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ABSTRACT 
Crowd simulation can be a useful tool for predicting, 
analyzing, and planning mass-gathering events. The analysis 
of simulated crowds aims to extract observations to assess 
occupant interactions and potential crowd flow issues. This 
paper presents a continuous-space definition of Centroidal 
Particle Dynamics (CPD) crowd models, then proceeds to 
present behaviours observed in the simulated crowds. These 
include organized micro-grouping (flocking), uncooperative 
behaviors like passage blocking and collisions due to 
distracted pedestrians. It also briefly explores how spatial 
design choices could positively impact pedestrian flow. The 
observations might be of interest to designers of urban and 
architectural spaces who are looking to improve pedestrian 
or occupant experience, particularly in high-density crowd 
scenarios. The presented CPD method is additionally 
implemented to run on mobile (Android) devices, allowing 
on-the-field crowd simulation for event planning.  
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1 INTRODUCTION 
We simulate close-range crowd behaviour using a personal 
space preserving method, known as the Centroidal Particle 
Dynamics (CPD) method [1]. As a variant of the social forces 
model [2], the CPD method models close-range interactions 
of pedestrians by explicitly asking them to maintain and 
regain their personal space in their vicinity. In high-density 
crowd scenarios, the concept of personal space preservation 
seems to produce believable results. This intangible concept 
of “personal space” has biological origins, namely the 
Amygdala, the fear center of the brain [3]. That is to say that 

the preservation of personal space (~0.8m-1m) is a fear 
response. Particularly, it’s a mechanism for subconsciously 
affording us a buffer of time to react to negative outcomes, 
especially near strangers. The specific distance varies across 
cultures and social settings, but the biological origin explains 
the near universal range of (~0.8-1m). 

2 CROWD INTERACTION MODEL 
An overview of the CPD method is shown in Figure 1. We 
start by using the entity (pedestrian) positions to construct a 
Personal Space Map (PSM). This map is a global operation 
that explicitly maps out the current personal space (PS) of 
each entity in the scene. Each pedestrian can then examine 
the local area in their immediate surrounding (~0.8m-1m) to 
calculate how much of their personal space was violated and 
the appropriate response. This is done by computing the new 
geometric center (or centroid) of the currently available 
personal space. A vector pointing the pedestrian to this new 
centroid is called the Centroidal Force. In essence, this force, 
if followed, will allow the pedestrian to regain the most 
amount of personal space.   

Once the local (centroidal) force is computed, it is integrated 
with other relevant forces to the pedestrian (e.g. global path, 
friction, maintaining proximity to nearby family members). 
Such forces can be given weights, which can be treated as 
the parameters of the overall pedestrian simulation. As we 
will see throughout the experiments in Sections 3-5, 
modifying these parameters will result in different emergent 
behaviours. Lastly, the acceleration 𝒂𝒂𝒂𝒂𝑡𝑡𝑡𝑡 experienced by the 
pedestrian (due to the net force) at time 𝑡𝑡𝑡𝑡 is finally integrated 
using a time solver. We opt for a Verlet (Symplectic) solver 
as a happy medium between an explicit solver’s 
computational speed, and an implicit solver’s energy 
conservation. The integration of pedestrian position 𝒑𝒑𝒑𝒑 over 
timestep 𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡 is given by: 

𝒑𝒑𝒑𝒑𝑡𝑡𝑡𝑡𝑡𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡 =  2𝒑𝒑𝒑𝒑𝑡𝑡𝑡𝑡 − 𝒑𝒑𝒑𝒑𝑡𝑡𝑡𝑡𝑡𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿2𝒂𝒂𝒂𝒂𝑡𝑡𝑡𝑡 
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Symplectic solvers are popular in video games and in real-
time physics engines. We point the interested reader to [4] 
and [5] for more on this optimization topic. 

2.1 PSM Construction 
The PSM is defined as a tessellation or partitioning of a 2D 
plane 𝐺𝐺𝐺𝐺 (i.e. the ground) on which scene obstacles exist 
(walls, gates, barriers, parked vehicles, etc.) and pedestrians 
traverse. After the PSM construction is done, every point 𝑔𝑔𝑔𝑔 
in plane 𝐺𝐺𝐺𝐺, will belong to one and only one entity (e.g. 
pedestrian_13, obstacle, or unoccupied space). Let 𝑇𝑇𝑇𝑇  denote 
the many-to-one mapping that tessellates plane 𝐺𝐺𝐺𝐺. 

