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Abstract Various researches used cellular models in which we can observe 
emerging behaviors that have not been programmed explicitly. The Cell-DEVS 
methodology is formal modeling technique that permits defining each cell in a 
cell space as individual independent entity. We used Cell-DEVS to build 
different models of traffic. We show how to model cell spaces with emerging 
behavior using this methodology. We present basic models for roundabouts, 
traffic monitoring, railways, and traffic shockwaves based on cellular models. 
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Introduction 

The application of modeling and simulation techniques to study both natural 
and human–made systems shows an increasing trend due to its advantages. 
Traditional approaches to solve these problems used differential equations that 
were solved analytically. However, these traditional approaches have some 
restrictions when modeling complex artificial systems. The introduction of new 
methods based on Cellular Automata (CA) has provided new ways to study 
complex systems that can be represented as cell spaces [1]. 

 
A CA is an infinite regular n-dimensional grid whose cells can take one value 

form a finite set (cell state). The cell states are updated in discrete time steps 
following local rules in a simultaneous and synchronous way. These local rules 
are based on the actual cell state and a finite set of neighboring cells. Cell-DEVS 
[2] is a formalism that combines CA with Discrete Events Systems 
Specifications (DEVS). DEVS [3] is a formalism for modeling discrete-event 
dynamic systems that allows for hierarchical decomposition of the model by 
defining a way to couple existing DEVS models. In Cell-DEVS, as in CA, we 
define a grid of cells that has a state and a set of local rules to calculate the next 
state based on the actual cell state and a finite set of neighboring cells. The 
difference is that the behavior of each cell is defined as a DEVS atomic model 
and the CA as a coupled model. Cell-DEVS is more flexible than CA as it can be 
easily coupled with other DEVS models, and we can define timing delays for 
each cell, making the timing specification more expressive. 

 
Both DEVS and Cell-DEVS formalisms can be implemented in the CD++ 

environment [2]. This environment has been used successfully to develop 
different types of systems: biological (ecological models, heart issue, ant 
foraging systems, fire spread, etc.), physical (diffusion, binary solidification, 
excitable media, surface tension, etc.), artificial (robot trajectories, networking, 



traffic, etc.), and others [2, 4-6]. The techniques we used in CD++ enable the 
models execution using simulation engines that are completely independent from 
the modeling aspects. 

 
In this paper, we show how to use this methodology to study traffic behavior. 

For this purpose, we build different traffic models and show emerging behaviors 
that have not been explicitly programmed. In the following sections, we will 
introduce how to use the Cell-DEVS formalism, and we will show how to model 
complex cell spaces with emerging behavior using this methodology. We will 
present basic models for roundabouts, traffic monitoring, railways, and traffic 
shockwaves, based on cellular models. 

Background  

The DEVS formalism [3] provides a framework to develop hierarchical 
models in a modular way, allowing model reuse and thus, reducing development 
time and testing. A DEVS model is defined as a black box with a state and a 
duration for that state. When state duration time elapses, an output event is sent, 
and an internal transition takes place to change the model state. A state can also 
change when an external event is received. These single models are called 
atomic. DEVS atomic models can be put together by linking the outputs of a 
model to inputs of other models to form coupled models.  

 
Based on the DEVS formalism, Cell-DEVS defines a cell space as DEVS 

atomic models. A Cell-DEVS atomic model is defined as follow [2]: 
 

Cell − DEVS	AM =	< X, Y, I, S, θ, E, delay, d, δ���, δ���, τ, λ, D >	
Where: 

�: Is the set of input events. 
!: Is the set of output events. 
I: Represents the model's modular interface. 
S: Is the set of sequential states for the cell. 
θ: Is the set of the cell’s state variables. 
E: Is the set of states for the input events to compute the future state. 
delay: is the type of delay in the cell to send its value to the 

neighbors. The delay can be transport or inertial. In transport delays, the 
future value will be added to a queue sorted by output time. In inertial 
delays, any previous scheduled output values will be preempted and 
only the new one will be scheduled. 

d: Is the delay for the cell. 
"#$%: Is the internal transition function. 
"&'%: Is the external transition function. This function actives the 

local computation function (τ) 
τ: Is the local computation function (i.e. the rules to calculate the 

next state) 
): Is the output function. 
D: Is the state's duration function. 

