
Cellular Models for Emerging Traffic Behavior

Gabriel Wainer1, Cristina Ruiz-Martin1,2, Adolfo Lopez-Paredes2

1 Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
2 INSISOC. Universidad de Valladolid. Spain

Abstract Various researches used cellular models in which we can observe
emerging behaviors that have not been programmed explicitly. The Cell-DEVS
methodology is formal modeling technique that permits defining each cell in a
cell space as individual independent entity. We used Cell-DEVS to build
different models of traffic. We show how to model cell spaces with emerging
behavior using this methodology. We present basic models for roundabouts,
traffic monitoring, railways, and traffic shockwaves based on cellular models.

Keywords: Cell-DEVS, Cellular Automata, Traffic Modeling

Introduction

The application of modeling and simulation techniques to study both natural
and human–made systems shows an increasing trend due to its advantages.
Traditional approaches to solve these problems used differential equations that
were solved analytically. However, these traditional approaches have some
restrictions when modeling complex artificial systems. The introduction of new
methods based on Cellular Automata (CA) has provided new ways to study
complex systems that can be represented as cell spaces [1].

A CA is an infinite regular n-dimensional grid whose cells can take one value

form a finite set (cell state). The cell states are updated in discrete time steps
following local rules in a simultaneous and synchronous way. These local rules
are based on the actual cell state and a finite set of neighboring cells. Cell-DEVS
[2] is a formalism that combines CA with Discrete Events Systems
Specifications (DEVS). DEVS [3] is a formalism for modeling discrete-event
dynamic systems that allows for hierarchical decomposition of the model by
defining a way to couple existing DEVS models. In Cell-DEVS, as in CA, we
define a grid of cells that has a state and a set of local rules to calculate the next
state based on the actual cell state and a finite set of neighboring cells. The
difference is that the behavior of each cell is defined as a DEVS atomic model
and the CA as a coupled model. Cell-DEVS is more flexible than CA as it can be
easily coupled with other DEVS models, and we can define timing delays for
each cell, making the timing specification more expressive.

Both DEVS and Cell-DEVS formalisms can be implemented in the CD++

environment [2]. This environment has been used successfully to develop
different types of systems: biological (ecological models, heart issue, ant
foraging systems, fire spread, etc.), physical (diffusion, binary solidification,
excitable media, surface tension, etc.), artificial (robot trajectories, networking,

traffic, etc.), and others [2, 4-6]. The techniques we used in CD++ enable the
models execution using simulation engines that are completely independent from
the modeling aspects.

In this paper, we show how to use this methodology to study traffic behavior.

For this purpose, we build different traffic models and show emerging behaviors
that have not been explicitly programmed. In the following sections, we will
introduce how to use the Cell-DEVS formalism, and we will show how to model
complex cell spaces with emerging behavior using this methodology. We will
present basic models for roundabouts, traffic monitoring, railways, and traffic
shockwaves, based on cellular models.

Background

The DEVS formalism [3] provides a framework to develop hierarchical
models in a modular way, allowing model reuse and thus, reducing development
time and testing. A DEVS model is defined as a black box with a state and a
duration for that state. When state duration time elapses, an output event is sent,
and an internal transition takes place to change the model state. A state can also
change when an external event is received. These single models are called
atomic. DEVS atomic models can be put together by linking the outputs of a
model to inputs of other models to form coupled models.

Based on the DEVS formalism, Cell-DEVS defines a cell space as DEVS

atomic models. A Cell-DEVS atomic model is defined as follow [2]:

Cell − DEVS	AM =	< X, Y, I, S, θ, E, delay, d, δ���, δ���, τ, λ, D >	
Where:

�: Is the set of input events.
!: Is the set of output events.
I: Represents the model's modular interface.
S: Is the set of sequential states for the cell.
θ: Is the set of the cell’s state variables.
E: Is the set of states for the input events to compute the future state.
delay: is the type of delay in the cell to send its value to the

neighbors. The delay can be transport or inertial. In transport delays, the
future value will be added to a queue sorted by output time. In inertial
delays, any previous scheduled output values will be preempted and
only the new one will be scheduled.

d: Is the delay for the cell.
"#$%: Is the internal transition function.
"&'%: Is the external transition function. This function actives the

local computation function (τ)
τ: Is the local computation function (i.e. the rules to calculate the

next state)
): Is the output function.
D: Is the state's duration function.

