
Context-sensitive Personal Space for
Dense Crowd Simulation

Omar Hesham and Gabriel Wainer

Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada

omar.hesham@carleton.ca, gwainer@sce.carleton.ca

ABSTRACT

Real-time simulation of dense crowds is finding increased

use in event planning, congestion prediction, and threat

assessment. Existing particle-based methods assume and aim

for collision-free trajectories. That is an ideal -yet not overly

realistic- expectation, as near-collisions increase in dense

and rushed settings compared to typically sparse pedestrian

scenarios. This paper presents a method that evaluates the

immediate personal space area surrounding each entity to

inform its pathing decisions. While personal spaces have

traditionally been modeled as having fixed radii, they

actually often change in response to the surrounding context.

For instance, in cases of congestion, entities tend to share

more of their personal space than they normally would,

simply out of necessity (e.g. leaving a concert or boarding a

train). Likewise, entities travelling at higher speeds (e.g.

strolling, running) tend to expect a larger area ahead of them

to be their personal space. We illustrate how our agent-based

method for local dynamics can reproduce several key

emergent dense crowd phenomena; and how it can be

efficiently computed on consumer-grade graphics (GPU)

hardware, achieving interactive frame rates for simulating

thousands of crowd entities in the scene.

Author Keywords

Crowd animation; Personal space; GPGPU; Interactive.

ACM Classification Keywords

I.6.5 [Simulation and Modeling]: Model Development;

I.3.7 [Computer Graphics]: Animation;

1 INTRODUCTION

Dense crowd simulation is an area of research concerned

with assessing and predicting the motion of large groups of

people within a limited physical space. The applications

range from use in gaming and film production, to designing

public spaces and assessing quality of occupancy, to the

safety-critical analysis of the potential for stampedes and

crowd crushes.

If you ask two people to walk the same path, they will display

deviations from each other. Ask the same person to walk the

same path twice, and you would still get deviations from one

walk to another. Human motion is seemingly non-

deterministic, and hence, pedestrian simulation will always

be an exercise in abstraction.

When simulating high-density pedestrian traffic, congestion,

or a mass gathering event (e.g. at a concert), macroscopic

methods that rely on aggregate parameters (bringing a sense

of determinism through bounded stochasticity) can be very

effective when analyzing collective motion results, such as

rate of egress and density distribution over an area. Because

they do not rely on simulating individual entities, those

methods are often efficient enough to accommodate large-

scale simulations of thousands of entities. By contrast,

microscopic methods can reproduce the intricate details of

every individual’s trajectory, at an increased computational

cost. However, as computing hardware continues to evolve

to provide performance gains through parallelism and

portability through power efficiency, microscopic simulation

is becoming increasingly accessible to designers, architects,

and event planners, allowing them to readily assess the risks

and focus stakeholder efforts around potential congestion

issues.

Figure 1. Organically formed lanes in dense bidirectional flow;

2000 entities simulated at 130fps on a consumer-grade desktop.

Here, we present a contribution to the development of micro-

scopic methods catered to dense crowd phenomenon (e.g.

Figure 1). The relevant background is discussed in sections

2 and 3. Section 4 outlines our contributions and section 5

illustrates our method’s results and real-time performance.

Finally, the discussion in section 6 reflects on the method’s

limitations, and hosts opportunities for further discussion and

future work.

2 BACKGROUND

Like other physically-based phenomena that exhibit complex

interactions between entities over time, crowd motion could

only be practically simulated using numerical methods rather

than analytical solutions. There are different granularities of

motion abstraction depending on the target use case.

SimAUD 2017 May 22-24 Toronto, Canada
© 2017 Society for Modeling & Simulation International (SCS)

Historically, the earliest methods were macroscopic in

nature, simulating aggregate behavioural parameters, rather

than actual individual trajectories in the scene. They were

based on adapting existing fluid simulation models to

incorporate aggregate human motion parameters. They were

typically computed over an Eulerian grid [20, 25] to provide

computational stability and high performance. This

granularity of simulation was sufficient to assess and validate

collective motion parameters such as egress rate and density

distribution over a given scene layout.