 
Once the behavior of each cell is defined, the cell space is built as a Cell-

DEVS coupled model: 



Cell − DEVS	CM =	< Xlist, Ylist, I, X, Y, n, .t/, … , t�1, N, C, B, Z, select >	
Where: 

Xlist: Is the input coupling list. 
Ylist: Is the output coupling list. 
I represents the definition of the interface for the modular model. 
X: Is the set of external input events. 
Y: Is the set of external output events. 
n: Is the dimension of the cell space. 
{t1,...,tn}: Is the number of cells in each of the dimensions. 
N: Is the neighborhood set. It defines the connections between cells. 
C: Is the cell space. The cell space is finite. 
B: Is the set of border cells. The border cells may have a different 

neighborhood or the space can be “wrapped” (i.e. the cells in one border 
are connected with the ones in the other)  

Z: Is the translation function to define the external and internal 
coupling of cells. 

select: Is the tie-breaking function for simultaneous events. 
 
The CD++ tool allows implementing Cell-DEVS models with applications in 

numerous fields [2]. Here we explain how to implement a simple CA. Based on 
this example, in the next sections, we explain the application for modeling 
traffic. 

 
The Brian's Brain CA [7] is an extension of the Seeds pattern model. The 

model’s cells can be in any of three states: firing or on, refractory or dying, and 
dead or off. The model uses Moore’s neighborhood (i.e. the neighbor cells are 
the eight adjacent cells) 

 
The CA follows three simple rules. At each time step, (1) a dead cell turns to 

firing if it has exactly two firing neighbors; (2) a firing cell always evolves to 
refractory; and (3) a refractory cell always evolves to dead. Following these 
simple rules, the CA shows an emergent behavior. The refractory cells tend to 
lead to a pattern that reappears after a certain amount of generations in the same 
orientation but in a different position. However, many Brian's Brain patterns will 
explode messily and chaotically, but most of them will often contain diagonal 
waves of firing and refractory cells. These patterns cannot be predicted in 
advance. 

 
This simple CA can be specified as a Cell-DEVS model as follow: 
 

6789:′<	6798:	=> =	< �, !, I, ?, θ, E, delay, d, "&'%, "#$% , τ, ), @ > 
Where: 

X=Y={0,1,2} 
S={s|s∈{0,1,2}} // 0 = dead or off; 1 = firing or on; 2 = refractory or 

dying where 0 means dead or off, 1 means firing or on and 2 means 
refractory or dying. 

I=Represents the model's modular interface, defined by Cell-DEVS 
as follows:  

B =	< C, D' , DE, F' , FE >	, where C=9 is the neighborhood’s size, 
D' = 	 DE = 1 is the number of input/output ports. Therefore, F' =
.F/

' , FH
' , FI

' , FJ
' , FK

' , FL
' , FM

' , FN
' , FO

'1 =
	.PQ/

', 8:RSTS7), PQH
', 8:RSTS7)PQI

' , 8:RSTS7)PQJ
', 8:RSTS7)PQK

' , 8:RSTS7),



PQL
', 8:RSTS7), PQM

' , 8:RSTS7), PQN
' , 8:RSTS7), PQO

' , 8:RSTS7)1and 
FE 	 = 	 UF/

E , FH
E, FI

E , FJ
E , FK

E , FL
E, FM

E , FN
E , FO

EV 	 =
.WQ/

E, 8:RSTS7X, WQH
E , 8:RSTS7X, WQI

E, 8:RSTS7X, WQJ
E, 8:RSTS7X,

WQK
E, 8:RSTS7X, WQL

E, 8:RSTS7X, WQM
E, 8:RSTS7X, WQN

E, 8:RSTS7X,
WQO

E, 8:RSTS7X	1.  
θ = .Ps, phase, σqueue, σ)|	sϵS	is	the	status	value	for	the	cell,

phase	ϵ	.active, passive1, σqueue = .PP</,d/), … , P<e,de))|Pf	gQ	 ∧
f < ∞) ∧ ∀P8	gQ, 8	gk1, fl), <#g?		 ∧ 	d#	ϵ	mn

o ∪ ∞1	and	σ	ϵ	mn
o ∪ ∞1 

E = {(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)} 
delay: transport. 
d: 100ms 
τ: is defined by the following rules: 

(0,0)=0 if (0,0)=2 
(0,0)=1 if ((0,0)=0) & ((number of neighbors with s=1)=2) 
(0,0)=2 if (0,0)=1 
δint, δext, λ and D are defined using Cell-DEVS specifications. 