Once the behavior of each cell is defined, the cell space is built as a Cell-

DEVS coupled model:

Cell − DEVS	CM =	< Xlist, Ylist, I, X, Y, n, .t/, … , t�1, N, C, B, Z, select >	
Where:

Xlist: Is the input coupling list.
Ylist: Is the output coupling list.
I represents the definition of the interface for the modular model.
X: Is the set of external input events.
Y: Is the set of external output events.
n: Is the dimension of the cell space.
{t1,...,tn}: Is the number of cells in each of the dimensions.
N: Is the neighborhood set. It defines the connections between cells.
C: Is the cell space. The cell space is finite.
B: Is the set of border cells. The border cells may have a different

neighborhood or the space can be “wrapped” (i.e. the cells in one border
are connected with the ones in the other)

Z: Is the translation function to define the external and internal
coupling of cells.

select: Is the tie-breaking function for simultaneous events.

The CD++ tool allows implementing Cell-DEVS models with applications in

numerous fields [2]. Here we explain how to implement a simple CA. Based on
this example, in the next sections, we explain the application for modeling
traffic.

The Brian's Brain CA [7] is an extension of the Seeds pattern model. The

model’s cells can be in any of three states: firing or on, refractory or dying, and
dead or off. The model uses Moore’s neighborhood (i.e. the neighbor cells are
the eight adjacent cells)

The CA follows three simple rules. At each time step, (1) a dead cell turns to

firing if it has exactly two firing neighbors; (2) a firing cell always evolves to
refractory; and (3) a refractory cell always evolves to dead. Following these
simple rules, the CA shows an emergent behavior. The refractory cells tend to
lead to a pattern that reappears after a certain amount of generations in the same
orientation but in a different position. However, many Brian's Brain patterns will
explode messily and chaotically, but most of them will often contain diagonal
waves of firing and refractory cells. These patterns cannot be predicted in
advance.

This simple CA can be specified as a Cell-DEVS model as follow:

6789:′<	6798:	=> =	< �, !, I, ?, θ, E, delay, d, "&'%, "#$% , τ,), @ >
Where:

X=Y={0,1,2}
S={s|s∈{0,1,2}} // 0 = dead or off; 1 = firing or on; 2 = refractory or

dying where 0 means dead or off, 1 means firing or on and 2 means
refractory or dying.

I=Represents the model's modular interface, defined by Cell-DEVS
as follows:

B =	< C, D' , DE, F' , FE >	, where C=9 is the neighborhood’s size,
D' = 	 DE = 1 is the number of input/output ports. Therefore, F' =
.F/

' , FH
' , FI

' , FJ
' , FK

' , FL
' , FM

' , FN
' , FO

'1 =
	.PQ/

', 8:RSTS7), PQH
', 8:RSTS7)PQI

' , 8:RSTS7)PQJ
', 8:RSTS7)PQK

' , 8:RSTS7),

PQL
', 8:RSTS7), PQM

' , 8:RSTS7), PQN
' , 8:RSTS7), PQO

' , 8:RSTS7)1and
FE 	 = 	 UF/

E , FH
E, FI

E , FJ
E , FK

E , FL
E, FM

E , FN
E , FO

EV 	 =
.WQ/

E, 8:RSTS7X, WQH
E , 8:RSTS7X, WQI

E, 8:RSTS7X, WQJ
E, 8:RSTS7X,

WQK
E, 8:RSTS7X, WQL

E, 8:RSTS7X, WQM
E, 8:RSTS7X, WQN

E, 8:RSTS7X,
WQO

E, 8:RSTS7X	1.
θ = .Ps, phase, σqueue, σ)|	sϵS	is	the	status	value	for	the	cell,

phase	ϵ	.active, passive1, σqueue = .PP</,d/), … , P<e,de))|Pf	gQ	 ∧
f < ∞) ∧ ∀P8	gQ, 8	gk1, fl), <#g?		 ∧ 	d#	ϵ	mn

o ∪ ∞1	and	σ	ϵ	mn
o ∪ ∞1

E = {(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)}
delay: transport.
d: 100ms
τ: is defined by the following rules:

(0,0)=0 if (0,0)=2
(0,0)=1 if ((0,0)=0) & ((number of neighbors with s=1)=2)
(0,0)=2 if (0,0)=1
δint, δext, λ and D are defined using Cell-DEVS specifications.

