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ABSTRACT 

Real-time simulation of dense crowds is finding increased 

use in event planning, congestion prediction, and threat 

assessment. Existing particle-based methods assume and aim 

for collision-free trajectories. That is an ideal -yet not overly 

realistic- expectation, as near-collisions increase in dense 

and rushed settings compared to typically sparse pedestrian 

scenarios. This paper presents a method that evaluates the 

immediate personal space area surrounding each entity to 

inform its pathing decisions. While personal spaces have 

traditionally been modeled as having fixed radii, they 

actually often change in response to the surrounding context. 

For instance, in cases of congestion, entities tend to share 

more of their personal space than they normally would, 

simply out of necessity (e.g. leaving a concert or boarding a 

train). Likewise, entities travelling at higher speeds (e.g. 

strolling, running) tend to expect a larger area ahead of them 

to be their personal space. We illustrate how our agent-based 

method for local dynamics can reproduce several key 

emergent dense crowd phenomena; and how it can be 

efficiently computed on consumer-grade graphics (GPU) 

hardware, achieving interactive frame rates for simulating 

thousands of crowd entities in the scene.  
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1 INTRODUCTION 

Dense crowd simulation is an area of research concerned 

with assessing and predicting the motion of large groups of 

people within a limited physical space. The applications 

range from use in gaming and film production, to designing 

public spaces and assessing quality of occupancy, to the 

safety-critical analysis of the potential for stampedes and 

crowd crushes. 

If you ask two people to walk the same path, they will display 

deviations from each other. Ask the same person to walk the 

same path twice, and you would still get deviations from one 

walk to another. Human motion is seemingly non-

deterministic, and hence, pedestrian simulation will always 

be an exercise in abstraction. 

When simulating high-density pedestrian traffic, congestion, 

or a mass gathering event (e.g. at a concert), macroscopic 

methods that rely on aggregate parameters (bringing a sense 

of determinism through bounded stochasticity) can be very 

effective when analyzing collective motion results, such as 

rate of egress and density distribution over an area. Because 

they do not rely on simulating individual entities, those 

methods are often efficient enough to accommodate large-

scale simulations of thousands of entities. By contrast, 

microscopic methods can reproduce the intricate details of 

every individual’s trajectory, at an increased computational 

cost. However, as computing hardware continues to evolve 

to provide performance gains through parallelism and 

portability through power efficiency, microscopic simulation 

is becoming increasingly accessible to designers, architects, 

and event planners, allowing them to readily assess the risks 

and focus stakeholder efforts around potential congestion 

issues. 

 
Figure 1. Organically formed lanes in dense bidirectional flow; 

2000 entities simulated at 130fps on a consumer-grade desktop.  

Here, we present a contribution to the development of micro-

scopic methods catered to dense crowd phenomenon (e.g. 

Figure 1). The relevant background is discussed in sections 

2 and 3. Section 4 outlines our contributions and section 5 

illustrates our method’s results and real-time performance. 

Finally, the discussion in section 6 reflects on the method’s 

limitations, and hosts opportunities for further discussion and 

future work. 

2 BACKGROUND 

Like other physically-based phenomena that exhibit complex 

interactions between entities over time, crowd motion could 

only be practically simulated using numerical methods rather 

than analytical solutions. There are different granularities of 

motion abstraction depending on the target use case.  
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Historically, the earliest methods were macroscopic in 

nature, simulating aggregate behavioural parameters, rather 

than actual individual trajectories in the scene. They were 

based on adapting existing fluid simulation models to 

incorporate aggregate human motion parameters. They were 

typically computed over an Eulerian grid [20, 25] to provide 

computational stability and high performance. This 

granularity of simulation was sufficient to assess and validate 

collective motion parameters such as egress rate and density 

distribution over a given scene layout. 

