World Scientific

and Scientific Computing www.worldscientific.com

Vol. 7, No. 1 (2016) 1641002 (38 pages)
© World Scientific Publishing Company
DOI: 10.1142/S51793962316410026

International Journal of Modeling, Simulation, \\’

Modeling and simulation as a service
architecture for deploying resources in the Cloud

Sixuan Wang* and Gabriel Wainer?

Department of Systems and Computer Engineering
Carleton University Centre for Visualization and Simulation (V-Sim)
Ottawa, Canada, ON K1S5-5B6
*swang@sce. carleton.ca
fgwainer@sce.carleton. ca

Received 25 April 2015
Accepted 20 January 2016
Published 7 March 2016

In recent years, Cloud Computing has become popular to facilitate the use of Mod-
eling and Simulation (M&S) resources. Nevertheless, there are still various issues to
solve, including the structure constrain of chosen web service frameworks, the sharing
of varied resources in the Cloud, and the difficulties in reproducing experiments. We
show a new architecture based on Cloud Computing and new modeling methods to deal
with these issues. This layered architecture, called Cloud Architecture for Modeling and
Simulation as a Service (CAMSaaS), simplifies the deployment of M&S resources as
services in the Cloud. CAMSaaS supports hierarchical resource services, experimental
frameworks, scalable infrastructure and makes everything as a service. We deploy var-
ied M&S resources as services in the Cloud, and build a Modeling and Simulation as a
Service (MSaaS) middleware called CloudRISE to manage a variety of M&S resources.
We also use the experimental framework concept to simplify the management of experi-
ment environments. We present a case study for crowd evacuation application using the
architecture.

Keywords: Modeling and Simulation as a Service; Cloud-based Simulation; Simulation
Middleware; RESTful Web Services; Cloud Services.

1. Introduction

At present, Modeling and Simulation (M&S) is being applied to almost every aspect
of life.! Current M&S systems are large and complex, and it is thus complex to
configure and maintain them in order to run varied experiments of the models under
different scenarios. Likewise, the CPU and memory resources of a single computer
can be insufficient to execute complex models for advanced applications.?

The M&S community has used Web Services (WS) technologies to deal with
these issues for around 20 years. This method, usually called Web-based Simulation

*Corresponding author.

1641002-1

http://dx.doi.org/10.1142/S1793962316410026

S. Wang and G. Wainer

(WBS), uses existing simulation functions and it exposes them as WSs.> WBS
shares the simulators and their environments (which are originally accessible on
a single computer) through the Internet. This method has been successful, and a
large number of M&S WS exist.*

The emergence of Cloud Computing made Cloud-based Simulation (CBS) a
feasible and attractive alternative to WBS.? CBS goes beyond WBS, and it uses
Cloud Computing technologies to reduce costs and make easier to develop M&S
systems by taking advantages of the Cloud Computing services, e.g., Infrastructure
as a Service (TaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).
Cloud Computing provides various IT resources to users in an easy-to-use, on-
demand and pay-as-you-go manner. These advantages make simulation resources
more accessible to users. Nevertheless, research in CBS is still in a preliminary
stage; in fact, CBS has been mentioned as one of the Grand Challenges in M&S by
various experts in the area.5®

In this sense, Johnson and Tolk? have identified five challenges perspectives
that have to be addressed in CBS: technical, governance, security, business and
conceptual perspectives. Among them, we are interested in focusing on the tech-
nical perspective, a fundamental concept, and we focus on how to apply the best
technological solutions to deploy M&S resources as services in the Cloud. Although
Cayirci'®!! shows that the technical perspective has been improved, Liu et al.'?
argue that the current technical solutions are not practical, because CBS has issues
in the following aspects:

(1) WS Framework: CBS is derived from WBS. After a peak period between 2000
and 2002, the research and publications about WBS dropped quickly,'® because
there was a mismatch between the WS Framework used by WBS and the main
characteristics of the Web. Most WBS frameworks are based on SOAP, which has
issues of structure constrains (e.g., mixed design and implementation, difficulties in
development, exposing internal implementation details, etc.).'* Any SOAP-based
WS project takes at least two years in defining the SOAP WS layer, deploying
those services, and standardizing the interfaces. Therefore, these SOAP-based WS
failed to take full advantage of features of the Web (e.g., its universal interface,
interoperability, ease of navigation and use, etc.). In other words, the focus of many
WRBS efforts has been merely to re-implement existing standalone M&S systems by
using SOAP-based WS.'3

(2) Variety: As the M&S systems become more complex, the number of the related
t.15 There is a variety of basic M&S resources: source
systems, models, simulators, experimental frames and experiments.'® However, as

resources increases very fas

the simulation systems become more complex, new resources are needed.'” In par-
ticular, numerous WS available in the Cloud could be useful for M&S.* These
services are either web-based M&S services (that expose models or simulations as
services) or open APIs (that are useful for M&S). These resources, which are varied
in type and content, are complex to share and reuse.

1641002-2

MES as a service architecture for deploying resources in the Cloud

(3) Simplicity: Although CBS is available to a large number of users, running
a simulation in the Cloud is still complicated.'® To run a simulation model from
others, a user needs to find right WS to install a simulation environment, which can
be complex (it needs to deal with dependencies and configuring the simulation envi-
ronment). Then one must have access to the model files, inputs, and experiments
process. Both current WBS and CBS are still unable to simplify these processes.18

This paper focuses on the issues mentioned above and introduces new methods
for deploying M&S resources in the Cloud. The goal is to simplify the deployment
process of varied M&S resources as services in the Cloud by taking full advantages
of Web.

To achieve this goal, new concepts and techniques are needed. We propose using
RESTful WS'® as the WS framework. REST is simpler than SOAP; it is directly
built upon the Web and it has a more concise style in terms of implementation
and operation.?? We use RESTful WS to expose every M&S resource as a unique
URL that can be operated by the uniform HTTP methods (GET, POST, PUT and
DELETE).

In order to handle the variety of M&S resources, we use the concept of Modeling
and Simulation as a Service (MSaaS) in the Cloud. MSaaS builds on Cloud services
and it delivers WS related to M&S. We implemented an MSaaS middleware to
manage and deliver varied M&S resources as services in the Cloud.

In order to improve the simplicity, we propose using the Experimental Frame-
work concept, which captures the set of conditions under which a system or a
model is to be observed and studied.!6-2! We developed a lightweight Experimental
Framework Template using XML in the MSaaS middleware to control the life cycle
of experiments. Likewise, we used the Cloud as the underlying infrastructure to
deploy the MSaaS middleware.

Based on these new concepts and methods, we propose a CBS architecture to
deploy resources as services, named Cloud Architecture for Modeling and Simu-
lation as a Service (CAMSaaS). CAMSaaS is a layered architecture that allows
users to deploy and invoke varied M&S resources as services. CAMSaaS uses three
layers, namely Cloud, MSaaS, and Application. We developed middleware, named
CloudRISE, which implements the CAMSaaS architecture and allows deploying
MSaaS in the Cloud. We will introduce the overall CAMSaaS architecture, and its
basic ideas of design and implementation.

In order to show the uses of the proposed architecture and the current imple-
mentation, we present a case study for evacuation of a crowd in a shopping mall.
We discuss the M&S resources needed (e.g., evacuation model, simulator, data col-
lection and 3D visualization), and how to deploy them as service in the Cloud using
CloudRISE, and then we will show how to use this generated MSaa$S to reproduce
different experiments in an easy and scalable way.

This paper is organized as follows. In Sec. 2, we review the literature related to
the deployment of M&S resources as services in the Cloud. In Sec. 3, we discuss
our view about MSaaS and propose the new architecture CAMSaaS. In Sec. 4, we

1641002-3

S. Wang and G. Wainer

discuss the details about the underlying Cloud layer of CAMSaaS. In Sec. 5, we
discuss the details of CloudRISE middleware, which implements the MSaaS idea
for CAMSaaS. In Sec. 6, we present a complete case study of Crowd M&S using
CloudRISE middleware. In Sec. 7, we will conclude this research by highlighting its
advantages and future directions.

2. Related Work

We are interested to improve the deployment of M&S resources as services in the
Cloud. To do so, we have first classified and organized the variety of M&S resources
in order to make them more manageable. Figure 1 shows how we can group the
varied resources available.

As we can see, an M&S resource can be considered as an entity (i.e., a basic
resource that is directly related to M&S) or a supported resource (i.e., a related
resource that is helpful for M&S).

The theory of M&S presented in Ref. 16 provides a conceptual framework for
M&S entities. M&S entities include the source system, models, simulators, exper-
imental frameworks and experiments (seen in the left part of Fig. 1). The source
system is a real or virtual environment that we are interested to model. A model
is a representation of a source system built to understand that system under a
given experimental framework. A simulator is a device that executes a model in
order to study its behavior over time. The simulation of a model involves different
simulation experimental frameworks and associated experiments. The experimental
framework represents the context under which a system or a model is observed or
experimented with. This kind of context is essential information to reproduce the
simulation experiments.

The supported resources can be grouped into two categories: supported data and
supported functions, as seen on the right part of Fig. 1. A supported data can be
any resource that is not executable, like a system behavior database, scenario data
and documentation. Supported data can be in a wide range of forms: text, file,
picture and video.'” Supported functions are any resources executable from small

Experiments
Source 3 ol
Systems
Data
Experimental Supported
Frames Functions

M&S entities Supported resources

Fig. 1. Categories of M&S resources: basic M&S entities and supported resources.

1641002-4

MES as a service architecture for deploying resources in the Cloud
portions of code, through larger components, to complete executable programs.??
Examples of the supported functions are data collection tools, results analysis pro-
gram, animation and visualization tools. A function is in general associated with
an execution environment and provides interfaces for others to access.

In order to facilitate the use of varied M&S resources, the M&S community
has been interested in web technologies for many years. These efforts include WBS
(exposing M&S functions as WS) and CBS (integrating WBS and Cloud Comput-
ing). The basic idea of WBS is to put M&S resources on the Web, and to provide
users with new information standards and communication protocols.?® As reported
in Ref. 24, web-based technologies are beneficial to non-experts, who can share M&S
resources and reduce the time required for users to learn about the M&S tools. In
recent years, CBS has started to become popular to facilitate the use of these varied
M&S resources.?® CBS and WBS have some similarities. CBS is derived from WBS
and it has been identified as a challenge in M&S.”® However, the work on WBS
is not new. The early efforts in using WBS to support modeling, simulation and
simulation results analysis can be traced back to Fishwick’s paper in 1996. Between
1996 and 2000, the number of publications on WBS grew explosively. After 2002,
the number of publications dropped off very quickly.® Since WBS and CBS are
similar, it is important to study what has happened to WBS.

In WBS, the simulator and its simulation environment are located remotely on
a server.?® Users can submit their requests (with specified message/parameters)
to the simulator through web servers, then simulation experiment runs remotely,
and the results are returned to the user. WBS eases the sharing of the simulation
resources: for instance, the simulation engines available on the server (without wor-
rying about simulation environment setup and other software dependencies issues).
WBS improves data accessibility, interoperability and user experience (non-expert
users can access these services easily), allowing them increase productivity.?”

Onggo and Taylor® analyzed the problem of the decline of WBS. They stated
that there was a mismatch between the main characteristics of the Web and the web
service framework taken by the domain of WBS (which mainly uses SOAP-based
WS). This mismatch resulted in that WBS cannot take full advantage of the features
of the Web including common standards, interoperability, ease of navigation and
use, etc. Kuljis and Paul®® also supported this argument. They argued that CBS
must not simply re-implement existing simulation software using Cloud Computing
technologies.

