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Abstract Various researches used cellular models in whichcese observe
emerging behaviors that have not been programmplicély. The Cell-DEVS
methodology is formal modeling technique that pésndiefining each cell in a
cell space as individual independent entity. Wedu§ell-DEVS to build
different models of traffic. We show how to modellcspaces with emerging
behavior using this methodology. We present basidets for roundabouts,
traffic monitoring, railways, and traffic shockwavbased on cellular models.
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Introduction

The application of modeling and simulation techeigjiio study both natural
and human—-made systems shows an increasing tremdodits advantages.
Traditional approaches to solve these problems déstential equations that
were solved analytically. However, these traditioapproaches have some
restrictions when modeling complex artificial syate The introduction of new
methods based on Cellular Automata (CA) has pravidew ways to study
complex systems that can be represented as cekspH].

A CA is an infinite regular n-dimensional grid wigosells can take one value
form a finite set (cell state). The cell states apelated in discrete time steps
following local rules in a simultaneous and synctmas way. These local rules
are based on the actual cell state and a finitefsaighboring cells. Cell-DEVS
[2] is a formalism that combines CA with Discretevelts Systems
Specifications (DEVS). DEVS [3] is a formalism forodeling discrete-event
dynamic systems that allows for hierarchical decositpn of the model by
defining a way to couple existing DEVS models. lellkDEVS, as in CA, we
define a grid of cells that has a state and afsetcal rules to calculate the next
state based on the actual cell state and a fimiteok neighboring cells. The
difference is that the behavior of each cell isirdesf as a DEVS atomic model
and the CA as a coupled model. Cell-DEVS is magilile than CA as it can be
easily coupled with other DEVS models, and we cafind timing delays for
each cell, making the timing specification moreresgive.

Both DEVS and Cell-DEVS formalisms can be implemsenin the CD++
environment [2]. This environment has been usedcessfully to develop
different types of systems: biological (ecologicalodels, heart issue, ant
foraging systems, fire spread, etc.), physicalfgdibn, binary solidification,
excitable media, surface tension, etc.), artifi¢rabot trajectories, networking,



traffic, etc.), and others [2, 4-6]. The techniquwes used in CD++ enable the
models execution using simulation engines thatarepletely independent from
the modeling aspects.

In this paper, we show how to use this methodokogstudy traffic behavior.
For this purpose, we build different traffic modalsd show emerging behaviors
that have not been explicitly programmed. In thibofeing sections, we will
introduce how to use the Cell-DEVS formalism, arelwill show how to model
complex cell spaces with emerging behavior using thethodology. We will
present basic models for roundabouts, traffic nooimg, railways, and traffic
shockwaves, based on cellular models.

Background

The DEVS formalism [3] provides a framework to deye hierarchical
models in a modular way, allowing model reuse dnus treducing development
time and testing. A DEVS model is defined as a lblbox with a state and a
duration for that state. When state duration tita@®es, an output event is sent,
and an internal transition takes place to changartbdel state. A state can also
change when an external event is received. Thasglesmodels are called
atomic. DEVS atomic models can be put togetherimkiig the outputs of a
model to inputs of other models to form coupled gisd

Based on the DEVS formalism, Cell-DEVS defines 4 space as DEVS
atomic models. A Cell-DEVS atomic model is defireedfollow [2]:

Cell — DEVS AM = < X,Y,1,S, 6,E, delay, d, 84, 8int, T, A, D >
Where:

X: Is the set of input events.

Y: Is the set of output events.

I: Represents the model's modular interface.

S: Is the set of sequential states for the cell.

0: Is the set of the cell’s state variables.

E: Is the set of states for the input events topam the future state.

delay. is the type of delay in the cell to send its ealto the
neighbors. The delay can be transport or inefitieiransport delays, the
future value will be added to a queue sorted bypuutime. In inertial
delays, any previous scheduled output values véllpbeempted and
only the new one will be scheduled.

d: Is the delay for the cell.

Sine. 1S the internal transition function.

b0t IS the external transition function. This functiactives the
local computation functionc{

1. Is the local computation function (i.e. the rutescalculate the
next state)

A: Is the output function.