Network optimization techniques were also adapted to 

simulate occupant movement within a predefined multi-

compartment environment [15]. Each compartment is treated 

as a graph node that might represent a section within a room, 

a hallway, or even an entire building. The edges connecting 

those nodes would represent the capacity of pedestrians 

moving between one node to another. By utilizing classic 

optimization techniques such as finding the shortest path or 

detecting the max flow, designers could focus their efforts on 

areas of potential pedestrian bottlenecks better. 

To this day, macroscopic crowd methods remain popular in 

engineering and design applications due to their 

computational efficiency and the ability to provide a great 

deal of insight into aggregate crowd dynamics, especially for 

large-scale projects which involve high crowd counts [6, 13].  

With ever-increasing hardware capabilities and improved 

modeling methodology, the ability to simulate individual 

entity-to-entity interactions became possible. Unlike 

macroscopic methods, microscopic methods simulate 

entities as individual agents with localized rulesets whose 

emergent behaviour matches that of the aggregate results of 

macroscopic methods (and more importantly, reality). In 

microscopic methods, local-neighbourhood interaction rules 

can have significant effects on the emergent global 

behaviour. 

Some of the earliest examples of this modeling philosophy 

include Cellular Automata (CA) and the closely related 

Lattice Boltzmann (LBM) models [1]. In CA methods, the 

space is typically divided into a uniform grid, where every 

cell can either be available, have an entity, or represent an 

obstacle. Every cell’s future state is then determined based 

on the states of the cells in its local neighbourhood. CA 

crowd models were rapidly developed and adopted, thanks 

to their parallel-friendly processing and native visualization 

(every cell is both the computational unit and the visual 

representation). Nevertheless, this grid-based Eulerian 

evaluation with discretized stepping and finite directions of 

motion does not faithfully reflect the fluidity of human 

motion trajectories. 

Lagrangian methods, typically implemented in the form of 

free-moving particles, perform their computations in-place, 

avoiding the fixed-grid problem of Eulerian evaluation. 

Successful efforts in this area were introduced by Reynold’s 

particle swarm model [21] and Helbing’s social forces crowd 

model [10]. Examples of later variations include HiDAC, 

which incorporates psychological profiles and pushing 

behaviour [18]; and physical models, which incorporate the 

simulation of individual locomotive limbs to generate each 

entity’s motion [2]. 

A fundamental element of Lagrangian-based methods is 

neighbourhood detection, the process of identifying each 

entity’s neighbours. This is the primary cost differential 

when compared to Eulerian evaluation where neighborhoods 

are typically predefined and directly accessible. Certain data 

structures can be used to accelerate the neighbourhood 

search through recursive subdivision (e.g. Octrees). Other 

structures include the Voronoi diagram, which can be used 

to limit the search area and accelerate neighbourhood 

detection using GPUs [4, 22]. Beyond identifying 

neighbours, centroidal particle dynamics can also utilize 

Voronoi diagrams to compute each entity’s response to 

violations of its personal space [11]. 

Human motion has been empirically shown to be 

anticipatory in nature [19]. People continually scan their 

environment for potential collision events and enact local 

maneuvers to avoid those predicted events. Agent-based 

models built on this principle include Reciprocal Velocity 

Obstacle (RVO) [5], and a velocity-space optimization 

model (ORCA) [27].  

Other efforts try to mimic the human vision-to-motion 

feedback cycle, by rendering a 1D [16] or 2D [17] depth map 

from each entity’s perspective, and emulating how humans 

change their trajectory based on that information alone. 

Vision-based approaches are unique in their realistic 

depiction of data encapsulation. That is, they realistically 

model how an entity does not have direct access to its 

neighbors’ state variables; it can only interpret what it can 

glean from the depth information in its own perspective. 

Alas, the computational and memory costs of representing 

each entity’s viewpoint can become prohibitive for large-

scale simulation. 

This paper adopts the centroidal particles approach in [24, 

11] for their realistic depiction of personal space 

compression in congested settings. The following section 

briefly describes their basic approach, then outlines our 

contributions, which add anticipatory collision avoidance, 

and offloads more CPU workload to the graphics card (GPU) 

for increased performance and higher frame rates. 

