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ABSTRACT

A timeline in Discrete-Event Simulation (DES) is a sequence of events defined in a numerable subset of R+.
Discrete-Event Modeling and Simulation try to reproduce the behaviour of real-world experiments. Never-
theless, measuring the experimental data for science and engineering (which is later used for modeling and
simulation) introduces the need for uncertainty quantifications. In modeling of Continuous Systems, numer-
ous tools have been defined to propagate uncertainty from the input to the output results. Nonetheless, these
tools cannot be applied to the study of propagation of uncertainty in DES. In a previous study, we presented
a method for propagating uncertainty for subset of DES models. Here, we introduce a generalization of the
previous method that can be used for simulating any DES model. The method defines a new Abstract Sim-
ulator for the Discrete-Events System Specification (DEVS). This new Simulator provides the propagation
of uncertainty from input to resulting trajectories.

Keywords: DEVS, Uncertainty, Metrology, Time.

1 INTRODUCTION

Discrete-Event Simulation (DES) is a technique in which the simulation engine plays a history of events.
Each event occurring corresponds to an instantaneous change in the state of the model. The set of events of
the simulation is discrete, and occurrences can be freely placed at any point of a continuous timeline. Events
in the history are related by causality: changing a single event in the history may produce an arbitrary
cascade of changes in subsequent events, with unbounded consequences. In particular, we discussed errors
related to time approximation in (Vicino 2015) (Vicino, Dalle, and Wainer 2015). We classifed these errors
in three groups : time-shifting, event-reordering, and Zeno problem, and showed that any of these errors
could break causality chains resulting in simulation trajectories that diverge.

DES has been widely used for decision-making in science and engineering. As part of the experimentation
process, data are collected from real systems using a variety of measuring instruments and measurement
procedures. From them, a set of measurement results are obtained and used to define the models and run the
simulations.

Measurement results have uncertainty specifications (Joint Committee for Guides in Metrology 2012), usu-
ally represented by uncertainty intervals. Using an input with uncertainty may translate into uncertain re-
sults. Uncertainty propagation is the science of studying how the uncertainty of the input can affect the
uncertainty of the outputs. Various mathematical tools were developed for uncertainty propagation on Con-
tinuous Systems (Hoover 1999). Nevertheless, DES are described by discontinuous functions (with excep-
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tion of trivial models), and existing tools and methods for continuous systems cannot be directly applied to
the study of DES.

In the case of Discrete-Time Systems (DTS), since the timeline and the states are discrete, it is possible to
distinguish a finite number of steps for every trajectory produced by a set of inputs. Therefore, an uncertainty
interval covers a finite number of values. We can obtain these finite steps by running the simulation using
each possible input occurrence within the uncertainty interval. Unfortunately, this method cannot be used
for studying uncertainty propagation in DES, where time is a Real variable, because all uncertainty intervals
include an infinite number of values. To the best of our knowledge, no general method for propagating
uncertainty in DES was defined before.

Although these concepts are important for all kinds of discrete-event simulation techniques, we are interested
in applying these ideas to the Discrete-Event System Specification (DEVS) formalism (Zeigler, Praehofer,
and Kim 2000). DEVS provides a theoretical framework that is universal for DES models, and it allows
thinking about models using a hierarchical-modular approach. In addition, DEVS models are described
using a formal notation.

It is possible, using DEVS notation, to define states and functions including uncertainty. We avoid this
approach, because it requires the propagation mechanisms to be defined as part of each model. This over-
complicates the model, and breaks the abstraction between model and simulator. In the case of occurrence
uncertainties, it is not even possible to take similar approach. Time lapses representation is strictly defined
in DEVS as positive reals. An option would be to modify this constrains in a redefinition of the formalism.

In (Vicino 2015) (Vicino, Dalle, and Wainer 2015), we defined algorithms and proposed a method for
propagating uncertainty in a subclass of DES models. The subclass covered by the method was named
Finite-Forkable Discrete-Event System Specification (FF-DEVS), which is reviewed in Section 2.2.

The main goal of this new research is to present a general uncertainty propagation method for DES simu-
lations based on DEVS, without needing to define a new subclass. Furthermore, we want to preserve the
DEVS formalism unchanged, such that our method can be applied to the large base of existing DEVS models
and tools to support uncertain inputs.