D: Is the state's duration function.

Once the behavior of each cell is defined, the sp#ce is built as a Cell-
DEVS coupled model:



Cell — DEVS CM = < Xlist, Ylist, [ X, Y, n, {t,, ..., t, }, N, C, B, Z, select >
Where:

Xlist: Is the input coupling list.

Ylist: Is the output coupling list.

| represents the definition of the interface fae thodular model.

X: Is the set of external input events.

Y: Is the set of external output events.

n: Is the dimension of the cell space.

{t1,...,t;}: Is the number of cells in each of the dimensions.

N: Is the neighborhood set. It defines the conpestbetween cells.

C: Is the cell space. The cell space is finite.

B: Is the set of border cells. The border cells maye a different
neighborhood or the space can be “wrapped” (i&ctils in one border
are connected with the ones in the other)

Z: Is the translation function to define the ex#drand internal
coupling of cells.

select: Is the tie-breaking function for simultang@vents.

The CD++ tool allows implementing Cell-DEVS modelgh applications in
numerous fields [2]. Here we explain how to impletna simple CA. Based on
this example, in the next sections, we explain application for modeling
traffic.

The Brian's Brain CA [7] is an extension of the @&e@attern model. The
model’s cells can be in any of three stafe®g or on, refractory or dying and
dead or off The model uses Moore’s neighborhood (i.e. thghimr cells are
the eight adjacent cells)

The CA follows three simple rules. At each timepstel) adeadcell turns to
firing if it has exactly two firing neighbors; (2)faing cell always evolves to
refractory, and (3) arefractory cell always evolves talead Following these
simple rules, the CA shows an emergent behavioe. rEffractory cells tend to
lead to a pattern that reappears after a certaouatrof generations in the same
orientation but in a different position. Howeveramy Brian's Brain patterns will
explode messily and chaotically, but most of theith @ften contain diagonal
waves of firing and refractory cells. These patemannot be predicted in
advance.

This simple CA can be specified as a Cell-DEVS nhaddollow:

Brian's Brain AM = < X,Y,1,S,6,E,delay, d, §oxt, Oine, T, A, D >
Where:

X=Y={0,1,2}

S={s|£{0,1,2}} // 0 = dead or off; 1 = firing or on; 2 refractory or
dying where 0 means dead or off, 1 means firingmorand 2 means
refractory or dying.

I=Represents the model's modular interface, defmeell-DEVS
as follows:

[ =<n,u*u? P*,PY >, wheren=9 is the neighborhood’s size,
u* = p¥ =1 is the number of input/output ports. TherefoP* =
(P, P}, P, P{, PS, P§, Py Py, Py} =
{(N{, integer), (NJ, integer) (N5, integer) (N, integer)(NZ, integer),



(N¢Z,integer), (N7, integer), (Ng, integer), (Ng,integer)}and
Py = {Pyrpzyrpsy'P4er5y'P6y'P7ersy'P9y} =

((N?,integer), (N}, integer), (NJ,integer),(N;, integer),
(N2, integer), (N2, integer), (N7, integer), (N, integer),
(Ng, integer) }.

0 = {(s, phase, cqueue, 0)| seS is the status value for the cell,
phase € {active, passive}, oqueue = {((51,01), ..., (Sm,0m))|(M EN A
m < o) AV(ieN,ie[l,m]),s;eS A g;€R§ Uoo}and oeR{ U oo}

E= {(-l,-l),(-l,O),(-l,l),(O,-l),(0,0),(O,l),(l)—,ﬂl,O),(l,l)}

delay transport.

d: 100ms

1. is defined by the following rules:
(0,0)=0if (0,0)=2
(0,0)=1if ((0,0)=0) & ((number of neighbors with s=1)=2)
(0,0)=2if (0,0)=1

dint, dext, L and D are defined using Cell-DEVS specifications.