3 CENTROIDAL PARTICLE DYNAMICS 

Centroidal particle dynamics (CPD) for crowd simulation 

assume that every entity knows its global trajectory or vector 

[24, 11]. That is, barring any other dynamic entities in the 

scene, following the global path will lead each entity to its 

target location in optimal time. Global pathing algorithms, 

such as A*, are typically used for such broad scale pathing 

and already take into account the large-scale static elements 

of the scene (e.g. walls, doorways, obstacles, etc.). CPD 

methods then enact local rules to attempt to maneuver around 



the surrounding dynamic entities in the scene, with the least 

deviation possible from the ideal global path.  

3.1 Personal Space 

The basis for CPD crowds lies in explicitly modeling and 

evaluating every entity’s personal space (PS). Studies in 

France and North America have shown that the average adult 

PS is ~0.8m evenly around the center of the entity when 

idling, and ~0.5m when in motion [19, 29]. These numbers 

vary slightly across cultures [30], and CPD methods can 

adapt to PS compression around barriers to motion in moving 

crowds, or points of interest in static crowds (e.g. closer to 

the stage at a concert) [11]. When two entities approach each 

other, they equally share (or violate) each other’s personal 

space. CPD methods model local dynamics by having each 

entity attempt to be at the virtual center of mass (or centroid) 

of the unviolated portion of its PS, attempting to restore its 

preferred PS area over time. 

The Centroidal crowds in [11] model this attempt in the form 

of a linear force in the direction of the centroid (Figure 2). 

The personal space definition of shared space can be 

geometrically represented by constrained centroidal Voronoi 

tessellation [24]. This tessellation does not need to happen 

pair-wise; it can be computed over the entire domain of 

simulated entities (including obstacles), accounting for the 

aggregate infringement of each entity’s personal space. This 

global tessellation is called the Personal Space Map (PSM). 

 

 

Figure 2. The net force (f) experienced by an entity is a linear 

combination of the global pathing force (g), and the penalty force 

(p) which falls along the direction of the new centroid [11]. 

3.2 Personal Space Map 

The global PSM is used to tessellate the space and accelerate 

the nearest neighbours search [22] by precisely placing and 

orienting a short-range ray-marching probe in the most 

optimal position for neighbor detection, without requiring an 

exhaustive radial search. By contrast, the PSM, illustrated in 

Figure 3, is used in [11] to avoid the need for any nearest 

neighbor search explicitly. It does so by relying on the CPD 

equivalent of data encapsulation: in dense congested 

scenarios, every entity’s local dynamics are informed only 

by the information within its expected personal space. 

Hence, regardless of who the entity neighbours are or what 

obstacle caused the reduction in personal space, every entity 

will enact the proper local dynamics by only evaluating its 

expected PS. This high locality also translates to data-

parallelism, which could be exploited for acceleration onto a 

GPU. CPD methods also allow for the modification of the PS 

base shape (called PS footprint in [11]). The modifications 

include changing the size to accommodate a variety of 

different entity profiles; reducing the relative Voronoi 

influence of PS to indicate a more vulnerable pedestrian (e.g. 

child); and applying an influence map to completely 

customize how the centroid is calculated (the map is 

convolved with the integral of the PS area).  

   

Figure 3. A small section of a larger crowd. Right: the crowd’s 

PSM shown as an underlay. PS colors simply encode entity IDs. 

We take advantage of this flexibility by proposing our own 

modifications and contributions to the CPD base PS shapes, 

and present an implementation that utilizes the GPU compute 

capabilities of consumer devices (desktop and mobile alike).  

4 CONTEXT-SENSITIVE PERSONAL SPACES 

This section outlines our contributions to the CPD model, 

towards more realistic simulation of dense multi-directional 

flow. 