Once the behavior of each cell is defined, the cell space is built as a Cell-

DEVS coupled model:

6789:q<6798:	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select >
Where:

X=Y=Xlist=Ylist= ∅	
I=∅	as	this	is	a	closed	model;		
n=2
{t1,...,tn}={20,20}
N={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)}
C = Brian’s Brain AM
B=∅ //wrapped
Z={ F#,w

x/ → 	 F#,wz/
{/ F#,wo/

x/ → 	 F#,w
{/

F#,w
xH → 	 F#o/,w

{H F#z/,w
xH → 	 F#,w

{H
 F#,w

xI → 	 F#,wo/
{I F#,wz/

xI → 	 F#,w
{I

F#,w
xJ → 	 F#z/,w

{J F#o/,w
xJ → 	 F#,w

{J
F#,w

xK → 	 F#,w
{K F#,w

xK → 	 F#,w
{K

F#,w
xL → 	 F#z/,wz/

{L F#z/,wz/
xL → 	 F#,w

{L
F#,w

xM → 	 F#z/,wo/
{M F#z/,wo/

xM → 	 F#,w
{M

F#,w
xN → 	 F#o/,wz/

{N F#o/,wz/
xN → 	 F#,w

{N
F#,w

xO → 	 F#o/,wo/
{O F#o/,wo/

xO → 	 F#,w
{O }

select=N={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)}

To implement the model in CD++, we need to map the information from the

formal model definition to define the possible cells states, the neighborhood set,
the rules, the size of the cell space, the type and value of the delay, the type of
borders and the initial value of the cells. All these parameters are defined as
shown as in the code below:

[briansbrain]
type: cell width: 20 height: 20
delay: transport border: wrapped
neighbors: (-1,-1),(-1,-0),(-1,1)
neighbors: (0,-1),(0,-0),(0,1)
neighbors: (1,-1),(1,-0),(1,1)
localtransition: briansbrain-rule

[briansbrain-rule]
rule : 0 100 { (1,0)=2 }
rule : 1 100 { (0,0)=1 and trueCount = 2 }
rule : 2 100 { (0,0)=1 }
rule: 0 100 {t}

Fig. 1. Brian's Brain CD++ .ma file for a 20x20 grid

In figure 1, we show the implementation in CD++ of Brain’s Brain model in a
20x20 grid. First, we define the name of the Cell-DEVS component. Then, we
define the type of model (a cell space) and its size (as it is a two dimensional
model, we only need to define its width and height). The model uses a transport
delay, and wrapped borders. After the keyword “neighbors”, we define the
neighborhood set (in this case, a Moore’s neighborhood). Finally, the local
transition function is defined as a set of rules. They are implemented following
CD++ high-level language with the form:

rule: POSTCONDITION DELAY { PRECONDITION }

These indicate that when the PRECONDITION is satisfied, the state of the

cell will change to the designated POSTCONDITION, whose computed value
will be transmitted to other components after consuming the DELAY. If the
precondition is false, the next rule in the list is evaluated until a rule is satisfied
or there are no more rules.

In figure 2, we can see a snapshot of the Brian’s Brain CA simulation in

CD++ with a random initial configuration in the center of a 400x400 grid. Dead
cells are represented in black, firing cells are represented in white and refractory
or dying cells in blue (light gray on the paper). In the figure, we can easily
appreciate the diagonal waves of firing and refractory cells that appear as
emergent behavior. Despite in the initial configuration, firing and refractory cells
only were defined in the center of the grid, they expand and move around the
whole grid after few steps. The full simulation is available in
https://www.youtube.com/watch?v=8MCDuRVEbeg. In this video, we can see
how the diagonal waves that appear as emergent behavior move and change over
time. After 6000 steps, we cannot see a pattern that repeats over time. In smaller
grids, this pattern appears.

In the next sections, we will show how to apply this methodology and CD++
to study the emergent behavior of different traffic rules and problems.