To do so, we propose a new abstract simulator for DEVS. In this simulator, exogenous events accept uncer-
tainty quantifications. This uncertainty can be introduced on both components of an event, the message and
the time of occurrence. The method combines two techniques for advancing simulation steps. First, when
processing the next event only faces a few options, the simulation is branched in order to cover all of them.
Second, in cases where the possibilities are infinite, or too nymerous, we apply bound analysis techniques.
This guarantees that we produce a finite number of branches at each simulation step. At every step events
have the uncertainty quantification required for the resulting trajectories.

This new simulator introduces simulation errors, but with the good property that they always produce super-
sets of the expected trajectories. This is consistent with existing uncertainty propagation methods used for
continuous systems.

In addition to the algorithms, we present a case study showing how to simulate the Classic Processor model
described in (Zeigler, Praehofer, and Kim 2000) with uncertainty in the input jobs numbers and occurrences.
The rest of the paper is organized as follows: Section 2 introduces the background and terminology used
in following sections; Section 3 reviews related works; Section 4 introduces the proposed simulation algo-
rithms; Section 5 presents a case study using a Processor model; Section 6 concludes the paper with final
remarks and future lines of work being considered.
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2 BACKGROUND
2.1 Discrete-Event System Specification (DEVS)

Discrete-Event System Specification (Zeigler, Praehofer, and Kim 2000) (DEVS) is a universal formalism
for modeling Discrete-Event Systems. This formalism provides a theoretical hierarchical modeling language
and an abstract simulator to simulate legit DEVS models.

In DEVS, the modeling hierarchy has two kinds of components: atomic models and coupled models. The
atomic models are defined as a tuple: A = ⟨S,X ,Y,δint ,δext ,λ , ta⟩where: X is the set of inputs; Y is the set of
outputs; S is the set of states; δint : S→ S is the internal transition function; Q= {(s,e)|s∈ S,0≤ e≤ ta(s)} is
the total state set (where e is the time elapsed since last transition); δext : Q×X→ S is the external transition
function; λ : S→ Y is the output function; ta : S→ R+ is the time advance function.

The Processor atomic model is a classical example in the bibliography. A processor receives jobs to be
performed; each job takes a fixed period to be executed. In case the processor is busy and a new job is
received, the new job is queued until the current job is complete. Each job completion generates an output.

A Processorprocess_duration can be defined as a tuple: ⟨X ,Y,S,δint ,δext ,λ , ta⟩, where: X = N ; Y = N ;
S = ⟨TOCJ,QJ⟩ where: TOCJ represents the time (R+) until current job finishes processing, and QJ
is a queue of processes identified by natural numbers; δint(S) = ⟨process_duration,S.QJ.dequeue_ f irst⟩;
δext(S,e,X) = if (S.QJ.size = 0) then ⟨process_duration,S.QJ.queue_all(X)⟩ else ⟨S.TOCJ− e,
S.QJ.queue_all(X)⟩; λ (S) = S.QJ. f irst; ta(S) = if (S.QJ.size = 0) then ∞ else S.TOCJ

Coupled models are used to compose models hierarchically in DEVS. A coupled model is defined by a set
of DEVS sub-models and a description of their interactions.

A benefit of modeling using DEVS formalism is its closure under coupling property. This property states
that each coupled model can be reduced to an equivalent atomic model. Some simulator implementations
exploited this closure property, being the most noticeable aDEVS (Nutaro 2003).

2.2 Finite-Forkeable DEVS (FF-DEVS)

Several extensions have been proposed to DEVS. These extensions include: Parallel DEVS (PDEVS) (Chow
and Zeigler 1994) targeting problems of serial computation caused by the SELECT function; Finite &
Deterministic DEVS (Hwang and Zeigler 2006) to study of all reachable state based in graph theory are
provided; Finite-Forkable DEVS (FF-DEVS) (Vicino 2015) (Vicino, Dalle, and Wainer 2015) targeting the
propagation of uncertainty in a well-known subset of DEVS models; and many others.