Network optimization techniques were also adapted to

simulate occupant movement within a predefined multi-

compartment environment [15]. Each compartment is treated

as a graph node that might represent a section within a room,

a hallway, or even an entire building. The edges connecting

those nodes would represent the capacity of pedestrians

moving between one node to another. By utilizing classic

optimization techniques such as finding the shortest path or

detecting the max flow, designers could focus their efforts on

areas of potential pedestrian bottlenecks better.

To this day, macroscopic crowd methods remain popular in

engineering and design applications due to their

computational efficiency and the ability to provide a great

deal of insight into aggregate crowd dynamics, especially for

large-scale projects which involve high crowd counts [6, 13].

With ever-increasing hardware capabilities and improved

modeling methodology, the ability to simulate individual

entity-to-entity interactions became possible. Unlike

macroscopic methods, microscopic methods simulate

entities as individual agents with localized rulesets whose

emergent behaviour matches that of the aggregate results of

macroscopic methods (and more importantly, reality). In

microscopic methods, local-neighbourhood interaction rules

can have significant effects on the emergent global

behaviour.

Some of the earliest examples of this modeling philosophy

include Cellular Automata (CA) and the closely related

Lattice Boltzmann (LBM) models [1]. In CA methods, the

space is typically divided into a uniform grid, where every

cell can either be available, have an entity, or represent an

obstacle. Every cell’s future state is then determined based

on the states of the cells in its local neighbourhood. CA

crowd models were rapidly developed and adopted, thanks

to their parallel-friendly processing and native visualization

(every cell is both the computational unit and the visual

representation). Nevertheless, this grid-based Eulerian

evaluation with discretized stepping and finite directions of

motion does not faithfully reflect the fluidity of human

motion trajectories.

Lagrangian methods, typically implemented in the form of

free-moving particles, perform their computations in-place,

avoiding the fixed-grid problem of Eulerian evaluation.

Successful efforts in this area were introduced by Reynold’s

particle swarm model [21] and Helbing’s social forces crowd

model [10]. Examples of later variations include HiDAC,

which incorporates psychological profiles and pushing

behaviour [18]; and physical models, which incorporate the

simulation of individual locomotive limbs to generate each

entity’s motion [2].

A fundamental element of Lagrangian-based methods is

neighbourhood detection, the process of identifying each

entity’s neighbours. This is the primary cost differential

when compared to Eulerian evaluation where neighborhoods

are typically predefined and directly accessible. Certain data

structures can be used to accelerate the neighbourhood

search through recursive subdivision (e.g. Octrees). Other

structures include the Voronoi diagram, which can be used

to limit the search area and accelerate neighbourhood

detection using GPUs [4, 22]. Beyond identifying

neighbours, centroidal particle dynamics can also utilize

Voronoi diagrams to compute each entity’s response to

violations of its personal space [11].

Human motion has been empirically shown to be

anticipatory in nature [19]. People continually scan their

environment for potential collision events and enact local

maneuvers to avoid those predicted events. Agent-based

models built on this principle include Reciprocal Velocity

Obstacle (RVO) [5], and a velocity-space optimization

model (ORCA) [27].

Other efforts try to mimic the human vision-to-motion

feedback cycle, by rendering a 1D [16] or 2D [17] depth map

from each entity’s perspective, and emulating how humans

change their trajectory based on that information alone.

Vision-based approaches are unique in their realistic

depiction of data encapsulation. That is, they realistically

model how an entity does not have direct access to its

neighbors’ state variables; it can only interpret what it can

glean from the depth information in its own perspective.

Alas, the computational and memory costs of representing

each entity’s viewpoint can become prohibitive for large-

scale simulation.

This paper adopts the centroidal particles approach in [24,

11] for their realistic depiction of personal space

compression in congested settings. The following section

briefly describes their basic approach, then outlines our

contributions, which add anticipatory collision avoidance,

and offloads more CPU workload to the graphics card (GPU)

for increased performance and higher frame rates.