CRIS
Máquina de escribir
(0,0) = 2

CRIS
Máquina de escribir

Fig. 2. Snapshot of Brian's Brian rules CA implemented in CD++

Simple Cell-DEVS models for Traffic

Traffic problems are increasing every day, and in order to control and manage
the increasing amount of vehicles and avoid major problems, policy makers set
up different policies. As stated in the introduction, the introduction of new
methods based on CA has provided new ways to study this type of complex
systems that can be represented as a cell space [1]. In this section, we show how
we can implement very simple traffic models in Cell-DEVS in CD++. We also
show how we can nicely visualize the simulation results. This visualization
allows us to study the emergent behavior of the implemented rules. Moreover, it
allows us to provide understandable results to police makers without
programming background.

Traffic Flow Using Rule-184 and Track Combination

The rule-184 for one-dimensional Cellular Automata has been proposed as a
simple prototype for describing traffic flow. The earliest research on Rule 184
was presented in [8,9]. The idea is to consider vehicles as particles and roads as
discrete grids. Particles can move forward at the same time in each time step as
long as the next sites in the direction of advance are empty. This model can be
used to illustrate the phase transition between a free movement phase and a
jammed phase.

We can formally specify this model a Cell-DEVS as follow:

m|sS − 184	=> =	< �, !, I, ?, θ, E, delay, d, "&'% , "#$%, τ,), @ >

X=Y={0,1}
S={s|s∈{0,1}} // 0 = empty and 1 = occupied by a vehicle.
I and θ are defined as above in Brain’s Brain model
E={(0,-1),(0,0),(0,1)}
delay: transport.
d: 100ms
τ: is defined by the following rules:

(0,0)=1 if {(0,-1)=1 and (0,0)=1 and (0,1)=1}
(0,0)=0 if {(0,-1)=1 and (0,0)=1 and (0,1)=0}
(0,0)=1 if {(0,-1)=1 and (0,0)=0 and (0,1)=1}
(0,0)=1 if {(0,-1)=1 and (0,0)=0 and (0,1)=0}
(0,0)=1 if {(0,-1)=0 and (0,0)=1 and (0,1)=1}
(0,0)=0 if {(0,-1)=0 and (0,0)=1 and (0,1)=0}
(0,0)=0 if {(0,-1)=0 and (0,0)=0 and (0,1)=1}
(0,0)=0 if {(0,-1)=0 and (0,0)=0 and (0,1)=0}
δint, δext , λ and D are defined using Cell-DEVS specifications.

The Cell-DEVS coupled model is defined as:

m|sS − 184	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select >

X = Y = Xlist = Ylist = ∅	
I is defined as in Brain’s Brain model
n= 2; {t1,...,tn} = {1,20}
N={ (0,-1),(0,0),(0,1)}
C= is an array of m|sS − 184	 AM
B= ∅ // non-wrapped
Z is defined as above based on N;
select=N={(0,-1),(0,0),(0,1)}

Implementing the Rule-184 in CD++, we can simulate different initial values

configurations and study how this configurations influence the traffic. In Figure
3, we show different steps during the simulation. Red cells represent that it is
occupied by a vehicle. Gray cells represent that the cell is empty. Through the
different simulation steps, we can see how vehicles move forward. However,
they are blocked when there are vehicles in front of them.

Fig. 3. Traffic simulation results: Rule-184. Random initial values at three different time steps.

The Rule-184 can be extended to study traffic with two lanes. Adjusting the
above model, the neighbors for the first line are as show in Figure 4.a (the front
cell, the back cell, the cell below and itself). The second line has five neighbors
as shown in Figure 4.b.

Fig. 4. Neighborhood of the first row and second row and the direction of the movement.

By combining the rule-184 methods and the vehicle moving procedure, the
new rules are as follows:

(0,0)=0 {(1,0)=0 and (0,0)=1 and cellpos(0)=0} %mov e down

(0,0)=0 {(1,0)=1 and (0,-1)=0 and (0,0)=0 and (0,1) =0 and

cellpos(0)=0} %no vehicle

(0,0)=0 {(1,0)=1 and (0,-1)=0 and (0,0)=0 and (0,1) =1 and

cellpos(0)=0} %vehicle ahead

(0,0)=0 {(1,0)=1 and (0,-1)=0 and (0,0)=1 and (0,1) =0 and

cellpos(0)=0} %move ahead

(0,0)=1 {(1,0)=1 and (0,-1)=0 and (0,0)=1 and (0,1) =1 and

cellpos(0)=0} %stuck

(0,0)=1 {(1,0)=1 and (0,-1)=1 and (1,-1)=1 and (0,0)=0 and

cellpos(0)=0} %vehicle behind

 …

After the delay, the high priority vehicle from the first row can move to the
second row if there is space. In turn, if the vehicle in the second row detects a
vehicle in front of it, the vehicle would not move and will stay in its position.
The rest of rules describe the inner rule of each row, which is the implementation
of the rule-184.