The introduction of a single event with uncertainty can produce infinite resulting trajectories. The δext
function is involved in the processing of external events. This function is sensible to occurrence of the input.
In some cases, the evaluating multiple occurrence times would determine multiple, sometimes infinite, new
states. In others, state could be uniquely determined, but scheduling next internal transition is uncertain.
This is because time-advance is added to current time, which is defined by the uncertainty of the input event.

The FF-DEVS algorithms branch the simulation for each possible sequence of states in a trajectory. This
groups all the infinite placements of a sequence of states in the timeline together. The FF-DEVS simulations
generate a tree-like summary of all the possible trajectories. Each path from the root to a leaf of the tree
represents set of trajectories with a common sequence of states. Each node in the tree adds to the state the
respective occurrence of uncertainty intervals. The main idea behind the algorithms is detecting the times
when the same sequences of events are generated. We study the overlap of uncertainty of the occurrence
between events. In addition, the algorithm checks the cardinality of the transition results. Some combination
of models and inputs may produce infinite branches. For instance, the Processor model described in 2.1
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could produce a single sequence of states for certain inputs. But, it could reach infinite number of states in
a single step of simulation for other inputs, as discussed in (Vicino 2015).

2.3 Metrological uncertainty

Metrology is the science of measurements and its applications. A True Value of a measure, i.e., a single value
obtained with perfect accuracy, is unknowable in practice. Thus, in metrology, the Uncertainty Approach is
used. This approach represents the result of measuring a magnitude as an interval. This interval includes all
reasonable values that could be assigned to the measurand.

The Bureau International des Poids et Mesures (BIPM) is the institution responsible for the standardization
of international units, procedures and practices for proper measurement in industry and sciences (BIPM
2008) (Joint Committee for Guides in Metrology 2012).

Sometimes, obtaining the uncertainty specification of a measurement may involve probabilistic methods.
However, no distribution of values in an uncertainty interval could be assumed.

2.4 Zermelo’s Well-Ordering Theorem

In DEVS models, states and messages are defined as sets (usually named X, Y, S). And, the dynamic be-
havior of the model is described by functions (δext , δint , and λ ) over these sets. Many Set Theories exist
nowadays. We follow in this paper Zermello-Fraenkel with axiom of Choice (ZFC).

An interesting result from ZFC is the Well-Ordering Theorem (Jech 2003). This theorem states: "Every set
can be well-ordered". A proof of this theorem can be found in (Jech 2003).

dsWe relay on this theorem to guarantee that the order function parameters required for the proposed simu-
lator exist for every DEVS model. Then, any model can be simulated for input with uncertainty.

3 RELATED WORK

The closer match to our work are studies on state reachability tools and properties. In (Hernandez and
Giambiasi 2005), state reachability is studied for a subset of DEVS models having a finite set of states. An
algorithm is provided to decide if a state is reachable or not when simulating a model. In (Hwang and Zeigler
2006), Finite & Deterministic DEVS is formally defined and algorithms to study of all reachable state based
in graph theory are provided. In (Hwang and Cho 2004), Scheduling Preserved DEVS is introduced as a
subclass of FD-DEVS. A timed language is also introduced that allows characterization of reachable states
in a timed fashion for first time. All these solutions focus on the validation of the model properties and not
on the reachability based on measured data; none of them consider the introduction of uncertainty on the
time of occurence of events, making this the principal distinction from our work.

Other works related to uncertainty in DES are those in the area of Logical Processes Simulation proposing
the use of Approximated Time. In these works (Beraldi, Nigro, and Orlando 2003) (Fujimoto 1999) (Loper
and Fujimoto 2004), the main goal is to speed up simulation exploiting uncertainty. The approach is taking
models defined with perfect precision and introduce small uncertainty to the time points in the time-line
to improve the parallelism of the simulation. In other words, the idea is to choose an approximation of
the initial simulation that fits in the uncertainty boundaries and results in a better parallel execution. These
works are far from our goal. On the contrary, we focus on obtaining all possible trajectories that may result
from input events having their time of occurrence defined by uncertainty intervals.

As part of our solution we propose forking the simulation at some points of the time-line. This approach
is not new in simulation. Some examples of its use include (Peschlow and Martini 2007) (Hybinette and
Fujimoto 1997) (Hybinette and Fujimoto 2002). In this paper we don’t go into the details of how the
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simulation is forked. The afore-mentioned papers are good starting points for an implementation of our
algorithms. However some adaptation is necessary given neither of them is based on DEVS.