To start, all points 𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺 are considered unoccupied (or 
numerically 0) to represent all the empty space available for 
any pedestrian to traverse: 

𝑇𝑇𝑇𝑇 (𝑔𝑔𝑔𝑔) =  0,    for all 𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺. 

CPD pedestrians will be accounted for by performing a 
constrained Voronoi tessellation with pedestrian positions as 
the Voronoi sites, and the personal space (PS) radius as the 
constraint. Let’s assume that each pedestrian is assigned a 
unique identifier from 1 to 𝑛𝑛𝑛𝑛. If we denote 𝑑𝑑𝑑𝑑(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏) as the 
Euclidean distance between any two points 𝑎𝑎𝑎𝑎 and 𝑏𝑏𝑏𝑏 on plane 
𝐺𝐺𝐺𝐺, then the tessellation now becomes: 

𝑇𝑇𝑇𝑇 (𝑔𝑔𝑔𝑔) = � 𝑖𝑖𝑖𝑖, (𝑑𝑑𝑑𝑑(𝑔𝑔𝑔𝑔, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) < 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) ∧ (𝑑𝑑𝑑𝑑(𝑔𝑔𝑔𝑔, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) < 𝑑𝑑𝑑𝑑�𝑔𝑔𝑔𝑔, 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗�) ∀ 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 
0, otherwise

 , 

where 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ {1, . . . , 𝑛𝑛𝑛𝑛};   𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is the position of pedestrian 𝑖𝑖𝑖𝑖, 
and 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 is the radius of pedestrian 𝑖𝑖𝑖𝑖’s personal space (PS).   

Finally, scene obstacles can be explicitly defined by the 
modeler, for example set 𝐵𝐵𝐵𝐵 ⊂ 𝐺𝐺𝐺𝐺 which denotes areas that the 

pedestrian needs to avoid. Additionally, scene geometry can 
be projected onto 𝐺𝐺𝐺𝐺 as if viewed orthogonally from the top. 
Most scene geometry is already in 2D form (e.g. architectural 
floor plans), but any 3D geometry (e.g. columns or vehicles) 
would need to be explicitly projected onto the PSM for 
ground-level collision avoidance. To project 3D meshes onto 
𝐺𝐺𝐺𝐺, the following transform can be applied per vertex: 

𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺(𝑣𝑣𝑣𝑣) = 𝑣𝑣𝑣𝑣 − (𝑛⃗𝑛𝑛𝑛𝐺𝐺𝐺𝐺 ⋅ 𝑣𝑣𝑣𝑣) ×  𝑣𝑣𝑣𝑣 

Where 𝑛⃗𝑛𝑛𝑛𝐺𝐺𝐺𝐺 is the plane’s unit normal vector, and 𝑣𝑣𝑣𝑣 =
(𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥, 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦, 𝑣𝑣𝑣𝑣𝑧𝑧𝑧𝑧) is a vertex position that has a height 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦 between 
0m (ground) and 3m (reasonable max human height), and 
does not explicitly belong to a ceiling element. Then, for 
every point 𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺 that falls within the polygons formed by 
𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺(𝑣𝑣𝑣𝑣), we set 𝑔𝑔𝑔𝑔 ∈ 𝐵𝐵𝐵𝐵. Hence, the set B contains all the 
boundary points in space 𝐺𝐺𝐺𝐺 that were defined explicitly by 
the modeler along with all the 3d scene obstacle projections. 
When tessellating 𝐺𝐺𝐺𝐺, we -currently- don’t explicitly 
differentiate between different obstacles, and hence assign 
them the same value obstacle (or numerically -1): 

𝑇𝑇𝑇𝑇 (𝑔𝑔𝑔𝑔) =
⎩�
⎨
�⎧ 𝑖𝑖𝑖𝑖, (𝑑𝑑𝑑𝑑(𝑔𝑔𝑔𝑔, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) < 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) ∧ (𝑑𝑑𝑑𝑑(𝑔𝑔𝑔𝑔, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) < 𝑑𝑑𝑑𝑑�𝑔𝑔𝑔𝑔, 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗�) ∧  𝑔𝑔𝑔𝑔 ∉ 𝐵𝐵𝐵𝐵 

−1, for all 𝑔𝑔𝑔𝑔 ∈ 𝐵𝐵𝐵𝐵  
0, otherwise

 , 

The entire PSM tessellation process is memoryless and gets 
reconstructed every time step in the same fashion. In doing 
so, the PSM can account for dynamic obstacles in the scene, 
such as revolving doors.  