Fig. 5. Traffic simulation results with Rule-184 extended for track combination and random
initial values at three different time steps

Figure 5 shows some simulation results. Red cells represent spaces occupied
by vehicles. Through the different simulation steps, we can see how vehicles
move forward and change lanes when needed. These models show how to define
precise rules of priority. Different behaviors for vehicle movement can be
implemented, compared and analyzed to make more appropriate traffic policies.

Shockwaves on Highways

This section presents a model for shockwaves on highways, using a
homogenous highway at the initial state. We allow traffic density to change
slowly. The traffic initially moves at free flow speed, and then we add a
disturbance to the flow. To study how the traffic flow evolves in a two-lane one-
way road segment taking into account traffic density, we take make the
following modeling considerations:

• The incoming vehicle time follows a Poisson distribution and the rate of
incoming vehicles increases with time.

• Boundary conditions are specified by means of input and output cells. An
output cell is a sink for exiting traffic. Source cells provide vehicles that
discharge into an empty cell.

• The model is non-wrapped. Therefore, the vehicles in the upper and lower
lane can change from one lane to the other avoiding crashes.

The Cell-DEVS specification of the model is as follow:

?ℎ����9�S	=> =	< �, !, I, ?, θ, E, delay, d, "&'%, "#$% , τ,), @ >

X = Y = {0,1,2}
S={s|s∈{0,1,2}} // 1 represents vehicles in the left lane; 2 represents

vehicles in the right lane; 0 means no vehicle
I and θ are defined as above
E={(-1,-1),(-1,0),(-1, 1),(0, -1),(0, 0),(0, 1),(1, -1),(1, 0),(1, 1)}
delay: transport.
d: 1ms
τ: is defined by the following rules:

(0,0)=0 if (0,0)=1 and (-1,0)=0
(0,0)=1 if (0,0)=0 and (1,0)=1
(0,0)=0 if (0,0)=2 and (-1,0)=0
(0,0)=2 if (0,0)=0 and (1,0)=2
(0,0)=0 if (0,0)=1 and (-1,0)=1 and (0,1)=0 and (-1,1)=0
(0,0)=2 if (0,0)=0 and (1,0)=0 and (1,-1)=1 and (0,-1)=1
(0,0)=0 if (0,0)=2 and (-1,0)=2 and (0,-1)=0 and (-1,-1)=0
(0,0)=1 if (0,0)=0 and (1,0)=0 and (1,1)=2 and (0,1)=2

The Cell-DEVS coupled model is:

?ℎ����9�S	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select >

X = Y = {0,1}
Xlist={(29,0),(29,1)}
Ylist=∅	
I is defined as above
n=2.

{t1,...,tn} = {30,2} // These parameters of the model change as we
change the size of the cell space.

N={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)}
C =?ℎ����9�S	 AM
B = ∅ // non-wrapped
Z = is defined as above
select=N

Finally, let us consider the specification for the complete model, as we have

two vehicle generators (incomingVehicles1, incomingVehicles2).

r> =	< �	, !	, @, .>#1, .B#1, .�#,w1, <SsS�R >

X= Y= ∅
D= {shockwave CM, incomingVehicles1, incomingVehicles2}, and

∀ i ∈	D, Mi is one of the basic DEVS models previously defined
I i is the set of influences of model i. In this case,

Ishockwave CM = {incomingVehicles1, incomingVehicles2}
IincomingVehicles1=IincomingVehicles2=∅

Zij = {
 �����������������/,���������	��	: ��� → �P0,29)���������	��

�����������������H,���������	��	: ��� → �P1,29)���������	�� }
select = {incomingVehicles1, incomingVehicles2, shockwave CM }

There are two inputs, one in each line, representing the random arrival of
vehicles. The interval time of vehicles is exponentially distributed. However, in
order to examine the different rate of incoming vehicle, the mean in the vehicle
generator can be changed. Each lane also has one sink, representing how the
vehicles leave the highway. Different scenarios for traffic density arrival and
different initial traffic conditions in the road can be simulated.