4 PROPOSED ABSTRACT SIMULATOR

We propose here, an alternative abstract simulator for DEVS models. Different to the classical one, this
allows the insertion of events as inputs. These input events can be specified with uncertainty quantifications
in both of their components, occurrence and message.

Having uncertainty can make the simulation traces of both output and state diverge. For this reason, the result
of the simulation cannot be represented as sequence of states nor outputs. We decided then to produce result
as a tree of states and a tree of outputs. Each node in the trees has associated uncertainty quantifications.
The uncertainty could affect, the state or output and its occurrence. The uncertainties obtained reflect the
propagation coming from input events uncertainty.

For simplicity, we present a simulator for atomic models only. This does not limit the generality of the
method given that any model could be expressed as atomic because of the closure under coupling property.

We will discuss the problems solved by the simulator algorithms by dividing them into three groups. First,
handling the propagation of uncertainty for each transition executed. Second, processing and input events
with uncertainty into the simulator. Third, dealing with uncertainty interval overlaps.

The input parameters for our simulator are the following: the DEVS model being simulated; the set of input
events with their occurrences and messages defined as uncertainty intervals; an order function over the set of
states and set of messages defined in the model; an initial state for the model, which could have uncertainty
associated; a limit to how many branches per step are accepted.

4.1 Abstract simulator for DEVS atomic models

In Algorithm 1, we present the Abstract Simulator for atomic models accepting events with uncertainty inter-
vals for their time of occurrence. The simulator structure is similar to the Classic-DEVS abstract simulator
presented in (Zeigler, Praehofer, and Kim 2000).

Internal variables
Every variable of the simulator representing time, state, or messages are intervals. Four properties define
each interval. Two properties define the lower and upper limits, and two (boolean) properties are used for
defining if each end is open or closed.

For starting the simulator, six parameters are required: the model to be simulated; order functions over the
state and output sets of the model; initial time of the simulation; initial state of the simulation; and the max
allowed branches for a simulation step.

The order functions are required to define lower bound (LB) and upper bound (UB) functions. The actual
definition of LB and UB are implementation details. The most effective LB would be the infimum, and
the most effective UB would be the supremum. However, they may be hard to compute and more relaxed
bounds can still produce good results for particular scenarios. It is important to notice that the relaxation
will only include new values to the solution. It never excludes a valid solution from the results’ tree.

The s internal variable tracks the current state of the simulation. Its initial value is set in the init function
defined by an uncertainty interval over S. The need to produce intervals of states is why we require order
functions over them. The selection of an order function for the state set may not be trivial. However, in
Section 2.4, we show the Well-Ordering Theorem that guarantees it is always possible to find an ordering
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Data: Atomic model A, Order⟨S⟩ os, Order⟨Y ⟩ oy, Interval⟨R+⟩ init_time, Interval⟨A :: State⟩ init_state, Integer
max_branches_per_step

Interval⟨R+⟩ tlast // time of last event
Interval⟨R+⟩ tnext // time of next event
A::state s // current state
Function init-message()→ void

tlast ← init_time
s← init_state
s← split_state_set(s)
tinc← [LB⟨R+⟩(A.ta(m)|m ∈ s),UB⟨R+⟩(A.ta(m)|m ∈ s)]
tinc.open_lowerend← tinc.lowerend /∈ (A.ta(m)|m ∈ s)
tinc.open_upperend← tinc.upperend /∈ (A.ta(m)|m ∈ s)
tnext ← tlast + tinc

Function ∗-message(Interval⟨R+⟩ t)→ Y
if ¬(t ⊆ tnext) then raise an error
Interval⟨Y ⟩ y← [LB⟨os⟩(A.λ (m)|m ∈ s),UB⟨os⟩(A.λ (m)|m ∈ s)]
s← [LB⟨os⟩(A.δint(m)|m ∈ s),UB⟨os⟩(A.δint(m)|m ∈ s)]
s← split_state_set(s)
tlast ← t
tinc← [LB⟨R+⟩(A.ta(m)|m ∈ s),UB⟨R+⟩(A.ta(m)|m ∈ s)]
tinc.open_lowerend← tinc.lowerend /∈ (A.ta(m)|m ∈ s)
tinc.open_upperend← tinc.upperend /∈ (A.ta(m)|m ∈ s)
tnext ← tlast + tinc
return y