Once the behavior of each cell is defined, the sp#ce is built as a Cell-
DEVS coupled model:

Brian'sBrain CM = < Xlist,Ylist,1,X,Y,n,{ty, ..., t,}, N, C, B, Z, select >
Where:

X=Y=Xlist=Ylist=0

=@ as this is a closed model;

n=2

{t1,...,t}={20,20}

N:{(_lv_l)!(_:I-'O)l(_lv1)1(o!_l)!(010)1(011)1(11'11710):(1!1)}

C =Brian’s Brain AM

B=0 //wrapped

Z={ P i},/];l - P 5,5-1_1 P i},/];l+1 - P i),(jl
Pi},/jz - Pi)izLj Piy—zl,j - Pi},(jz
Pi},/j3 - PL-’S-3+1 Pi},/j3—1 - Pi},(j3
Pi},,f - Pi)idll,j Pi}:r41,j - Pi),(jdl
P} - PX? P} - PX?
Pi},,j6 - Pi)i61,j—1 PL‘Y—61,j—1 - Pi),5'6
Pi},,j7 - Pi)£71,j+1 Piy—71,j+1 - Pi§7
Pl'},/js - Pi)-(i-sl,j—l Pi};81,j—1 - Pi},(jg
Piyj9 - Pi)igl,j+1 Pi}?l,j+1 - Pi),i'g }

Select:N:{(-l,-'l),(-1,0),(-1, 1),(0,-1),(0,0),(0.®,-1).(1,0),(1,1)}

To implement the model in CD++, we need to mapitifiermation from the
formal model definition to define the possible sedtates, the neighborhood set,
the rules, the size of the cell space, the typevatage of the delay, the type of
borders and the initial value of the cells. All skeparameters are defined as
shown as in the code below:



[briansbrain]

type: cell width: 20 height: 20
delay: transport border: wrapped
neighbors: (-1,-1),(-1,-0),(-1,1)

neighbors: (0,-1),(0,-0),(0,1)

neighbors: (1,-1),(1,-0),(1,1)
localtransition: briansbrain-rule

[briansbrain-rule]

rule : 0100 { (1,0)=2} (_O O) =2
rule : 1 100 { (0,0)=1 and trueCount = 2}

rule : 2100 { (0,0)=1}

rule: 0 100 {t}

Fig. 1. Brian's Brain CD++ .ma file for a 20x20 grid

In figure 1, we show the implementation in CD++Bo&in’s Brain model in a
20x20 grid. First, we define the name of the CdiM® component. Then, we
define the type of model (a cell space) and ite ¢&s it is a two dimensional
model, we only need to define its width and height)e model uses a transport
delay, and wrapped borders. After the keyword “hbigs”, we define the
neighborhood set (in this case, a Moore’s neighbadh Finally, the local
transition function is defined as a set of rulesey are implemented following
CD++ high-level language with the form:

rule: POSTCONDITION DELAY { PRECONDITION }

These indicate that when the PRECONDITION is datisfthe state of the
cell will change to the designated POSTCONDITIONjose computed value
will be transmitted to other components after comsiyg the DELAY. If the
precondition is false, the next rule in the liseimluated until a rule is satisfied
or there are no more rules.

In figure 2, we can see a snapshot of the BriamairBCA simulation in
CD++ with a random initial configuration in the ¢enof a 400x400 grid. Dead
cells are represented in black, firing cells afgresented in white and refractory
or dying cells in blue (light gray on the papenm.the figure, we can easily
appreciate the diagonal waves of firing and refmctcells that appear as
emergent behavior. Despite in the initial configima, firing and refractory cells
only were defined in the center of the grid, thepand and move around the
whole grid after few steps. The full simulation igvailable in
https://www.youtube.com/watch?v=8MCDuRVEbdg this video, we can see
how the diagonal waves that appear as emergenvioeimove and change over
time. After 6000 steps, we cannot see a patterrrémeats over time. In smaller
grids, this pattern appears.

In the next sections, we will show how to applystmethodology and CD++
to study the emergent behavior of different traffites and problems.
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Fig. 2. Snapshot of Brian's Brian rules CA implemente@ D+

Simple Cell-DEVS modelsfor Traffic

Traffic problems are increasing every day, andriieoto control and manage
the increasing amount of vehicles and avoid majoblems, policy makers set
up different policies. As stated in the introduntiche introduction of new
methods based on CA has provided new ways to didytype of complex
systems that can be represented as a cell spade [h]s section, we show how
we can implement very simple traffic models in €2EVS in CD++. We also
show how we can nicely visualize the simulationutiss This visualization
allows us to study the emergent behavior of theémpnted rules. Moreover, it
allows us to provide understandable results to cpolimakers without
programming background.