The projection step allows us to accommodate basic inclines, 
but more work needs to be done to extend the PSM to allow 
for uneven terrain, stairs, and multi-story evacuation.   

 
Figure 1. Overview of pedestrian update cycle per time frame (𝜹𝜹𝜹𝜹𝜹𝜹𝜹𝜹). 
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2.2 Global Pathfinding 
In addition to the local avoidance maneuvers that pedestrians 
perform to maintain their personal space, they typically also 
have a global target location that they’re trying to get to.  

Classic path-finding methods can be deployed here to find 
the optimal path the pedestrian needs to travel to reach its 
target. If the scene obstacles are defined over a graph, then a 
method like A* path finding [6] would work well in our real-
time environment, as it efficiently computes such global 
paths per entity and can be updated every reasonable interval 
(say 5 seconds) throughout the simulation. But for large scale 
simulations involving thousands of pedestrians with 
relatively few possible global targets within the scene (e.g. 
only dozens of shops within an event, as shown in Figure 2), 
a single global floor map per target is more computationally 
efficient. The map is essentially a 2D gradient field that 
points an entity to the direction it needs to follow to reach the 
global target. See [7], [8] for example implementations of 
this floor field. 

2.3 Net Force 
Regardless of the method used, the global path force vector 
is part of the net force calculation experienced by each 
pedestrian (Figure 1). The net force calculation will be: 

𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) + 𝛾𝛾𝛾𝛾 𝑢𝑢𝑢𝑢𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖, 

where 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) is the global path vector given pedestrian 𝑖𝑖𝑖𝑖’s 
current position in the scene; and 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽, and 𝛾𝛾𝛾𝛾 are scalar 
weights to parametrize the overall behaviour of the entity. 
For instance, an aggressive pedestrian might have low 𝛼𝛼𝛼𝛼 and 
high 𝛽𝛽𝛽𝛽 values, hence emphasizing their own global path with 
little regard for local PS violations (indicated by the 
centroidal force 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖). The force 𝑢𝑢𝑢𝑢𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 is the entity’s resistance 
to non-optimal pathing, as presented in [9]. These parameters 
allow the pedestrian’s behaviour to be tuned and calibrated 
according to input data (e.g. cultural variances). At this 
current stage, we empirically arrived at a default set of 
parameter values: 𝛼𝛼𝛼𝛼 = 0.9;  𝛽𝛽𝛽𝛽 = 0.25; and 𝛾𝛾𝛾𝛾 = 0.1.  

3 OBSERVED BEHAVIOURS IN SIMULATED CROWDS 
We’re primarily concerned with simulating densely crowded 
scenarios where crowd planning/management is important. 
These can range from socially festive events such as sports 
and concerts, to politically-oriented and religious events. If 
crowd density is not properly managed, these otherwise 
peaceful gatherings could result in unintended crowd crushes 
or stampedes with tragic results [10]. Our hope is to “make 
contributions to the growing body of literature regarding 
crowd dynamics”, one of the central recommendations in 
[10] to support safer mass gatherings. The method and tools 
presented here could further facilitate the inclusion of 
architecture and urban design(ers) as solution vectors for this 
critical issue rather than leaning heavily on law enforcement 
and on-site crowd control measures. A “prevention (through 
good design) is better than cure” kind of approach. 

Section 3 will attempt to provide preliminary validation for 
the presented CPD method through cursory comparison 
against real-data. Later sections will extrapolate this 
knowledge to derive results and insights from a few purely 
simulated scenarios. 

3.1 Bidirectional Flow 
When explicit lanes and barriers are not specified, a 
bidirectional stream of pedestrians sharing the same space 
will eventually form lanes on their own. These organically-
emergent lanes reduce friction between the opposing 
streams. Figure 3 shows a video footage capture from a 
bidirectional  experiment [11], and alongside it is the CPD 
simulation. The red-coded people are headed west, while the 
black-coded ones are headed east. Similarly, the red-coded 
simulated pedestrians are headed west, while the blue-coded 
ones are headed east. The simulation displays similar density 
changes across simulation time (low to high to low again). 
Of note is the “fan-out” effect seen towards the end of the 
stream, where entities finally have the space to regain their 
personal space, and immediately spread out. This effect is 
also seen in the simulation (bottom right corner in Figure 3). 

