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Abstract
We introduce an integrated framework for modeling and simulation of ecosystems based on cellular models. The frame-
work integrates cellular modeling, web-based simulation, and geographic information systems (GISs) for data collection
and visualization. In this framework, data extraction from GISs is automated; we use the Cell-DEVS formalism for model-
ing the ecosystem and the CD++ cellular modeling tool within the RISE (RESTful Interoperability Simulation
Environment) middleware for web-based simulation. The simulation results are easily integrated with Google Earth data
for visualization. We discuss the design, implementation, and benefits of the integrated approach for modeling and simu-
lation in spatial analysis of ecosystem services. We show different case studies in the area of ecological systems, demon-
strating how to apply the framework, its usability, and flexibility. We focus on the use of models available in remote
servers, their integration with GIS data for inputs, and georeferenced visualization of the results. We show how the
modeling methods based on DEVS and their modular interfaces make it easy to build such an architecture and we dis-
cuss its application to the field of environmental systems.
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1. Introduction

Ecosystems are the life-support systems of the planet, and

they are the main source of human life and all other forms

of life, providing food, water, clean air, timber, fuel, regu-

lation of infected disease, climate regulation, aesthetic

enjoyment, etc. Tansley first defined the term ‘‘ecosys-

tem’’ in 1935 as a system composed of both living organ-

isms and their environments, the chemical–physical

components.1

Unfortunately, ecosystems are in decline around the

globe. The Millennium Ecosystem Assessment Report

2005 produced by the United Nations Environment

Program states that 60% of the ecosystem services that

support life on Earth are being degraded.2 The effects of

agricultural activity and the production of commercial for-

ests cannot be considered separately from environmental

and ecological issues. In this light, new technological

approaches, methods, and models are needed to address

the key factors regarding ecosystem change so as to limit,

prevent, or manage ecosystem disruption.

Modeling and simulation is a good way to assess the

real system and to predict the expected future of systems

that we cannot otherwise test, such as ecosystems, which

show a high degree of heterogeneity in space and time.

The outcome of the modeling and simulation might also be

useful in suggesting management methods to improve the

productivity or to control the natural activity of the ecosys-

tem. Modeling and simulation methods have increasingly

been used to analyze and understand the properties of

ecosystems.3

Though modeling the dynamics of different applica-

tions of ecological system is extremely challenging, a vari-

ety of efforts have been presented to define tools and

methodologies for modeling and simulation, allowing

improved analysis of the complex dynamics of these sys-

tems. Of the different approaches, the Discrete Event

Systems Specification (DEVS) formalism has become an

increasingly accepted modeling framework in this area.4
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The DEVS formalism was defined to specify discrete

event systems using a modular description and hierarchical

organization. This formalism allows the reuse of tested

models, leading to reductions in development and

computation time.5 However, it requires the user to

have expertise in advanced programming, distributed

programming, etc.

All models of ecological and environmental systems are

a simplification of the behavior observed in nature because

of ecosystems’ high degree of heterogeneity, periodicity,

complexity, dynamicity, geographical coverage, and ran-

domness. There are an enormous number of parameters

(about 120,000 parameters3) of interest when modeling

ecosystems. Therefore, it is important to select the para-

meters that are essential to describe the behavior of the

system in the context of the problem. To deal with these

numerous factors, different methods have been proposed.

One of the main methods is the use of spatial representa-

tion of the models for ecosystem analysis because it pro-

vides efficient and realistic views of the system to users.6

In this approach, a cell space organizes the structure of the

model of a physical system by dividing the area of influ-

ence into geometrically distributed cells. The Cell-DEVS

formalism and the CD++ toolkit7 provide a powerful

modeling and simulation framework that simplifies the

building of these kind complex cellular models by permit-

ting a simple and intuitive model specification. The Cell-

DEVS formalism is an extension to define cellular models

with explicit timing delays.8 In Cell-DEVS, a complex sys-

tem, such as an ecosystem, is described as a space com-

posed of cells, as stated earlier. The Cell-DEVS formalism

improves execution performance and ensures the simpli-

city and reusability of cellular models by using a discrete-

event approach. Nevertheless, configuring simulation tools

like these might be complex.

In recent years, web-based simulation enabled config-

uration and reuse issues to be solved by supporting distrib-

uted simulation through the World Wide Web. Some other

benefits of web-based simulation include visualization of

the simulation results, scalability, and global cooperation

of the community. Therefore, web-based simulation can

be useful for improving modeling and simulation of eco-

systems effectively. However, many web-based simulation

systems are under the control of single team or a closed

community, using interfaces that are tied to their imple-

mentation.9,10 Instead, the RESTful Interoperability

Simulation Environment (RISE) middleware10,11 uses

RESTful web services to hide all the functionalities in

resources named with uniform resource identifiers (URIs).

These URIs are connected to each other via uniform vir-

tual channels in which simulation synchronization is

achieved via XML messages using hypertext transfer pro-

tocol (HTTP) methods. The DCD++ environment12 is

an extension of the CD++ environment that enables dis-

tributed simulation of DEVS and Cell-DEVS models, and

it has been integrated under the RISE middleware. Using

RISE, DEVS and Cell-DEVS models can be run in a

remote server running parallel simulation algorithms, like

those presented by Liu and Wainer13 in parallel architec-

tures, and providing the results to be integrated with other

software components remotely using web-based simula-

tion services.

Web-based simulation environments enable the integra-

tion of existing web services with modeling and simula-

tion. However, ecological and environmental modeling

and simulation are influenced by spatial relationships, and

the analysis of such simulation results faces difficulties in

the interpretation of data and in conveying the results

clearly to the users.14 For these applications, geographic

information systems (GISs) and their associated data visua-

lization technologies can play an important role by solving

the aforementioned difficulties. These GIS software appli-

cations are used for capturing, storing, retrieving, manipu-

lating, and visualizing spatially or geographically

referenced data. Currently, GISs can be used to manage

large amounts of geographically related information, and

for manipulating data, performing analysis, and visualiza-

tion. They are usually organized in several layers of data

and make the data accessible in several forms, such as

maps or raw data. Modeling and simulation tools can bene-

fit from the use of geographical data, especially when

simulating environmental and ecological applications and,

in particular, the ones that we are interested in modeling

here: agriculture, forestry, minerals, climate, pollution,

spread of disease, urban planning, etc. Hence, interfacing

between GISs and simulation models is an important

means to explore the potential of GISs for performing

interactive analysis.

For ecosystem simulations, it would be very effective if

the inputted data came directly from GIS software.

Conversely, it is also useful if the simulation results are

displayed using an appropriate geospatial visualization

system. Geospatial visualization systems allow the beha-

vior results of the environmental applications under study

to be viewed; therefore, we can evaluate the potential

environmental impacts more rigorously. For instance,

Google Earth is a geospatial visualization system that can

be used to visualize and evaluate simulation results.