Fig. 6. Traffic simulation results for shockwaves with random initial values

Figure 6 shows a simulation scenario with a random initial distribution. Red
cells represent that it occupied by a vehicle in the first line. Blue cells represent
that the cell is occupied by a vehicle in the second row. Gray cells represent that

the cell is empty. At the beginning, the traffic density on both road segments is
high and at the end, it becomes free-flow.

After showing some basic models with simple emergent behavior, the

following sections will present more advanced traffic models: an example
focusing on traffic in roundabouts and for traffic monitoring in highways.

Modeling Roundabouts

This section shows a model of a roundabout with eight single lanes connected
to a single-lane ring. In the ring, vehicles move counter-clockwise. The
roundabout can be modeled as a Cell space as shown in Figure 7. The arrows
represent the direction of the vehicle movement in the cell space. Blue cells
represent the point where a vehicle can decide continuing going on in the
roundabout or take the exit.

Fig. 7. The Model and the Direction Flow for Each Cell

To specify the model, the cell space is divided into 25 zones as shown in
figure 8. As a cell in each zone behaves differently, the traffic rules are defined
by zones. In the figure, white cells represent the traffic lanes and green cells
represent the area near the roundabout where no vehicles are allowed. Four cells
contain vehicle generators (one in each incoming line to the roundabout) to
represent the incoming vehicles.

The Cell-DEVS model is as follow:

8�8:Sm�|:�9��|R	=> =	< �, !, I, ?, θ, E, delay, d, "&'% , "#$%, τ,), @ >
X = Y = {0, 1, 2}
S = {s | s ∈ {0, 1, 2}} // 0 = empty, 1 = vehicle, 2 = no vehicles

allowed
I and θ are defined as above
E={(-2,0),(-2,1),(-1,-2),(-1,-1),(-1,0),(-1,1),(0,-2),(0,-1),(0,0),(0,1),

(0, 2),(1,-1), (1,0), (1,1),(1,2),(2,-1),(2,0)}
delay: transport.
d: 100ms
τ: is defined by the following rules:

[roundabout-rule]
(0,0) = 2 if {(0,0)=2}
[R-lane-to-roundabout-rule]

(0,0) = 0 if {(0,0)=1 and (0,-1)=0 and (-1,-1)=2}
(0,0) = 0 if {(0,0)=1 and (0,-1)=0 and (-1,-1)!=2 and (1,-1)=0 and
 (2,-1)=0}
(0,0) = 1 if {(0,0)=0 and (0,1)=1}
(0,0) = 1 if {(0,0)=1 and (0,-1)=1}
(0,0) = 1 if { (0,0)=1 and (1,-1)=1}
(0,0) = 1 if { (0,0)=1 and (2,-1)=1}
[R-lane-from-roundabout-rule]
(0,0) = 0 if {(0,0)=1 and (0,1)=0}
(0,0) = 1 if {(0,0)=0 and (0,-1)=1 and (1,-1)=2}
(0,0) = 1 if {(0,0)=0 and (0,-1)=1 and (1,-1)!=2 and (random > 0.5)}

Fig. 8. Names of the zones in Traffic roundabout model.

The Cell-DEVS coupled model is:

8�8:Sm�|:�9��|R	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select >
X = Y = Xlist = Ylist = ∅	
I is defined as above
n = 2
{t1,...,tn} = {16,16}
N={(-2,0),(-2,1),(-1,-2),(-1,-1),(-1,0),(-1,1),(0,-2),(0,-1),(0,0),(0,1),

(0, 2),(1,-1),(1,0), (1,1),(1,2),(2,-1),(2,0)}
C = 8�8:Sm�|:�9��|R	 AM
Z is defined as above
select=N

Different initial traffic configurations can be simulated. Here we show two
different cases: one when there are no yield signs and one with yield signs that
give vehicles inside a roundabout the right to move and control traffic coming
toward the ring.