Function x-message(Interval⟨X⟩ x, Interval⟨R+⟩ t)→ void
Interval⟨R+⟩ tlocal
tlocal .upperend← t.upperend− tlast .lowerend
tlocal .open_upperend← t.open_upperend∨ tlast .open_lowerend
if t ∩ tlast then tlocal .lowerend← 0, tlocal .open_lowerend← False
else

tlocal .lowerend← t.lowerend− tlast .upperend
tlocal .open_lowerend← t.open_lowerend∨ tlast .open_upperend

s = [LB⟨os⟩(A.δext(m,a,b)|m ∈ s,a ∈ tlocal ,
b ∈ x.message),UB⟨os⟩(A.δext(m,a,b)|m ∈ s,a ∈ tlocal ,b ∈ x.message)]

s.open_lowerend = s.lowerend /∈ (A.δext(m,a,b)|m ∈ s,a ∈ tlocal ,b ∈ x.message)
s.open_upperend = s.upperend /∈ (A.δext(m,a,b)|m ∈ s,a ∈ tlocal ,b ∈ x.message)
s← split_state_set(s)
tlast ← t
tinc← [LB⟨R+⟩(A.ta(m)|m ∈ s),UB⟨R+⟩(A.ta(m)|m ∈ s)]
tinc.open_lowerend← tinc.lowerend /∈ (A.ta(m)|m ∈ s)
tinc.open_upperend← tinc.upperend /∈ (A.ta(m)|m ∈ s)
tnext ← tlast + tinc

Function split_state_set(Interlva⟨S⟩ s)→ void
if #s≤ max_branches_per_step then

forall v ∈ s do
if On forked child then return v else EXIT

else return s
Algorithm 1: Abstract Simulator for atomic models allowing input with occurrence uncertainty
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function for the state set. The chosen function can affect significantly the uncertainty intervals associated to
the result nodes. Same applies for input and output messages.

Two internal variables track simulation chronology. The tlast variable tracks the time of the last event pro-
cessed by the simulator. And tnext tracks the next scheduled internal transition. The initial time received in
the init function is used for initial tlast . The initial tnext is defined using time advance function over the initial
state and the initial tlast . In case model is in passive state tnext is set to /0 as convention.

In addition, a limit of branches per simulation step is needed. Based on it, the simulator decides how to
advance the simulation. If current set of states are not above the limit, it branches the simulation for each of
them, this produces exact advances. Else, it will use bound analysis to advance.

Init simulation
The initialization is introduced by the init-message function. This function reads the parameters, sets up the
variables, and calls split_state_set. This function checks the maximum number of branches per step limit
against the cardinality of the current state set. In case that the state set is low on values, it branches one new
simulation per state value. After the state values are set, the time until next scheduled transition needs to be
computed. To do that, we apply the ta function to the set of new states and construct an interval using lower
and upper bounds of the obtained results. The interval obtained (tinc) provides a relative increment of time,
adding it to tlast , we obtain its absolute value (tnext).

Internal transitions
The *-message function processes the generation of output and internal transition advances. First, the output
is obtained by applying λ to the set described by the uncertainty interval of the current state. Using the lower
and upper bounds of the set of outputs obtained, an uncertainty interval is constructed and returned. Second,
δint is applied to the set of states described by the uncertainty interval of the current state. Using the lower
and upper bounds of the set of states obtained, an uncertainty interval is constructed and set as the new state.
Third, the split_state_set function is called to branch simulation in case the set of states is finite and below
the threshold. Finally, the time for next scheduled transition is computed into tnext .

External transitions
The x-message function processes the input of events into the simulated atomic model. For simplicity,
multiple input events with conflicts are handled at the Main-loop level. Here, we only work with one event
at the time and we assume it is not competing with any other one.