Google Earth provides the capability of integrating satel-

lite images, aerial photography, and digital map data into

a three-dimensional interactive virtual template of the

world.15

Based on these considerations, our objective is to define

a web-based integrated architecture for modeling, simula-

tion, and visualization of ecosystems using Cell-DEVS to

explore and forecast the behavior for supporting the deci-

sion making. The basic idea is to provide a framework that

combines GIS data collection, modeling, and simulation

using DEVS and Cell-DEVS theory, remote execution

using web-based simulation, and visualization of the
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results using a geospatial visualization system (in our

examples, we have used Google Earth), allowing the users

to choose the best available technologies to analyze the

ecosystem behavior for future policy decisions. The GIS

data collection process is done automatically by generating

initial value files for the Cell-DEVS model from GIS data.

The multi-layer definition of GIS raw data can be directly

imported into multi-layer Cell-DEVS models, like the

models presented in the following sections. To understand

the use of the architecture with practical uses, we show

different prototype applications using the proposed inte-

grated framework. In this framework, Cell-DEVS is used

as an abstract formalism that enables the separation of

modeling and simulation; the RISE middleware also

decouples simulator implementation from underling hard-

ware, while web-based simulation is the coupling of mod-

eling and simulation with the Web; as a result, the system

becomes ideal for online deployment.

The rest of the paper is organized as follows. Section 2

provides information about the related works in web-based

distributed simulation in the domain of the DEVS and

Cell-DEVS formalisms. Section 3 describes briefly about

the Cell-DEVS modeling and simulation environment. In

this section, we also present two case studies, so that one

can get a clear idea of how to model and simulate using

the CD++ tool in the Cell-DEVS environment. The

objective of this section is to present a set of ecological

models and to show how to model them with the Cell-

DEVS methodology. These models then reside in a remote

server and can be reused within the context of our simula-

tion environment, which is presented in Section 4. Here,

we present the integration of web-based simulation and

GIS visualization, showing how to use initial data obtained

in GIS systems and how to improve their visualization

using remote simulation through web services. Section 5

presents an illustrative example that describes a complete

web-based simulation and GIS visualization process using

the integrated architecture. Finally, Section 6 provides

conclusions.

2. Background

The use of web-based integrated platforms for modeling,

simulation, and visualization of ecological and environ-

mental systems has a number of advantages. Integrating

GISs, modeling, web-based simulation, and visualization

allow the definition of a complex software application

with distinct features. The GIS can be used to collect and

manage spatial information. Modeling allows the represen-

tation of the dynamic relationships among studied entities

in order to predict behavior. Web-based simulation eases

the implementation of simulation and reuse using web

technologies.16 Finally, visualization allows presentation

of the simulation results in an intuitive way for fast

decision making, enhancing the communication of results

to non-technical users.

In recent years, many simulation models in the area of

environmental systems have been developed using cellular

automata (CA) formalism.17,18 This formalism provides a

good mechanism to represent spatial information. The CA

formalism defines a model as an infinite regular n-dimen-

sional lattice of cells. The state of these cells is updated in

discrete time-steps according to local rules in a synchro-

nous fashion. The CA are consistent with the concept of

unified space–time and can handle boundary and initial

conditions, inhomogeneities and isotropies of a dynamic

system19; many ecological models have been built with

CA because of these properties. For instance, Chen and

Mynett20 developed a two-dimensional CA model

(EcoCA) to approximate prey–predator behavior.

DINAMICA21 is a CA model focusing on the develop-

ment of spatial patterns produced by landscape dynamics.

This model is also useful to investigate many other types

of environmental dynamic phenomena.

However, CA can be restricted by the simplicity of

their formal description. The CA also frequently need to

be modified for simulation purposes.7,22 They use a dis-

crete time base for cell updates, which restrains the preci-

sion and efficiency of the simulated models. Therefore,

although CA can form a useful tool to model systems

when space, time, and states are discrete, they cannot ade-

quately describe most physical systems whose nature is

asynchronous. All these issues constrain their power, per-

formance, usability, and feasibility to analyze complex

systems, such as ecosystems. In our earlier work,7,8 we

discussed how, in spite of widespread use and capability,

CA models can be computationally inefficient in studying

complex systems.

Another well-defined formal modeling and simulation

methodology is DEVS.4 This is a modeling and simulation

formalism based on dynamic systems theory. The DEVS

models are organized hierarchically, using modular

descriptions and supporting discrete-event approximation

of continuous systems. Because of these factors, DEVS

has been used for modeling ecosystems. Bergez et al.23

developed an open DEVS platform to model, simulate,

and evaluate agro-ecosystems.24 CRASH (Crop Rotation

and Allocator Simulator using Heuristics) is a modeling

framework based on DEVS, which integrates a set of tools

to plan, simulate, and analyze cropping-plan decision mak-

ing in an uncertain environment at the farm scale.25 In

environmental applications, cellular propagations are

numerous. The large volume of data and complexity of

such a type of models required easy design, modification,

and efficiency in terms of execution time. Muzy et al.26

showed that DEVS could be used with discrete-event hier-

archical modeling to deal with these issues, which facili-

tates construction, maintenance, and reusability of the

simulation, while reducing the calculation time.
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A real system modeled using DEVS can be described

as a composition of atomic and coupled components. An

atomic model represents a part of the system that describes

the autonomous behavior of the discrete event system as a

sequence of deterministic transitions between states in

response to the triggering of events. A coupled model is

composed of several atomic or coupled submodels; these

are interconnected through the model’s interface. The

DEVS formalism includes well-defined coupling of com-

ponents, modular construction, and support for repository

reuse.

The Cell-DEVS formalism27 combines both

approaches: CA and DEVS. It allows the definition of cel-

lular models with explicit timing delays, allowing the

problems discussed to be overcome. A Cell-DEVS model

is a lattice of cells, where each cell is a DEVS atomic

model and cell space as a coupled model. Each Cell-

DEVS atomic model holds a state variable and a comput-

ing function that updates the cell state. This is done by

using the present cell state and those of a finite set of

nearby cells (called the neighborhood). The efficient com-

putation of cell state variations and the I/O port mechan-

isms of Cell-DEVS allow for the development of all larger

models and for the faster execution of models. It also pro-

vides straightforward integration of the models with other

modeling formalisms.

Figure 1 describes the basic concept of a Cell-DEVS

model. A Cell-DEVS atomic model is defined formally

as27:

TDC= \X , Y , S, delay, d, dint, dexit, t, l,D.

Where X is a set of external input events, Y is a set of

external output events, S is the set of states, delay is the

transport or inertial delay, d is the transport delay for the

cell, dint and dexit are the internal and external transition

functions respectively, t is the local computing function, l

is the output function, and D is the lifetime function of the

state. A Cell-DEVS coupled model is formally defined as:

GCC= \Xlist, Ylist,X , Y , n, t1, . . . , tnf g,N ,C,B, Z.