3 CENTROIDAL PARTICLE DYNAMICS

Centroidal particle dynamics (CPD) for crowd simulation

assume that every entity knows its global trajectory or vector

[24, 11]. That is, barring any other dynamic entities in the

scene, following the global path will lead each entity to its

target location in optimal time. Global pathing algorithms,

such as A*, are typically used for such broad scale pathing

and already take into account the large-scale static elements

of the scene (e.g. walls, doorways, obstacles, etc.). CPD

methods then enact local rules to attempt to maneuver around

the surrounding dynamic entities in the scene, with the least

deviation possible from the ideal global path.

3.1 Personal Space

The basis for CPD crowds lies in explicitly modeling and

evaluating every entity’s personal space (PS). Studies in

France and North America have shown that the average adult

PS is ~0.8m evenly around the center of the entity when

idling, and ~0.5m when in motion [19, 29]. These numbers

vary slightly across cultures [30], and CPD methods can

adapt to PS compression around barriers to motion in moving

crowds, or points of interest in static crowds (e.g. closer to

the stage at a concert) [11]. When two entities approach each

other, they equally share (or violate) each other’s personal

space. CPD methods model local dynamics by having each

entity attempt to be at the virtual center of mass (or centroid)

of the unviolated portion of its PS, attempting to restore its

preferred PS area over time.

The Centroidal crowds in [11] model this attempt in the form

of a linear force in the direction of the centroid (Figure 2).

The personal space definition of shared space can be

geometrically represented by constrained centroidal Voronoi

tessellation [24]. This tessellation does not need to happen

pair-wise; it can be computed over the entire domain of

simulated entities (including obstacles), accounting for the

aggregate infringement of each entity’s personal space. This

global tessellation is called the Personal Space Map (PSM).

Figure 2. The net force (f) experienced by an entity is a linear

combination of the global pathing force (g), and the penalty force

(p) which falls along the direction of the new centroid [11].

3.2 Personal Space Map

The global PSM is used to tessellate the space and accelerate

the nearest neighbours search [22] by precisely placing and

orienting a short-range ray-marching probe in the most

optimal position for neighbor detection, without requiring an

exhaustive radial search. By contrast, the PSM, illustrated in

Figure 3, is used in [11] to avoid the need for any nearest

neighbor search explicitly. It does so by relying on the CPD

equivalent of data encapsulation: in dense congested

scenarios, every entity’s local dynamics are informed only

by the information within its expected personal space.

Hence, regardless of who the entity neighbours are or what

obstacle caused the reduction in personal space, every entity

will enact the proper local dynamics by only evaluating its

expected PS. This high locality also translates to data-

parallelism, which could be exploited for acceleration onto a

GPU. CPD methods also allow for the modification of the PS

base shape (called PS footprint in [11]). The modifications

include changing the size to accommodate a variety of

different entity profiles; reducing the relative Voronoi

influence of PS to indicate a more vulnerable pedestrian (e.g.

child); and applying an influence map to completely

customize how the centroid is calculated (the map is

convolved with the integral of the PS area).

Figure 3. A small section of a larger crowd. Right: the crowd’s

PSM shown as an underlay. PS colors simply encode entity IDs.

We take advantage of this flexibility by proposing our own

modifications and contributions to the CPD base PS shapes,

and present an implementation that utilizes the GPU compute

capabilities of consumer devices (desktop and mobile alike).

4 CONTEXT-SENSITIVE PERSONAL SPACES

This section outlines our contributions to the CPD model,

towards more realistic simulation of dense multi-directional

flow.

4.1 Asymmetric PS Weighting

Currently, CPD methods use a PS shape that is evenly

weighted around the entity, based on the empirical studies in

[19] that demonstrate this fact. However, when an entity has

its personal space infringed upon outside of its vision, the

entity would unrealistically sense this infringement and react

as if it had eyes in its back, so to speak.