Traffic Flow Using Rule-184 and Track Combination

The rule-184 for one-dimensional Cellular Automhts been proposed as a
simple prototype for describing traffic flow. Tharkest research on Rule 184
was presented in [8,9]. The idea is to consideicles as particles and roads as
discrete grids. Particles can move forward at #maestime in each time step as
long as the next sites in the direction of advaseeempty. This model can be
used to illustrate the phase transition betweemea fmovement phase and a
jammed phase.

We can formally specify this model a Cell-DEVS aldw:

Rule — 184 AM =< X,Y,1,S,6,E,delay, d, 8¢xt, Oine, T, A, D >



X=Y={0,1}
S={s|*{0,1}} // 0 = empty and 1 = occupied by a vehicle.
| and 0 are defined as above in Brain’s Brain model
E:{(O,-l),(0,0),(O,l)}
delay. transport.
d: 100ms
1. is defined by the following rules:
(0,0)=1if {(0,-1)=1 and (0,0)=1 and (0,1)=1}
(0,0)=0if {(0,-1)=1 and (0,0)=1 and (0,1)=0}
(0,0)=1if {(0,-1)=1 and (0,0)=0 and (0,1)=1}
(0,0)=1if {(0,-1)=1 and (0,0)=0 and (0,1)=0}
(0,0)=1if {(0,-1)=0 and (0,0)=1 and (0,1)=1}
(0,0)=0if {(0,-1)=0 and (0,0)=1 and (0,1)=0}
(0,0)=0if {(0,-1)=0 and (0,0)=0 and (0,1)=1}
(0,0)=0if {(0,-1)=0 and (0,0)=0 and (0,1)=0}
dint, dext ,A and D are defined using Cell-DEVS specifications.

The Cell-DEVS coupled model is defined as:

Rule — 184 CM = < Xlist, Ylist, X, Y,n, {t,, ..., t,}, N, C, B, Z, select >
X =Y =Xlist=VYlist=0
| is defined as in Brain’s Brain model
n=2; {t,....t} ={1,20}
N:{ (01_1)!(010)1(0!1)}
C=is an array cRule — 184 AM
B= 9 // non-wrapped
Z is defined as above based on N;
select=N={(0,-1),(0,0),(0,1)}

Implementing the Rule-184 in CD++, we can simuldifeerent initial values
configurations and study how this configurationfiuence the traffic. In Figure
3, we show different steps during the simulatioedRells represent that it is
occupied by a vehicle. Gray cells represent thata#ll is empty. Through the
different simulation steps, we can see how vehioese forward. However,
they are blocked when there are vehicles in frémh@m.

Max decimals: [ W Fixed [ Showvalues [ Zeroes

Framerate (fps). [15
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B Loop Frame: 6

Framerate (fps): |15 Record Video
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Fig. 3. Traffic simulation results: Rule-184. Random militvalues at three different time steps.




The Rule-184 can be extended to study traffic with lanes. Adjusting the
above model, the neighbors for the first line aeslaow in Figure 4.a (the front
cell, the back cell, the cell below and itself).eTéecond line has five neighbors
as shown in Figure 4.b.

Direction
——————————l

(0,-1)| (0,0)| (0,1) (-1,0)(-1,1

(1,0) (0,-1)|(0,0) | (0,1)
(a) (b)

Fig. 4. Neighborhood of the first row and second row dredirection of the movement.