Where Xlist and Ylist are the input and output coupling lists,

respectively, X and Y are the set of external input and out-

put events, respectively, n is the dimension of the cell

space, {t1, ., tn} are the number of cells in each of the

dimensions, N is the neighborhood set, C is the cell space,

B is the border cells set, and Z is the translation function. A

Cell-DEVS atomic model uses a set of inputs to compute

its future state from the state set using the local computing

function t(S). These results are transmitted after a delay d

(with different semantics for the delay function). After the

basic behavior of a cell is defined, a coupled model is

defined to integrate the atomic models representing the cell

space. A Cell-DEVS coupled model is an array of atomic

cells, each connected to a set of neighboring cells and

potentially to other external DEVS or Cell-DEVS models.

CD++ is an open-source modeling and simulation

tool that provides a development environment for imple-

menting DEVS and Cell-DEVS.27 DEVS atomic models

can be developed and integrated onto a basic class hierar-

chy programmed in C++ . Coupled models can be

defined using a built-in specification language based on

the formal specifications of Cell-DEVS. The model speci-

fication includes the definition of the size and dimension

of the cell space, borders, and the shape of the neighbor-

hood. The cell’s local computing function is defined using

a set of rules with the form ‘‘postcondition assignments

Figure 1. Definition of Cell-DEVS.5
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delay {precondition}.’’5 When the precondition is satis-

fied, the state of the cell will change to the designated

postcondition, whose values will be transmitted to other

components after the delay. If the precondition is false, the

next rule in the list is evaluated until a rule is satisfied or

there are no more rules. If the model’s state variables need

to be modified, the assignments section can be used.

CD++ interprets this specification language and exe-

cutes a simulation of the model.

We used Cell-DEVS to create various environmental

models. One of these focuses on forest fires depending on

the fuel, the geography of the area, the weather etc.28 In an

earlier study,5 we presented different models showing how

to define simple applications using Cell-DEVS theory and

CD++ . Koutitas et al.29 studied two wildfire models, one

(InteSys) based on CA and another (CD-AUTH) based on

Cell-DEVS. Ecological models are distributed and show

heterogeneity in time and space with a large volume of

data and operations. Muzy et al.22 proposed a framework

for modeling and simulating ecological propagation pro-

cesses. Mittal et al.30 presented a distributed modeling and

simulation framework called DEVS/SOA, which supports

a development and testing environment. This framework

also aims to develop and evaluate distributed simulation

under the web environment. In the following sections, we

will show detailed case studies developed using Cell-

DEVS and will discuss the advantages in modeling

ecosystems.

When the complexity and dynamicity of the models

increase, we need more resources for the simulation and

more complex tools needing special configuration. Sharing

models and reusing simulations is usually complicated. At

the same time, the Internet provides a common platform

for integrated resources. This resulted in the definition of

web-based simulation services, i.e., the invocation of com-

puter simulation services over the World Wide Web. Web-

based simulations have made use of the simple object

access protocol (SOAP), for exchanging information

between peers in a decentralized, distributed environment

using XML. Interfacing with SOAP web services is done

in the form of programming functions that are implementa-

tion-specific, and SOAP messages in XML are exchanged

at the web service technology layer (and not at the simula-

tion level). Therefore, although SOAP-based distributed

simulation protocols support interoperability; this is at a

cost of increased complexity.10 Instead, RESTful web ser-

vices11 do not have these problems: Representational State

Transfer (REST) is usually implemented using HTTP,

URIs, and XML, and integration is easier. Resources are

named (addressed) with unique URIs similar to website

URLs, and are connected through HTTP channels. REST

can separate internal implementation from interface

semantics.11

Based on these ideas, in our earlier work,9,10,11 we

designed and implemented RISE middleware. It serves as

a container to hold different simulation environments with-

out being specific to any of them. We also showed10,31 that

implementation of CA within the RISE-based distributed

CD++ can improve interoperability and performance,

compared with other similar environments. RISE improved

the infrastructure for distributed processing of web-based

simulation models, giving us the chance to use the differ-

ent web services available, including those providing real-

time geospatial data. Geographic information systems

provide the means for manipulating georeferenced infor-

mation and performing different operations with maps. In

GISs, data are organized in a number of layers, centralizing

all the environmental data available and making the data

accessible in different formats. Many studies have demon-

strated the efforts to integrate the GIS, simulation model-

ing, and visualization. For instance, Virtual Fire32 is a

real-time platform for forest fire control that integrates

GIS, simulation modeling, and visualization for fire man-

agement. CyberGIS Software Integration for Sustained

Geospatial Innovation16 focuses on the integration of

cyber-infrastructure, the GIS, and simulation modeling for

computationally intensive spatial data analysis and colla-

borative geospatial problem-solving and decision making

that can be simultaneously conducted by a large number of

users. Sun et al.15 shows the design and implementation of

a web-based visual, interoperable, and scalable platform

that is able to manage and visualize vast amounts of dis-

tributed, heterogeneous, and model data and images for cli-

mate study using GIS and Google Earth. Kulkarni et al.33

presented an integrated web and GIS-based flood assess-

ment model to provide web-enabled two-dimensional flood

simulation, visualization, and analysis of flooding in

coastal areas. The Group on Earth Observation Model

Web34 is an environmental model access and interoperabil-

ity tool focusing on four basic principles: open access,

minimal barriers to entry, service-driven development, and

scalability.

In this research, we have used an open-source GIS tool,

the Geographic Resources Analysis Support System

(GRASS).35 GRASS uses GeoTIFF, an open standard to

establish a TIFF-based interchange format for georefer-

enced raster images. In Wang and Wainer36 and Zapatero

et al.,37 we showed how to map GIS data into CD++ .

The basic idea is to map the geoinformation from real-

world geo-ordinates to cell space ordinates, convert the

whole region into cells, and store the cells in the initial

value fine for Cell-DEVS simulation.

The integration between modeling, simulation and

visualization can significantly increase the strength of rep-

resentation that results in ease of understanding the simula-

tion results. Examples of this includes the ArcView

Non-Point Source Pollution Modeling tool,38 which was

built to facilitate agricultural watershed modeling. Sun

et al.15 presented the design and implementation of a web-

based visual, interoperable, and scalable platform for
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climate research. Google Earth has evolved significantly

in recent years and is used for both scientific and generic

purpose. It uses the keyhole markup language (KML), an

open standard from the Open Geospatial Consortium,

which uses XML for geographic visualization that includes

annotation of maps and images. Google Earth provides

mechanisms to make layers evolve forward and backward

in time, which is useful to analyze the progress of a simu-

lation interactively. In our earlier work,37 we used Google

Earth as the geospatial visualization system.

In light of these considerations, we investigated the use

of Cell-DEVS for environmental or ecological applica-

tions. We defined an architecture combining GIS data col-

lection, modeling with Cell-DEVS, web-based simulation

using RISE middleware, and visualization of the results in

Google Earth. Our GIS data collection and visualization

processes are automated subsystems that generate initial

data files for simulation engines and KML files for GIS

visualization. Cell-DEVS is an abstract formalism that

provides many advantages for modeling environmental

applications. Finally, the RISE middleware allows the

implementation of web-based simulation. In the next sec-

tion, we discuss details of the Cell-DEVS modeling and

simulation based on environmental applications. Section 4

presents detailed architecture of the integrated platform. In

Section 5, we present a complete ecosystem model imple-

mented using this platform.