We start by applying δext to the values and occurrences defined by the input uncertainty intervals. Using the
lower and upper bounds of the obtained set of results, we define the new state uncertainty intervals. Then,
we call the split_state_set function to branch the simulation if the results are finite and below the threshold.
Finally, we set the time variables required for next simulation step.

4.2 Main-loop for DEVS simulators handling uncertainty quantifications

The main-loop algorithm takes care of advancing the simulation and feeding the simulator with input events.
The input is an ordered queue of events. Each event contains a message and a time of occurrence. The
message is any non-empty uncertainty interval over model’s input set X. The time is any non-empty interval
in R+. The main loop branches the simulation when events conflict with each other. This loop runs until
every input in the queue is consumed and the model reaches a passive state.

The input queue order is defined by the following criteria: the interval having a value lower than any value
in the other interval goes before the other, and in the case of a draw, the one having a value greater than any
value in the other goes after the other. For example the interval [1, 3] is before [2, 4], because 1 is lower
than any value in [2, 3]. And, [1, 3] is before [1, 4] because 4 is higher than every value in [1, 3]. We note
this order as≪ in the algorithms.
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The main-loop, showed in Algorithm 2, receives the same 6 parameters as the Simulator, and a queue of
events. A simulator for the model is created using the first 6 parameters (s), and the loop iterates until the
input queue is empty and the model is passivated. This algorithm is similar to the one used for simulating
FF-DEVS. The main difference is the type of messages, which include uncertainty quantifications.

Every time main-loop iterates, we advance a simulation step. For advancing, we can call the x-message
function, or the *-message function. What we chose depends on the current schedule of internal transition,
and the events in the input queue. In some cases, it is easy to decide, for example if the queue is empty,
and an internal transition was scheduled, we call the *-message function. In other cases, overlaps and
order of events can make the choice more difficult. Then, we classify each combination of current queue
of input events, and the next scheduled internal transition, as belonging to any of three possible scenarios:
No-Collision, Input-Collision, or Scheduled-Collision.

In the No-Collision scenario, a scheduled transition or an input event is ready to be processed, and its time
uncertainty interval does not intersect with any other event. In the Input-Collision scenario, the first event in
the input queue overlaps its time uncertainty interval with another event in the queue, or with the scheduled
internal transition. In addition, at least one value in the uncertainty interval of the first event of the queue is
before any value in the scheduled internal transition. In the Scheduled-Collision scenario, the uncertainty
interval of the first event in the queue overlaps with the one for the scheduled internal transition. In addition,
there is at least one value in the uncertainty interval of the scheduled internal transition before any value
in the first event of the input queue. Depending on the scenario detected on Algorithm 2, the strategy to
advance current simulation step follows Algorithms 3, 4, or 5.
Data: Atomic model A, Order⟨A :: State⟩ os, Order⟨A :: Y ⟩ oy, Interval⟨R+⟩ init_time, Interval⟨A :: State⟩

init_state, Integer max_branches_per_step, Queue⟨Interval⟨A :: X⟩⟩ input_events
Simulator s← Simulator(A,os,oy, init_time, init_state,max_branches_per_step)
s.init-message(tinit)
while input ̸= /0∨ s.tnext ̸= /0 do

if No_Collision(s.tnext , input) then Check Algorithm 3
if Input_Collision(s.tnext , input) then Check Algorithm 4
if Scheduled_Collision(s.tnext , input) then Check Algorithm 5

Algorithm 2: Main-loop for coordinating simulation using measured input
if input ̸= /0∧ input. f ront.time≪ s.tnext then

s.x-message(input. f ront.message, input. f ront.time)
input.pop()

else s.∗-message(s.tnext)
Algorithm 3: Main-loop advancing on a No-Collision scenario

Having the Order functions as parameter of the simulation allows their usage for results refinement. Running
the same model using the same input with different order functions produces different trajectory-trees. Booth
trees produce supersets of the set of expected trajectories. Then, intersecting them could reduce the error
introduced by the bound analysis steps.

5 CASE STUDY

Here, we present the execution of a Processor model that receives events with uncertainty in both, value
and occurrence. As mentioned in Section 2.2, the Processor model cannot be simulated using the FF-DEVS
Simulator. The parameters of the simulation are described in Table 1.