By combining the rule-184 methods and the vehicteving procedure, the
new rules are as follows:

(0,0)=0 {(1,0)=0 and (0,0)=1 and cellpos(0)=0} %mov e down

(0,0=0 {(1,0)=1 and (0,-1)=0 and (0,0=0 and (0,1) =0 and
cellpos(0)=0} %no vehicle

(0,0=0 {(1,0)=1 and (0,-1)=0 and (0,0=0 and (0,1) =1 and
cellpos(0)=0} %vehicle ahead

(0,0=0 {(1,0)=1 and (0,-1)=0 and (0,0)=1 and (0,1) =0 and
cellpos(0)=0} %omove ahead

(0,0=1 {(1,0=1 and (0,-1)=0 and (0,0)=1 and (0,1) =1 and
cellpos(0)=0} %stuck

(0,0=1 {(1,0=1 and (0,-1)=1 and (1,-1)=1 and (0,0 )=0 and

cellpos(0)=0} %vehicle behind

After the delay, the high priority vehicle from tfiest row can move to the
second row if there is space. In turn, if the vishia the second row detects a
vehicle in front of it, the vehicle would not moaad will stay in its position.
The rest of rules describe the inner rule of eaeh which is the implementation
of the rule-184.

Mayx decimals: 1
] I
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1
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I |
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o

Framerate (fps): 15

Fig. 5. Traffic simulation results with Rule-184 extendfed track combination and random
initial values at three different time steps



Figure 5 shows some simulation results. Red cefisaesent spaces occupied
by vehicles. Through the different simulation stepe can see how vehicles
move forward and change lanes when needed. Thedelsrghow how to define
precise rules of priority. Different behaviors feehicle movement can be
implemented, compared and analyzed to make momppate traffic policies.

Shockwaves on Highways

This section presents a model for shockwaves orhwags, using a
homogenous highway at the initial state. We alloaffic density to change
slowly. The traffic initially moves at free flow spd, and then we add a
disturbance to the flow. To study how the traffimwf evolves in a two-lane one-
way road segment taking into account traffic densive take make the
following modeling considerations:

e The incoming vehicle time follows a Poisson digitibn and the rate of
incoming vehicles increases with time.

e Boundary conditions are specified by means of imgnd output cells. An
output cell is a sink for exiting traffic. Sourcells provide vehicles that
discharge into an empty cell.

* The model is non-wrapped. Therefore, the vehiateshe upper and lower
lane can change from one lane to the other avoictiaghes.

The Cell-DEVS specification of the model is asdualt

Shockwave AM =< X,Y,1,S,0,E,delay, d, 6., Sint, T, 4, D >
X=Y={0,1,2}
S={s|*{0,1,2}} /I 1 represents vehicles in the left larerepresents
vehicles in the right lane; 0 means no vehicle
| and6 are defined as above
E:{(—l,-l),(-l,O),(-l, 1)!(01 -l),(O, O)!(or 1)v(ﬂ)v(1! 0)1(1! 1)}
delay. transport.
d: 1Ims
1. is defined by the following rules:
(0,0)=0if (0,0)=1 and (-1,0)=0
(0,0)=1if (0,0)=0 and (1,0)=1
(0,0)=0if (0,0)=2 and (-1,0)=0
(0,0)=2if (0,0)=0 and (1,0)=2
(0,0)=0if (0,0)=1 and (-1,0)=1 and (0,1)=0 and (-1,1)=0
(0,0)=2if (0,0)=0 and (1,0)=0 and (1,-1)=1 and (0,-1)=1
(0,0)=0if (0,0)=2 and (-1,0)=2 and (0,-1)=0 and (-1,-1)=0
(0,0)=1if (0,0)=0 and (1,0)=0 and (1,1)=2 and (0,1)=2

The Cell-DEVS coupled model is:

Shockwave CM = < Xlist,Ylist,,X,Y,n,{t, ..., t,}, N, C, B, Z, select >
X =Y ={0,1}
Xlist={(29,0),(29,1)}
Ylist=0
| is defined as above
n=2.



{t1,....,t} = {30,2} // These parameters of the model change as we
change the size of the cell space.

N:{(-l,-l),(-l,O),(-l,1),(0,-1),(0,0),(0,1),(1,-1).,,0),(1,1)}

C =Shockwave AM

B =@ // non-wrapped

Z = is defined as above

select=N

Finally, let us consider the specification for t@mplete model, as we have
two vehicle generators (incomingVehicles1, incorivagicles?).