3. Cell-DEVS modeling and simulation of
environmental models

In this section, we give a brief introduction of the com-

plete integrated Cell-DEVS modeling and simulation

cycle. We use a software architecture with four compo-

nents, as shown in Figure 2.

The data collection and conversion subsystem gathers

initial GIS data and converts and stores them as initializa-

tion data for the CD++ model. In ecosystem or environ-

mental applications, this subsystem maps the

geoinformation from real-world geo-ordinates to cell space

ordinates, converts the whole region into cells, and stores

them as initial value files for the CD++ simulator. The

visualization subsystem takes the simulation results as

input, parses the results, optimizes them, and generates a

KML file to visualize the output (for instance, using

Google Earth). The models are designed using the Cell-

DEVS formalism and simulated in the CD++ environ-

ment. We use RISE to execute the CD++ simulations

remotely. The GIS software manages spatial information

and the interactive visualization enhances a user’s ability

to better understand the studied phenomenon, provide

interactive environment to verify models, and refine the

model for different scenarios. The integration of Cell-

DEVS and the GIS will provide many advantages, such as

the reusability of models, the simple rule-based nature of

entity behavior definition, asynchronous model execution

that improves the execution speed, and I/O ports for inter-

facing different models and data transfer between different

spatial components. We will show those advantages by

studying different case studies for application of the meth-

odology. Moreover, through the following case studies, we

show how the modeler can use our web-based open-source

tool for modeling and simulation, as mentioned earlier. In

Section 4, we discuss, in detail, the architecture of the

integrated framework for web-based simulation and

visualization.

3.1. A model for the effect of the mountain pine
beetle

The mountain pine beetle is native to western North

America, from northern Mexico to northern British

Columbia, Canada. It has also significantly expanded its

range in the Rocky Mountains, Alberta, and Saskatchewan.

This small beetle primarily infects lodgepole pine trees

and kills millions of cubic feet of commercial tree species

(also sugar pine, western white pine, etc.). It is estimated

that the mountain pine beetle killed 283 million cubic

meters of pine trees in British Columbia from 1990 to

2005.39 It also increased the risk of large fires with dead

and dying trees. Currently, the industry’s best practices are

to clear cut any forest infected with mountain pine beetle

to slow or stop infestation in the surrounding area (losing

revenue).

We defined an extension of the CA presented by Bone

et al.39 in Cell-DEVS. The model includes various types

of forest feature (a river, a lake, an incomplete clear cut,

etc.), with the goal of demonstrating how to conduct anal-

ysis and modeling for improving forest management prac-

tices using Cell-DEVS. We are using a model that has

been validated by environmental science researchers;

Bone et al.39 have carried out validation activities. The

objective of this section is to show an implementation of

such model and the rules defined by the initial research

using the Cell-DEVS formalism. The modeling rules are a

direct translation of the rules found in the original paper.Figure 2. Simplified Cell-DEVS simulation architecture.
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The objective here is to show researchers interested in

environmental sciences how to translate similar models

into Cell-DEVS versions, with the objective of being able

to make use of our architecture for integration of web-

based simulation and visualization.

The original CA model for mountain pine beetle attack

involves looking at the tree susceptibility value for each

forest unit, which is obtained by multiplying the size (S) of

the trees in the unit, the proportion (P) of lodgepole pine

trees, the density (D) of trees, and the location factor (L),

which represents the proximity to a known infestation.

Size S reflects the fact that larger trees are more suscepti-

ble to infestation; P and D reflect the fact that mountain

pine beetles only infect pine trees and tend to do better in

dense forests. The parameter L represents the beetle’s abil-

ity to move; places closer to infestations are more likely to

become infected. Once these parameters are defined, an

allometric function (y = 0.05x21.3) is used to determine the

tree mortality. This function defines the number of moun-

tain pine beetles required in the neighborhood for a tree

with a given level of susceptibility to become attacked. It

follows the logic that trees with high susceptibility require

low levels of mountain pine beetle in the neighborhood to

become attacked, and as mountain pine beetle populations

increase to higher levels they attack less susceptible trees.

Once a cell is infected, there is a 100% certainty that all

the lodgepole pines in the area will eventually be infected.

Empirical evidence suggests that up to 80% of mountain

pine beetles in a given tree will die during the winter (i.e.,

each generation has 80% mortality).

The model (Figure 3) is defined as follows.

� It includes a two-dimensional map that could

include rivers, lakes, clear-cuts, etc.
� It defines the state of the trees in the forest: alive,

infected, and dead.
� Each tree is only affected by trees in its

neighborhood.
� If a tree stand is alive, we compute the number of

mountain pine beetles in the stand.

� If the total concentration of mountain pine beetles

is larger than the allometric function, the stand

becomes infected and it dies before the next season.
� Mountain pine beetles move through the forest and

are computed as the average concentration for the

surrounding cells plus the current number of beetles

less the number that died during the winter.
� Trees cannot recover from a mountain pine beetle

infestation.

The model has been built using a multi-layer approach

(six layers) representing different phenomena on each layer.

1. Mortality. This represents the trees that have been

killed by mountain pine beetle.

2. Mountain pine beetle. This represents the move-

ment of the mountain pine beetles and their rela-

tive concentration in any given cell.

3. Susceptibility factors. These are size, density, pro-

portion, and location factors for a given stand.

The Cell-DEVS we will show in Figures 4 to 6 include six

planes with 25 cells 3 25 cells. All the cells in the mortal-

ity plane (plane 0) are initially set to zero. Plane 1 is the

mountain pine beetle layer; it has one cell initially and con-

tains all zeros except for places where it is desired that no

trees grow (these are set to 1). The density, size of the tree,

and proportion are generated randomly. The rules for each

plane are based on the preceding equation, and are defined

as shown in Figure 4.

Figure 4 shows some sample rules defined in different

layers in the model. In the first rule, we use

stateCount(), a function that returns the quantity of

neighbors of the cell whose state is 1. The third rule means

that if neither rule 1 or rule 2 is satisfied, the result

remains unchanged. The 100 in each of the rules indicates

a delay in milliseconds. We use a macro in our rule to cal-

culate the allometric function, as explained before, finding

out the mortality of the tree. The macro surround is used

in the rule to estimate the movement and the concentration

of mountain pine beetles in the cell. Therefore, high sus-

ceptibility of the trees only requires a low concentration of

mountain pine beetles and less susceptible trees require a

high concentration of mountain pine beetles.

Figures 5 and 6 show the six layers, showing different

aspects of the simulation. The first layer represents the tree

mortality (showing dead trees); the second square shows

the number of mountain pine beetles (as a concentration).

The remaining squares show the three susceptibility fac-

tors discussed earlier. A color code has been used to iden-

tify different aspects: white for trees in good health (not

infected), dark gray for infected trees, black for dead trees,

blue for river, dark orange for high susceptibility, orange

for moderate susceptibility, and lemon for low

susceptibility.