Our first modification is the use of a multi-area kernel

(shown in Figure 4) that splits the shape into two key areas:

i) PS area that affects both the entity and its neighbours; and

ii) PS area that only affects surrounding neighbours. This

asymmetrical shape is an intuitive change that brings about

some implications:

• The net separation between entities in motion remains at

the ideal ~1m (twice the 0.5m PS radius). The only

difference here is that instead of equally sharing the

responsibility, the entity with visibility will now shoulder

most of the responsibility and corrective efforts to

maintain that distance. This is analogous to a driver

maintaining a safe distance from the vehicles ahead (there

might be some collaboration, but it is mostly that driver’s

responsibility).

• Because a single entity (the one in the back) is maintaining

most of the separation distance, the severity of PS

compression around areas of congestion is reduced.

Figure 4. Proposed PS shape: light area affects the entity and its

neighbours; dark area only affects neighbors. Lengthening of PS

kernel is towards direction of motion as demonstrated.

Additionally, the suggested extension of personal space

proportional to the entity velocity was implemented, where

the personal space extends by ~0.4m per m/s. This extension

is slight for walking speeds (~1.4m/s), but quite noticeable at

running or cycling speeds (> 3m/s). Figure 4 illustrates the

multipart modification also in relation to speed, to account

for the narrowing focus of speeding entities. This is how

collision anticipation was incorporated into the simulation.

4.2 Resistance to Non-Optimal Bearings

In the linear combination of forces illustrated in Figure 2, we

added a resistance element to centroidal forces opposing the

optimal global path/objective. This was inspired by the

energy-minimization goals set in ORCA [27], and it has

reduced the “springiness” of near-miss collisions in

pedestrian crossings significantly (especially in bidirectional

flow). Therefore, even if the centroid is pointing the entity to

face away from the goal -because that is what is locally

optimal- the entity will resist this change and instead attempt

to wait until more favourable centroidal forces are available.

4.3 Hardware Acceleration via GPU Shaders

Previous CPD methods implemented the PSM using a

constrained Voronoi diagram over a discretized surface. The

idea was to render every entity PS as a 3D cone viewed from

the top [12], and the visible pixels after any intersection will

represent the remaining available personal space. This

utilization of the graphics pipeline allowed Voronoi-based

proximity detection [4] and CPD methods such as [11] to

achieve interactive frame rates for thousands of 2D entities

in the scene.

In our attempt to accelerate the CPD’s PSM computation, the

CPU was initially found to be the primary bottleneck, due to

the repeated rendering calls made for each entity cone. Each

render call came with graphics API overhead and CPU-to-

GPU memory transfer costs.

Modern graphics APIs have features that allow instanced

rendering. The CPU would send the shape information only

once, along with a point cloud of instance locations. Then,

the GPU would perform the replication on-chip without

needing to communicate again with the CPU over the

relatively slow system bus. Unfortunately, this feature could

not be naively used for PSM computation because of the

dynamic PS shapes, especially with our introduction of

velocity-dependent extensions (Figure 4).

With nothing to “instance”, we opted instead to develop

Geometry Shaders that dynamically generate the PS shapes

on the GPU. Geometry Shaders are part of the modern

graphics processing pipeline that can programmatically

generate new meshes and geometry that the CPU did not

initially send. Our geometry shaders accept a point cloud of

entity positions along with an array of entity attributes (e.g.

current velocity, bearing, comfort speed, etc.) and lets the

GPU generate the appropriate voronoidal PS shapes per

entity. This reduction in CPU render calls has improved the

simulation framerate, as will be shown in Section 5

Furthermore, in order to compute each entity’s new centroid

position, we opted for a vertex shader (run once per entity, in

parallel) that computes the available PS space (and the

violated space, by omission) by sampling the previously

created PSM (which was input into the vertex shader as a

texture). This further resulted in performance gains that

improved scalability and significantly reduced the

bottlenecks at higher crowd counts (10,000+ entities in the

scene).

Sample source code and GLSL shaders are available at

http://cell-devs.sce.carleton.ca/publications/ .

5 RESULTS

This section demonstrates how our proposed agent-based

method can reproduce several emergent crowd phenomena.