 
Once the behavior of each cell is defined, the cell space is built as a Cell-

DEVS coupled model: 
 
6789:q<6798:	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select > 
Where: 

X=Y=Xlist=Ylist= ∅	
I=∅	as	this	is	a	closed	model;		
n=2 
{t1,...,tn}={20,20}  
N={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)} 
C = Brian’s Brain AM 
B=∅ //wrapped 
Z={       F#,w

x/ → 	 F#,wz/
{/   F#,wo/

x/ → 	 F#,w
{/ 

F#,w
xH → 	 F#o/,w

{H   F#z/,w
xH → 	 F#,w

{H 
  F#,w

xI → 	 F#,wo/
{I   F#,wz/

xI → 	 F#,w
{I 

F#,w
xJ → 	 F#z/,w

{J   F#o/,w
xJ → 	 F#,w

{J 
F#,w

xK → 	 F#,w
{K  F#,w

xK → 	 F#,w
{K 

F#,w
xL → 	 F#z/,wz/

{L   F#z/,wz/
xL → 	 F#,w

{L 
F#,w

xM → 	 F#z/,wo/
{M   F#z/,wo/

xM → 	 F#,w
{M 

F#,w
xN → 	 F#o/,wz/

{N   F#o/,wz/
xN → 	 F#,w

{N 
F#,w

xO → 	 F#o/,wo/
{O   F#o/,wo/

xO → 	 F#,w
{O             } 

select=N={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)} 
 
To implement the model in CD++, we need to map the information from the 

formal model definition to define the possible cells states, the neighborhood set, 
the rules, the size of the cell space, the type and value of the delay, the type of 
borders and the initial value of the cells. All these parameters are defined as 
shown as in the code below:  

 
 
 
 
 
 



 
 
[briansbrain] 
type: cell            width: 20         height: 20 
delay: transport border: wrapped 
neighbors: (-1,-1),(-1,-0),(-1,1) 
neighbors: (0,-1),(0,-0),(0,1) 
neighbors: (1,-1),(1,-0),(1,1) 
localtransition: briansbrain-rule 
 
[briansbrain-rule] 
rule : 0 100 { (1,0)=2 } 
rule : 1 100 { (0,0)=1 and trueCount = 2 } 
rule : 2 100 { (0,0)=1 }  
rule: 0 100 {t} 

Fig. 1. Brian's Brain CD++ .ma file for a 20x20 grid  

In figure 1, we show the implementation in CD++ of Brain’s Brain model in a 
20x20 grid. First, we define the name of the Cell-DEVS component. Then, we 
define the type of model (a cell space) and its size (as it is a two dimensional 
model, we only need to define its width and height). The model uses a transport 
delay, and wrapped borders. After the keyword “neighbors”, we define the 
neighborhood set (in this case, a Moore’s neighborhood). Finally, the local 
transition function is defined as a set of rules. They are implemented following 
CD++ high-level language with the form: 

 
rule: POSTCONDITION DELAY { PRECONDITION } 

 
These indicate that when the PRECONDITION is satisfied, the state of the 

cell will change to the designated POSTCONDITION, whose computed value 
will be transmitted to other components after consuming the DELAY. If the 
precondition is false, the next rule in the list is evaluated until a rule is satisfied 
or there are no more rules. 

 
In figure 2, we can see a snapshot of the Brian’s Brain CA simulation in 

CD++ with a random initial configuration in the center of a 400x400 grid. Dead 
cells are represented in black, firing cells are represented in white and refractory 
or dying cells in blue (light gray on the paper). In the figure, we can easily 
appreciate the diagonal waves of firing and refractory cells that appear as 
emergent behavior. Despite in the initial configuration, firing and refractory cells 
only were defined in the center of the grid, they expand and move around the 
whole grid after few steps. The full simulation is available in 
https://www.youtube.com/watch?v=8MCDuRVEbeg. In this video, we can see 
how the diagonal waves that appear as emergent behavior move and change over 
time. After 6000 steps, we cannot see a pattern that repeats over time. In smaller 
grids, this pattern appears. 