Figure 3. Model organization and model layers or state
variables.
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Figure 5 shows a model with a source of highest con-

centration of mountain pine beetles at (1, 1) and a forest

bisected by a river (which the mountain pine beetles are

unable to cross). The figure shows an intermediate step

with the progression of the epidemic impeded by the river.

Figure 6 presents the results when the simulation

includes an incomplete clear cut. In this case, it is shown

that the beetles are capable of traveling across the unclear

cut land, and affect the trees on the other side. This exam-

ple is of critical importance to the simulation of the effects

of clear cutting forests for prevention of mountain pine

beetle outbreaks.

3.2. Modeling the impact of the diamondback moth

The diamondback moth is a pest native to Europe that was

introduced into North America about 150 years ago. It can

now be found almost all over the world, and is one of the

world’s most destructive crop pests. Around $1b per year is

spent on pesticides for its control.40 The larval stage of the

diamondback moth destroys cruciferous crops (cabbage,

cauliflower, broccoli, etc.) and plants in the mustard family

(mustard, canola, etc.), as well as other crops. Pesticides are

used to control the population; however, genetic mutations

cause the pesticides to become less effective after several

generations. In Europe, the diamondback moth is not a seri-

ous threat, since its population is kept in check by parasi-

toids and predators (approximately 25 species of parasitoid

prey on the diamondback moth in Europe). The parasitoids

attack the diamondback moth during the larval stage and

inject their eggs inside the host. On hatching, the parasitoid

destroys the host and consumes it, emerging in adulthood.

In the northern USA, the diamondback moth is also con-

trolled by insect predators and parasitoids. Nevertheless,

there are problems in the tropics and subtropics, in particu-

lar, in Southeast Asia.41

Figure 7 shows the four-stage life cycle of the diamond-

back moth. The total time it takes a diamondback moth to

Figure 4. Mountain pine beetle epidemic model specification.

Figure 5. River and forest model.

Figure 6. Model with incomplete clear cut.

220 Simulation: Transactions of the Society for Modeling and Simulation International 94(3)



reach maturity is about 32 days. However, new generations

appear 21 to 51 days apart, depending on conditions.42

1. Egg. The diamondback moth lays eggs on the

underside of a plant’s leaf (in groups of 1 to 3). It

takes approximately 5–6 days for the eggs to reach

maturity.

2. Larva. The larval stage can be split into four dis-

tinct steps that last 10–21 days, during which the

larvae feed on the plant and grow. The time until

maturity depends on environmental factors: tem-

perature, food abundance, etc. The larval stage of

the diamondback moth destroys leafy crops (cab-

bage, lettuce, etc.).

3. Pupa. This stage lasts 5–15 days.

4. Adulthood. On reaching adulthood, the diamond-

back moth will begin reproducing. A female dia-

mondback moth can lay upwards of 1600 eggs

during its 16 day lifespan.

Predator–prey relationships like this one are often modeled

using discrete equations to determine population sizes at

given times, using parameters derived from observations of

real environments and shaped to fit the equations. Tonnanga

et al.43 used an analytical model to recreate the effect of

introducing parasitoids (to determine the most efficient

course of action to control the population). The Cell-DEVS

model presented in this section is based on this model. The

model uses seven different layers, each of which represents

the behavior of different entities with limited interactions

with each other and using a predetermined set of parameters.

� Layer 1 (crop). The crop is assumed to have a fixed

density (we do not model reproduction or death).

Each plant will only allow a single egg to be laid

on it, and it will only allow a single reproductive

pair to perch upon it.

� Layer 2 (egg and larva). The egg reaches maturity

after 5 days; the larval stage is represented as a

single stage, and it is vulnerable to attacks during

this period (10 days). After this, an infected larva

will be replaced by a parasitoid (either male or

female).
� Layer 3 (pupa). This stage lasts 5 days, after which

a mature diamondback moth will emerge if that

location is empty; otherwise, it will die (represent-

ing an ecosystem with maximum support capacity).
� Layers 4 and 5 (adult female and male diamond-

back moth). The adult moth has a lifespan of 16

days; moths can travel. The female moth searches

for an empty plant, and on locating one, she stays

there until fertilized. For the female moth to

become fertilized, a male moth must occupy the

same plant as the female for 1/10th of a day before

leaving to find another mate. On fertilization, the

female moth will leave the plant in search of an

empty plant and a new mate. In nature, the male

moth finds a female by detecting the aroma of the

sex pheromone of the female moth.
� Layers 6 and 7 (adult female or male parasitoid).

These follow a similar search pattern to the dia-

mondback moth, but the female parasitoid searches

for a plant occupied with larvae.

To define the model using Cell-DEVS and to define it in

CD++ , we define two types of information in each cell:

the age of the diamondback moth in the cell, and the direc-

tion of the next movement. The movement is done in two

phases. First, if the value of the cell is 1, it changes its state

to a random integer between 2 and 9. The cell value from

2 to 9 indicates the possible eight different directions of

the next movement:

rule : { (0,0,0)+trunc(uniform(1,9))+ 1/
1000 } 1 { trunc(0,0,0) = 1 and (0,0,0) != 0 }

Figure 7. Life cycle of diamondback moth.
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In the second phase, we decide whether a movement is

feasible; in that case, it moves based on the possible direc-

tions determined. If not, it changes to 1, and it determines

a new direction according to phase one, as follows:

rule : { (1,-1,0) - 2 + 1/1000} 1 { (0,0,0) = 0
and trunc((1,-1,0)) = 3 }
rule : 0 1 { trunc( (0,0,0) ) = 3 and (-1,1,0)=0
and trunc( (0,1,0) ) != 2 }

The age of the cell is stored in the decimal position. For

this model, one complete movement cycle is considered as

1/500 and 10 complete cycles are considered as one day,

which is 0.02. An adult diamondback moth has a lifespan

of 16 days, as mentioned earlier. Therefore, when the deci-

mal position reaches 0.32, the lifetime of the diamondback

moth is ending.

On finding an empty plant, the female moth remains in

the cell. A similar approach is taken with the male moths,

but the difference is that the male moths search for avail-

able mates. The female moth stays in an empty plant until

fertilized. To fertilize the female moth, a male moth must

occupy the same plant as the female moth for two cycles

before leaving to find another mate. Finally, on reaching a

count of 0.32, the insect will die.

The different parameters in the model can be adjusted

to model different biological events. In the following fig-

ures, we show three simulation scenarios: annihilation of

the diamondback moth population, disappearance of para-

sitoids, and equilibrium. In the first scenario, the initial

population of parasitoids is very high (and they are effec-

tive predators); therefore, they may destroy the population

of diamondback moth. This is undesirable, since any return

of the diamondback moth population would increase

uncontrollably (the parasitoid population would have died

as well, as it is not a native species). In the simulation

results shown in Figure 8, the density of plants is set to

90%, the population density of diamondback moth is 50%,

and the density of parasitoids is 10%. As we can see, the

large initial population of parasitoids allows them to over-

run the diamondback moth population, and it results in

their complete destruction. Our second example (Figure 9)

shows a case where the initial density of parasitoids was

2%, and, consequently, the population of the parasitoids

disappears.