CM=<X B Y ,D,{Ml'}, {li}' {Zl',j}' select >

X=Y=0
D= {shockwave CM, incomingVehiclesl, incomingVeleis?}, and
vV i € D, Mi is one of the basic DEVS models previouslfimkx
| iis the set of influences of model i. In thissea
Ishockwave cv= {incomingVehicles1, incomingVehicles2}
|incomingVehicIesi_-lincomingVehicIes§®
Zy={
ZincomingVehicles1,shockwave CM ouT - X(O,29) shockwave CM
ZincomingVehiclesZ,shockwave CM ouT - X(l:zg)shockwave CM }
select = {incomingVehiclesl, incomingVehicles2, skwave CM }

There are two inputs, one in each line, represgrie random arrival of
vehicles. The interval time of vehicles is expoidht distributed. However, in
order to examine the different rate of incomingiekh the mean in the vehicle
generator can be changed. Each lane also has wkerspresenting how the
vehicles leave the highway. Different scenarios tfaffic density arrival and
different initial traffic conditions in the road cde simulated.
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Fig. 6. Traffic simulation results for shockwaves with dam initial values
Figure 6 shows a simulation scenario with a randaitial distribution. Red

cells represent that it occupied by a vehicle mfilst line. Blue cells represent
that the cell is occupied by a vehicle in the selcamw. Gray cells represent that



the cell is empty. At the beginning, the trafficnd#y on both road segments is
high and at the end, it becomes free-flow.

After showing some basic models with simple emergeahavior, the
following sections will present more advanced fimaffnodels: an example
focusing on traffic in roundabouts and for traffionitoring in highways.

M odeling Roundabouts

This section shows a model of a roundabout withtesgngle lanes connected
to a single-lane ring. In the ring, vehicles moveurter-clockwise. The
roundabout can be modeled as a Cell space as simoigure 7. The arrows
represent the direction of the vehicle movementhia cell space. Blue cells
represent the point where a vehicle can decideiragng going on in the
roundabout or take the exit.

Fig. 7. The Model and the Direction Flow for Each Cell

To specify the model, the cell space is dividea i zones as shown in
figure 8. As a cell in each zone behaves diffeyeritie traffic rules are defined
by zones. In the figure, white cells represent tifadfic lanes and green cells
represent the area near the roundabout where rideslre allowed. Four cells
contain vehicle generators (one in each incoming lio the roundabout) to
represent the incoming vehicles.

The Cell-DEVS model is as follow:

8LineRoundabout AM =< X,Y,1,S,6,E, delay, d, § ¢, Sint, T, 4, D >

X=Y={0, 1, 2}
S={s|se {0, 1, 2}}// 0 = empty, 1 = vehicle, 2 = no velés
allowed

| and6 are defined as above
E:{(-Z,O),(-Z,l),('l,-Z),(-1,-1),(-1,0),(-1,1),((2,)',(0,-1),(0,0),(O,l),
(O! 2)!(11_1)! (110)1 (111)1(1!2)1(21_1)!(2!0)}
delay. transport.
d: 100ms
1. is defined by the following rules:
[roundabout-rule]
(0,0) = 2if {(0,0)=2}
[R-lane-to-roundabout-rule]



(0,0) = 0if {(0,0)=1 and (0,-1)=0 and (-1,-1)=2}

(0,0) = 0if {(0,0)=1 and (0,-1)=0 and (-1,-1)!=2 and (1,-1)atd
(2,-1)=0}

(0,0) = 1if {(0,0)=0 and (0,1)=1}

(0,0) = 1if {(0,0)=1 and (0,-1)=1}

(0,0) = 1if { (0,0)=1 and (1,-1)=1}

(0,0) = 1if { (0,0)=1 and (2,-1)=1}

[R-lane-from-roundabout-rule]