Figure 5 illustrates the top view of our simulation of

bidirectional flow of a dense crowd (1000 entities) in a

corridor. The resulting interlocking pattern is born out of

each entity’s desire to take the path of least resistance; and in

bidirectional scenarios, this simply comes down to avoiding

oncoming traffic. As entities traveling in the same direction

leave an empty space behind them, the centroid of similarly

oriented entities become attracted to fill the void. Hence the

appearance of chains or lanes amidst the crowd.

Figure 5. The emergent lane formation produced by our method in

a dense bidirectional flow scenario with visually similar

forking/joining patterns to those observed in reality (bottom right

shows a still frame of real footage [28] of bidirectional flow in a

corridor). The entities in both our simulation and the real footage

are color-coded to indicate direction of motion.

Figure 6. Artificial scenario used for performance testing: blue entities heading north; red entities heading south.

5.1 Simulation Setup

All simulations were run with discrete-time integration,

using a quantum of 100ms per frame. Each pixel length

represented 10cm of physical space.

The entity PS base radii were kept at 7 pixels (plus 1

centroidal) to achieve the ~0.8m PS idle radius. The shaders

described in Section 4.3 were implemented using OpenGL

Shading Language (GLSL). Parameters were randomized

across the crowd, including the PS radius, comfort speed, and

centroidal effect (which alters how aggressive/lenient an

entity is about restoring its personal space).

Children were given the same PS radius as adults, but

rendered with weaker Voronoi cones (i.e. further away from

the PSM top view camera) to reflect the increased the chance

of being overpowered by adult personal spaces, or being

swept away by strong crowd flow in dense settings.

5.2 Performance

Our testbed consisted of three representative consumer-grade

devices with various CPU-GPU configurations:

• Mid-range Desktop: Intel Core i5+ Nvidia GTX1060 GPU

• Laptop: Intel Core i5 (with integrated HD Graphics 4000)

• Mobile: Nexus 6P + Qualcomm Adreno 430 GPU

Table 1 summarizes the average framerate of simulating

bidirectional flow over a 600x900 PSM (effectively, a 60m

corridor) while varying the number of pedestrians in the

scene (Figure 6). The performance gain from implementing

our GPU shaders is noticeable, at ~2.6x throughout. While

the Android device was capable of simulating higher crowd

counts, it was no longer at interactive framerates (< 1fps).

Non-Instanced Rendering

+ 2D Sprites

With GPU Shaders

+ 3D Sprites

#Entities
Desktop

GTX1060

Laptop

Corei5

Nexus 6P

(Android)

Desktop

GTX1060
Gains

100 160 105 30 450 2.8x

250 125 87 23 338 2.7x

500 90 62 18 266 3.0x

1,000 58 41 13 134 2.3x

1,500 44 31 10 121 2.8x

2,000 33 26 7 89 2.7x

5,000 16.5 12 3 47 2.8x

10,000 10.7 7 - 25 2.3x

15,000 7.6 4.5 - 20 2.6x

20,000 6.2 3 - 14 2.3x

Table 1. Simulation performance in frames per second.

Currently, the simulation performance shows a dependence

on the simulation range area. For instance, the 2000 entities

in Figure 1 are in a 50x80m corridor (500x800 PSM pixels),

which naturally results in faster PSM rendering than the

larger PSM area in the Figure 6/Table 1 benchmark. The

granularity of PSM pixels can be adjusted to reach

performance targets, at the cost of reduced PS fidelity.

Ideally, the simulation performance would be dependent

only on the crowd count. We believe the current overhead of

essentially simulating empty spaces can be overcome (or

hidden) by utilizing multi-threaded CPU rendering calls, as

will be possible in upcoming graphics API standards, such as

Vulkan [31], the direct successor of OpenGL.

Given the 100ms time quantum, every 10 frames represent 1

second of simulation time. Hence, our algorithm produces

faster-than-real-time simulation results for up to 20,000

entities in the scene, and maintains interactive framerates for

even higher counts. Performance can be further increased on

machines equipped with workstation-grade GPUs.

1 2

4 5

3

6

5.3 Visualization

The shader computation allowed room for real-time 3D

sprite rendering. Our simulation can be visualized using

existing methods, which generate smoothly rigged and GPU-

animated characters [22] at interactive frame rates. For

demonstration purposes, we opted instead to create low-cost

rigidly-rigged multi-part characters primarily composed of

simple primitives, and procedurally animated walk cycles.