The last example presented here (Figure 10) considers

a case of equilibrium, in which the initial conditions of

Figure 9 were not changed but the parasitoid population

density was changed to be 3%.

The results show that the parasitoids managed to main-

tain a relative equilibrium for a notable length of time, sup-

porting the idea that released parasitoids might be able to

control the population size of the diamondback moth.

4. Integrated Cell-DEVS architecture for
web-based simulation and GIS
visualization

Integration of web services, modeling, and simulation, and

of GIS with advanced visualization can increase the acces-

sibility, representation, and understanding of simulation

results of ecosystem systems. Many ecological simulation

models have explored the potential of using GIS to store

spatial data, to manipulate georeferenced information, to

perform interactive analysis, and to display the results on

maps.28,44,45

Integrating these subcomponents into one system has

many advantages to support planning and decision making

for ecosystem applications.36,44 In this section, we discuss

the architecture of an integrated architecture of web service

simulation using Cell-DEVS, GIS, and visualization,

Figure 8. Test scenario: Annihilation.
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presented in Figure 11. The fundamental concept is to col-

lect data from a GIS, model an application using Cell-

DEVS, run simulations in a remote RISE server (which does

not need installation efforts or software tailoring), and visua-

lize simulation results (in this case, using Google Earth).

The overall architecture includes four subsystems.

1. Data collection and conversion. This subsystem

maps the information from real-world geo-ordi-

nates to cell space ordinates; it converts the whole

region under study into cells, and uses this infor-

mation to initialize the simulation. It includes a

dataset collector (for selecting georeferenced raster

data from open standard GeoTIFF files), and a

pixel-to-cell application (for converting it into the

scale needed for Cell-DEVS models, like those

presented in Section 3). The initial value file

builder generates the initial states of cells and nec-

essary attributes for the Cell-DEVS model.

2. Cell-DEVS modeling. This subsystem builds a

Cell-DEVS environmental model according to the

data collected. It defines the cell space size, neigh-

borhood, and rules of the model behaviors using

the CD++ modeling tool, following the ideas

presented in Section 3.

3. Web service simulation. This subsystem runs Cell-

DEVS models in RISE (remotely in the Cloud),

and it gets the simulation results. Different simula-

tion engines with CD++ variations are stored on

the server and can be run remotely using RISE.

4. Visualization. This subsystem provides a visual

depiction of the simulation results (in this case,

Figure 10. Equilibrium scenario.

Figure 9. Scenario for a low level of parasitoids.
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using Google Earth). Once the simulation results

are retrieved from RISE, the subsystem parses the

simulation results, optimizes the cells, and con-

verts the coordinate system using the cell merger

and coordinate converter components for visualiza-

tion. The subsystem generates a KML file (which

can be imported, for instance into Google Earth),

allowing the visualization of the simulated results

on a customized layer impressed over the standard

layers.

In the following sections, we will use a simple land use

change model as a prototype to illustrate each step of the

proposed integrated web service simulation architecture.

4.1. GIS data collection and conversion

This subsystem is responsible for extracting data from

GIS, converting the target region into cells, and storing the

required information into initial value files for the Cell-

DEVS model. This section illustrates the procedure for

GIS data collection and conversion in detail.

As we can see in Figure 11, the subsystem includes

three modules: dataset collector, pixel-to-cell converter,

and initial value file builder. Figure 12 shows the class

diagram of the data collection and conversion subsystems.

AbstractGeoReader implements the general logic of the

data input, including two subclasses: MetaDataReader,

responsible for fetching geographical references, and

DataReader, responsible for obtaining data on each of the

Figure 11. Integrated architecture of web-based simulation and visualization using Cell-DEVS.
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pixels. GeoTiffFileReader implements these methods to

obtain information in GeoTIFF format. GRASSReader

retrieves data through the GRASS API. GeoTiffFileReader

implements these operations. Geoinfo stores geographic

contextual data (coordinates and resolution) of the area.

PixeltoCell approximates the most common value covered

in a cell area that contains multiple pixels. Valwriter class

generates the cell’s initial values.

As discussed in Wang and Wainer36 and Zapatero

et al.,37 these various components are needed because in

GIS, as in GRASS, information of a specific area is orga-

nized as a collection of vector or raster or imagery data,

and we need the data to be converted as initialization

information for the CD++ simulator.

We import initial geographic information as raster or

vector data in GeoTIFF format using the Geospatial Data

Abstraction Library. We will show the process using a

sample raster dataset from North Carolina, USA. This

GeoTIFF file, provided by GRASS, is based on a dataset

that offers raster, vector, LiDAR, and satellite data. We

selected a raster dataset including geographic layers of

land use, elevation, slope, aspect, watershed basins, and

geology from this GeoTIFF. Raster datasets group differ-

ent layers into bands containing common information.

Each raster band contains the map size, the Geospatial

Data Abstraction Library data types, and a color table for

mapping color and land use type values, as shown in

Figure 13. Each raster band consists of several blocks for

efficient access; each block consists of several pixels. The

basic idea is to look through the dataset to get pixel infor-

mation. In Figure 13, the land use of the studied area has

one raster band with four blocks, separated in total by 179

pixels 3 165 pixels, and seven land use color types out of

24 types.

The PixeltoCell converter reads the block data of the

raster band, collects the color value of each pixel, and gen-

erates the initial value of the corresponding cell for the

Cell-DEVS model. Ideally, each pixel could match an

exact single cell, but this is not always the case. Indeed,

usually a number of pixels are covered by a single cell,

which is scaled with the minimum unit of a geographical

map. In these cases, we use a queue for each cell, sort the

pixels shown in this cell according to their state value, and

choose the most common state value in the queue as the

representative state value. Figure 14 shows an example for

this case, in which the state value 7 appears twice, the

state value 15 also appears two twice, the state value 1

appears once and the state value 20 appears four times.

Therefore, 20 becomes the corresponding cell state value

for the Cell-DEVS model. All these state values represent

different colors in map, as discussed.

After this approximation step, we obtain the initial val-

ues for the model of interest (in this case, a 20 3 20 initi-

alization set for the land use). We store the required

information into the initial information file, along with

geographical contextual data, such as coordinates and the

resolution of the area.

4.2. Web service simulation

As discussed earlier, the RISE middleware provides ser-

vices over a number of resources or URIs, and these

resources exchange synchronization information in the

form of XML messages via HTTP methods (get, put, post,

and delete). The URIs are organized hierarchically, with

multiple instances of each template created simultaneously

by different users, as shown in Figure 15. For example,

the template ‘‘{userworkspace}’’ allows any number of a

modeler’s workspaces to be created, separating the user’s

Figure 13. Studied area of ‘‘land use’’ map and corresponding
states (Wang and Chen 2012).

Figure 12. Class diagram of data collection and conversion
subsystem.

