we 

propose an integrative DEVS structure where multiple 

models can be added. Model integration allows to better 

model different parts of a system using different approach-

es. As shown in [8] combining state-based and Scenario-

Based approaches can help to facilitate the task of modeling 

and thus, checking the model against the real observations. 

Instead, Discrete Events system Specification (DEVS) 

[4,34] provides a hierarchical and modular formalism for 

modeling these Systems. The hierarchical and modular 

structure of DEVS allows defining multiple models that are 

coupled to work together in a single and model by connect-

ing their input and output through messages. In the same 

way, the resulting model can also be coupled with others 

models defining multiple layers in the hierarchical struc-

ture. Coupled models provide modularity to the structure; 

as their behavior is described by the composition of the sub-

components and their connections, a sub-component does 

not change its behavior depending on which coupled model 

is using it. The behavior of any DEVS model is independ-

ent of the rest of the models. This modularity is helpful for 

biological systems modeling. For example, a component 

can be modeled using ODEs with QSS [15] and another one 

in a genome-scale with common DEVS models. Then final 

coupled model will use both as sub-components and will 

connect them through the IC set. 

In this project we used a version of the CD++ toolkit [30] 

called CDBoost [18,29], a DEVS simulator implemented in 

C++11. The simulator only uses the C++ Boost library [12]. 

It is a cross platform, and a good tool to allow the model 

generation to be portable, cross platform and avoid possible 

overhead added by the simulator [18]. 

In order to read the SBML files, we use the C++ TinyXML 

library [37], which offers a simple method to parse an XML 

file and store its data into a DOM (Document Object Mod-

el) (a markup language that can be translated in a in order to 

store the information from a XML file in the program 

memory). We use a DOM structure to store the information 

provided by the SBML file into our program. 

PROCESS ARCHITECTURE 

The three stages for M&S proposed in this work are pars-

ing, model generation and simulation. These serve to auto-

mate the model instantiation using SBML. The model gen-

eration stage uses the results of the parsing stage to obtain 

the data and generate the model. Since the parser is used by 

the model generation stage, it is valid until the model is 

ready and the simulation stage starts. The model generation 

interacts with the parser without knowing the parser imple-

mentation. Figure 1 shows how the classes are intercon-

nected. When the generation stage is complete, and the 

models are ready, PDEVSSimulator runs the simulations. 

The parser obtains information from the multiple SBML 

structure lists, which store information about the reactions, 

the compartments, the species and the units. When the 

SBML information is read, its data is stored in a DOM 

structure, and iterators are created pointing this structure to 

allow fast access to the data, which is processed on demand. 

Each time the processed data is required, the original data is 

copied and the processing is done over the copied data. This 

allows maintaining the original data and it makes it easy to 

extend the parser class for new functionalities. 

We use the hierarchical information of the SBML file to 

construct the model. For example, in SBML, the species are 

assigned to compartments, and reactions have a list of reac-

tants. We use the relation between the species, compart-

ments and reactants to infer the hierarchical structure of the 

compartments. The parser uses the TinyXML library to 

handle the data. The parser separates the species by com-

partments, generates the compartments relations and creates 

a membrane space for each compartment. It also separates 

the biomass reaction from the rest. Some model parameters 

cannot be described in SBML. Normally these are part of 

the specific models, and they do not come from the nature 

of biological processes. Depending in the model implemen-

tation, we can need extra parameters. These extra parame-

ters must be specified as part of the model generator input. 

More information about SBML models is given in [11]. 

The parser interface provides the necessary methods to ob-

tain processed data for the model generation. This interface 

is available after the parser initialization, and it works as a 

connector between modelGenerator and the parser. When-

ever the parser is modified to add new functionalities, the 

existing interface should be extended. The modelGenerator 

then uses the old interface to generate the model structure. 

The model generator creates the Parser in order to use it. 

This is why when modelGenerator is constructed automati-

cally, the parser is created and its interface is initialized. 



 

Figure 1. Class diagram of the parsing and model generation processes.

The modelGenerator class stores the logic of how to create 

the components. It also has the model structure embedded 

in the method createCellModel. The process of constructing 

the model is incremental. At first, all the atomic models are 

generated. When they are ready, the coupled models are 

built using their dependencies in the hierarchy. In this pro-

cess, the model is generated bottom-up from. The mod-

elGenerator class creates the parser. The atomic models are 

created as classes extending PDEVS Atomic. These describe 

the common aspects of atomic models and they become a 

well-defined model when they are instantiated. To do so, 

modelGenerator knows the structure (for coupled models), 

and the instantiation parameters (for atomic models). When 

the model structure needs to be improved and/or new mod-

els are added to the structure, the modelGenerator methods 

must be updated to allow these changes.  

The modelGenerator interface is abstracted from the model 

structure or any detail that could be changed in the future. 