(0,0) = 0if {(0,0)=1 and (0,1)=0}

(0,0) = 1if {(0,0)=0 and (0,-1)=1 and (1,-1)=2}

(0,0) = 1if {(0,0)=0 and (0,-1)=1 and (1,-1)!=2 and ( randor@.5)}

U-Lane-to-roundabout | GenCars U
U-Lane-from-roundabout

L-Lane-from-roundabout R-Lane-to-roundabout GenCars R

GenCars L L-Lane-to-roundabout R-Lane-from-roundabout

D-Lane-from-roundabout

GenCars D | D-Lane-to-roundabout

Fig. 8. Names of the zones in Traffic roundabout model.
The Cell-DEVS coupled model is:

8LineRoundabout CM = < Xlist, Ylist,1,X,Y,n, {ty, ..., t,}, N, C, B, Z, select >
X=Y =Xlist=VYlist=0
| is defined as above
n=2
{ts,....,t} = {16,16}
N:{(-Z,O),(-2,1),(-1,-2),('1,'1),('1,0),('1,1),((2},(0,'1),(0,0),(0,1),
(01 2)1(1!'1)1(1!0)1 (111)1(112)1(21'1)!(2l0)}
C =8LineRoundabout AM
Z is defined as above
select=N

Different initial traffic configurations can be sitated. Here we show two
different cases: one when there are no yield ségnsone with yield signs that
give vehicles inside a roundabout the right to mawe control traffic coming
toward the ring.
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Fig. 9. Traffic simulation results in roundabout withoiglg signs

In figure 9, we show the simulation results withgigld signs and in figure
10 with yield signs. In both figures, the greeniselo not change during the
simulation. Gray cells represent empty cells arathbicells represent occupied
cells by a vehicle. We can see various accidentsrevivehicles come to the
roundabout and vehicles inside the roundabout (seetfor example time 9.200,

where there is a vehicle coming and a vehicle értundabout close to it).

When we introduce yield sings, we obtain the ressitiown in figure 10. We
can see that inside the roundabout all vehiclesp kb safety distance,

represented by an empty cell (gray) between vehidlee accidents disappear.
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Traffic Monitoring in Highways

In this section, we present a model for traffic maming on a one-way two-
lane highway. The Traffic Monitor can detect undserents. The model is as
follows. We use two layers; one that models thénwigy and sends information
to the traffic monitor and a second layer that shoke information got by the
traffic monitoring system. The information that th@ffic monitor gets is as
follows. If within 2 time steps one unit keeps opmd, -1 is sent to the Traffic
Monitor, which will see whether it is an accidentcongestion as follows:

« Ifit receives the value -1 from unit i of both Emat the same time step, it is
congestion.

e If it only receives -1 from unit i of only one lareg the time, it is an
accident.

Each vehicle has an integer velocity ranging frorto 0Vmax=5 units/time
step. Assuming that the average vehicle length5s7and the time step is 1
second, the Vmax is approximately 135km/h.

We model the following behaviors:

1. Acceleration if the velocity v of a vehicle is lower than Vmand the
distance to the next vehicle ahead is larger thdn the speed is incremented.

2. Slowing downif a vehicle at unit i detects the next vehicteuait i+j (with
j<=v), its speed is decremented.

3. Changing laneif a vehicle at unit i detects a stopped vehiolainit i+1, it
will try to change to the other lane as long ad tmait is empty and no
vehicles may be able to come across at the negtgiap.

4. Traffic Monitor. if an accident occurs or congestion happens, Titzdfic
Monitor is able to detect the value from that exat.

The formal Cell-DEVS specification is as follows:

Traf ficMonitor AM =< X,Y,1,S,6,E,delay, d, §¢x¢, Sine, T A, D >

X=Y ={1,0,1,2,3,4,5,9}

S = {s|€{-1,0,1,2,3,4,5,9}}//-1 means a cell is stopped bn
accident or congestion, values from 0~5 meanséhéscoccupied by a
vehicle and the number is the vehicle’s velocitd &means the cell is
empty

| and® are defined as above

E={(0,-5,0),(0,-4,0),(0,-3,0),(0,-2,0),(0,-1,0),000),(0,1,0),(0,0,1),
(1,-5,0),(1,-4,0),(1,-3,0),(1,-2,0),(1,-1,0),(1,0(,1,0)}

delay transport.