WS can be categorized into two main frameworks: SOAP-based?® (in which
the service expose an arbitrary set of operations), and RESTful®® (in which we
manipulate XML representations of Web resources using a uniform set of “stateless”
operations). In WBS, SOAP-based WS are widely used in M&S systems, while few
systems use REST-based WS as the web service framework.

SOAP-based WS are exposed as in Remote Procedure Calls (RPC). For sim-
ulation, the simulation functions are available as procedures on the server, and
they are described in XML WSDL documents. A client can compile the WSDL

1641002-5

S. Wang and G. Wainer

into procedure stubs, and at runtime, the SOAP messages are wrapped in HTTP,
and POSTs the SOAP message to the server. When the server receives the mes-
sage, it extracts it using a procedure call and responds to the client in a similar
way. DDSOS?! is a simulation framework by using SOAP-based WS to support the
evaluation of large-scale distributed systems. SOPM?3? is a SOAP-based modeling
framework to build performance models of service-oriented architectures. SASF2° is
a SOAP-based simulation framework for predicting the behavior of service-oriented
systems under different configurations and loads. There are many SOAP-based
WS used in DEVS simulators. In Refs. 33-35, we defined a distributed DEVS
simulation environment over SOAP. DEVS/SOA3537 implements DEVS over a
SOAP-based SOA framework, supporting a development and testing environment
known as DEVS Unified Process. A similar work was proposed in SOA-compliant
DEVS (SOAD), a simulation framework for modeling service-oriented computing
systems.3® They developed a set of abstract DEVS models that conform to the SOA
principles.

Instead, RESTful WS imitate the Web interoperability style, directly take full
advantage of the Web. They use universal accepted standards, uniform channels,
are resource-oriented, message-oriented, and hide implementation. REST represents
resources as URIs; any user can request the resource by HT'TP method, and com-
municate with the resource via standard representation (like XML). Resources are
manipulated using a fixed set of four operations: POST, GET, PUT, and DELETE.
However, using REST for WBS is not as popular as SOAP. The RESTful Inter-
operability Simulation Environment (RISE)3Y was the first RESTful distributed
DEVS simulator in the Cloud. The main objective of RISE is to support inter-
operability of distributed and heterogeneous simulations regardless of the model
formalisms, model languages or simulation engines. Arroqui et al.A® developed an
agricultural information system by using both RESTful WS and SOAP-based WS.
From the comparison, they found that RESTful WS requires 24% less bandwidth
for transferring data than SOAP-based WS do.

SOAP WS have the following shortcomings when compared to RESTful WS:

(1) Client—Server interaction in SOAP WS is tightly coupled, and changes on the
server result in complex code changes on the client.'4:39

(2) SOAP messages require XML wrappers on all messages, whereas REST does
not. Therefore, SOAP messages are bigger than HTTP messages used in REST-
ful WS; hence, SOAP consumes more bandwidth. 44!

(3) SOAP exposes details of the internal implementation. Developing SOAP WS
needs the understanding of the detail implementation of the procedures, which
makes them harder to develop.'442

(4) SOAP is based on RPC. Each RPC interface defines its own services with its
own syntax and semantics, which limits the scalability of the framework; while
REST has a uniform interface because of its use of HTTP methods.*342

(5) SOAP WS also has security issue. SOAP/RPC messages are wrapped in an
HTTP header; the server only understands the messages once they have been

1641002-6

MES as a service architecture for deploying resources in the Cloud

parsed. This allows malicious commands to get through the firewall undetected.
In contrast, each resource in REST is assigned a unique URI, and it is handled
on the HTTP firewall (making REST more secure).*4

In fact, a large number of RESTful WS have been designed as replace inefficient
SOAP WS. According to more than 11,000 APIs registered by Programmable Web,
the trend toward SOAP is dying: today 73% of the APIs use REST, while SOAP
is only 27%.%% These new services in REST are more scalable, interoperable and
simpler.*3 These shortcomings of SOAP mentioned above have made WBS unable
to take full advantages of Web, which further made WBS decline in recent years.
Therefore, in CBS, RESTful WS should be adopted as Web Service framework
instead of SOAP WS.

CBS is a term used to capture the intersection between M&S and Cloud Com-
puting. Cloud Computing can be used for building simulation environment in a pay-
as-you-go manner, reducing the costs in the development of M&S applications,'!
and computing power can be increased or decreased according to usage. Cloud com-
puting also allows the users to scale up or down the underlying infrastructure.!?
We can use Cloud Computing to manage varied M&S resources and build different
simulation environment according to the actual demands. Cloud Computing for
WBS also uses advanced technologies such as load balancing, fault tolerance and
security.*® In Ref. 5, the authors have pointed out the following Cloud-based sce-
narios for M&S: (1) run simulation on Cloud infrastructure; (2) create and control
models in the Cloud; (3) run experiments of simulation models on Cloud infrastruc-
ture; (4) manage and control the simulation development lifecycle; and (5) control
over storage and execution simulation engine.

Johnson and Tolk? identified five challenges that have to be addressed in CBS

(technical, governance, security, business and conceptual). Cayirci®!!

showed how
various technical perspectives have been addressed, but Liu et al.'? argue that the
current technical solutions are neither widely used nor practical. Onggo and Taylor®
also argued that deploying M&S resources in the Cloud is not simply as the way
WBS does: reimplementation of existing M&S resources using Cloud Computing.
In the following sections we will show how Cloud Computing can help us to
develop MSaaS, a concept that received some attention recently. MSaaS focuses on
delivering services related to M&S using Cloud Computing,'? exposing models and
simulation functions as services. MSaaS takes advantages of IaaS, PaaS and SaaS,*”
hiding the underlying infrastructure, platform and software details from the users.
Recent research focused on how to use Cloud and MSaaS for reusing M&S
resources. There are three groups of researchers, which focus on different aspects:

(1) Managing M&S resources: They use the Cloud to share and manage M&S
resources. Sliman et al.*® proposed an MSaa$S platform called RunMyCode, which
allows scientists to share their code associated with their research publications in
the Cloud. In Ref. 12, the authors presented the work on deploying existing M&S
software into the Cloud.

1641002-7

S. Wang and G. Wainer

(2) Supporting Parallel and Distributed Simulation (PADS): Li et al.*?
proposed a Grid-based platform called Cloud Simulation Platform (Cesium), and
summarized 12 key technologies for the development of CSim. Fujimoto et al.%6
discussed the benefits and challenges associated with executing PADS in the Cloud.

(3) Building applications in the Cloud: They focus on the development of
M&S applications using the Cloud. Bruneliere et al. presented an approach to build
applications by using model-driven engineering and Modeling as a Service (MaaS)
in the Cloud. Lanner group®! designed a system called L-SIM 2.0 in the Cloud to
simulate business process management systems. CIMdata®? proposed a simulation
application using the Cloud in the area of commercial product design.

The use of Cloud Computing and MSaaS is still in a preliminary stage and a
universal definition of MSaaS does not exist.!1:>3 In Ref. 11, the author discussed
the differences and relations among MSaaS, TaaS, PaaS and SaaS. In particular, the
author views MSaaS as a special form of SaaS. The author classified three types
of MSaaS: modeling as a service (services to develop models), model as a service
(services to access models) and simulation as a service (services to run simulations).
However, this kind of classification of MSaaS only considers models and simulations;
it does not consider other kinds of M&S resources (e.g., sharing models and experi-
ments, storing supported data and reproducing supported functions). For example,
in order to complete a simulation process, some supported functions are important
(e.g., data collection for the model inputs, simulation results analysis). However,
the current WBS and CBS lack the support for users to expose these supported
functions and reproduce the experiments related to these functions.

Our research effort can also help in dealing with the reproducibility crisis: in
Ref. 54, the author analyzed many papers from the ACM MobiHoc symposium
between 2000 and 2005, and found that less than 15% of the simulation results
were reproducible. There are several reasons for this. Then one must reproduce the
simulation in the same way as the original, which requires that one must have the
access of simulation services for the same simulation files, inputs, etc. In this sense,
existing WBS and CBS lack in simplicity in terms of environment configuration,
which makes reusability very complex. In WBS;, it is hard to simplify the simulation
process.? Most services provided by WBS are delivered on local servers, so these
services rely on heavily the capacity of the servers. Due to the increasing demands of
underlying infrastructure for simulation experiment, it is hard to set up new servers
efficiently with a higher compute power or a larger storage capacity. Users have to
migrate and backup by themselves, as well as purchasing infrastructure and IT
services. In CBS, even users can use Cloud services to get scalable computer power
or storage capacity, carrying out an experiment can be still complicated. User still
need to select correct services to set up experiment environment, prepare input,
control experiment lifecycle and analysis results.'® It is even harder when there
is a varied M&S resources that cannot be easily exposed as services. Therefore, a
simplified way to develop these resources as services in the Cloud is needed.

1641002-8

MES as a service architecture for deploying resources in the Cloud

In summary, though web technologies have been used in M&S for many years,
deploying M&S resource in the Cloud should not simply re-implement existing sys-
tems in the Cloud; instead, we need to handle the issues caused by web service
framework like SOAP WS, the variety of M&S resources and the difficulty of envi-
ronment configuration. The following sections present a novel architecture to deal
with these issues.

3. Cloud Architecture for Modeling and Simulation as a Service

As discussed in the previous sections, we are interested in simplifying the deploy-
ment process of varied M&S resources as services in the Cloud. In particular, we
want to solve the issues caused by current CBS in the deployment process, including
variety, WS frameworks used and simplicity. To do so, we propose using MSaaS to
share the varied M&S resources as services. We regard MSaaS in a broad view that
it delivers everything as a service using RESTful principles. In other words, MSaaS
is able to deliver everything related to M&S as RESTful WS by using Cloud Com-
puting. MSaa$S is built on top of the Cloud services (i.e., SaaS, PaaS, and IaaS),
considering that MSaaS is a special form of SaaS.!'! Figure 2 shows the relationship
between MSaaS and the Cloud services.

Users can share a model by using Model as a Service, reproduce experiments
by using Fzperiments as a Service, reconfigure Experimental Frameworks by using
EF as a Service, run a simulation by using the corresponding Simulator as a Ser-
vice, share the supported data by using Data as a Service, and execute supported
functions by using Function as a Service. These MSaaS services take advantages
of SaaS, PaaS and TaaS. SaaS provides software on-demand and application ser-
vices to be used for MSaaS. PaaS provides a computing platform that facilitates
the development, deployment and management of the applications for MSaaS. TaaS
delivers computer and storage TaaS for MSaaS to access.

Based on these ideas, we propose a novel architecture, named CAMSaaS to
deploy varied M&S resources as MSaaS in the Cloud. Figure 3 shows its lay-
ered architecture. This architecture allows the users to deploy any user-provided

-~ Model as a Service
Simulator as a Service

Modeling and Simulation Experiment as a Service
as a Service (MSaaS) EF as a Service

Software as a Service (SaaS) Data as a Service
Function as a Service

Platform as a Service (PaaS)

Infrastructure as a Service(laaS)

Fig. 2. Relationship of MSaaS and Cloud services: Varied M&S resources exposed as MSaaS.

1641002-9

S. Wang and G. Wainer

Application Layer

Discover Invoke
MSaaS MSaaS
A n
MSaa$S Layer ~~----- =) Sonl message’
— . N
Simulation L

resources URI | MSaasS

MSaaS Middleware

(CloudRISE)
Cloud Layer

Compute | | Storage

mm) (Goge) AJ
k-!_,—) - Windows Azure

Fig. 3. CAMSaaS. It contains: Cloud Layer (Cloud infrastructure), MSaaS Layer (deploying
MSaaS using middleware) and Application Layer (developing new applications using MSaaS).

resources as MSaaS in the Cloud. Users can use these MSaaS to share the M&S
resources and reproduce the experiments in an easy way. This architecture has the
following three layers.