In the next sections, we will show how to apply this methodology and CD++ 
to study the emergent behavior of different traffic rules and problems. 
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Fig. 2. Snapshot of Brian's Brian rules CA implemented in CD++ 

Simple Cell-DEVS models for Traffic 

Traffic problems are increasing every day, and in order to control and manage 
the increasing amount of vehicles and avoid major problems, policy makers set 
up different policies. As stated in the introduction, the introduction of new 
methods based on CA has provided new ways to study this type of complex 
systems that can be represented as a cell space [1]. In this section, we show how 
we can implement very simple traffic models in Cell-DEVS in CD++. We also 
show how we can nicely visualize the simulation results. This visualization 
allows us to study the emergent behavior of the implemented rules. Moreover, it 
allows us to provide understandable results to police makers without 
programming background. 

Traffic Flow Using Rule-184 and Track Combination 

The rule-184 for one-dimensional Cellular Automata has been proposed as a 
simple prototype for describing traffic flow. The earliest research on Rule 184 
was presented in [8,9]. The idea is to consider vehicles as particles and roads as 
discrete grids. Particles can move forward at the same time in each time step as 
long as the next sites in the direction of advance are empty. This model can be 
used to illustrate the phase transition between a free movement phase and a 
jammed phase. 

 
We can formally specify this model a Cell-DEVS as follow: 

 
m|sS − 184	=> =	< �, !, I, ?, θ, E, delay, d, "&'% , "#$%, τ, ), @ > 



X=Y={0,1} 
S={s|s∈{0,1}} // 0 = empty and 1 = occupied by a vehicle. 
I and θ are defined as above in Brain’s Brain model 
E={(0,-1),(0,0),(0,1)} 
delay: transport. 
d: 100ms 
τ: is defined by the following rules: 

(0,0)=1 if {(0,-1)=1 and (0,0)=1 and (0,1)=1} 
(0,0)=0 if {(0,-1)=1 and (0,0)=1 and (0,1)=0} 
(0,0)=1 if {(0,-1)=1 and (0,0)=0 and (0,1)=1} 
(0,0)=1 if {(0,-1)=1 and (0,0)=0 and (0,1)=0} 
(0,0)=1 if {(0,-1)=0 and (0,0)=1 and (0,1)=1} 
(0,0)=0 if {(0,-1)=0 and (0,0)=1 and (0,1)=0} 
(0,0)=0 if {(0,-1)=0 and (0,0)=0 and (0,1)=1} 
(0,0)=0 if {(0,-1)=0 and (0,0)=0 and (0,1)=0} 
δint, δext , λ and D are defined using Cell-DEVS specifications. 

 
The Cell-DEVS coupled model is defined as: 
 
m|sS − 184	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select > 

X = Y = Xlist = Ylist = ∅	
I is defined as in Brain’s Brain model 
n= 2;    {t1,...,tn} = {1,20}  
N={ (0,-1),(0,0),(0,1)} 
C= is an array of m|sS − 184	 AM 
B= ∅ // non-wrapped 
Z is defined as above based on N;  
select=N={(0,-1),(0,0),(0,1)} 

 
Implementing the Rule-184 in CD++, we can simulate different initial values 

configurations and study how this configurations influence the traffic. In Figure 
3, we show different steps during the simulation. Red cells represent that it is 
occupied by a vehicle. Gray cells represent that the cell is empty. Through the 
different simulation steps, we can see how vehicles move forward. However, 
they are blocked when there are vehicles in front of them. 

 

 

Fig. 3. Traffic simulation results: Rule-184. Random initial values at three different time steps. 



The Rule-184 can be extended to study traffic with two lanes. Adjusting the 
above model, the neighbors for the first line are as show in Figure 4.a (the front 
cell, the back cell, the cell below and itself). The second line has five neighbors 
as shown in Figure 4.b. 