4.1 Asymmetric PS Weighting 

Currently, CPD methods use a PS shape that is evenly 

weighted around the entity, based on the empirical studies in 

[19] that demonstrate this fact. However, when an entity has 

its personal space infringed upon outside of its vision, the 

entity would unrealistically sense this infringement and react 

as if it had eyes in its back, so to speak. 

Our first modification is the use of a multi-area kernel 

(shown in Figure 4) that splits the shape into two key areas: 

i) PS area that affects both the entity and its neighbours; and 

ii) PS area that only affects surrounding neighbours. This 

asymmetrical shape is an intuitive change that brings about 

some implications: 

• The net separation between entities in motion remains at 

the ideal ~1m (twice the 0.5m PS radius). The only 

difference here is that instead of equally sharing the 

responsibility, the entity with visibility will now shoulder 

most of the responsibility and corrective efforts to 

maintain that distance. This is analogous to a driver 

maintaining a safe distance from the vehicles ahead (there 

might be some collaboration, but it is mostly that driver’s 

responsibility). 

• Because a single entity (the one in the back) is maintaining 

most of the separation distance, the severity of PS 

compression around areas of congestion is reduced. 



  

Figure 4. Proposed PS shape: light area affects the entity and its 

neighbours; dark area only affects neighbors. Lengthening of PS 

kernel is towards direction of motion as demonstrated. 

Additionally, the suggested extension of personal space 

proportional to the entity velocity was implemented, where 

the personal space extends by ~0.4m per m/s. This extension 

is slight for walking speeds (~1.4m/s), but quite noticeable at 

running or cycling speeds (> 3m/s). Figure 4 illustrates the 

multipart modification also in relation to speed, to account 

for the narrowing focus of speeding entities. This is how 

collision anticipation was incorporated into the simulation. 

4.2 Resistance to Non-Optimal Bearings 

In the linear combination of forces illustrated in Figure 2, we 

added a resistance element to centroidal forces opposing the 

optimal global path/objective. This was inspired by the 

energy-minimization goals set in ORCA [27], and it has 

reduced the “springiness” of near-miss collisions in 

pedestrian crossings significantly (especially in bidirectional 

flow). Therefore, even if the centroid is pointing the entity to 

face away from the goal -because that is what is locally 

optimal- the entity will resist this change and instead attempt 

to wait until more favourable centroidal forces are available.  

4.3 Hardware Acceleration via GPU Shaders 

Previous CPD methods implemented the PSM using a 

constrained Voronoi diagram over a discretized surface. The 

idea was to render every entity PS as a 3D cone viewed from 

the top [12], and the visible pixels after any intersection will 

represent the remaining available personal space. This 

utilization of the graphics pipeline allowed Voronoi-based 

proximity detection [4] and CPD methods such as [11] to 

achieve interactive frame rates for thousands of 2D entities 

in the scene. 

In our attempt to accelerate the CPD’s PSM computation, the 

CPU was initially found to be the primary bottleneck, due to 

the repeated rendering calls made for each entity cone. Each 

render call came with graphics API overhead and CPU-to-

GPU memory transfer costs.  

Modern graphics APIs have features that allow instanced 

rendering. The CPU would send the shape information only 

once, along with a point cloud of instance locations. Then, 

the GPU would perform the replication on-chip without 

needing to communicate again with the CPU over the 

relatively slow system bus. Unfortunately, this feature could 

not be naively used for PSM computation because of the 

dynamic PS shapes, especially with our introduction of 

velocity-dependent extensions (Figure 4).  