Animating these composites is only a matter of adjusting a

handful of transform matrices (position, orientation, scale,

etc.) per entity, rather than fully animating each vertex

through smoothed skeletal rigging. The resulting 3D sprites

are sufficient for rapid prototyping and iteration, consuming

on average 15-30% of each frame time. The results presented

in Table 1 include this 3D visualization stage.

Figure 7. Crowds attempting to pass through a narrow gateway

typically begin to arch around that bottleneck.

The PSM can be directly shown as an underlay to visualize

the personal spaces used for centroidal force calculations.

They can also be used for quick local density visualization

by measuring the ratio of the violated area to the ideal PS

footprint. Figure 7 illustrates a common emergent crowd

phenomenon (arching around pathway bottlenecks), with

noticeable compression of personal space near the exit.

This effect aligns with observed PS compression in both

moving and static crowds (Figure 8). In addition to arching,

densely packed crowds tend to display petal-like formations

(as each entity attempts to be situated behind the midpoint of

two entities ahead). This increases the entity’s visibility of

the point of interest (or global path destination), and results

in more compact space-filling.

Figure 8. Arching, gradual PS compression, and petal-like

formations observed in crowds during egress [28] (top) and while

stationary at a concert (bottom). These effects agree with our

simulation results.

More experiments, videos, and results can be viewed on the

project page at: http://cell-devs.sce.carleton.ca/publications/.

6 LIMITATIONS AND OPPORTUNITIES

Implementation Platform

Our implementation and visualization so far were built on the

Java-based Processing framework. Processing is good for

rapid prototyping of graphical applications, providing an

accessible and cross-platform set of tools for window, file,

and UI management, while simultaneously providing access

to low-level OpenGL calls. Also, being Java-based meant

that it could be ported directly to Android’s platform. Since

most of the work is done by GPU shaders, there would not

have been much to gain from attempting to use Android’s

native C++ (NDK) environment.

Although Processing is great for prototyping, it might not be

the ideal deployment solution. Our method can be made into

a plugin for middle-ware engines, depending on the context.

For instance, in the film and gaming industry, a worthwhile

effort would be to port this to the Fabric Engine [8], which

can be run in standalone mode or be made to communicate

directly with the scene graphs of major 3D animation

packages (e.g. Autodesk Maya and 3ds Max) without

rewriting the code for each target platform. The potential

overhead when adopting middleware, however, is always an

issue that requires careful evaluation.

Heterogeneous and Multi-layered Crowds

The centroidal force indicates a locally preferred bearing and

direction of motion for the entity to restore its personal space.

However, acting on that centroidal “suggestion” is left up to

the entity and its constraints. Human motion is quite flexible

with the ability to turn in-place if needed. To extend the

simulation to heterogeneous entities sharing the same space,

we can still compute the centroidal forces as we did with

humans, but the mechanics of following that centroidal

“suggestion” might differ (e.g. for strollers, shopping carts,

and vehicles).

Those other entities will consume the same rules about

personal space, but execute those maneuvers under their own

physical constraints (e.g. shopping carts might have a turning

radius compared to a human’s ability to turn on the spot). To

complement this effort, other methods for computing the

Voronoi PSM must be tested, since the scene might include

lengthy entities whose centroid is no longer a concentric

point, but a spine segment. In this case, the jump flooding

technique might be a good alternative to Voronoi cones [23].

Another feasible improvement on CPD involves separating

gaze from body orientation for situations when, for example,

an entity is crossing the road or paying attention to a loud

event or scream. The gaze could be computed in its own PSM

layer, and it would become another parameter in the context-

sensitive personal space adjustments.

Flocking

By design, CPD methods don’t produce grouping or flocking

behaviour as they focus on dynamics within a personal space.

The entities are assumed to be individualistic with their own

target destination in mind. This was intentional, to study the

effects of centroidal forces in isolation.