 

Fig. 4. Neighborhood of the first row and second row and the direction of the movement. 

By combining the rule-184 methods and the vehicle moving procedure, the 
new rules are as follows: 
 

(0,0)=0 {(1,0)=0 and (0,0)=1 and cellpos(0)=0} %mov e down 

(0,0)=0 {(1,0)=1 and (0,-1)=0 and (0,0)=0 and (0,1) =0 and 

cellpos(0)=0} %no vehicle 

(0,0)=0 {(1,0)=1 and (0,-1)=0 and (0,0)=0 and (0,1) =1 and 

cellpos(0)=0} %vehicle ahead 

(0,0)=0 {(1,0)=1 and (0,-1)=0 and (0,0)=1 and (0,1) =0 and 

cellpos(0)=0} %move ahead 

(0,0)=1 {(1,0)=1 and (0,-1)=0 and (0,0)=1 and (0,1) =1 and 

cellpos(0)=0} %stuck 

(0,0)=1 {(1,0)=1 and (0,-1)=1 and (1,-1)=1 and (0,0 )=0 and 

cellpos(0)=0} %vehicle behind 

  … 

After the delay, the high priority vehicle from the first row can move to the 
second row if there is space. In turn, if the vehicle in the second row detects a 
vehicle in front of it, the vehicle would not move and will stay in its position. 
The rest of rules describe the inner rule of each row, which is the implementation 
of the rule-184.  

 

 

Fig. 5. Traffic simulation results with Rule-184 extended for track combination and random 
initial values at three different time steps 



Figure 5 shows some simulation results. Red cells represent spaces occupied 
by vehicles. Through the different simulation steps, we can see how vehicles 
move forward and change lanes when needed. These models show how to define 
precise rules of priority. Different behaviors for vehicle movement can be 
implemented, compared and analyzed to make more appropriate traffic policies.  

Shockwaves on Highways 

This section presents a model for shockwaves on highways, using a 
homogenous highway at the initial state. We allow traffic density to change 
slowly. The traffic initially moves at free flow speed, and then we add a 
disturbance to the flow. To study how the traffic flow evolves in a two-lane one-
way road segment taking into account traffic density, we take make the 
following modeling considerations: 

• The incoming vehicle time follows a Poisson distribution and the rate of 
incoming vehicles increases with time. 

• Boundary conditions are specified by means of input and output cells. An 
output cell is a sink for exiting traffic. Source cells provide vehicles that 
discharge into an empty cell. 

• The model is non-wrapped. Therefore, the vehicles in the upper and lower 
lane can change from one lane to the other avoiding crashes. 

The Cell-DEVS specification of the model is as follow: 
 
?ℎ����9�S	=> =	< �, !, I, ?, θ, E, delay, d, "&'%, "#$% , τ, ), @ > 

X = Y = {0,1,2} 
S={s|s∈{0,1,2}} // 1 represents vehicles in the left lane; 2 represents 

vehicles in the right lane; 0 means no vehicle 
I and θ are defined as above 
E={(-1,-1),(-1,0),(-1, 1),(0, -1),(0, 0),(0, 1),(1, -1),(1, 0),(1, 1)} 
delay: transport. 
d: 1ms 
τ: is defined by the following rules: 

(0,0)=0 if (0,0)=1 and (-1,0)=0 
(0,0)=1 if (0,0)=0 and (1,0)=1 
(0,0)=0 if (0,0)=2 and (-1,0)=0 
(0,0)=2 if (0,0)=0 and (1,0)=2 
(0,0)=0 if (0,0)=1 and (-1,0)=1 and (0,1)=0 and (-1,1)=0 
(0,0)=2 if (0,0)=0 and (1,0)=0 and (1,-1)=1 and (0,-1)=1 
(0,0)=0 if (0,0)=2 and (-1,0)=2 and (0,-1)=0 and (-1,-1)=0 
(0,0)=1 if (0,0)=0 and (1,0)=0 and (1,1)=2 and (0,1)=2 

 
The Cell-DEVS coupled model is: 
 
?ℎ����9�S	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select > 

X = Y = {0,1} 
Xlist={(29,0),(29,1)} 
Ylist=∅	
I is defined as above 
n=2. 