(1) Cloud Layer: It is responsible for providing Cloud infrastructure support, like
Cloud compute units and Cloud Storage Units. This layer supports the scalable
underlying infrastructure for M&S resources. All resources will be stored and all
the experiments will be executed in this layer. Cloud compute units are used for
building simulation environments and executing experiments. Cloud Storage Units
are used for sharing M&S resources.

(2) MSaaS Layer: It is responsible to provide a platform for development,
deployment and management of MSaaS. This layer can deploy user-provided M&S
resources as MSaaS in the Cloud by using the MSaaS middleware on-demand.
This middleware provides an Experimental Framework Template for controlling
the lifecycle of experiments. In addition, this layer can easily launch experiment
environment using the services from the Cloud Layer.

(3) Application Layer: It is responsible to develop new applications by using the
MSaaS services that are generated from the MSaaS Middleware Layer. Users can
invoke these services through URIs by XML messages using HT'TP methods.

This architecture supports collaborative development with different kinds of
users:

(1) The Cloud Administrators manage the Cloud compute units and Cloud
Storage Units. They support the management of the underlying infrastructure
for the upper layers.

1641002-10

MES as a service architecture for deploying resources in the Cloud

(2) The M&S Providers are specialists from different fields who can provide
a variety of M&S resources. They use MSaaS middleware to deploy these
resources as MSaaS services.

(3) The Clients are the end users, who can discover the generated MSaa$ services
and use the ones that they are interested in their applications.

The CAMSaaS architecture allows each kind of user to focus on their own task,
and it makes it easy for the users of different layers communicate and collaborate.
At the beginning, it starts with the Cloud Administrator. They configure the
Cloud infrastructure (e.g., adding basic dependencies and configurations of comput-
ing units). They can take advantages of many Cloud services, like the ones provided
by Amazon EC2, Google App Engine, and Microsoft Azure. After that, the M&S
Providers from different domains can deploy their M&S resources as MSaaS in
the Cloud. They can use the MSaaS middleware to develop and manage the var-
ied M&S resources dynamically (e.g., models, simulators, experiments, supported
functions, supported data, Cloud images and instances). The Clients can use these
newly deployed MSaaS following RESTful WS principle to reproduce the experi-
ments. They can discover and invoke services from the generated MSaaS in their
applications, following RESTful WS framework.

In the following sections, we will introduce the design and implementation details
of the lower layers (i.e., the Cloud Layer, the MSaaS Layer and its implementation
CloudRISE, and a case study as application by using MSaaS).

4. Cloud Layer

As discussed earlier, an important issue for deploying M&S resources in the Cloud
is the difficulty in terms of environment configuration. We need to set up the under-
lying infrastructure for the M&S resources. In Sec. 3, we have briefly introduced
the CAMSaaS architecture. The Cloud Layer is the bottom layer of the CAMSaaS
architecture, and it has the goal to deal with scalability by using Cloud Computing.
This layer uses the Cloud as the underlying infrastructure, and it can thus provide
Taa$S services for the upper layers of the CAMSaaS. Physically, all resources will be
stored and all the experiments will be executed in this layer. In this section, we will
discuss details of the design and implementation of this layer.

Figure 4 shows the basic structure of the Cloud Layer. In general, this layer
supports the Cloud infrastructure, and it provides laaS APIs.

As seen in Fig. 4, we consider two kinds of Cloud infrastructures: Compute
Units and Storage Units. The Compute Units are the fundamental infrastructure
for executing experiments (either for simulations or for supported functions), while
the Storage Units store M&S resources (e.g., the models, the experiments, the EFs,
the supported data, and the supported functions). The IaaS APIs (divided in laaS
compute APIs and IaaS storage APIs) are the APIs of the IaaS services for these
Cloud infrastructures. They can manage and access the underlying Cloud infras-
tructures (e.g., launching/releasing new Compute Units, saving/retrieving resources

1641002-11

S. Wang and G. Wainer

| Cloud Layer |

.
(laaS Compute APIs laaS Storage APls \

[computeunit1 | Storage Unit 1
[computeunitn | Storage Unit N

experiment environments M&S resources &
MS-Images

amazon (Go 3Ic) EJ
k WindowsAzure /

Fig. 4. Basic structure of the Cloud Layer. It has Compute Units (computational infrastructure
to run experiments), Storage Units (storage for varied M&S resources) and IaaS APIs (APIs of
the TaaS services for the Cloud infrastructures).

from a Storage Unit). In recent years, many Cloud providers made available TaaS
services (e.g., Amazon Web Service — AWS, Google Compute Engine, or Microsoft
Windows Azure).

The TaaS APIs provide a simplified version of these services, which facilitate the
upper layers of CAMSaaS to access the Cloud. In particular, the MSaaS middleware
in the Component Layer (built for deploying M&S resources) can use these IaaS
APIs to scale up and down the number of the Compute and Storage Units.

For the Compute Units, they have compute power for computing needs. They
can be physically located in a large number of computers, which can be distributed
across data centers. The Compute Units in CAMSaaS contain experiment environ-
ments (runtime environments for the simulations or supported functions), which
can use different environments for different simulators and functions. Each Com-
pute Unit can access assigned experiments from a Storage Unit, and reproduce it
in the corresponding experiment environment. After the experiment finishes, the
Compute Unit saves the experiment’s outputs back to the storage.

For the Storage Units, each M&S resource can be stored in various physical
storage volumes distributed and connected in the Cloud. These Storage Units can be
automatically replicated to protect the data from failure, providing high availability
and accessibility. For instance, we can access any M&S resource stored in a Storage
Unit at any time from any place as long as we have Internet access.

There are numerous laaS services to access the Cloud infrastructure, offered by
different providers on-demand. In order to use them, the users need to choose the
right ones and configure them. For instance, they need to specify the laaS providers,
deal with the credentials, configure the security group, and set up the connection
with the Cloud. In order to simplify this process and to provide the upper layers
an easy way to use these services, we developed the IaaS APIs. These include the
IaaS Compute APIs (to manage the Compute Units) and IaaS Storage APIs (to

1641002-12

MES as a service architecture for deploying resources in the Cloud

manage the Storage Units). More details of the IaaS APIs are discussed later in
this section.

In order to provide a simple and scalable way to launch experiment environments
for M&S resources, we propose the concept of the MS-Image, a copy of Compute
Unit consisting of the MSaaS middleware, the simulators and the environments for
supported functions (Fig. 5). An MS-Image is initially saved in a Storage Unit,
and it can be launched as any number of Compute Units. Different MS-Images
can use different kinds of simulators and function environments. The concept of
MS-Image is related to the Virtual Machine (VM) images in the Cloud. In fact, an
MS-Image is a special version of VM image. A VM image is a virtual server image
that includes an operating system and cloud-related software. For instance, in AWS
there are VM images in different categories, such as operating system (e.g., Linux or
Windows), architecture (e.g., 32-bit or 64-bit) and region (e.g., public or private).
Users can launch Compute Units from a particular VM image. The main difference
between an MS-Image and a VM image is that the MS-Image can also be viewed
as a customized VM in the Cloud. An MS-Image contains not only an operating
system, but also MSaaS middleware, simulators and function environments. An
MS-Image takes advantages of the VM image, and it is built for launching an M&S
environment quickly.

As seen in Fig. 5, an MS-Image consists of:

(1) MSaaS middleware: It uses the IaaS APIs to deploy the varied M&S
resources. It separates the underlying infrastructure and the MSaaS services,
wrapping the simulators and functions provided by users and exposing the
experiment environments for them.

(2) Simulators: The MS-Images configure the simulation environments for dif-
ferent simulators. Different MS-Images can configure different simulators and

Storage Unit 1 J MSdmage N
4 s
Varied M&S resources ,!' Simulator FlfmCtlon t
(models, experiments, EFs, data, ; environmen
functions) i _

4 MSaaS Middleware
MS-Image 1 | “-* | MS-Image N

1™ <_rlaunches

Compute Unit 1

Storage Unit N — Compute Unit 2
transfers -
data

Compute Unit N

Fig. 5. MS-Image with MSaaS middleware, simulator, and function environment.

1641002-13

S. Wang and G. Wainer

allow them to be ready to use by the MSaaS middleware. Users can use the
MSaaS services provided by the MSaaS middleware to find the needed simula-
tor and reproduce experiments on it.

(3) Environments for supported function: MS-Images can hold environments
for different supported functions (e.g., Java, C++, and Python). Users can
deploy their own functions on these environments at run-time, using the MSaaS
services to reproduce experiments.

The MS-Image can scale up/down the experiment environments by launch-
ing/releasing Compute Units. Users do not need to worry about the installation
and configuration of the experiment environments. If they want to reproduce exper-
iments, they can find an MS-Image with the simulator or the function environment
needed, and launch Compute Units with that image. After that, they can use the
MSaaS middleware to reproduce the experiments. For instance, a simulation model
needs to simulate 50 times. We can find an MS-image that contains the needed
simulator, and launch 10 Compute Units of that image. After that, we can execute
five simulations on each Compute Unit. When the simulations complete, we can
release these 10 Compute Units to reduce costs.

In CAMSaas8, the Cloud administrators are responsible to manage the underly-
ing Cloud infrastructures. They can use the IaaS APIs and MS-Images to launch
or release the infrastructure. In addition, they can also use other types of Cloud
services (e.g., PaaS and SaaS) to manage the Cloud infrastructures better. For
instance, the PaaS load balancing service can distribute messages among Compute
Units evenly. An example of SaaS is Amazon Simple Notification Service, which can
send notifications via email when infrastructure health changes. Other CAMSaaS
users (i.e., M&S providers and Clients) do not operate this layer; instead, they use
the MSaaS middleware.

In the current implementation, we developed a prototype of the Cloud Layer
using AWS, a popular Cloud provider that offers IaaS services charged hourly or
monthly. Please note there are also other Cloud providers (like Google Compute
Engine, or Microsoft Windows Azure), the reason we chose AWS as the Cloud
provider is that AWS supports lower level operations compared to other providers;
so one can completely control the underlying infrastructure and build the MSaaS
middleware using AWS. In particular, we used Amazon Elastic Compute Cloud
Instances (Amazon EC2 Instances) for Compute Units, Amazon S3 for Storage
Units, Amazon Machine Images (AMI) for MS-Image, and AWS SDK for IaaS.
Amazon EC2 Instances provide resizable compute capacity in the Cloud. Amazon
S3 is a Cloud storage service. AMI allows launching Amazon EC2 Instances, and
AWS SDK provides TaaS with APIs for many AWS services (e.g., Amazon S3,
Amazon EC2).

We can launch EC2 Instances implementing the Compute Units by specify-
ing their instance type and AMI. Instance types have different combinations of
CPU/GPU, memory, storage, and networking capacities. For example, Amazon

1641002-14

MES as a service architecture for deploying resources in the Cloud

Filter: Runninginstances v Allinstance types v Q b4 1to 2 of 2 Instances

Name Y- D~k Type~ Availability Zone - Instance State - PublicIP -~ Security Groups

@ MSaaS Instancel i-b663c29c t1.micro us-east-1b & running 23233482 RISE
MSaasS Instance 2 i-a064c58a t1.micro us-east-1b @ running 54.167.144.86 RISE

Instance: | i-b663c29c (MSaa$ Instance1) Public DNS: ec2-23-23-34-82.compute-1.amazonaws.com =]

Description Status Checks Monitoring Tags

Instance ID i-b663c29c Public DNS ec2-23-23-34-82 compute-
1.amazonaws.com

Instance state running Public IP 23233482
Instance type tl.micro Elastic IP

Private DNS ip-10-73-212- Availability zone us-east-1b

241 ec2.internal
PrivateIlPs 10.73.212.241 Security groups RISE. view rules
Secondary private IPs - Scheduled events No scheduled events
VPCID - [AMI ID MS-Imagel (ami-edcel38c)]

Fig. 6. Amazon EC2 instances for CAMSaaS. Two instances (MSaa$S Instance 1 and 2) launched
from a same customized AMI (MS-Imagel).