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 NW NL NR NE 2 2 2 2 2 2

WU 2 2 EU

WL 2 2 ED

2 2 2 2 2 2 SW SL SR SE 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

G
e

n
C

a
rs

 U

G
e

n
C

a
rs

 D

U
-L

a
n

e
-t

o
-r

o
u

n
d

a
b

o
u

t

R-Lane-from-roundabout

U
-L

a
n

e
-f

ro
m

-r
o

u
n

d
a

b
o

u
t

L-Lane-from-roundabout

D
-L

a
n

e
-f

ro
m

-r
o

u
n

d
a

b
o

u
t

GenCars R

GenCars L

R-Lane-to-roundabout

L-Lane-to-roundabout

D
-L

a
n

e
-t

o
-r

o
u

n
d

a
b

o
u

t

Fig. 9. Traffic simulation results in roundabout without yield signs

In figure 9, we show the simulation results without yield signs and in figure
10 with yield signs. In both figures, the green cells do not change during the
simulation. Gray cells represent empty cells and black cells represent occupied
cells by a vehicle. We can see various accidents where vehicles come to the
roundabout and vehicles inside the roundabout meet (see for example time 9.200,
where there is a vehicle coming and a vehicle in the roundabout close to it).

When we introduce yield sings, we obtain the results shown in figure 10. We

can see that inside the roundabout all vehicles keep the safety distance,
represented by an empty cell (gray) between vehicles. The accidents disappear.

Fig. 10. Traffic simulation results in roundabout with yield signs

Traffic Monitoring in Highways

In this section, we present a model for traffic monitoring on a one-way two-
lane highway. The Traffic Monitor can detect unusual events. The model is as
follows. We use two layers; one that models the highway and sends information
to the traffic monitor and a second layer that shows the information got by the
traffic monitoring system. The information that the traffic monitor gets is as
follows. If within 2 time steps one unit keeps occupied, -1 is sent to the Traffic
Monitor, which will see whether it is an accident or congestion as follows:

• If it receives the value -1 from unit i of both lanes at the same time step, it is
congestion.

• If it only receives -1 from unit i of only one lane at the time, it is an
accident.

Each vehicle has an integer velocity ranging from 0 to Vmax=5 units/time
step. Assuming that the average vehicle length is 7.5m and the time step is 1
second, the Vmax is approximately 135km/h.

We model the following behaviors:

1. Acceleration: if the velocity v of a vehicle is lower than Vmax and the
distance to the next vehicle ahead is larger than v+1, the speed is incremented.

2. Slowing down: if a vehicle at unit i detects the next vehicle at unit i+j (with
j<=v), its speed is decremented.

3. Changing lane: if a vehicle at unit i detects a stopped vehicle in unit i+1, it
will try to change to the other lane as long as that unit is empty and no
vehicles may be able to come across at the next time step.

4. Traffic Monitor: if an accident occurs or congestion happens, the Traffic
Monitor is able to detect the value from that exact unit.

The formal Cell-DEVS specification is as follows:

�79��8�>�:8R�7	=> =	< �, !, I, ?, θ, E, delay, d, "&'%, "#$%, τ,), @ >
X = Y = {-1,0,1,2,3,4,5,9}
S = {s|s∈{-1,0,1,2,3,4,5,9}}//-1 means a cell is stopped by an

accident or congestion, values from 0~5 means the cell is occupied by a
vehicle and the number is the vehicle’s velocity and 9 means the cell is
empty

I and θ are defined as above
E={(0,-5,0),(0,-4,0),(0,-3,0),(0,-2,0),(0,-1,0),(0,0,0),(0,1,0),(0,0,1),

(1,-5,0),(1,-4,0),(1,-3,0),(1,-2,0),(1,-1,0),(1,0,0),(1,1,0)}
delay: transport.
d: 100 ms
τ: is defined by the following rules:

(0,0,0) = -1 if {(0,0,1) = 0}
(0,0,0) = 0 if {(0,0,0)!=9 and (0,1,0)!=9 and (0,1,0)!=0 and (0,0,0)!=-1}
(0,0,0) = 0 if {(0,0,0)!=9 and (0,1,0)=0 and (1,1,0)!=9}
…
(0,0,0) = 0 if {(0,0,0)!=9 and (0,1,0)=0 and (1,-5,0)!=9}
(0,0,0) = 1 if {(0,-1,0)=0 and (0,0,0)=9}
(0,0,0) = 1 if {(0,0,0)=9 and (0,-1,0)=9 and (0,-2,0)=9 and (0,-3,0)=9
 and (0,-4,0)=9 and (0,-5,0)=9 and (1,0,0)=0 and (1,-1,0)!=9}
…

(0,0,0) = 9 if {(0,0,0)!=9 and (0,1,0)=0 and (1,0,0)=9 and (1,-1,0)=9 and
 (1,-2,0)=9 and (1,-3,0)=9 and (1,-4,0)=9 and (1,-5,0)=9 and
 (1,1,0)=9}
δint, δext , λ and D are defined using Cell-DEVS specifications.