d: 100 ms

T: is defined by the following rules:

(0,0,0) = -1if {(0,0,1) = 0}
(0,0,0) = Gif {(0,0,0)!=9 and (0,1,0)!=9 and (0,1,0)!=0 and (0)0=-1}
(0,0,0) = @if {(0,0,0)!=9 and (0,1,0)=0 and (1,1,0)!=9}

(0,0,0) = Gif {(0,0,0)!=9 and (0,1,0)=0 and (1,-5,0)!=9}

(0,0,0) = 1if {(0,-1,0)=0 and (0,0,0)=9}

(0,0,0) = 1if {(0,0,0)=9 and (0,-1,0)=9 and (0,-2,0)=9 and (@)39
and (0,-4,0)=9 and (0,-5,0)=9 and (1,000nd (1,-1,0)!=9}



(0,0,0) = 9if {(0,0,0)!=9 and (0,1,0)=0 and (1,0,0)=9 and (1,}4®and
(1,-2,0)=9 and (1,-3,0)=9 and (1,-4,0)=9 §he5,0)=9 and
(1,1,0)=9}

dint, dext ,A and D are defined using Cell-DEVS specifications.

Once the behavior of each cell is defined, the sp#ce is built as a Cell-
DEVS coupled model:

Traf ficMonitor CM = < Xlist,Ylist,1,X,Y,n, {t, ..., t,},N, C, B, Z, select >

X =Y = Xlist = Ylist =0

n=3

{t,...,t} = {2,60,2} // These parameters of the model change as we
change the size of the cell space.

N = {(0,-5,0),(0,-4,0),(0,-3,0),(0,-2,0),(0,-1,0%(0,0),(0,1,0),(0,0,1),
(1,-5,0),(1,-4,0),(1,-3,0),(1,-2,0),(1,-1,0),(1,0(2,1,0)}

Z = is defined as above based on N.

select=N

Max decimals: [1 W Fixed Show values [l Zeroes Grid overlay
il B B B W Loop | Fram

Pixels/cell (zoom): [T Framerate (fps): [15 Record Video

RARRRHRARRRRARRRARRAAARRAAR

Grid overlay Layout 1

W Loop  Fram

Framerate (fps): [15 Record Video

Max decimals: [1 W Fixed Show values W Zeroes Grid overlay Layout colum
ShE DE LD Wloop Frame:1s  Time

Pixels/cell (zoom): 17 Framerate (fps): 15 Record Video

B EE - 5 . s 3 - s ;]
- EIE - BB - . s p - s s

Max decimals. 1 W Fixed Show values B

Fig. 11. Traffic monitor simulation results

As explained above, the CELL-DEVS space has twerigyone for the
highway and another for the values sent to thédidrafonitoring system. In
figure 11, we show some simulation results. Thetfiayer represents the
vehicles in the highway. The second layer represt information received by
the traffic monitoring system. Gray cells represemipty cells in the first layer



and no warning in the second layer. In the firgetared cells represent vehicles.
The intensity of the color represents the veloitgrker is faster). In the second
row, a blue cell represent that the system getsaming. This warning is
received when a vehicle is stopped in the highimayhe simulation, we can see
how at the beginning vehicles go slowly due topghesence of an accident (both
lines have a stopped vehicle at the same pointjerAd while, this issue
disappears and the traffic is more fluid. At thel @fi the simulation, most of the
vehicles go at the highest speed and the traffigitoo does not receive
incidents.

Conclusion

We presented the use of Cell-DEVS for modelingeddht CA with emerging
behavior for traffic. Using this methodology, nexaffic rules can be tested in
both simple and complex scenarios before setting pelicies. Moreover, the
visualization engine provides a useful and nice wayshow the emergent
behavior of the designed traffic rules to policy kews, who are the people
responsible in decision-making.

The Cell-DEVS formalism in urban research is simiaCA but with several
advantages in comparison. Cell-DEVS is more flexitlan CA as it can be
easily coupled with other DEVS models, and we cafind timing delays for
each cell, making the timing specification more reggive. We have showed
how to use such Cell-DEVS formalism and the CD+etkib to study traffic.
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