Micro is low-cost, providing a small amount of CPU. In our implementation, the
AMI is customized to implement MS-Images: we launch different EC2 instances
from an AMI according to the actual needs. The customized AMI contains
CloudRISE (the implementation of MSaaS middleware) and supports different
experiment environments for three different versions of CD+4. We can also add
other simulators in the customized AMI. For the function experiments, the current
customized AMI uses Amazon Linux AMI 2013, which covers environments for
most functions (e.g., Java, C++, Python, PHP, and Tomcat). If a function needs a
special environment, we can add on the AMI with additional utilities and services.

The Cloud administrator can use the AWS Management Console to manage
Amazon EC2 instances. Figure 6 shows a screenshot of the current implementation.

We have two instances (shown in the top-left of Fig. 6): MSaaS Instance 1
and 2, each with its own IP. Each instance is launched by the same customized
AMI (MS-Imagel), shown in the bottom-right of Fig. 6, which contains the MSaaS
middleware, two version of CD++ simulators (CD++ and CD++3.0),% and the
basic function environments (supported by AMI Linux 2013).

We use Amazon S3 to store varied M&S resources. Amazon S3 provides laaS
services that can be used to store and retrieve any amount of data, at any
time, from anywhere on the web. We choose Amazon S3 because it is simple
and highly scalable. Amazon S3 can scale up its storage capacity automatically
based on the current needs. It stores resources as objects within buckets (a con-
tainer to hold objects). Amazon S3 can be seen as a Cloud-based file system, in
which each object is uniquely identified by a URL. For example, in a URL like
http://s3.amazonaws.com/MSaaS/Instance/... /ms-imagel.ami, MSaaS is the name
of the bucket and Instance/.../ms-imagel.ami is the key of the object. In the

1641002-15

S. Wang and G. Wainer

Upload Create Folder = Actions v

All Buckets / MSaa$S

Name Storage Class
Experiments o

Instances -

Models -

Simulators -

SupportedData -

rrnrEREmR

SupportedFunction -

Fig. 7. Amazon S3 resource folders for CAMSaaS. They are separated by the categories of the
resources (Models, Simulators, Experiments, Instances, Supported Data and Supported Function).

current implementation, we use one bucket for all the varied M&S resources, named
MSaaS (here we use one bucket since it is easier to manage; but the number of buck-
ets does not matter, we can also separate objects in different buckets). The structure
of the objects in the bucket is hierarchical. The first level of the folders are /Model,
/Simulator, /Experiments, /SupportedData, /SupportedFunctions, and /Instance,
which correspond to the varied M&S resources and the MS-Images respectively.
Figure 7 shows the current resource folders by using the AWS Management Con-
sole. Each folder can have subfolders to storage a given type of resource files.

The Cloud Layer is responsible to provide the TaaS APIs for the MSaaS middle-
ware to access the Cloud. As discussed earlier, these IaaS APIs are built on the IaaS
services, and they expose a simplified APIs (e.g., easy configuration). In the current
implementation, we use AWS SDK as the IaaS services. We implemented TaaS APIs
for the AWS SDK in an easy way. For example, we implemented the IaaS Compute
APIs in a utility class (AWSEC2Instances.java) and the IaaS Storage APIs in a
utility class (AWSS3Storage.java).

The class AWSEC2Instances.java provides TaaS Compute APIs for the MSaaS
middleware to work with AMI and EC2 instances. Table 1 shows some of the APIs.

Table 1. TaaS Compute APIs: AWSEC2Instances.java for Amazon AMI and EC2.

TaaS Compute APIs Description
boolean setUpConnection Sets up a connection
(String accessKey, String secretKey, to the EC2 instances.
string securityGroup)
boolean createImage Creates a customized AMI
(String instanceld, String ImageName) from an existing instance that
is either running or stopped.
boolean runlnstances Launches specified number
(String imageld, Stringinstance Type, int count) of instances using an AMI
boolean terminatelnstances Shuts down one or more instances.

(ArrayList instancelDs)

1641002-16

MES as a service architecture for deploying resources in the Cloud

Table 2. IaaS Storage APIs: AWSS3Storage.java for AmazonS3.

TaaS Storage APIs Descriptions
boolean setUpConnection(String accessKey, Sets up a connection to
String secretKey, string securityGroup) the MSaaS S3 repository.
boolean createResource(String resource Type, Creates a new resource to
String resourceName, File file) the MSaaS S3 repository.
boolean update Resource(String resource Type, Updates an existing resource
String resourceName, File file) in the MSaaS S3 repository.
boolean deleteResource Deletes an existing resource repository.

(String resource Type, String resourceName)
boolean downloadResource(String resource Type, —Downloads a resource from S3.
String resourceName, FileoutputFile)

It supports the functions to set up the configuration with the Cloud (setUpConnec-
tion), to create an existing instance as a customized AMI (createlmage), to launch
new EC2 instances (runlnstances), and to release existing EC2 instances in EC2
(terminatelnstances). For example, when we want to create an instance from a given
image, we can call the function runinstances(String imageld, String instance Type,
int count), which launches the instances with the request of the AMI (imageld),
the instance type (instanceType), and the number of the instances (count).

The class AWSS3Storage.java provides laaS Storage APIs (see Table 2).
It supports the functions to set up the configuration with the Cloud (setUp-
Connection), and to create/update/delete/download (createResource/delete
Resource/deleteResource/downloadResource) the varied M&S resources in S3. For
example, when a new model /evacuation.ma needs to be saved in AmazonS3,
we use createResource(String resource Type, String resourceName, File file), which
creates a new resource with the request of Models (resourceType), model name
(resourceName), and the model file (file). After that, this model is created in Ama-
zon S3 and can be downloaded in https://s3.amazonaws.com/MSaaS/Models/Cell-
DEYVS/Evacuation/evacuation.ma.

Please note that the MS-Image concept in CAMSaaS is similar to the DEVS
VM kernel proposed by Mittal and Risco-Martin.?” It is a DEVS kernel embedded
in a VM that can be executed in local, distributed and real-time environments.
The MS-Image and DEVS VM kernel have some similarities: they provide VM-like
images for simulators and they can be viewed as customized VM for M&S. However,
there are many differences between them, listed in Table 3.

The MS-Image differs from DEVS VM kernel in the following aspects:

(1) The DEVS VM kernel aims to provide a general DEVS simulation environ-
ment while the MS-Image also supports varied functions and middleware in
the Cloud. The MS-Image does not only focus on simulators, while the DEVS
VM kernel is dedicated to DEVS simulator.

(2) The DEVS VM kernel is deployed on an environment that can be local, dis-
tributed or real-time while the MS-Image is designed for the Cloud.

1641002-17

S. Wang and G. Wainer

Table 3. DEVS VM kernel versus MS-Image.

Aspect DEVS VM MS-Image
kernel
Content DEVS simulator Environment for DEV'S simulators,
environment supported function
and Cloud middleware
On-promise deployment Yes Potential
Implemented with Cloud Provider =~ No Yes (AWS)
Simplicity of deployment on Cloud Unknown Single API call by MSaaS middleware
Overall controlled Unknown MSaaS middleware

(3) The DEVS VM kernel provides DEVS simulation protocol and it is originally
designed for WBS. As mentioned in Ref. 13, it has the potential to be used in a
Cloud environment; however, at this time there is no implementation of DEVS
VM in the Cloud. In contrast, MS-image is designed for Cloud deployment and
it is already implemented using AWS.

(4) Since there is no actual implementation, it is unknown how easy to deploy
DEVS VM kernel in the Cloud. For MS-Image, it is simple. MS-Image is highly
available and accessible through AWS S3 Cloud Storage, and we can use Middle-
ware to use only single API call for launching Compute Units. The MS-Image is
self-configured when launching, without user intervention. After launching, MS-
Image automatically deploys simulators and function’s environments, installs
the packages and dependencies needed, sets up the middleware workspace, and
starts the MSaaS middleware service.

(5) The MS-Image is fully controlled by the MSaaS middleware. The MSaaS mid-
dleware only uses RESTful WS to control M&S resources. Each launched Com-
pute Unit has a running MSaaS middleware. The MSaaS middleware acts as
a VM manager, which can manage and control all the M&S resources includ-
ing the Cloud infrastructure (e.g., Compute Units, MS-Images). This kind of
MSaaS middleware is not supported by DEVS VM kernel.

The Cloud Layer focuses on providing laaS services with scalable Cloud infras-
tructure for the CAMSaaS architecture. In the next section, we will discuss the
details of the MSaaS middleware that uses the IaaS services provided by the Cloud
Layer.

5. Implementing an MSaaS: The CloudRISE Middleware

As discussed earlier, the CAMSaaS architecture has three basic issues: simplicity
in terms of environment configuration and the MSaaS middleware deals with the
structure constrains caused by the web service framework (i.e., SOAP WS)
and the variety of resources. In the current implementation, we implemented
the concept of MSaaS in the CloudRISE middleware. CloudRISE is responsi-
ble for deploying varied M&S resources as services in the Cloud, using the IaaS

1641002-18

MES as a service architecture for deploying resources in the Cloud

APIs provided by the Cloud Layer. In this section, we will describe the details of
CloudRISE.

CloudRISE is an extended version of RISE.? Originally, RISE exposes the
simulation functions as RESTful WS. The main objective of RISE is to support
interoperability of distributed simulations. However, RISE has some restrictions.
It was not designed to support the reuse of varied resources in the Cloud. RISE
supports an XML configuration file with specific information for each simulation;
however, this XML file is specific for DEVS models, and it does not provide gen-
eral information for the models context (e.g., initial state, termination conditions,
inputs/output variables, objectives, assumptions, or model constraints). CloudRISE
reuses RISE basic functions (i.e., distributed simulation) and deals with the issues
above. It uses Cloud services to share varied M&S resources and reproduce experi-
ments (for either the simulations or functions), and improves reproducibility, using a
template for Experimental Frames, which cover the context of a model to reproduce
experiments and supported functions.

CloudRISE uses a resource-oriented design based on RESTful WS. M&S
resources are identified through URIs, and they exchange information through
standard XML messages via HTTP methods (GET/PUT/POST/DELETE). As
we saw in the Cloud Layer, all resources are stored in Storage Units (e.g., AWS
S3). CloudRISE works as a repository interface for users to share and manage the
M&S resources. More importantly, each Compute Unit (e.g., EC2 instances) has
an associated MSaaS middleware (i.e., CloudRISE) when it is launched from a MS-
Image. CloudRISE lists all the resources available in the Storage Units and the
environments available for experiments in the Compute Units. For instance, each
URI starts with the endpoint like http://www.amazon-ec2ip.com:8080/msaas/...,
which indicates the public IP and port of an EC2 instance on which a CloudRISE
is running. Figure 8 shows how the varied M&S resources are organized by using
the URI hierarchy.

Fig. 8. The CloudRISE URI hierarchy. It contains six branches for the M&S resources (models,
data, instances, simulations, semantics and functions).

1641002-19

S. Wang and G. Wainer

There are six main branches in this hierarchy: models, data, semantics,
instances, simulations, andfunctions. Each branch has its own hierarchy: models
manages all the models in the Storage Units; data manages the data in the Stor-
age Units; semantics manages a tag tree ontology to help composing resources;
instances manages all available Compute Units; simulations provides environments
of simulations, and functions provides environments of functions. In addition, these
URIs of CloudRISE apply URI templates to deploy hierarchical resources. A URI
template®® uses variables placed between braces “{}”. For instance, approach and
model in the template .../models/{ approach} /{model} can be substituted with any
string (i.e., .../models/devs/queue). Please note that the branches in CloudRISE
are not the same as the ones in the Storage Units (e.g., the AWS S3 in Fig. 7).
The Cloud storage is only for static M&S resources in the Cloud, while the
branches presented here use the services provided by the Cloud Layer and is
able to expose resources as MSaaS services, allowing the users not to interact
directly with the Cloud Layer. Unlike the Storage Units, the branches here also
support the dynamic environments to reproduce experiments of simulations and
functions.