With nothing to “instance”, we opted instead to develop 

Geometry Shaders that dynamically generate the PS shapes 

on the GPU. Geometry Shaders are part of the modern 

graphics processing pipeline that can programmatically 

generate new meshes and geometry that the CPU did not 

initially send. Our geometry shaders accept a point cloud of 

entity positions along with an array of entity attributes (e.g. 

current velocity, bearing, comfort speed, etc.) and lets the 

GPU generate the appropriate voronoidal PS shapes per 

entity. This reduction in CPU render calls has improved the 

simulation framerate, as will be shown in Section 5 

Furthermore, in order to compute each entity’s new centroid 

position, we opted for a vertex shader (run once per entity, in 

parallel) that computes the available PS space (and the 

violated space, by omission) by sampling the previously 

created PSM (which was input into the vertex shader as a 

texture). This further resulted in performance gains that 

improved scalability and significantly reduced the 

bottlenecks at higher crowd counts (10,000+ entities in the 

scene). 

Sample source code and GLSL shaders are available at 

http://cell-devs.sce.carleton.ca/publications/ . 

5 RESULTS 

This section demonstrates how our proposed agent-based 

method can reproduce several emergent crowd phenomena. 

Figure 5 illustrates the top view of our simulation of 

bidirectional flow of a dense crowd (1000 entities) in a 

corridor. The resulting interlocking pattern is born out of 

each entity’s desire to take the path of least resistance; and in 

bidirectional scenarios, this simply comes down to avoiding 

oncoming traffic. As entities traveling in the same direction 

leave an empty space behind them, the centroid of similarly 

oriented entities become attracted to fill the void. Hence the 

appearance of chains or lanes amidst the crowd.  

 

Figure 5. The emergent lane formation produced by our method in 

a dense bidirectional flow scenario with visually similar 

forking/joining patterns to those observed in reality (bottom right 

shows a still frame of real footage [28] of bidirectional flow in a 

corridor). The entities in both our simulation and the real footage 

are color-coded to indicate direction of motion.



 

Figure 6. Artificial scenario used for performance testing: blue entities heading north; red entities heading south. 

 

5.1 Simulation Setup 

All simulations were run with discrete-time integration, 

using a quantum of 100ms per frame. Each pixel length 

represented 10cm of physical space.  

The entity PS base radii were kept at 7 pixels (plus 1 

centroidal) to achieve the ~0.8m PS idle radius. The shaders 

described in Section 4.3 were implemented using OpenGL 

Shading Language (GLSL). Parameters were randomized 

across the crowd, including the PS radius, comfort speed, and 

centroidal effect (which alters how aggressive/lenient an 

entity is about restoring its personal space).  

Children were given the same PS radius as adults, but 

rendered with weaker Voronoi cones (i.e. further away from 

the PSM top view camera) to reflect the increased the chance 

of being overpowered by adult personal spaces, or being 

swept away by strong crowd flow in dense settings.  

5.2 Performance 

Our testbed consisted of three representative consumer-grade 

devices with various CPU-GPU configurations: 

• Mid-range Desktop: Intel Core i5+ Nvidia GTX1060 GPU 

• Laptop: Intel Core i5 (with integrated HD Graphics 4000) 

• Mobile: Nexus 6P + Qualcomm Adreno 430 GPU 

Table 1 summarizes the average framerate of simulating 

bidirectional flow over a 600x900 PSM (effectively, a 60m 

corridor) while varying the number of pedestrians in the 

scene (Figure 6). The performance gain from implementing 

our GPU shaders is noticeable, at ~2.6x throughout. While 

the Android device was capable of simulating higher crowd 

counts, it was no longer at interactive framerates (< 1fps). 

 

Non-Instanced Rendering  

+ 2D Sprites 

With GPU Shaders  

+ 3D Sprites 

#Entities 
Desktop 

GTX1060 

Laptop 

Corei5 

Nexus 6P 

(Android) 

Desktop 

GTX1060 
Gains 

100 160 105 30 450 2.8x 

250 125 87 23 338 2.7x 

500 90 62 18 266 3.0x 

1,000 58 41 13 134 2.3x 

1,500 44 31 10 121 2.8x 

2,000 33 26 7 89 2.7x 

5,000 16.5 12 3 47 2.8x 

10,000 10.7 7 - 25 2.3x 

15,000 7.6 4.5 - 20 2.6x 

20,000 6.2 3 - 14 2.3x 

Table 1. Simulation performance in frames per second. 