{t1,...,tn} = {30,2} // These parameters of the model change as we 
change the size of the cell space. 

N={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)} 
C =?ℎ����9�S	 AM 
B = ∅ // non-wrapped 
Z = is defined as above 
select=N 

 
Finally, let us consider the specification for the complete model, as we have 

two vehicle generators (incomingVehicles1, incomingVehicles2). 
 

r> =	< �	, !	, @, .>#1, .B#1, .�#,w1, <SsS�R > 

X= Y= ∅ 
D= {shockwave CM, incomingVehicles1, incomingVehicles2}, and 

∀ i ∈	D, Mi is one of the basic DEVS models previously defined 
I i is the set of influences of model i. In this case, 

Ishockwave CM = {incomingVehicles1, incomingVehicles2} 
IincomingVehicles1=IincomingVehicles2=∅ 

Zij = {       
   �����������������/,���������	��	: ��� → �P0,29)���������	�� 

�����������������H,���������	��	: ��� → �P1,29)���������	�� } 
select = {incomingVehicles1, incomingVehicles2, shockwave CM } 
 

There are two inputs, one in each line, representing the random arrival of 
vehicles. The interval time of vehicles is exponentially distributed. However, in 
order to examine the different rate of incoming vehicle, the mean in the vehicle 
generator can be changed. Each lane also has one sink, representing how the 
vehicles leave the highway. Different scenarios for traffic density arrival and 
different initial traffic conditions in the road can be simulated. 

 

 

Fig. 6. Traffic simulation results for shockwaves with random initial values  

Figure 6 shows a simulation scenario with a random initial distribution. Red 
cells represent that it occupied by a vehicle in the first line. Blue cells represent 
that the cell is occupied by a vehicle in the second row. Gray cells represent that 



the cell is empty. At the beginning, the traffic density on both road segments is 
high and at the end, it becomes free-flow. 

 
After showing some basic models with simple emergent behavior, the 

following sections will present more advanced traffic models: an example 
focusing on traffic in roundabouts and for traffic monitoring in highways. 

Modeling Roundabouts 

This section shows a model of a roundabout with eight single lanes connected 
to a single-lane ring. In the ring, vehicles move counter-clockwise. The 
roundabout can be modeled as a Cell space as shown in Figure 7. The arrows 
represent the direction of the vehicle movement in the cell space. Blue cells 
represent the point where a vehicle can decide continuing going on in the 
roundabout or take the exit. 

 

Fig. 7. The Model and the Direction Flow for Each Cell 

To specify the model, the cell space is divided into 25 zones as shown in 
figure 8. As a cell in each zone behaves differently, the traffic rules are defined 
by zones. In the figure, white cells represent the traffic lanes and green cells 
represent the area near the roundabout where no vehicles are allowed. Four cells 
contain vehicle generators (one in each incoming line to the roundabout) to 
represent the incoming vehicles. 

 
The Cell-DEVS model is as follow:  
 

8�8:Sm�|:�9��|R	=> =	< �, !, I, ?, θ, E, delay, d, "&'% , "#$%, τ, ), @ > 
X = Y = {0, 1, 2} 
S = {s | s ∈ {0, 1, 2}} // 0 = empty, 1 = vehicle, 2 = no vehicles 

allowed  
I and θ are defined as above 
E={(-2,0),(-2,1),(-1,-2),(-1,-1),(-1,0),(-1,1),(0,-2),(0,-1),(0,0),(0,1), 

(0, 2),(1,-1), (1,0), (1,1),(1,2),(2,-1),(2,0)}  
delay: transport. 
d: 100ms 
τ: is defined by the following rules: 

[roundabout-rule] 
(0,0) = 2 if {(0,0)=2} 
[R-lane-to-roundabout-rule] 