CloudRISE works as repository interfaces for different Storage Units. For
instance, it supports the repository of models for sharing all the models and data for
the supported data. For each branch, CloudRISE maintains a URI template. For
instance, /models contains the list of modeling approaches. ... /models/{ approach}
specifies a particular modeling approach (e.g., DEVS, Modelica, Cell-DEVS),
and .../models/{ approach} /{model} specifies any model that belongs to a given
approach. Users can use HTTP methods to operate the model URIs. For
instance, PUT to provide an XML description for the model; POST to .../mod-
els/{approach} /{model} /files to append model files; DELETE to remove a model,
or GET to retrieve it from the Cloud. These functions use the IaaS APIs provided
by AWSS3Storage.java to connect with the corresponding Cloud storage. Similarly,
for other supported data (e.g., system behavior files, scenario data and documenta-
tion), users can use data to share them (specifying the data type in ...data/{type}
and the data file in .../data/{type} /{data}).

In order to allow users to know better about the M&S resources, CloudRISE
supports description files in XML. Let us explain the Model Description (an XML
description for models) in detail. At present, CloudRISE implements DEVS atomic
or coupled models. Both of them expose input ports and output ports for linking
with other models. The structure of the Model Description looks as in Fig. 9. It
keeps the basic information in <Model>, which includes model name, type (e.g.,
atomic or coupled), a description (a short paragraph to describe this model), and
its location (e.g., the S3 URL). If the model contains input ports and output ports,
it also keeps these < Ports> (<Inputs> or <Qulputs>), including their name, type,
and a description. In addition, it can store the files used for this model in < Files>,
including file name, type and location (the URI in S3). A model can have multi-
ple files; for instance, a DEVS model can have CPP classes, headers, and model

1641002-20

MES as a service architecture for deploying resources in the Cloud

<ModelDescription>
<Model name=“" type="“" description=“" location=""/>
<Inputs>
<Portname="" type=%“" description=“">

</Inputs>
<Outputs>
<Portname="" type=%" description=%"">

</Outputs>
<Files>
<File name=“" type=“" location="“"/>

</Files>
</ModelDescription>

Fig. 9. Structure of the Model Description file: basic information, input and output ports, and
related files.

configuration files. The XML description shown here keeps general information,
which can be customized if specific information is available (e.g., sub-models, cou-
pling information).

The URIs following ... /msaas/instances interface the MS-Images and instances
of the Compute Units. As discussed earlier, an MS-Image is a copy of a Compute
Unit consisting of CloudRISE, the simulators and the environments for supported
functions. The URI ... /instances is used to show the MS-Image available in the Com-
pute Units; .../instances/{image} is used to show the instances that are launched
from a specific image; and .../instances/{image} /{instance} is used to scale up
and down the Cloud Computing units. Users can PUT to this URI to launch a
new instance with the information mentioned in an XML description file (Instance
Description); use GET to get the XML file; and DELETE to release an existing
instance. The structure of the Instance Description file is as follows (see Fig. 10).

The file includes the instance name, ID (the EC2 instance ID in the AWS),
Image (where it is launched from); Instance Type (computing power, different CPU,

<Instance>

<Name>MSaaS Instance 1</Name>
<ID>1i-b663c29c</ID>
<Image>MS-Image 1</Image>
<InstanceType>tl.micro</InstanceType>
<IP>54.145.233.104</1IP>
<Status>running</Statue>

</Instance>

Fig. 10. An example of Instance Description file: instance name, ID, image, instance type and
status.

1641002-21

S. Wang and G. Wainer

memory, storage, networking); IP (the IP of the image); and Status (e.g., running,
stopped, terminated, initializing). This description file can be customized by users.

CloudRISE can improve the reproducibility of experiments by keeping an EF
Template for each kind of experiment (i.e., the EF Template for Simulation for
a simulation model, the EF Template for Function for a supported function).
Each EF Template maintains a URI structure with EF information for users to
reuse and reproduce experiments. The related EF information is specified in a
corresponding XML file. These files are stored in the Storage Units, allowing the
users to configure experiments for the simulation models and supported functions
dynamically, and then control their life cycles.

For experiments with simulation models, .../msaas/simulations uses an URI
structure called EF Template for Simulation (Fig. 11), which provides a hierarchical
structure for the resources involved in an experiment of a simulation model.

This template contains the EF information and the experiments correspond-
ing to it. The URI .../msaas/simulations is used to list all the models that
have simulation experiments. The URI .../msaas/simulations/{ framework} pro-
vides the EF Description, while .../msaas/simulations/{ framework} /{ experiment}
is used to specify actual parameter values for an experiment. The URI .../msaas/
simulations/{ framework} /{ experiment} /execution is used to reproduce the
experiment, .../{experiment}/results to retrieve experiment outputs and .../
{experiment} /debug for debug information.

The EF Template for Simulation, presented in Fig. 12, includes an EF Descrip-
tion for Simulation, which is an XML file to represent the context under which
a system or a model is observed or experimented with Ref. 16. The EF can help
to describe and reproduce the experiments. As shown in the example (Fig. 12), it

[/msaas/simulations } ----- web interface to list all the modeis that have experiments

/ {fram ework} __---- web interface to provide environmental framework for a model

web interface to specify parameter values of an experiment

/{experiment}

/execution |----- web interface to reproduce the experiment

/results | ----- web interface to retrieve experiment results

/debu g - web interface to retrieve debug results

Fig. 11. URI hierarchy of the EF Template for Simulation. RESTful WS interfaces to set up the
framework, specify parameters of each experiment, execute experiment and get simulation results.

1641002-22

MES as a service architecture for deploying resources in the Cloud

<Framework>

<Name>..</Name>

<Model>..</Model>

<Context>
<Description>..</Description>
<Objective>..</Objective>
<Assumption>..</Assumption>
<Constrain>..</Constrain>

</Context>

<Inputs>

<Parameter name=“" type=“" description=“"/>

</Inputs>
<Outputs>
<Parameter name="“"type=“" description="“"/>

</Outputs>
<TerminateTime>..</TerminateTime>
<Environments>

<Environment group="“" instance=“" simulator=“" IP=“" port=%"/>

</Environments>
</Framework>

Fig. 12. Structure of the EF Description for Simulation: framework information, model context,
input and output parameters definition, and environments information.

contains the following information: (1) The framework < Name>. (2) The <Model>
to be simulated (its URI in the CloudRISE). (3) The <Context> of the model,
including a <Description> its <Objective> any <Assumption> made by the
designer, and < Constrains> under which the model was designed to operate. (4)
The <Input> and <Qutput> parameters for the experiment. The input and out-
put parameters in <Parameter> indicate which information it can receive and
produce. Each parameter includes a parameter name, type and a short description.
(5) The < TerminateTime>. (6) The simulation <Environment>: an instance to
specify the Compute Unit (e.g., an EC2 instance), a simulator on that Compute
Unit (e.g., CD++), the IP and Port CloudRISE running on the Compute Unit
(e.g., http: //www.amazon-ec2ip.com:8080), and a group to combine the Compute
Units for running experiments.

A group can have different Compute Units. If a group has only one Compute
Unit, then during the run-time, the Compute Unit runs complete experiments using
the assigned simulator. If a group has more than one Compute Units, then these
Compute Units within a same group run distributed simulation for the model.
In that case, the model is partitioned into different sub-models; each Compute
Unit executes one sub-model. CloudRISE reuses the simulation protocols in RISE
for the distributed simulation, which can transmit messages and synchronizes the
simulation time among Compute Units.?? Users can extend the EF Description for
Simulation for specific purposes.

1641002-23

S. Wang and G. Wainer

Each simulation model can have different EFs with different contexts; and each
EF can have different experiments with different parameter values according to
runtime simulation scenarios. The .../ framework} /{ experiment} is the URI for
specifying actual parameter values of an experiment by using the FEzperiment
Description for Simulation. Users can use PUT to this URI to create the Exper-
iment Description for Simulation; POST to append needed inputs files; GET to
retrieve this description file. As shown in the example below, the Experiment
Description for Simulation contains the following information (see Fig. 13): the
experiment <Name>, a short <Description>, the corresponding EF Description
for Simulation in <EF>, the group number of the environment to run this exper-
iment, input/output parameter values in <Parameter>, and number of runs in
< NumOfRuns>. The values of input/output parameters can be the URIs of the
Storage Units. Users can also upload files as input parameter values at runtime.
Each Compute Unit assigned in the corresponding EF file runs the experiments in
threads (with the number of < NumOfRuns>).

The EF Template for Simulation allows users to reproduce the experiments
and control their lifecycles (Fig. 14). The user can provide the EF Description
for Simulation to its .../msaas/simulations/{framework}, and specify its actual
value for its parameters in ...simulations/{ framework} /{ experiment}. Initially, the
state of this experiment is Init. Users can check the state anytime by using GET
from the URI .../{experiment}/execution. CloudRISE will copy all the existing
files specified in the Experiment Description for Simulation to the workspace of the
experiment; besides, users can also POST inputs for the experiment. After all of
the required inputs are properly handled (from .../data/ or POSTed by the user),
the state is Ready. Then, users can use PUT to .../{ezperiment} /execution, and
CloudRISE will start the simulation and change to Running. During the execution,

<Experiment>
<Name>..</Name>
<Description>..</Description>
<EF>..</EF>
<Environment group=“"/>
<NumOfRuns>..</NumOfRuns>
<Inputs>

<Parameter name=“" value=“"/>

</Inputs>
<Outputs>
<Parameter name=“" value=“"/>

</Outputs>
</Experiment>

Fig. 13. Structure of the Experiment Description for Simulation: EF, run numbers, environment
and input/output parameter values for the experiment.

1641002-24

MES as a service architecture for deploying resources in the Cloud

all the inputs are coped or POSTed

to ...fframework}/{experiment}
completed successfully
PUTto .. {experlment}/executlon ready to GET resuits

. : from .. {expenment}/results
1

[Init]—>[Ready]—>[Running : Flnlshed

DELETE to

...fexperiment}/execution

PUT configuration [Aborted] [Error]

to ../{framework}

error happened, GET debug information
from ...{experiment}/debug

Fig. 14. Lifecycle of the experiment in CloudRISE. Users control a specific experiment among
different lifecycle phases (including Init, Ready, Running, Finished, Aborted, Error).

users can use DELETE to ... /{ framework} /execution to abort the simulation. After
the experiment completes successfully, it turns to Finished and the user can retrieve
output from .../ experiment} /results. If an error happens during its executing, it
changes to the state Error.

Using these MSaaS services users can access and control its lifecycle easily,
which can improve the reproducibility of experiments. If the model and data already
exist, and the simulators are already configured, users only need to provide the EF
Description and the Experiment Description for Simulation (for specifying actual
parameters values of an experiment). Then, they can invoke the MSaaS services to
reproduce the experiment and control its lifecycle as discussed above.