Currently, the simulation performance shows a dependence 

on the simulation range area. For instance, the 2000 entities 

in Figure 1 are in a 50x80m corridor (500x800 PSM pixels), 

which naturally results in faster PSM rendering than the 

larger PSM area in the Figure 6/Table 1 benchmark. The 

granularity of PSM pixels can be adjusted to reach 

performance targets, at the cost of reduced PS fidelity.  

Ideally, the simulation performance would be dependent 

only on the crowd count. We believe the current overhead of 

essentially simulating empty spaces can be overcome (or 

hidden) by utilizing multi-threaded CPU rendering calls, as 

will be possible in upcoming graphics API standards, such as 

Vulkan [31], the direct successor of OpenGL. 

Given the 100ms time quantum, every 10 frames represent 1 

second of simulation time. Hence, our algorithm produces 

faster-than-real-time simulation results for up to 20,000 

entities in the scene, and maintains interactive framerates for 

even higher counts. Performance can be further increased on 

machines equipped with workstation-grade GPUs. 

1 2 

4 5 

3 

6 



5.3 Visualization 

The shader computation allowed room for real-time 3D 

sprite rendering. Our simulation can be visualized using 

existing methods, which generate smoothly rigged and GPU-

animated characters [22] at interactive frame rates. For 

demonstration purposes, we opted instead to create low-cost 

rigidly-rigged multi-part characters primarily composed of 

simple primitives, and procedurally animated walk cycles. 

Animating these composites is only a matter of adjusting a 

handful of transform matrices (position, orientation, scale, 

etc.) per entity, rather than fully animating each vertex 

through smoothed skeletal rigging. The resulting 3D sprites 

are sufficient for rapid prototyping and iteration, consuming 

on average 15-30% of each frame time. The results presented 

in Table 1 include this 3D visualization stage. 

 

Figure 7. Crowds attempting to pass through a narrow gateway 

typically begin to arch around that bottleneck. 
 

The PSM can be directly shown as an underlay to visualize 

the personal spaces used for centroidal force calculations. 

They can also be used for quick local density visualization 

by measuring the ratio of the violated area to the ideal PS 

footprint. Figure 7 illustrates a common emergent crowd 

phenomenon (arching around pathway bottlenecks), with 

noticeable compression of personal space near the exit. 

This effect aligns with observed PS compression in both 

moving and static crowds (Figure 8). In addition to arching, 

densely packed crowds tend to display petal-like formations 

(as each entity attempts to be situated behind the midpoint of 

two entities ahead). This increases the entity’s visibility of 

the point of interest (or global path destination), and results 

in more compact space-filling.  

 

 

Figure 8. Arching, gradual PS compression, and petal-like 

formations observed in crowds during egress [28] (top) and while 

stationary at a concert (bottom). These effects agree with our 

simulation results. 

More experiments, videos, and results can be viewed on the 

project page at: http://cell-devs.sce.carleton.ca/publications/.  

6 LIMITATIONS AND OPPORTUNITIES 

Implementation Platform 

Our implementation and visualization so far were built on the 

Java-based Processing framework. Processing is good for 

rapid prototyping of graphical applications, providing an 

accessible and cross-platform set of tools for window, file, 



and UI management, while simultaneously providing access 

to low-level OpenGL calls. Also, being Java-based meant 

that it could be ported directly to Android’s platform. Since 

most of the work is done by GPU shaders, there would not 

have been much to gain from attempting to use Android’s 

native C++ (NDK) environment. 

Although Processing is great for prototyping, it might not be 

the ideal deployment solution. Our method can be made into 

a plugin for middle-ware engines, depending on the context. 