When using the algorithms presented in Section 4 for this model, we obtain the Figure 1 trajectories.
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Interval⟨R+⟩ bound // time slice for advancing simulation
R+ limit // Time limit used for conflict resolution
if ∃x ∈ input : x ̸= input. f ront ∧ x.time≪ s.tnext then

limit← x.time.upperend : (x ∈ input ∧∀y ∈ input,x.time.upperend ≤ y.time.upperend)
bound← [input. f ront.time.lowerend, limit]
bound.open_upperend← (∃x ∈ input,bound.upperend = x.upperend∧ x.open_upperend)

else
limit = s.tnext .lowerend
bound← [input. f ront.time.lowerend,s.tnext .lowerend]
bound.open_upperend←¬s.tnext .open_lowerend

bound.open_lowerend← input. f ront.time.open_lowerend
forall x : x ∈ input ∧ x.time∩bound ̸= /0 do

FORK
if On forked child then

remove x from input
forall y : y ∈ input ∧ y.time∩bound ̸= /0 do

Interval⟨R+⟩i← [max(x.time.lowerend,y.time.lowerend),y.time.upperend]
i.open_upperend← y.time.open_upperend
if x.time.lowerend = y.time.lowerend then

i.open_lowerend← x.time.open_lowerend∧ y.time.open_lowerend
else if y.time.lowerend < x.time.lowerend then i.open_lowerend← x.time.open_lowerend
else i.open_lowerend← y.time.open_lowerend
replace y on input by Event(i,y.message)

s.x-message(x.message,x.time∩bound)
else

WAIT(every branch is created)
if ∃y ∈ input : y.time⊆ bound then EXIT
else

forall y : y ∈ input ∧ y.time∩bound ̸= /0 do
replace y on input by Event(y.time\bound, y.message)

Algorithm 4: Main-loop advancing on a Input-Collision scenario

Figure 1: Trajectories-tree of Processor
simulation

Table 1: Parameters used in the case study
Processes duration 1 second
Bound functions Infimum and Supremum

Init time 0 seconds
Init state Queued Jobs = /0

Current Job Finishes in 1s
Max branches 4

per step
Input queue {⟨[2,3]s, [1,2]⟩,⟨[2.5,3.5]s, [3,4]⟩}
Order<Y> N<

Order<S> S1 < S2⇔ S1.DJQC < S2.DJQC
∨(S1.DJQC = S2.DJQC
∧S1.QJ < S2.QJ
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Interval⟨R+⟩ bound // time slice for advancing simulation
if ∃x ∈ input : x.time⊆ s.tnext = x.time then

R+ limit// Time limit used for conflict resolution
limit← x.time.upperend : (x ∈ input ∧∀y ∈ input,x.time.upperend ≤ y.time.upperend)
bound← [s.tnext .lowerend, limit]
bound.open_lowerend← s.tnext .open_lowerend
bound.open_upperend← (∃x ∈ input,bound.upperend = x.time.upperend∧ x.time.open_upperend)

else bound← s.tnext
forall x : x ∈ input ∧ x.time∩bound ̸= /0 do

FORK
if On forked branch then

remove x from input
forall y : y ∈ input ∧ y.time∩bound ̸= /0 do

Interval⟨R+⟩ i← [max(x.time.lowerend,y.time.lowerend),y.time.upperend]
i.open_upperend← y.time.open_upperend
if x.time.lowerend = y.time.lowerend then

i.open_lowerend← x.time.open_lowerend∧ y.time.open_lowerend
else if y.time.lowerend < x.time.lowerend then i.open_lowerend← x.time.open_lowerend
else i.open_lowerend← y.time.open_lowerend
replace y on input by Event(i,y.message)

s.x-message(x.message,x.time∩bound)
else

WAIT(every branch is created)
s.∗-message(bound)

Algorithm 5: Main-loop advancing on a Scheduled-Collision scenario

For producing the trajectories-tree of shown in Figure 1, the following steps are followed. First, we set the
initial node using the init variables, which in this case are exact values not requiring branching. Before any
job is introduced as input, the model passivates, therefore tnext is set to /0.