The experiments with the supported functions are shared and managed by func-
tions. The EF Template for Function is similar to the EF Template for Simulation
presented in Fig. 11. For example, .../msaas/functions is used to list all the func-
tions that have experiments. The URI .../msaas/functions/{ framework} provides
the EF Description for a function. The URI ... /function/{ framework} /{ experiment}
is used to provide the Experiment Description for Function, which specifies actual
parameter values of an experiment following its EF. The lifecycle of the supported
function is also similar to the ones for the simulations presented in Fig. 14. There
are two differences. The first one is that instead of the predefined simulators in
the MS-image, users can POST their function programs at runtime by POSTing to
.../msaas/functions/{ framework}. Another difference is that in the EF Description
for Function, the “group” in <FEnvironment> has only one Compute Unit, which
means that each function is run completely in one Compute Unit; in addition, the
<environment> contains a new <Command> to specify about how the function
executes in the environments. In the current implementation, it is the command line
of the function. For example, in results parser function, a command line specified
in < Command> like.../{ Function} { SimulationResults} { ParsedSimulationResults}
means that during the runtime, if the experiments of the function start, then it does
the following:

(1) replace the variables with the parameters values specified in the Experiment
Description for Function;

1641002-25

S. Wang and G. Wainer

(2)

Table 4. Comparison among DEVS/SOA, RISE and CloudRISE.

DEVS/SOA RISE CloudRISE
Domain WBS WBS CBS
Supported Simulator DEVS-based DEVS-based, open DEVS-based, open
to non-DEVS to non-DEVS
Web framework SOAP-based RESTful WS RESTful WS
VM DEVS VM kernel No MS-Image
M&S resources DEVS distributed DEVS distributed Varied M&S
simulation simulation resources (MSaaS)
Experimental-oriented Partial Partial Full

framework

call the command line in the assigned Compute Units to execute the experi-
ments of the function.

As discussed in Sec. 2, many efforts in WBS expose simulation functions as WS,

but at this time, CloudRISE is the first one to deploy DEVS simulation environment
and other M&S resources as services in the Cloud, as discussed in Table 4.

(1)

(2)

6.

The differences are as follows:

DEVS/SOA and RISE are original designed for WBS, providing DEVS-based
simulation protocol and environment through WS; while CloudRISE is designed
for CBS, deploying different M&S resources as MSaaS in the Cloud.

All of them currently provide DEVS simulation, but RISE and CloudRISE also
have the potential to non-DEVS simulators. As discussed in Ref. 57, in order
to add a new simulator, we can upload this simulator to an MS-Image, add
it to a new branch ... /A{simulator} hierarchy in RISE/CloudRISE; then this
MS-Image is ready to be used for the new simulator.

DEVS/SOA provides simulation services as SOA-based WS; while RISE and
CloudRISE provide services as RESTful WS. As discussed before, compared to
RESTful WS, SOAP WS have the issues of structure constrains.

As discussed in Table 3, DEVS/SOA uses DEVS VM kernel to provide a general
DEVS simulation environment; while CloudRISE uses MS-Image. In contrast,
RISE does not have such VM feature.

CloudRISE also support users to deploy varied M&S resources as services, like
model, data, functions, images, instances, and experiment frameworks.
DEVS/SOA and RISE can use XML to configure experimental frameworks par-
tially, while CloudRISE supports full control of experimental frameworks using
XML configuration, such as models context, framework/experiment template
and lifecycle control of experiments.

Case Study: Crowd M&S Using CloudRISE in the Cloud

In this section, we present a complete case study of Crowd M&S using the CAM-
SaaS architecture, based on the CloudRISE middleware. We show how to use

1641002-26

MES as a service architecture for deploying resources in the Cloud

CloudRISE in the Cloud to reuse varied resources and reproduce experiments
involved in the Crowd M&S. We will discuss the implications using a case study
representing a crowd model in a shopping mall with multiple floors.”® In this
model, the crowd tends to move forward, but they can change direction if the way
blocked.5%

Crowd M&S has been used to support the analysis of the behavior of crowds.
It can be used to predict the impact of pedestrian movement and to test design
alternatives.%? Designers can use Crowd M&S to test their designs and find flaws
before the construction has begun. To do this, different kinds of M&S resources are
involved (Fig. 15).

To study the behavior of a crowd in the design of a building, we need basic
information of the building (for instance, the floor plan of a building could be used
as an input for a crowd model simulation). At present, new Building Information
Modeling (BIM) tools are widely used to manage the buildings’ data and improve
the quality of building designs.®! The Industry Foundation Classes (IFC) is a stan-
dard used to represent BIM files. We can extract information from IFC files, and
can use them as inputs for crowd models. In addition, BIM tools can also be used
for 3D visualization, and, in our case, for visualizing crowd simulation results.%?
By doing this, the designers can efficiently view, analyze and refine the design with
different scenarios.

In general, the Crowd M&S process involves the following resources:

(1) The CrowdModel that describes the crowd behavior. In our case, we will use
a Cell-DEVS model.

(2) The supported data of IFC file that contains the building information.

(3) The supported data of Domain Specific Models (DSM) file that contains the
particular information for crowd simulation purposes.

(4) The supported function of BIM Data Collection. It can extract data from
the IFC designs and DSM files. The extracted data can be used as the crowd
model input.

InitialState
IFC Parsed
SimulationResults SinjulationResults \:l
— e B
|-
DSM) —
Visualization Tool

J—

BIM Data Collection Cell-DEVS Simulation Results Parser

Fig. 15. The resources involved in the Crowd M&S: crowd model, IFC and DSM files (supported
data), data collection function, Cell-DEVS simulation, simulation result parser.

1641002-27

S. Wang and G. Wainer

(5) The experiments of BIM Data Collection. They can generate two outputs: the
InitialState file that contains the layout of the building for the crowd model,;
and the ModelVariables that contains important values of the execution of
the crowd model.

(6) The Simulation (in our case, a Cell-DEVS simulation). We can execute crowd
simulations for the given model, with the inputs of InitialState and ModelVari-
ables.

(7) The experiments of the crowd Simulation. They generate the SimulationRe-
sults.

(8) The supported function called ResultsParser, which might need to be used
parse the simulation results so they can be visualized in a 3D Visualization
Tool.

In our case, all these resources are stored in Storage Units in the CloudRISE,
including the resources provided by users (e.g., the crowd model), and the resources
generated during the experiments (e.g., the simulation results). CloudRISE works
as repository interfaces to expose these resources as MSaaS services. Following, we
will briefly discuss how to use CloudRISE to execute the steps above.

In Refs. 58 and 59, we developed a crowd model in Cell-DEVS to study the
crowd behavior during emergency in a multi-floor building. This model has walls,
furniture, exits (on the first floor) and stairs (connecting floors). In the case of
emergencies, people try to evacuate each floor, moving down through the stairs,
and finally leave the building through the exits. The Cell-DEVS model was imple-
mented in CD++ (with file name crowdModel.ma).?> The behavior of each cell
depends on its current state, determined by a set of rules after satisfying a pre-
condition of his neighborhood. The rules of this model can be categorized as fol-
lows: (a) Someone enters a cell; (b) Someone leaves a cell; (¢) Someone moves
from a cell to a stairwell; (d) Someone enters a stairwell; and (e) Someone exits a
stairwell.

We used CloudRISE, and activated the API of .../models to share the
model file. The developer of the crowd model can POST to .../models/cell-
devs/crowd/files while others can GET it from . .. /models/cell-devs/crowd. In addi-
tion, the developer of the model can provide an XML description file for this
model via PUT to ... /models/cell-devs/crowd. The Model Description allows users
to know better about this model. They can obtain this description via GET to
... /models/cell-devs /crowd. The Model Description for this crowd model is shown
in Fig. 16.

As we can see, it contains the model name, its type and description, and its
location in the Storage Unit. Note that in <Model>, the location is the model’s
folder, which contains the files related to this model (specified in < Files>). In our
case, we have a file called crowdModel.ma. Note that the description file shown
here keeps general information, which can be customized if specific information is
available.

1641002-28

MES as a service architecture for deploying resources in the Cloud

<ModelDescription>
<Model name=“CrowdModel” type=“cell-devs” description=“a cell-devs model to
simulate crowd behavior in a multi-floor building” location=
“..s3/MSaaS/Models/Cell-DEVS/crowd” />
<Files>
<File name=“CrowdModelDefinition” type=“MAfile” location="“../crowdMode
l.ma”/>
</Files>
</ModelDescription>

Fig. 16. Model Description file for the crowd model. It specifies the model and related file infor-
mation.

For other resources that are provided by users (e.g., the IFC file, the supported
data of DSM, etc.), users can share them by using CloudRISE in a similar way.
For instance, we can use the IFC files to manage the layout information of the area
under study. Figure 17 shows the IFC file that we are interested to describe using
Autodesk Revit (a BIM tool that can manage IFC files). Similarly, we can share this
IFC file using the CloudRISE API ...data/ifc/buildingMall/files. For the resources
generated during the experiments at runtime, CloudRISE uses the parameter value
of the Experiment Description to obtain/save them in the Storage Units.

As discussed in the previous section, CloudRISE can improve the reproducibility
of experiments by keeping the EF Templates of experiments (for either simulations
or supported functions). Following, we show the EF Templates for crowd simulations

(Open a project. tamily, Revit file, building

| component or TFC file. A% Mode! Test B Railing | 5% By Face =
D tew v I Medelline & Ramp | BJE Shaht By
Project . s
E Podel Carculation Opening Detumn | Room & Area ~ | Work Plane [
open »
] Famity
|:| Operss & Revit taimily,
E; = =a®
Rt ke

Opens any Revt File type.

g Swems b
Buiding G

i omponent
Cpen a bullding companent Aut odesk

Exchange [ADSK) file.
Export 3

FC

Opens an FC e
'@ Publish "

Opt
Sels aptians foi the IFC template and

® 2o
Sm s maphing:

Qo N

Ogtions | | Ext Raevit |

borth i

Soiith L
F il] F - FE G G o . %
Click to select, TAB for siternstes, CTRL adds, SHIFT unselects (5 L B e

Fig. 17. IFC loaded in Autodesk Revit: crowd behavior during emergency in a shopping mall.

1641002-29

S. Wang and G. Wainer

<Framework>
<Name>EF of the crowd model</Name>
<Model>..msaas/model/cell-devs/crowd<Model>
<Context>
<Description>a model to simulate crowd ..</Description>
<Objective>to study crowd behavior during ..</Objective>
<Assumption>the crowds move at a constant speed..</Assumption>
<Constrain>cell sides should less than500x500x10</Constrain>
</Context>
<Inputs>
<Parameter name=“InitialState” type=“VAL file” description=“the initial
state of cells for the crowd model”/>
<Parameter name=“ModelVariables” type=“MACRO file” description=“dimension
variables for the crowd model” />
</Inputs>
<Outputs>
<Parameter name=“SimulationResults” type=“LOG file” description=“log of the
crowd simulation results”/>
</Outputs>
<TerminateTime>30 mins</TerminateTime>
<Environments>
<Environment group=%“1"” simulator=“CD++” instance=“"MSaaS Instance
17IP="54.167.165.82" port="8080"/>
<Environment group=%“2” simulator=“CD++3.0” instance=“MSaaS Instance 2”
IP="54.167.144.86" port="8080"/>
</Environments>
</Framework>

Fig. 18. EF Description for the Crowd Simulations: crowd model location, model context, input
and output parameter definition, and environments information.

(i.e., the Cell-DEVS Simulation component in Fig. 15). CloudRISE uses the URI
... /msaas/simulations/crowdEF to maintain an EF Template for crowd simula-
tions. This template contains an URI structure with EF information for users to
reuse and reproduce experiments. The URI ... /msaas/simulations/crowdEF pro-
vides the EF Description file shown in Fig. 18. Users can PUT and GET the EF
Description via the URI of... /msaas/simulations/crowd EF.