Figure 14. Approximate cell state value from a number of
pixels.
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experiments from each other. The ‘‘{servicetype}’’ tem-

plate allows each modeler to select a simulation service,

and to build experiments based on different environments.

For instance, we have two types of ‘‘servicetype’’ of simu-

lation engines. The ‘‘{framework}’’ template indicates that

the modelers may create any number of experimental fra-

meworks with any supported simulation environment, as

shown in Figure 15. For example, typing ‘‘./Bob/DCDpp/

’’ in a web browser will return all of Bob’s resource experi-

ments that use the DCDpp simulation engine.

RISE allows modelers to create experiments based on dif-

ferent simulation engines. In the current RISE environment,

we have DCDpp for distributed simulation and CD++ v.

3.0 as the advanced CD++ version with multiple state

variables and ports. The following XML configuration file

shows information for a Cell-DEVS model. Each partition

will run the simulation session in a dedicated CD++
engine, which is located in the belonging machine with the

IP address and port specified in this document:

\ConfigFramework.
\Doc. This model Simulates Land use

Changes using Cell-Devs. \/Doc.

\Files.
\File ftype=‘‘ma’’.landuse.ma\/File.
.

\/Files. .
\DCDpp.
\Servers.

\Server IP=‘‘10.0.40.162’’ PORT=
‘‘8080’’.

\Zone.change-rules(0,0,0)..
(19,19,0)\/Zone.

\/Server.

\/Servers.

\Servers.
\Server IP=‘‘10.0.40.175’’ PORT=
‘‘8080’’.

\Zone.population(0,0,1)..(19,19,1)\/
Zone.

\/Server.

\/Servers.

\/DCDpp.
\/ConfigFramework.

4.3. Visualization process

After retrieving the simulation results from RISE, we need

to interpret the results. To do this, we need to transform

them so that we can visualize them in a GIS or geospatial

visualization system. The visualization of the results using

a geospatial visualization system can enhance the commu-

nication of the results to domain experts as well as non-

technical users, providing instantaneous access to layered

information.

Figure 16 shows a class diagram of this visualization

subsystem. We first need to parse the data generated by

the simulator, preserving the output messages that repre-

sent state changes (LogParser). The output of the

LogParser is stored by the supporting structure class

Loginfo. Then CellMerger joins cells with the same state

in adjacent areas, to reduce the amount of data to visua-

lize. Next, CoordinateConvertor changes the coordinates

in Loginfo so that it can be used by the visualization sys-

tem. AbstactGeoWriter is an abstract class that provides

an interface to the translation methods. Finally,

KMLGenerator takes the Loginfo information and the

georeferences, processes them, and generates a KML file

with a timed representation of each simulated cell state

change. The process consists of translating each output

message into KML tags. Once the KML file is generated,

it can be imported into Google Earth, allowing visualiza-

tion of the simulation results.36,37

4.3.1 LogParser. The output messages store the change

information of the cell values of the simulation results.

This module parses the simulation results, preserving only

the output messages and transferring them into the proper

format defined in Loginfo. The format of the matched mes-

sage is shown in Figure 17. The message always begins

with Message Y followed by the timing and cell position

information. The new state of the cell is transmitted and it

is shown after the /out/ substring.

4.3.2 CellMerger. To describe the geography information

of each cell, we use four positions in each parsed message;

so we need to record the four coordinates for further

Figure 15. RISE URI templates with example instances.

Figure 16. Class diagram visualization subsystem.
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operation. Each cell requires one \ placemark. element

in the KML. Moreover, if the size of the KML file

increases, the rendering time will also increase when load-

ing to Google Earth. Therefore, it is important to keep the

number of KML elements as small as possible.

CellMerger is responsible for solving this issue. The basic

idea is to merge adjacent cells with the same value. An

example is been shown in Figure 18; instead of using 16

place marks (Figure 18(a)) to represent every cell,

CellMerger could merge the cells with the same value

together, reducing the number of place marks to 4 (Figure

18(b)), and generate new polygons.

4.3.3 CoordinateConverter. As we know, environmental and

ecological models are sensitive to georeferenced informa-

tion. In our architecture, the initial data of the model are

collected using GIS (GRASS) and geo.info stores the geo-

graphic information of the studied area, as we discussed

earlier. The geo.info retrieved from GRASS uses the

Lambert Conformal Conic Geography Project System.35

The plane size is fixed by the coordinates of the upper left,

lower left, upper right, and lower right corners. By con-

trast, Google Earth uses a reference system called the

World Geodetic System 1984, which uses longitude and

latitude pairs to define specific positions on Earth.

Therefore, the information and initial parameters in

geo.info have to be converted to longitude and latitude

pairs of each cell to visualize the simulation results on

Google Earth. In the implementation, each cell has four

corners with positions of (east, north), as shown in

Figure 19; after the cell-merging step, only the corner

points of all the boundaries in a merged geometry must be

known.46

4.3.4 KMLGenerator. Google Earth is a powerful visualiza-

tion system supporting KML elements to display geo-

graphic data. KML is based on the XML standard, and

uses the tags and its attributes to describe the geography

Figure 18. Merge cells with the same state value into polygons.

Figure 19. The square point of a cell.

Figure 17. Output message format of CD+ + simulation.
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information. In our implementation, we used a subset of

the elements defined in KML, including \Document. ,

\ Style. , \Folder. , \Placemark. ,

\Polygon. , and \ Timestamp. . After knowing the

information needed for each \Placemark. element

(the coordinates of the merged polygon boundaries, the

timestamp, etc.), we can generate a KML file. In the KML

header, the state values and associated colors (defined in

the Cell-DEVS model) are rewritten as polygons to paint

each \Placemark. element. To define the body of the

KML, each \Placemark. element of the merged cells

will list all the coordinates of its polygons, and a

\ Timestamp. element will be inserted. Finally, the

complete procedure generates the geographical area that

emulates the simulation.

In Figure 20, line 1 is an XML header and line 2 a KML

namespace declaration. Lines 3–24 describe the

\Document. , which is our Cell-DEVS simulation.

Within this, lines 5–7 define a style. We can define different

colors for different cell states. Lines 9–21 represent the

\Placemark. element, which depicts the cell region

(square or polygon). Finally, line 22 defines the

\ Timestamp. element that indicates the \Placemark.

timestamp.

5. Case study: a monkey pathogen
transmission model, simulation, GIS,
and visualization

In Section 4, we discussed details of the integrated Cell-

DEVS architecture for web-based simulation and GIS

visualization. Here, we show a complete case study based

on the transmission of a monkey pathogen, to demonstrate

how to use our architecture. The model is designed using

Cell-DEVS, essential geoinformation of the model is col-

lected using GIS (GRASS), simulation is done in our web

environment using CD++ and the RISE middleware,

and, finally, we visualize the result in Google Earth.