This allows integrating different structure models in differ-

ent application without any additional modifications. This 

abstraction generates models as an abstract factory without 

the need to know the model’s full extent of the application 

will not be affected. As an example, Figure 2 shows the al-

gorithm to create the bulk solution models:  

 

Figure 2. modelGenerator to create bulk solution models. 

We can see how modularity is achieved by using the inter-

face getEnzymeSetModel and getSpaceModel to get sub-

components. If changes are made in the subcomponents of a 

bulk solution, the coupled model does not need to change 

getBulkSolutionModel for the new subcomponents.  

When the modelGenerator stage is complete and the model 

is ready, PDEVSSimulator from CDBoost is used to run 

simulations. We can generate different scenarios from the 

SBML file without modifying the program. We can also 

generate different scenarios by the input data, an external 

file that is used by a generator model and it normally serves 

to give metabolites to the extra cellular space. The execu-

tion process is shown in Figure 4.  

 

Figure 3. Execution process flow. 

MODEL ARCHITECTURE 

Biological cells have common structures and behaviors that 

can be abstracted in to create a generic model structure that 

describes the common properties of the biological cell 

models and can be instantiated with particular parameters. 

For example, the formula in Error! Reference source not 

found. describes the common properties of a non-reversible 

reaction.  

∑ 𝑎𝑖𝑠𝑖  →  ∑ 𝑏𝑖𝑝𝑖
𝑚
𝑗=0

𝑛
𝑖=0     Equation 1 

• 𝑎𝑖 ∈ 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑦. 
• 𝑠𝑖 ∈ 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑠. 
• 𝑏𝑖 ∈ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑦. 
• 𝑝𝑖 ∈ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

• 𝑛, 𝑚 ∈ ℕ  

On the other hand, the mathematical formula shown in   

Equation 2 is a particular instance of the general formula in 

Error! Reference source not found..     

8𝐹𝑒 + 𝑆8 → 8𝐹𝑒𝑆   Equation 2 

A biological cell has a hierarchical structure where its com-

ponents can have sub-components. Each interacts with oth-

ers at the same level and with components from nearby lev-



els (the parent level and the child level). Each component of 

the cell can be seen as DEVS model, and the mapping be-

tween the cellular structure and the model of the structure is 

simple and clear. The mapping between a generic biological 

cell and the proposed DEVS structure is shown in Error! 

Reference source not found..

 

Figure 4. Mapping between a general biological cell and the model structure.

The idea of the general structure shown in Figure 4 is not to 

describe every possible cell, but to be flexible enough in 

order to allow modeling any of them by extending the struc-

ture and modifying the sub-component. Each atomic model 

can be replaced by a coupled model adding more sub-

component achieving models that are more complex. 

In the proposed model, we only consider the structural part 

of a cell as the model components. These components are in 

charge of handling the interaction between compartments 

and the movement of the molecules through the space and 

bulk solutions. The molecules used as substrate and product 

are not represented by atomic models, and they are in the 

model messages. On the other hand, the metabolites are not 

static components of a biological cell. They can be obtained 

from the extracellular space or from reactions. At the same 

time, metabolites do not play an active role introducing any 

behavior. Instead, they are only used as the reaction’s sub-

tract and product. It is important to notice that in most of 

the cellular reaction, enzymes are in charge of handling 

those reactions. For this reason, the metabolites are used as 

the input/output of the components, and they only exist in 

the messages and in the component states. Both messages 

and component state are not static; they are constructed and 

destructed when needed. Without modeling metabolites, we 

can handle the dynamic of the cellular reaction. 

In biological cells, there are thousands of proteins and reac-

tions. This could be a problem if we wanted to model each 

protein as a component. We use multistate models to have 

sets of proteins grouped by their states. All the proteins 

with the same state are seen as a single one until their 

change and are regrouped by their new states.  

As mentioned in [14] whenever a metabolic network is 

modeled we need to deal with the exponential explosion. 

We have modeled the space as a stochastic process that de-

termines when collisions between proteins and metabolites 

happen, and send the information to the component in 

charge. The space models store the available amount of me-

tabolite and protein in their states. Whenever a new reaction 

takes place, the component in charge sends the product 

back to the space for the amount of metabolites and proteins 

to be updated in that corresponding space. These models 

must be defined abstracting the particular values. On the 

other hand, they also need to be flexible to use SBML to in-

stantiate those values. The classes defined in CDBoost are 

used to implement the general models as classes.  

As in real biological cells, the metabolites of the extracellu-

lar space cannot go directly to the cytoplasm without pass-

ing through the periplasm. We use the same structure. The 

periplasm model has three membranes, the space and the 

inner. It has a space that allows reactions to happen. This 

component is an intermediary between the extracellular 

space and the cytoplasm. The space component in Error! 