This EF Description contains the following information: (1) The <Name>.
(2) The <Model> to be simulated (its URI in the CloudRISE). (3) The
< Context> of the model, including < Description>, < Objective>, <Assumption>
and < Constrains>. (4) The <Input> parameters (i.e., InitialState and ModelVari-
ables) and < Output> parameters (i.e., SimulationResults) for the experiment. Each
parameter includes a name, type and a short description. These parameters indicate
that the crowd simulation can receive the initial states and the dimension variables
as the inputs of the crowd model, and then it can produce simulation results. (5)
The < TerminateTime>. (6) the simulation <FEnvironments> with two groups of
EC2 instances for reproducing the experiments: one group has an instance with the
CD++ simulator; the other has an instance with the CD++3.0 simulator.

After that, we can use other URIs in the EF Template for reproducing
experiments. In particular, .../msaas/simulations/crowdEF /evacuation is used to

1641002-30

MES as a service architecture for deploying resources in the Cloud

<Experiment>

<Name>Evacuation experiment of a crowd model</name>

<Description>an evacuation experiment of Crowd M&S in a three floors build-
ing </Description>

<EF>../simulation/crowd/evacuation/</EF>

<Environment group="“1"/>

<NumofRuns>5</NumOfRuns>

<Inputs>

<Parameter name="InitialState” value="..s3
/experiments/../initialStatel.val”/>

<Parameter name=“ModelVariables” val-
ue="..s3/experiments/../modelVariables.macro” />
</Inputs>
<Outputs>

<Parameter

name="SimulationResults”value="..s3/experiments/../SimulationResults”/>
</Outputs>
</Experiment>

Fig. 19. Experiment Description for the Crowd Simulations: EF, environment and input/output
parameter values for the crowd experiment.

specify actual parameter values in an Experiment Description for Simulation. The
URI ... /evacuation/execution is used to reproduce the experiment. The URI
... Jevacuation/results is used to retrieve experiment outputs, and .../ evacua-
tion/debug is to get debug information. The Experiment Description for Simulation
is shown in Fig. 19.

The description contains the experiment < Name>, a short < Description>, the
corresponding EF Template URI in <EF>, the group number of the environment
to run this experiment (i.e., it uses CD++ in MSaaS Instance 1), input/output
parameter values in <Parameter>, and number of runs in <NumOfRuns>. The
value of an input parameter is the corresponding URI in a Storage Unit; while the
value of an output parameter is the folder URI in a Storage Unit (during runtime,
this folder will save the results of five runs of this experiment).

CloudRISE allows users to scale up the instances and reproduce the experi-
ments. As discussed in the previous section, users can use ... /msaas/instances to
do this. The users can use PUT to .../instances/MS-Imagel /{instance} to launch
new instances with the image of MS-Imagel, and DELETE to release an existing
instance. Users do not need to worry about details of launching/releasing instances,
since CloudRISE uses TaaS APIs to interact with the underlying Cloud infras-
tructures. After the instances are ready, the users can use the EF Template men-
tioned above to reproduce the experiments and control their lifecycles. They can
modify the instances as < Environment > in the EF Description (Fig. 18), and
PUT — the EF Description to ... /msaas/simulations/crowdEF. After that, they
can modify the actual values of the parameters in the Experiment Description
(Fig. 19), and PUT it to .../msaas/simulations/crowdEF /evacuation. Users can
also POST inputs during runtime. Then, the state of the experiments is Ready.
Users can use PUT to .../msaas/simulations/crowdEF /evacuation/execution, and

1641002-31

S. Wang and G. Wainer

CloudRISE will start the simulation and change to Running. After the experiment
completes successfully, it turns to Finished and the user can retrieve output from
.../msaas/simulations/crowd EF /evacuation/output.

We conducted some tests focused on studying the simplicity of CloudRISE in
terms of its environment configuration. The idea is to show how users can execute
simulations easily using different instances and simulators, so that they can make
decisions on the instance type and simulator for their demands (e.g., cost, time)
quickly. Let us assume that users need to run a number of different simulation
experiments for crowd behavior analysis using the model mentioned. The different
users trying to conduct such analysis do not know which instance type and simulator
they should use (they want to find a right combination to save money). Using
CloudRISE, the users can easily run the experiments under different instance types
and simulators, and find a right combination to use. Figure 20 shows the average
execution time of different simulation experiments launched by CloudRISE. In this
test, the same crowd model was run in three types of instances and each instance
used two different simulators (i.e., there are six different combinations of instance
type and simulator). Each combination run 5 experiments and the average execution
time of these experiments is presented in the figure. The results show that different
combination has different average execution time. Users launched three types of
instances from an MS-image: Micro Instances (low-cost with small amount of CPU
resources), General Purpose Instances (a balance of compute, memory and network
resources), and Compute Optimized Instances (higher CPU cores and memory, but
more expensive). Each instance automatically set up the CloudRISE middleware
with two different simulation environments (CD++ and CD++3.0). Then, the users
simply uploaded EF and Experiment Descriptions as mentioned above, and they
run experiments on each environment.

As we can see from Fig. 20, different combinations of instance type and simulator
result in different average execution time. For instance, for each instance type, the

o

2

o 1500 m Micro

.E instances

L g

5

2

] 1000 W General

% purpose

g instances

& 500

g m Compute

m optimized
instances

CD++ in CloudRISE CD++ 3.0 in CloudRISE

Fig. 20. Performance test of reproducing simulation experiments using CloudRISE. Users can
quickly make decision on right instance type and simulator for their demands (e.g., cost, time).

1641002-32

MES as a service architecture for deploying resources in the Cloud

CD++3.0 always cost less time than CD++ version (CD+4+3.0 has a faster way
to collect simulation results and it does not use message queues as CD++ version
does). In addition, for the experiments on either CD++ or CD++3.0, Compute
Optimized Instances always have shortest execution time (i.e., 467s in CD++ and
124 in CD++3.0). These numbers are about 1/3 of the time required by General
Purpose Instances and 1/5 of the time required by Micro Instances. It implies that
if users highly care the execution time and they can afford some extra cost, they
may choose Compute Optimized Instances; otherwise, if they want to save money
and the performance of CD++4-3.0 in Micro Instances is acceptable, they may choose
Micro Instances in the future.

The supported functions (in our case, BIM Data Collection and Results Parser)
are shared and managed by functions in CloudRISE. The BIM Data Collection
can extract information from IFCBuildingFile and DSMInstance, and generate Ini-
tialState and ModelVariables as the inputs of the crowd model. The EF Template
for BIM Data Collection is in the URI of ... /function/datacollection/ifccollection.
The Results Parser can parse SimulationResults to ParsedSimulationResults (i.e.,
the format that can be used for 3D visualization). The EF Template for the
Results Parser is in the URI ... /function/3dVisualization/parsingExperiment.
As mentioned in previous sections, the EF Templates for these functions are
similar to the EF Template for the crowd simulation. The differences are
that users can POST these function programs during the runtime, and they
can provide a <Command> in the <FEnvironment> of the EF Description.
This Command can specify about how the function executes in the envi-
ronment. For example, the command of BIM Data Collection is java —jar
{Function} -initLayout {InitialState} -initParameters { ModelVariables} -IFCFile
{IFCBuildingFile} -DSMInstance { DSMInstance}; while the command of Results
Parser is ./{ Function} {SimulationResults} {ParsedSimulationResults}. At run-
time, when the experiment starts, CloudRISE will replace the variables with the
actual values specified in the Experiment Description, and then execute the com-
mand line in the assigned instances.

At last, the parsed simulation results can be visualized in a 3D visualization
tool. In Ref. 62, we developed a visualization tool in BIM (i.e., Autodesk 3ds Max).
This tool can load the IFC file of the building and the parsed simulation results,
and animate the crowd movements. Figure 21 shows how results look like: e.g.,
(a) crowd movements in different floors; and (b) crowd movements in a stairwell.
The tool also allows the designer to filter specific floors and focus on individuals
for better tractability and visibility. The demo of this case study can be found at
http:/ /www.youtube. com/watch?v=udidq-PDLck.

In summary, a complete application using CloudRISE is available for study-
ing the behavior of the crowds. CloudRISE can help the users to deploy different
resources involved in the Crowd M&S as MSaaS services (e.g., the crowd model
and the IFC file), and reproduce experiments (e.g., the crowd simulation, the
data collection and the results parsing). More importantly, CloudRISE provides

1641002-33

S. Wang and G. Wainer

(a) Crowds in different floors (b) Crowd moving in stairs

Fig. 21. 3D visualization of parsed results of crowd simulation. (a) Crowd movements in different
floors; (b) crowd movements in a stairwell.

a scalable way to launch the instances to be used as experiment environments in
the Cloud. Users can reuse these services to test different designs of buildings and
determine which one is safest. For instance, they can provide different IFC files
as services, configure different Compute Units in the Cloud, reproduce the experi-
ments, and observe the parsed results in the 3D visualization tool.

7. Conclusion

We introduced a novel architecture, named the CAMSaaS. The CAMSaa$S archi-
tecture is defined with the goal of simplifying the deployment process of varied
M&S resources as services in the Cloud by taking full advantages of the Web. We
presented the concept and implementation of CAMSaaS: the Cloud Layer (which
focuses on the simplicity in terms of environment configuration) and the MSaaS
Layer (which deals with the structure constrains caused by the web service frame-
work and the variety of resources). The Cloud Layer provides laaS services with a
scalable Cloud infrastructure. The MSaaS Layer is a middleware based on RESTful
WS that is able to use IaaS provided by the Cloud Layer and to deliver varied
MSaaS services in the Cloud. We also presented the design and implementation
details of CloudRISE, which extends from RISE and implements the concept of
the MSaaS middleware. We illustrated a complete case study of Crowd M&S as an
application using the CAMSaaS and its CloudRISE.
The proposed architecture has the following advantages:

(1) It provides a hierarchical resource services for varied M&S resources.
CloudRISE uses a resource-oriented design by using RESTful WS. These
resources are decomposed into hierarchical URIs, and they exchange infor-
mation through standard XML messages via HTTP methods (GET/PUT/
POST/DELETE). These RESTful WS take full advantages of the Web. Users
can deploy their resources dynamically (i.e., they can be created and destroyed
at runtime).

1641002-34

(2)

MES as a service architecture for deploying resources in the Cloud

It supports experimental-oriented framework for reproducing experiments
(for either simulations or supported functions). The EF helps users to document
the conditions of models and related experiments (e.g., context, inputs/outputs,
and environment). CloudRISE uses the EF Template to manage the EF infor-
mation and the related experiments. It allows users to reproduce and control
the lifecycle of experiments.

It uses TaaS to provide a scalable infrastructure for M&S resources. The
Cloud Layer develops a simplified TaaS APIs of underlying Cloud infrastructure,
which facilitate supper layers to access the Cloud. CloudRISE uses these TaaS
APIs to save M&S resources in Storage Units and reproduce experiments in
Compute Units. In particular, the MS-Image in the Cloud Layer can scale
up/down environments for experiments by launching/releasing Compute Units.
It uses MSaaS to make everything as a service. CloudRISE is built on top
of the Cloud Layer. It allows users to deploy any resource related to M&S
as service in the Cloud. For instance, its models/data/simulations/functions
branches support Model as a Service, Data as a Service, EF as a Service, and
Function as a Service respectively.

The long-term goal of CAMSaaS is to support semantic mashup in the Cloud,

which allows users to select from the deployed MSaaS and other Web APIs based
on the right semantic and then easily build M&S applications. The integration of
CAMSaaS and semantic mashup in future will advance CBS in terms of deployment,
discovery and invocation of MSaaS.

Acknowledgment

This research has been partially funded by NSERC.

References

1.

Papelis Y., Madhavan P., Modeling human behavior, in Modeling and Simulation
Fundamentals: Theoretical Underpinnings and Practical Domains, John Wiley & Sons,
NY, pp. 14-23, 2010.