By manipulating the global pathing vectors being input into

CPD methods, it would be possible to augment (or be

augmented by) behaviours such as the ones studied in

SAFEgress [3], to account for each entity’s familiarity with

the environment, social attitudes, and herd dynamics (leader-

follower, social order, etc.). This concept also extends to

simulating families and friends trying to stay together when

at a large gathering or outdoors event.

Validation

Civil safety and threat assessment applications stand to

benefit the most from dense-crowd research. Although our

method uses empirically-driven parameters to produce

visually convincing aggregate behaviour, it cannot yet be

reliably used for safety-critical applications. That would

require further validation against in-lab scenarios [28] and

statistical analysis. There are global statistical properties that

can be checked (e.g. governing distributions [14]) and local

similarity indices for targeted analysis of smaller areas of

interest (e.g. [9]). We echo our earlier assertion that

regardless of which method is used, crowd simulation is

essentially an exercise in abstraction with no “ground truth”

to converge on, yet the increase in accuracy is a worthwhile

pursuit, considering the potential applications. A particularly

challenging and motivating use case is the prevention of

crowd stampedes and crushes. Simulation then becomes an

important tool for preplanning barriers and other crowd

control measures to prevent such awful disasters in what are

otherwise peaceful gatherings [7, 26].

7 CONCLUSION

We presented an improvement to the centroidal particle

dynamics (CPD) model that addresses several subtle

problems in dense crowd simulation. The contributions

include a context-aware personal space kernel that adjusts to

the bearing of the entity, its velocity, and destination

heading, resulting in a more realistic response to personal

space violations and collision anticipation.

The presented implementation aides in scaling the algorithm

by utilizing geometry and vertex shaders to offload the

computationally demanding personal space map (PSM) and

centroidal calculations onto graphics hardware (GPU). This

allows for the animation of 5000+ 3D entities at interactive

framerates on consumer-grade hardware.

The agent-based simulation produces several visually

convincing emergent results for crowd crossings, dense

bidirectional flow, and arching near hallway bottlenecks.

ACKNOWLEDGMENTS

This research has been partially funded by NSERC and the

first author further supported by an OGS (Ontario Graduate

Scholarship). The authors thank members of the Advanced

Real-time Simulation lab for their participation and support,

and the anonymous reviewers for their insightful feedback.

REFERENCES

1. Bandini, S., Manzoni, S., & Vizzari, G. Crowd

Modeling and Simulation. Innovations in Design &

Decision Support Systems in Architecture and Urban

Planning, 105-120 (2006).

2. Brogan, D.C., Metoyer, R.A., and Hodgins, J.K. 1998.

Dynamically simulated characters in virtual

environments. IEEE computer graphics and

applications 18, 5, 58–69.

3. Chu, M.L., Parigi, P., Law, K., and Latombe, J.-C. 2014.

SAFEgress: A Flexible Platform to Study the Effect of

Human and Social Behaviors on Egress Performance.

SimAUD Proceedings, SCS 4:1–4:8.

4. De Gyves, O., Toledo, L., and Rudomín, I. 2013.

Proximity Queries for Crowd Simulation Using

Truncated Voronoi Diagrams. Proceedings of Motion on

Games, ACM, 87–92.

5. den Berg, J. van, Lin, M., and Manocha, D. 2008.

Reciprocal Velocity Obstacles for real-time multi-agent

navigation. Robotics and Automation, 2008. ICRA,

1928–1935.

6. Duives, D.C., Daamen, W., and Hoogendoorn, S.P.

2013. State-of-the-art crowd motion simulation models.

Transportation Research Part C: Emerging

Technologies 37, 0, 193–209.

7. Fruin, J.J. 1993. The causes and prevention of crowd

disasters. Engineering for Crowd Safety 1, 10.

8. Fabric Software Inc. Fabric Engine.

http://fabricengine.com/.

9. Guy, S.J., van den Berg, J., Liu, W., Lau, R., Lin, M.C.,

and Manocha, D. 2012. A Statistical Similarity Measure

for Aggregate Crowd Dynamics. ACM transactions on

graphics 31, 6, 190:1–190:11.