Reference source not found. is a model of the metabolites 

and enzymes in the bulk solution and their collisions. The 

internal transition function calculates collisions using a sto-

chastic process, and it sends the metabolites that have col-

lided to the Inner where reactions will take place and the 

products are returned to the Space. The membrane compo-

nents play a similar roll that the real ones do: they store 

transport proteins and they bring the needed metabolites to 

the inner of the periplasm. A metabolite has two options in 

order to pass through the periplasm. The first option is to go 

inside the periplasm by one of the two inner or outer mem-

branes and go outside again. The second option is to go di-

rectly by the trans membrane. This membrane communi-

cates the extracellular, the periplasm space and the cyto-

plasm. The Organelle model is similar to the periplasm, but 

with only one membrane that handles transport reactions 

between the organelle and other compartments. There is al-

so the organelle Inner that handles all reactions inside the 

organelle.  

In order to add new models to the structure or to improve 

the existing model, we must decide if it is a structural or 

behavioral modification. The first one will cause the model 

to represent a new organization of the real cell, while the 

second one will represent a different interaction between its 

components. The structural modification uses modularity to 

modify the structure in order to add and/or remove compo-

nents in any level. This allows us to add new models in the 



structure. For example, we can add a component that mod-

els the signaling network and then we will have a more 

complex model of a biological cell with the metabolic and 

signaling network modeled together. The second possibility 

is to modify the behavior of the components. This is useful 

to validate new models: if we have a tested model for the 

metabolic networks using a component to model the space, 

we could replace it by a new one and check the results. 

 

Figure 5. Cell coupled model structure. 

The proposed model structure shown in Figure 5 defines the 

structure of a biological cell and its metabolic network. 

However, the main benefit is its general definition that al-

lows easy instantiation and integration of different models. 

With this purpose, we have designed the model to work as a 

framework that modelers can use.  

CASE STUDY 

In order to show how the proposed process works, we have 

designed a theoretical model. This model has a transport 

protein from the extracellular space to the periplasm and 

from the periplasm to the cytoplasm. The transport proteins 

carry metabolites of A from the outside to the inside of the 

cell. In the cytoplasm, there are three proteins. The first one 

takes A and returns 2A, the second one takes 100A and re-

turns 200A and the third takes 1000A and returns 3000A. 

The biomass model is triggered when the amount of A is 

over a specific number of molecules. 

Transport proteins placed in membranes carry metabolites 

to the cell; if this does not happen, there will never be me-

tabolites in the cytoplasm. At the same time, the Space 

models and the Inner models interaction is validated 

through the increase of metabolite A in the cytoplasm until 

the biomass drop the surplus. In this example we have used 

three different values for the Kon and Koff constant. In or-

der to validate the stochastic behavior using Kon and Koff 

constant, we run the examples using for these constants a 

value of 0.8. This value is high enough to predict an almost 

constant increase that is not completely regular. 

For the non-reversible example, Figure 6 shows the amount 

of metabolite A over the time. The amount increases con-

stantly because there are neither reversible reactions nor re-

actions that help to decrease the concentration of A, which 

is increased by the reaction factors, which are linear. 

 

Figure 6. Metabolite A; non-reversible Biomass is 500000000. 

Error! Reference source not found. shows a reversible 

example. The amount of metabolite is not constant because 

metabolite A is not only increased by the reactions but also 

decreased when the reactions occur in the opposite direc-

tion. Nevertheless, the concentration of A increases because 

the stoichiometry factors need less concentration to produce 

than to remove. 

 

Figure 7. Reversible reaction. Biomass 500000000. Kon/Koff 

0.8. 

These examples shows the interaction between reactions 

and bulk solutions and the transport. The increases of me-

tabolite A would never be able to start if the transport pro-

tein will not carry them to the cytoplasm. At the same time, 

if the interaction between the bulk solution and the inner 

was not well defined, reactions will not happen. The re-

versible reaction help to validate the not-determinist behav-

ior of the bulk solution and binding process but is not a 

complete validation. The complete validation is in progress 

using for this a real study case of the E. coli. 

CONCLUSIONS 

We showed how to combine automatic instantiation and in-

tegrative modeling. Whenever the model structure or the 

automation process is not useful, we need to adapt it. The 

modular architecture of the tool and the model allows the 

modeler to improve what needs to be improved without af-

fecting the rest. These improvements can also be integrated 

in other models if needed. 

The combination of automation and model integration al-

lows not only reusing models, but also improving them. In 

this work we have also proposed a strategy to achieve com-



plex biological models allowing backtracking in the con-

struction process. 

We aim to improve the general structure to optimize com-

putational complexity and be able to use clusters to run 

simulations. For a best communication and interaction be-

tween models, we also aim to integrate this tool with multi-

ple web services as shown in [32] and create a web inter-

face so modelers can improve the communication process 

between collaborators and with the simulation server. 
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