An understanding of the pattern of pathogen transmis-

sion can play an important role in assessing potential dis-

ease control strategies to prevent outbreaks. We design the

model based on Cell-DEVS to study a region of Bali,

Indonesia, based on the work presented by Kennedy

et al.47 Macaques (a kind of monkey) on the island are

known to carry a specific pathogen that is transmissible to

neighboring macaques. Every monkey is able to host the

pathogen; there are four different stages: susceptible,

latent infection, symptomatic infection, and acquired

immunity, as shown in Figure 21.

Susceptible indicates that the macaque is vulnerable and

can be infected. The period of latent infection is how long

a macaque takes to become symptomatic after becoming

infected by neighbor macaques that are in a state of infec-

tion or immunity. The period of symptomatic infection is

the duration for which the macaque suffers from the dis-

ease. The period of acquired immunity is the amount of

time a macaque is clear of a pathogen. In our model, we

use the simplified state diagram shown in Figure 21.

Pathogen transmission among macaques is affected by dif-

ferent properties, such as movement of the macaques, their

sex, and the surrounding environment. The movement of

the macaque has also been influenced by landscape fea-

tures. For example, macaques move at random, but tend to

pass through waterways less frequently than forests, and

Figure 20. Sample KML file.
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female monkeys are unable to leave their birth ‘‘temples,’’

which have been present in the forests of Bali for centu-

ries.47 Therefore, the probabilities of the movement associ-

ated with the landscape features.

The model we built uses three-dimensional cells to store

different parts of the model. It includes five layers with

five state variables for each cell. These are landscape, tem-

ple, movement, sex, and pathogen information, respec-

tively, as shown in Figure 22.

� Layer 1. This layer stores landscape information:

these are coast-5 (the border of landscape), river-6,

and forest-7.
� Layer 2. This layer contains temple information:

temple border-8.
� Layer 3. This layer records all the movement-

related information: 0 indicates that the current cell

is not occupied while 1 means that the cell is

occupied.
� Layer 4. This layer keeps information about the

macaque’s sex: 1 denotes male and 2 denotes

female.
� Layer 5. Finally, this layer stores all pathogen-

related information: pathogens are shown with dif-

ferent states within the pathogen life cycle during

movement.

The expanded Moore neighborhood is used to model

movement of the macaques. The basic neighborhood uses

nine Moore neighbors ((21, 21, 0) . (1, 1, 0)); to deter-

mine the movement, we also need to know the landscape

and temple information, which are stored in (0, 0, 21) and

(0, 0, 22). To realize random movement with different

possibilities and temple constrains, the movement beha-

vior is divided into four different phases: intent, choosing,

constraint, and move. The state of each cell is defined by

the values of its neighborhood cells following by a set of

rules.

This model is sensitive to geoinformation of the site,

such as river, coast and forest information of the island

Bali, Indonesia, as well as some other parameters dis-

cussed before. The river and coast datasets for the region

of Bali was collected using an open-source website,

Cloudmade.48 The forest dataset of the location is obtained

from Carleton University’s Library GIS department.49

These two datasets are combined using the GRASS GIS

raster map calculator, as shown in Figure 23.

This map was used to obtain the landscape values of

the model using our tool. The map is divided into a grid or

cells and the landscape types are defined using different

numbers. The initial map of Bali, with initial cell values

for simulation,50 is shown in Figure 24. After completion

of data collection from GIS, we obtain the initial value file

for simulation and visualization.

To define the model using Cell-DEVS, we define the

five layers discussed before. Each layer has its own beha-

vior and cell components. The movement of the macaque

and the transmission of the pathogen are defined using dif-

ferent rules in CD++ . Figure 25 shows some sample

rules used in different layers in the model.

The initial cell value is assigned through the file patho-

gen.val. We use the uniform() function to return a random

number with uniform distribution within the interval. The

macros MonkeyOccupation, RiverCrossRatio, and

InitialInfectionRatio to determine the occupancy of maca-

ques, the probability of river crossing ratio and the initial

infection ratio.

This pathogen transmission model is simulated through

the web-based simulation method over RISE middleware,

as discussed in detail in Section 4. To use multi-state vari-

ables and multi-ports, we use CD++ v. 3.0 as a simula-

tion engine within RISE middleware. The put method is

used to create a new framework, .lopez/pathogen, using

web-based distributed simulation engines under an autho-

rized userworkspace in our RISE server. After this, the

post method is used to upload the initial files (model con-

figuration, initial values of each cell, Cell-DEVS model,

etc.). Then the simulation is run using put to .lopez/

pathogen/simulation and collect simulation results files

from ./lopez/pathogen/results. After retrieving the simu-

lation log file from RISE middleware, we can generate the

simulation results in CD++ in two dimensions.

The model is tested under three different scenarios

based on the various parameters, as we discussed earlier to

show the effects of landscape, macaque occupancy, river

crossing probability, sex, and initial infection ratio on

Figure 21. Pathogen transition stages.

Figure 22. Different layers of the cell.

Kazi and Wainer 229



transmission patterns, as shown in Figure 26. In each test,

the right-most part of the figure shows the progression of

pathogen with the movement of the macaque. Susceptible

macaques are represented by blue cells, yellow cells repre-

sent latent infection, symptomatic infection is shown by

red cells, and green cells indicate macaques with acquired

immunity.

The simulation results can also visualized in Google

Earth using the proposed architecture. We import the col-

lected geoinformation and the log file retrieved from RISE

into our GIS visualization tool to generate a KML output

file, as discussed in Section 4. Finally, this KML file is

loaded into Google Earth to visualize the model output.

To verify the scalability of the architecture, we narrow the

scale of our model to a small region. The whole of the

island of Bali is shown in Figure 27 (left) and the small

white square on the map is the region that we used to test

the pathogen transmission model. Figure 27 (right) shows

the visualization result with the zoomed-in region in

Google Earth.

Figure 24. Initial cell values of Bali, Indonesia, after GIS data collection, using GRASS GIS under the GNU General Public License,
copyright 2017.50

Figure 23. Raster map of Bali, Indonesia using GRASS GIS under the GNU General Public License, copyright 2017.50
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6. Conclusions

In this paper, we proposed an integrated architecture for

modeling, simulation, and visualization in the Web to

study ecological applications. The proposed architecture

integrates Cell-DEVS modeling, web-based simulation,

and a geographical visualization system. We present the

complete process of extracting information from GIS

(GRASS), simulating the model remotely using RISE web-

based middleware, and visualizing the result in Google

Earth. Different case studies for various ecosystems have

also been demonstrated using the proposed architecture.

These case studies were used to test the proposed architec-

ture and to demonstrate the benefits of the integration of

Cell-DEVS modeling, web-based simulation, and GIS

visualization.

The decoupling of Cell-DEVS modeling, web-based

simulation, and geographical data handling modules makes

this architecture highly scalable. Our future work could be

directed as follows: (i) investigating efficient ways to inte-

grate different modules in the proposed architecture; and

(ii) incorporating cloud computing and providing simula-

tion as a service.

Figure 25. Model specification of macaque pathogen transmission.

Figure 26. Simulation results of monkey pathogen
transmission under different occupancies.
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