D’Angelo G., Parallel and distributed simulation from many cores to the public Cloud,
Int. Conf. High Performance Computing and Simulation, Istanbul, Turkey, 2011.
Byrne J., Heavey C., Byrne P. J., A review of web-based simulation and supporting
tools, Simul. Model. Practice Theory 18(3):253-276, 2010.

Jung W., Kim S. I., Kim H. S.; Ontology modeling for REST Open APIs and web
service mash-up method, 2013 Int. Conf. Information Networking (ICOIN), Phuket,
Thailand, pp. 523-528, 2013.

Onggo S., Taylor S., Tulegenov A., The need for cloud-based simulation from the
perspective of simulation practitioners, Proc. Operational Research Society Simulation
Workshop 2014 (SW14), Worchestershire, UK, pp. 103-112, 2014.

Strassburger S., Schulze T., Fujimoto R., Future trends in distributed simulation
and distributed virtual environments: Results of a peer study, Proc. 2008 Winter
Simulation Conf., Miami, FL, pp. 777-785, 2008.

1641002-35

S. Wang and G. Wainer

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Taylor S. J. E., Fishwick P. A., Fujimoto R., Page E. H., Uhrmacher A. M., Wainer G.,
Panel on grand challenges for modeling and simulation, Proc. 2012 Winter Simulation
Conf., Washington, DC, p. 232, 2012.

Taylor S. J. E., Khan A., Morse K., Tolk A., Yilmaz L., Zander J., Grand challenges
on the theory of modeling and simulation, Proc. Symp. Theory of Modeling and Sim-
ulation, San Diego, CA, p. 34, 2013.

Johnson H. E., Tolk A., Evaluating the applicability of cloud computing enterprises
in support of the next generation of modeling and simulation architectures, Proc.
Military Modeling and Simulation Symp. (MMS ’13), San Diego, CA, p. 4, 2013.
Cayirci E., Configuration schemes for modeling and simulation as a service federation,
Simulation 89(11):1388-1399, 2013.

Cayirci E., Modeling and simulation as a Cloud service: A survey, Proc. 2013 Winter
Simulation Conf., Savannah, GA, pp. 777-785, 2013.

Liu X., He Q., Qiu X., Chen B., Huang K., Cloud-based computer simulation: Towards
planting existing simulation software into the cloud, Simul. Modell. Practice Theory
26(1):135-150, 2012.

Tolk A., Mittal S., A necessary paradigm change to enable composable cloud-based
M&S services, 2014 Winter Simulation Conf., Savannah, GA, pp. 356-366, 2014.
Wagh K., Thool R. A., comparative study of soap vs. rest web services provisioning
techniques for mobile host, J. Inform. Eng. Appl. 2(5):12-16, 2012.

Cheng Q., Huang J., Research on Cloud-based simulation resource management. Proc.
2013 Chinese Intelligent Automation Conf., Yangzhou, China, pp. 569-576, 2013.
Zeigler B. P., Praehofer H., Kim T. G., Theory of Modeling and Simulation: Integrating
Discrete Fvent and Continuous Complex Dynamic Systems, Academic Press, NY,
2000.

Skoogh A., Perera T., Johansson B., Input data management in simulation — Indus-
trial practices and future trends, Simul. Model. Practice Theory 29:181-192, 2012.
Guo S., Bai F., Hu X., Simulation software as a service and service-oriented simula-
tion experiment, 2011 IEEE Int. Conf. Information Reuse and Integration (IRI), Las
Vegas, NV, pp. 113-116, 2011.

Fielding R. T., Architectural styles and the design of network-based software archi-
tectures, Doctoral dissertation, University of California, Oakland, CA, 2000.

Song Y., Xu K., Liu K., Research on web instant messaging using REST web service,
2010 IEEE 2nd Symp. Web Society (SWS), Beijing, China, pp. 497-500, 2010.
Barros F. J., Lehmann A., Liggesmeyer P., Verbraeck A., Zeigler B. P., 04041 abstracts
collection — Component-based modeling and simulation, The Int. Conf. Research
Center (IBFI), Schloss Dagstuhl, Germany, p. 457, 2004.

Robinson S., Nance R. E., Paul R. J.; Pidd M., Taylor S. J., Simulation model reuse:
Definitions, benefits and obstacles, Simul. Model. Practice Theory, 12(7):479-494,
2004.

Wang W., Wang W., Zhu Y., Li Q., Service-oriented simulation framework: An
overview and unifying methodology, Simulation 87(3):221-252, 2010

Fortmann-Roe, S., Insight marker: A general-purpose tool for web-based modeling &
simulation, Simulation Modelling Practice and Theory 47:28-45, 2014.

Smit M., Stroulia E., Simulating service-oriented systems: A survey and the services-
aware simulation framework, 6(4):443-456, 2013.

Bencomo S. D., Control learning: Present and future, Ann. Rev. Control 28(1):115—
136, 2004.

Fortmann-Roe S., Insight Maker: A general-purpose tool for web-based modeling and
simulation, Simul. Model. Practice Theory 47:28-45, 2014.

1641002-36

28.

29.
30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

MES as a service architecture for deploying resources in the Cloud

Kuljis J., Paul R. J., Web-based discrete event simulation models: Current states and
possible futures, Simul. Gaming 34(1):39-53, 2003.

Papazoglou M., Web Services: Principles and Technology, Pearson Prentice Hall, 2007.
Richardson L., Ruby S., RESTful Web Services, O’Reilly Media, USA, 2007.

Tsai W. T., Fan C., Chen Y., Paul R., DDSOS: A dynamic distributed service-
oriented simulation frameworkl, Proc. 39th Annual Symp. Simulation, Washington,
DC, pp. 160-167, 2006.

Brebner P., Service-oriented performance modeling the MULE enterprise service bus
(ESB) loan broker application, Proc. 85th Euromicro Conf. Software Engineering and
Advanced Applications, Patras, Greece, pp. 404-411, 2009.

Madhoun R., Web-services definition of discrete-event simulation services, Master
thesis from Systems and Computer Engineering, Carleton University, 2006.
Madhoun R., Feng B., Wainer G., On the creation of distributed simulation web-
service-based distributed CD++, Proc. Artificial Intelligence, Simulation and Plan-
ning, Buenos Aires, Argentina, pp. 1-6, 2007.

Wainer G., Madhoun R., Al-Zoubi K., Distributed simulation of DEVS and Cell-
DEVS models in CD++ using web-services, J. Simul. Model. Practice Theory
16(9):1266-1292, 2008.

Mittal S., Risco-Martin J. L., Zeigler B. P., DEVSML: Automating DEVS execution
over SOA towards transparent simulators, Proc. 2007 Spring Simulation Multiconfer-
ence, Norfork, VA, pp. 287-295, 2007.

Mittal S., Risco-Martin J. L., Netcentric System of Systems Engineering with DEVS
Unified Process: A Book in System of Systems Engineering, CRC/Taylor & Francis,
2013.

Mugsith M. A., Sarjoughian H. S., A simulator for service-based software system co-
design, Proc. 3rd Int. ICST Conf. Stmulation Tools and Techniques, Malaga, Spain,
p. 54, 2010.

Al-Zoubi K., Wainer G., RISE: A general simulation interoperability middleware con-
tainer, J. Parallel Distrib. Comput. 73(5):580-594, 2013.

Arroqui M., Mateos C., Machado C., Zunino A., RESTful web services improve the
efficiency of data transfer of a whole-farm simulator accessed by android smartphones,
Comput. Electron. Agric. 87:14-18, 2012.

Al-Zoubi K., Wainer, G., Performing distributed simulation with RESTful web ser-
vices. Proc. 2009 Winter Simulation Conf., Austin, TX, pp. 1323-1334, 2009.
Wainer G. A., Al-Zoubi K., Dalle O., Mittal S., Martin J. L. R., Sarjoughian H.,
Zeigler B. P., Standardizing DEVS simulation middleware, in Wainer G., Mosterman
P. (eds.) Discrete-Event Modeling and Simulation: Theory and Applications, Taylor
and Francis, UK, P. 459, 2010.

Mulligan G., Gracanin D., A Comparison of SOAP and REST implementations of
a service based interaction independence middleware framework, Proc. 2009 Win-
ter Simulation Conference (WSC), Austin, TX, pp. 1423-1432, 2009.

Feng X., Shen J., Fan Y., REST: An alternative to RPC for Web services architecture,
in First Int. Conf. Future Information Networks, Beijing, China, 2009.

Siriwardena P., Advanced API Security, Springer Press, NY, 2014.

Fujimoto R. M., Malik A. W., Park A. J., Parallel and distributed simulation in the
cloud, SCS MS Mag. 3:1-10, 2010.

Tsai W. T., Fan C., Chen Y., Paul R., DDSOS: A dynamic distributed service-orinted
simulation framework 1, in Proceedings of the 39th Annual Symposium on Simulation,
Washington, DC, pp. 160-167, 2006.

1641002-37

S. Wang and G. Wainer

48.

49.

50.

51.
52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Sliman L., Charroux B., Stroppa Y., A new collaborative and cloud based simulation
as a service platform: Towards a multidisciplinary research simulation, 15th Int. Conf.
Computer Modelling and Simulation, Cambridge, United Kingdom, pp. 611-616, 2013.
Li B. et al., Networked modeling simulation platform based on concept of
cloud computing — cloud simulation platform, J. Syst. Simul. 21(17):5292-5299,
2009.

Bruneliere H., Cabot J., Jouault F., Combining model-driven engineering and
cloud computing, in Modeling, Design, and Analysis for the Service Cloud —
MDA4ServiceCloud’10: Workshop’s 4th edition, Paris, France, pp. 1-2, 2010.
LannerGroup, http://www.lanner.com/en/l-sim.cfm/, Accessed on Feb. 28, 2016.
CIMdata, http://www.cimdata.com/en, Accessed on Feb. 28, 2016.

Garg S. K., Versteeg S, Buyya R, SMICloud: A framework for comparing and ranking
cloud services, Fourth Int. Conf. Utility and Cloud Computing, Melbourne, Australia,
pp. 210-218, 2011.

Kurkowski S. H., Credible mobile ad hoc network simulation-based studies, Doctoral
Dissertation, Colorado School of Mines, 2006.

Wainer G., Discrete-event Modeling and Simulation: A Practitioner’s Approach,
CRC/Taylor & Francis, UK, 20009.

Gregorio J., Fielding R. T., Hadley M., Nottingham M., Orchard D., RFC6570: URI
template, Internet Engineering Task Force (IETF) Request for Comments, 2012.
Wang S., Wainer, G., A simulation as a service methodology with application for
crowed modeling, simulation and visualization, Simulation: Transactions of the Soci-
ety for Modeling and Simulation 91(1):71-95, 2015.

Wang S., Schyndel M. V., Wainer G., Subashini V., Woodbury R., DEVS-based build-
ing information modeling and simulation for emergency evacuation, Proc. 2012 Winter
Simulation Conf., Berlin, Germany, pp. 1-12, 2012.

Wang S., Wainer G., Goldstein R., Khan A., Solutions for scalability in building
information modeling and simulation-based design, Symp. Simulation for Architecture
and Urban Design, San Diego, CA, p. 7, 2013.

Hoogendoorn S. P., Bovy, P. H. L., Pedestrian route-choice and activity scheduling
theory and models, Transport. Research Part B: Method. 38(2):169-190, 2004.

Ham N. H., Min K. M., Kim J. H., Lee Y. S., Kim J. J., A study on application of
BIM to pre-design in construction project, 3rd Int. Conf. Convergence and Hybrid
Information Technology, Busan, Korea, pp. 42-49, 2008.

Freire V., Wang S., Wainer G., Visualization in 3ds max for cell-DEVS models based
on moving entities, Symp. Sitmulation for Architecture and Urban Design, San Diego,
CA, p. 9, 2013.

1641002-38