(0,0) = 0 if {(0,0)=1 and (0,-1)=0 and (-1,-1)=2} 
(0,0) = 0 if {(0,0)=1 and (0,-1)=0 and (-1,-1)!=2 and (1,-1)=0 and  
                         (2,-1)=0} 
(0,0) = 1 if {(0,0)=0 and (0,1)=1} 
(0,0) = 1 if {(0,0)=1 and (0,-1)=1} 
(0,0) = 1 if { (0,0)=1 and (1,-1)=1} 
(0,0) = 1 if { (0,0)=1 and (2,-1)=1} 
[R-lane-from-roundabout-rule] 
(0,0) = 0 if {(0,0)=1 and (0,1)=0} 
(0,0) = 1 if {(0,0)=0 and (0,-1)=1 and (1,-1)=2} 
(0,0) = 1 if {(0,0)=0 and (0,-1)=1 and (1,-1)!=2 and ( random > 0.5)} 

 

 

Fig. 8. Names of the zones in Traffic roundabout model. 

The Cell-DEVS coupled model is: 
 

8�8:Sm�|:�9��|R	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select > 
X = Y = Xlist = Ylist = ∅	
I is defined as above 
n = 2 
{t1,...,tn} = {16,16}  
N={(-2,0),(-2,1),(-1,-2),(-1,-1),(-1,0),(-1,1),(0,-2),(0,-1),(0,0),(0,1), 

(0, 2),(1,-1),(1,0), (1,1),(1,2),(2,-1),(2,0)}  
C = 8�8:Sm�|:�9��|R	 AM 
Z is defined as above  
select=N 
 

Different initial traffic configurations can be simulated. Here we show two 
different cases: one when there are no yield signs and one with yield signs that 
give vehicles inside a roundabout the right to move and control traffic coming 
toward the ring.  
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Fig. 9. Traffic simulation results in roundabout without yield signs 

In figure 9, we show the simulation results without yield signs and in figure 
10 with yield signs. In both figures, the green cells do not change during the 
simulation. Gray cells represent empty cells and black cells represent occupied 
cells by a vehicle. We can see various accidents where vehicles come to the 
roundabout and vehicles inside the roundabout meet (see for example time 9.200, 
where there is a vehicle coming and a vehicle in the roundabout close to it). 

 
When we introduce yield sings, we obtain the results shown in figure 10. We 

can see that inside the roundabout all vehicles keep the safety distance, 
represented by an empty cell (gray) between vehicles. The accidents disappear.  

 

 

Fig. 10. Traffic simulation results in roundabout with yield signs 



Traffic Monitoring in Highways  

In this section, we present a model for traffic monitoring on a one-way two-
lane highway. The Traffic Monitor can detect unusual events. The model is as 
follows. We use two layers; one that models the highway and sends information 
to the traffic monitor and a second layer that shows the information got by the 
traffic monitoring system. The information that the traffic monitor gets is as 
follows. If within 2 time steps one unit keeps occupied, -1 is sent to the Traffic 
Monitor, which will see whether it is an accident or congestion as follows: 

• If it receives the value -1 from unit i of both lanes at the same time step, it is 
congestion.  

• If it only receives -1 from unit i of only one lane at the time, it is an 
accident.  

Each vehicle has an integer velocity ranging from 0 to Vmax=5 units/time 
step. Assuming that the average vehicle length is 7.5m and the time step is 1 
second, the Vmax is approximately 135km/h. 

 
We model the following behaviors: 

1. Acceleration: if the velocity v of a vehicle is lower than Vmax and the 
distance to the next vehicle ahead is larger than v+1, the speed is incremented. 

2. Slowing down: if a vehicle at unit i detects the next vehicle at unit i+j (with 
j<=v), its speed is decremented. 

3. Changing lane: if a vehicle at unit i detects a stopped vehicle in unit i+1, it 
will try to change to the other lane as long as that unit is empty and no 
vehicles may be able to come across at the next time step. 

4. Traffic Monitor: if an accident occurs or congestion happens, the Traffic 
Monitor is able to detect the value from that exact unit. 