10.Helbing, D., Farkas, I., and Vicsek, T. 2000. Simulating

dynamical features of escape panic. Nature 407, 6803,

487–490.

11.Hesham, O. and Wainer, G. 2016. Centroidal Particles

for Interactive Crowd Simulation. Proc. SummerSim,

Society for Computer Simulation International, 7:1–7:8.

12.Hoff, K.E., III, Keyser, J., Lin, M., Manocha, D., and

Culver, T. 1999. Fast Computation of Generalized

Voronoi Diagrams Using Graphics Hardware.

Proceedings of the 26th CGIT, ACM, 277–286.

13.Huerre, S., Lee, J., Lin, M., and O’Sullivan, C. 2010.

Simulating Believable Crowd and Group Behaviors.

ACM SIGGRAPH ASIA 2010 Courses, ACM.

14.Karamouzas, I., Skinner, B., and Guy, S.J. 2014.

Universal power law governing pedestrian interactions.

Physical review letters 113, 23, 238701.

15.Kisko, T.M., Francis, R.L., and Nobel, C.R. 1998.

Evacnet4 user’s guide. University of Florida.

16.Moussaïd, M., Helbing, D., and Theraulaz, G. 2011.

How simple rules determine pedestrian behavior and

crowd disasters. Proc. of the National Academy of

Sciences of the United States of America 108, 17.

17.Ondřej, J., Pettré, J., Olivier, A.-H., and Donikian, S.

2010. A Synthetic-vision Based Steering Approach for

Crowd Simulation. ACM transactions on graphics 29, 4,

123:1–123:9.

18.Pelechano, N., Allbeck, J.M., and Badler, N.I. 2007.

Controlling Individual Agents in High-density Crowd

Simulation. Proceedings of the 2007 ACM

SIGGRAPH/Eurographics SCA, 99–108.

19.Pettré, J., Ondřej, J., Olivier, A.-H., Cretual, A. &

Donikian, S. 2009. Experiment-based Modeling,

Simulation and Validation of Interactions between

Virtual Walkers. ACM SIGGRAPH/Eurographics SCA

189–198.

20.Peschl, I.A.S.Z. 1971. Passage Capacity of Door

Openings in Panic Situations. BAUN.

21.Reynolds, C.W. 1999. Steering behaviors for

autonomous characters. Game developers conference,

763–782.

22.Rivalcoba, I. and Ruiz, S. 2013. GPU generation of

large varied animated crowds. Computación y Sistemas

17, 3, 365–380.

23.Rong, G. and Tan, T.-S. 2006. Jump flooding in GPU

with applications to Voronoi diagram and distance

transform. Proc. Interactive 3D graphics and games,

ACM, 109–116.

24.Secord, A. 2002. Weighted Voronoi Stippling.

Proceedings of NPAR, ACM, 37–43.

25.Smith, R. A. Volume Flow Rates of Densely Packed

Crowds. Engineering for Crowd Safety (1993).

26.Special Events Contingency Planning. 2005. FEMA.

27.van den Berg, J., Guy, S.J., Lin, M., and Manocha, D.

2011. Reciprocal n-Body Collision Avoidance. In: C.

Pradalier, R. Siegwart and G. Hirzinger, eds., Robotics

Research. Springer Berlin Heidelberg, 3–19.

28.Zhang, J., Klingsch, W., Schadschneider, A., and

Seyfried, A. 2011. Ordering in bidirectional pedestrian

flows and its influence on the fundamental diagram.

arXiv [physics.soc-ph].

29.Gérin-Lajoie, M., Richards, C.L., and McFadyen, B.J.

2005. The negotiation of stationary and moving

obstructions during walking: anticipatory locomotor

adaptations and preservation of personal space. Motor

control 9, 3, 242–269.

30.Chattaraj, U., Seyfried, A., and Chakroborty, P. 2009.

Comparison of Pedestrian Fundamental Diagram.

Advances in Complex Systems 12, 03, 393–40.

31.Khronos Vulkan Working Group, 2016. Vulkan 1.0.37 -

A Specification. Khronos Group, 11-18.