Second, the first event in the input queue is read by the main loop. A message in the interval [1, 2] occurs
between 2 to 3 seconds. This is an Input-Collision event, since next queued event occurs in the interval 2.5
to 3.5 seconds and no internal event is scheduled. Here, the simulation is branched using the bound 2 to 3
seconds. In the first branch, the second event is modified to occur between 3 to 3.5 seconds. In the second
branch, the first event is modified to occur between 2.5 to 3 seconds. In both branches the simulation is
advanced calling the x-message function and new nodes are added in the tree.

For the first branch (A), tlocal is set to [2, 3] seconds, and the state is changed to <1s, [1, 2]>. Since the
second component of state is an interval on Natural numbers, [1, 2], this is a finite set and below the limit of
branches per step. Here, the split_state_sets function branches the simulation in two, having states <1s, 1>
(B) and <1s, 2> (C). The tnext in both new branches is set to [3, 4].

For second branch (D), tlocal is set to [2.5, 3] seconds, and the state is set to <1s, [3, 4]>. Similar to branch
A case, the states are branched into <1s, 3> (E) and <1s, 4> (F). For both branches, tnext is set to [3.5, 4]s.

Continuing on branch B, we have again an input collision, this time between the next event (<[2.5, 3.5] s,
[3,4]>) and tnext ([3, 4]s). This time, the bound is [2.5, 3] s. We branch consuming the event during the
bound (G), and with no consumption (H). In G, tlocal is [0-1] s, and the complete set of possible states could
be described as <[0-1]s, [1:[3, 4], [3, 4]] >. Here, we have four possible queue values in the state 1:3, 1:4,
3, or 4. The first two values are for the case that the time elapsed is less than 1 and the previous jobs are not
dequeued. The last two are the cases when the jobs are dequeued. However, since the first component is a
proper real interval, [0, 1], the set of states is not below the branches per step limit. We work here with its
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bounds and obtain the interval [<0, 1:3>, <1, 4>]. These bounds introduce infinite sets not included in the
complete description, as i. e. <0.5, 1:2>. Finally tnext is then set to [2.5, 4].

For the second branch of B (branch H), the event in the queue is rewritten to <[3, 3.5]s, [3, 4]>. After that,
the loop is iterated one more time entering in a Scheduled-Collision scenario. Here, the bound is set to [3,
3.5]s and two branches are created. One for consuming the event input, which may reschedule the internal
transition (I), and other for consuming internal transition first (J). In I, local is set to [0-1.5], this produces
again same set of infinite value states described in G, but at different occurrence time, [3, 3.5]s. The new
tnext is then set to [3, 4.5]. In the branch J, the Internal transition is executed and a single value is returned
for every case, <1s, /0>, and tnext is set to infinite.

Following now with the G branch, we have no more events for input and we only have to consume the
internal transitions using No-Collision. Here we consume one job for every queue in the set and set first
component of state to 1. Then the new bounded set of states is [<1, /0>, <1, 3>]. The new set has only two
values, then we branch them in K and L. The K branch having the empty queue sets tnext to /0 and the L
branch sets tnext to [3.5, 4]. Next step in L branch consumes the last job and sets tnext to /0. Similarly, we
proceed on branch I. Following the same steps we complete branches C and D.

The trajectories-tree in Figure 1, shows infinite possible results that superset all reachable trajectories. We
have certainty, e.g., that it is not possible for a job to stay queued after 4.5 seconds. However, we cannot state
that there will be one at 4 seconds. However, it may be possible to say that using different order functions.

6 CONCLUSIONS

We showed algorithms based on the DEVS formalisms and the FF-DEVS simulation algorithms. These
algorithms can be used for simulating any DEVS model for input events with uncertainty quantifications.
The results obtained are summarized in a tree, named trajectories-tree. Each branch shows possible set
of occurrences and states using uncertainty quantifications. The results provided are supersets of those
searched, by introducing computation errors. However, we guarantee no result is missing in the tree.

We provided a case study of a Processor model with uncertain input events, and showed the kind of assertions
that could be made.

For future work, we want to explore methods to reduce the introduced errors by splitting intervals in finite
pieces. In addition, we plan to introduce the required language features to the modeling language to describe
uncertain behavior. This will allow for the introduction, i.e., of instrumental models in closed loop systems.
And, study performance in concrete computer implementations.
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