The formal Cell-DEVS specification is as follows: 
 

�79��8�>�:8R�7	=> =	< �, !, I, ?, θ, E, delay, d, "&'%, "#$%, τ, ), @ > 
X = Y = {-1,0,1,2,3,4,5,9} 
S = {s|s∈{-1,0,1,2,3,4,5,9}}//-1 means a cell is stopped by an 

accident or congestion, values from 0~5 means the cell is occupied by a 
vehicle and the number is the vehicle’s velocity and 9 means the cell is 
empty 

I and θ are defined as above 
E={(0,-5,0),(0,-4,0),(0,-3,0),(0,-2,0),(0,-1,0),(0,0,0),(0,1,0),(0,0,1), 

(1,-5,0),(1,-4,0),(1,-3,0),(1,-2,0),(1,-1,0),(1,0,0),(1,1,0)} 
delay: transport. 
d: 100 ms 
τ: is defined by the following rules: 

(0,0,0) = -1 if {(0,0,1) = 0} 
(0,0,0) = 0 if {(0,0,0)!=9 and (0,1,0)!=9 and (0,1,0)!=0 and (0,0,0)!=-1} 
(0,0,0) = 0 if {(0,0,0)!=9 and (0,1,0)=0 and (1,1,0)!=9} 
… 
(0,0,0) = 0 if {(0,0,0)!=9 and (0,1,0)=0 and (1,-5,0)!=9} 
(0,0,0) = 1 if {(0,-1,0)=0 and (0,0,0)=9} 
(0,0,0) = 1 if {(0,0,0)=9 and (0,-1,0)=9 and (0,-2,0)=9 and (0,-3,0)=9 
         and (0,-4,0)=9 and (0,-5,0)=9 and (1,0,0)=0 and (1,-1,0)!=9} 
… 



(0,0,0) = 9 if {(0,0,0)!=9 and (0,1,0)=0 and (1,0,0)=9 and (1,-1,0)=9 and 
       (1,-2,0)=9 and (1,-3,0)=9 and (1,-4,0)=9 and (1,-5,0)=9 and  
       (1,1,0)=9} 
δint, δext , λ and D are defined using Cell-DEVS specifications. 

 
Once the behavior of each cell is defined, the cell space is built as a Cell-

DEVS coupled model: 
 

�79��8�>�:8R�7	r> =	< �s8<R, !s8<R, I, X, Y, n, .R/, … , R$1, N, C, B, Z, select > 
X = Y = Xlist = Ylist = ∅	
n=3 
{t1,...,tn} = {2,60,2} // These parameters of the model change as we 

change the size of the cell space. 
N = {(0,-5,0),(0,-4,0),(0,-3,0),(0,-2,0),(0,-1,0),( 0,0,0),(0,1,0),(0,0,1), 

(1,-5,0),(1,-4,0),(1,-3,0),(1,-2,0),(1,-1,0),(1,0,0),(1,1,0)} 
Z = is defined as above based on N. 
select=N 

 

 

Fig. 11. Traffic monitor simulation results 

As explained above, the CELL-DEVS space has two layers, one for the 
highway and another for the values sent to the traffic monitoring system. In 
figure 11, we show some simulation results. The first layer represents the 
vehicles in the highway. The second layer represents the information received by 
the traffic monitoring system. Gray cells represent empty cells in the first layer 



and no warning in the second layer. In the first layer, red cells represent vehicles. 
The intensity of the color represents the velocity (darker is faster). In the second 
row, a blue cell represent that the system gets a warning. This warning is 
received when a vehicle is stopped in the highway. In the simulation, we can see 
how at the beginning vehicles go slowly due to the presence of an accident (both 
lines have a stopped vehicle at the same point). After a while, this issue 
disappears and the traffic is more fluid. At the end of the simulation, most of the 
vehicles go at the highest speed and the traffic monitor does not receive 
incidents. 

Conclusion 

We presented the use of Cell-DEVS for modeling different CA with emerging 
behavior for traffic. Using this methodology, new traffic rules can be tested in 
both simple and complex scenarios before setting new policies. Moreover, the 
visualization engine provides a useful and nice way to show the emergent 
behavior of the designed traffic rules to policy makers, who are the people 
responsible in decision-making. 

The Cell-DEVS formalism in urban research is similar to CA but with several 
advantages in comparison. Cell-DEVS is more flexible than CA as it can be 
easily coupled with other DEVS models, and we can define timing delays for 
each cell, making the timing specification more expressive. We have showed 
how to use such Cell-DEVS formalism and the CD++ toolkit to study traffic. 
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