Once the behavior of each cell is defined, the cell space is built as a Cell-

DEVS coupled model:

�79��8�>�:8R�7	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select >
X = Y = Xlist = Ylist = ∅	
n=3
{t1,...,tn} = {2,60,2} // These parameters of the model change as we

change the size of the cell space.
N = {(0,-5,0),(0,-4,0),(0,-3,0),(0,-2,0),(0,-1,0),(0,0,0),(0,1,0),(0,0,1),

(1,-5,0),(1,-4,0),(1,-3,0),(1,-2,0),(1,-1,0),(1,0,0),(1,1,0)}
Z = is defined as above based on N.
select=N

Fig. 11. Traffic monitor simulation results

As explained above, the CELL-DEVS space has two layers, one for the
highway and another for the values sent to the traffic monitoring system. In
figure 11, we show some simulation results. The first layer represents the
vehicles in the highway. The second layer represents the information received by
the traffic monitoring system. Gray cells represent empty cells in the first layer

and no warning in the second layer. In the first layer, red cells represent vehicles.
The intensity of the color represents the velocity (darker is faster). In the second
row, a blue cell represent that the system gets a warning. This warning is
received when a vehicle is stopped in the highway. In the simulation, we can see
how at the beginning vehicles go slowly due to the presence of an accident (both
lines have a stopped vehicle at the same point). After a while, this issue
disappears and the traffic is more fluid. At the end of the simulation, most of the
vehicles go at the highest speed and the traffic monitor does not receive
incidents.

Conclusion

We presented the use of Cell-DEVS for modeling different CA with emerging
behavior for traffic. Using this methodology, new traffic rules can be tested in
both simple and complex scenarios before setting new policies. Moreover, the
visualization engine provides a useful and nice way to show the emergent
behavior of the designed traffic rules to policy makers, who are the people
responsible in decision-making.

The Cell-DEVS formalism in urban research is similar to CA but with several
advantages in comparison. Cell-DEVS is more flexible than CA as it can be
easily coupled with other DEVS models, and we can define timing delays for
each cell, making the timing specification more expressive. We have showed
how to use such Cell-DEVS formalism and the CD++ toolkit to study traffic.

Acknowledgements

This work is partially supported by, University of Valladolid, Banco
Santander and NSERC.

References

[1] Burks, A.W.: Von Neumann’s self-reproducing automata. In: Burks, A.W. (ed.) Essays on
Cellular Automata, pp. 3–64. University of Illinois Press, Champaign (1970)

[2] Wainer, G.: Discrete-Event Modeling and Simulation: a Practitioner’s approach. CRC
Press, Taylor and Francis (2009)

[3] Zeigler, B.; Kim, T.; Praehofer, H. "Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems". Academic Press. 2000.

[4] Wainer, G., Castro, R.: A survey on the application of the Cell-DEVS formalism in cellular
models. Journal of Cellular Automata 5(6), 509–524 (2010)

[5] Saadawi, H., Wainer, G.: Modeling Physical Systems Using Finite Element Cell-DEVS.
Simulation Modelling Practice and Theory 15(10), 1268–1291 (2007)

[6] Wainer, G., Davidson, A.: Defining a Traffic Modeling language Using Cellular Discrete-
Event abstractions. Journal of Cellular Automata 2(4), 291–343 (2007)

[7] Miller, F.P, Vandome, A.F, McBrewster, J. Cellular Automaton: Elementary Cellular
Automaton, Brian's Brain, Conway's Game of Life, Langton's Ant, Rule 90, Rule 110, Rule
184, Codd's Cellular Automaton. (2009) Alpha Press.

[8] Li, Wentian: Power spectra of regular languages and cellular automata. Complex Systems
1: 107–130.(1987)

[9] Krug, J.; Spohn, H. Universality classes for deterministic surface growth. Physical Review
A 38 (8): 4271–4283 (1988).