For instance, in the film and gaming industry, a worthwhile 

effort would be to port this to the Fabric Engine [8], which 

can be run in standalone mode or be made to communicate 

directly with the scene graphs of major 3D animation 

packages (e.g. Autodesk Maya and 3ds Max) without 

rewriting the code for each target platform. The potential 

overhead when adopting middleware, however, is always an 

issue that requires careful evaluation. 

Heterogeneous and Multi-layered Crowds 

The centroidal force indicates a locally preferred bearing and 

direction of motion for the entity to restore its personal space. 

However, acting on that centroidal “suggestion” is left up to 

the entity and its constraints. Human motion is quite flexible 

with the ability to turn in-place if needed. To extend the 

simulation to heterogeneous entities sharing the same space, 

we can still compute the centroidal forces as we did with 

humans, but the mechanics of following that centroidal 

“suggestion” might differ (e.g. for strollers, shopping carts, 

and vehicles).  

Those other entities will consume the same rules about 

personal space, but execute those maneuvers under their own 

physical constraints (e.g. shopping carts might have a turning 

radius compared to a human’s ability to turn on the spot). To 

complement this effort, other methods for computing the 

Voronoi PSM must be tested, since the scene might include 

lengthy entities whose centroid is no longer a concentric 

point, but a spine segment. In this case, the jump flooding 

technique might be a good alternative to Voronoi cones [23]. 

Another feasible improvement on CPD involves separating 

gaze from body orientation for situations when, for example, 

an entity is crossing the road or paying attention to a loud 

event or scream. The gaze could be computed in its own PSM 

layer, and it would become another parameter in the context-

sensitive personal space adjustments. 
 

Flocking 

By design, CPD methods don’t produce grouping or flocking 

behaviour as they focus on dynamics within a personal space. 

The entities are assumed to be individualistic with their own 

target destination in mind. This was intentional, to study the 

effects of centroidal forces in isolation. 

By manipulating the global pathing vectors being input into 

CPD methods, it would be possible to augment (or be 

augmented by) behaviours such as the ones studied in 

SAFEgress [3], to account for each entity’s familiarity with 

the environment, social attitudes, and herd dynamics (leader-

follower, social order, etc.). This concept also extends to 

simulating families and friends trying to stay together when 

at a large gathering or outdoors event. 

Validation 

Civil safety and threat assessment applications stand to 

benefit the most from dense-crowd research. Although our 

method uses empirically-driven parameters to produce 

visually convincing aggregate behaviour, it cannot yet be 

reliably used for safety-critical applications. That would 

require further validation against in-lab scenarios [28] and 

statistical analysis. There are global statistical properties that 

can be checked (e.g. governing distributions [14]) and local 

similarity indices for targeted analysis of smaller areas of 

interest (e.g. [9]). We echo our earlier assertion that 

regardless of which method is used, crowd simulation is 

essentially an exercise in abstraction with no “ground truth” 

to converge on, yet the increase in accuracy is a worthwhile 

pursuit, considering the potential applications. A particularly 

challenging and motivating use case is the prevention of 

crowd stampedes and crushes. Simulation then becomes an 

important tool for preplanning barriers and other crowd 

control measures to prevent such awful disasters in what are 

otherwise peaceful gatherings [7, 26]. 

7 CONCLUSION 

We presented an improvement to the centroidal particle 

dynamics (CPD) model that addresses several subtle 

problems in dense crowd simulation. The contributions 

include a context-aware personal space kernel that adjusts to 

the bearing of the entity, its velocity, and destination 

heading, resulting in a more realistic response to personal 

space violations and collision anticipation.  

The presented implementation aides in scaling the algorithm 

by utilizing geometry and vertex shaders to offload the 

computationally demanding personal space map (PSM) and 

centroidal calculations onto graphics hardware (GPU). This 

allows for the animation of 5000+ 3D entities at interactive 

framerates on consumer-grade hardware.  

The agent-based simulation produces several visually 

convincing emergent results for crowd crossings, dense 

bidirectional flow, and arching near hallway bottlenecks.  
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