 

Figure 3. Our simulated crowd (right) compared to a real 
bidirectional scenario. Time progresses from top to bottom. 

Figure 2. Crowded event with dense, predominantly bidirectional, 
pedestrian traffic (Oktoberfest, Munich. Intrepix/shutterstock.com) 
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Figure 4, obtained from [12], is a trace of the trajectory of 
bidirectional flow of the reference footage shown in Figure 
3. The emergent lane formation is clearly apparent from this 
trace. The corridor in the footage was 3.6m wide. Larger-
sized experiments are difficult to construct and coordinate 
(e.g. this narrow corridor experiment required over 300 
volunteers). So, one can imagine that data capture of a bigger 
bidirectional flow scenario (like in Figure 2) under controlled 
lab conditions would be difficult.  

Simulation can become a useful tool here. We extrapolated 
the CPD bidirectional scenario by simulating a much wider 
20m virtual corridor. The trace shown in Figure 5 illustrates 
how the model was able to maintain lane formation patterns, 
comparable to the pattern observed in reality (Figure 4), thus 
facilitating the study (and crowd planning) for larger events 
such as the busy bidirectional street shown in Figure 2. 

 

4 UNCOOPERATIVE BEHAVIOUR 
The ideal pedestrian would pay attention all the time to their 
surroundings. By pre-emptively and carefully retaining their 
personal space, they should be able to avoid most collisions 
and disruptions to their intended motion. We see such 
efficiencies in busy crossings, such as Shibuya, Japan, where 
hundreds of pedestrians with competing trajectories are able 
to cross smoothly. 

However, we also simulated a few behaviours that would be 
deemed uncooperative to the collective pedestrian motion, 
effectively disrupting it. Again, there is a lack of controlled 
experiments that capture motion data from such scenarios, so 
we rely on the strength of CPD illustrated so far. 

4.1 Passage Blocking 
Unlike clearly visible and static obstacles in the scene (e.g. 
wall, vegetation, park benches, etc.), static subgroups in the 
crowd can be more difficult detect in a dense scenario until 
very close to that group. Figure 6 shows a bidirectional 
scenario in a 3.5m hallway. We assign a few pedestrians to 
stand still, effectively blocking passage. As expected the 
time it takes the other pedestrians to cross is increased. When 
a much wider 40m corridor was simulated, as shown in 
Figure 7 (think a busy path on a campus, or access to 
cafeteria area), an interesting observation arose. As expected, 
the are surrounding the uncooperative bunch (bright green) 
experienced congestion. However, later in the simulation, we 
observed multiple pockets of congestion forming away from 
the initial bundle. These secondary masses of congestion 
result from the diverted traffic concentrating on the new 
limited space. The insight here is that even if the width of 
passage is much wider than the uncooperating group, a high 
pedestrian flow rate will cause pockets of congestion to 
inevitably form across the width of the corridor. 

 

Figure 6. In narrow hallways, a few pedestrians standing still (e.g. 
chatting, etc.) could cause significant congestion. Left: entities 

standing still (yellow); Right: same simulation time instance with 
no entities blocking the hallway.  

Figure 4. Trace of all pedestrian trajectories from the real 
bidirectional footage in Figure 3. 

 

Figure 5. Trace of the emergent lane formation by virtual 
pedestrians simulated in a wide corridor. 
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4.2 Distracted Pedestrians 
Distracted pedestrians can cause injury to themselves and 
others. Large events, as depicted in Figure 2, are tricky to 
navigate as it is and the possibility for slight collision 
(shoulder rubbing) is not hard to imagine. So, we wanted to 
simulate how distracted pedestrians might make navigating 
such events even harder. The most common cause or 
manifestation of this distracted behaviour is pedestrians 
texting/browsing on their phone. Our models were setup for 
distracted pedestrians as follows:  

• Distraction period: 5 seconds every 15 seconds (~third 
of their time distracted on their phone).  

• Speed slows down to 40% [13]; and the PS weight map 
is culled to match the reduced visibility ahead of the 
distracted entity, as shown in Figure 8. 

Figure 9 illustrates the scene setup while Figure 10 charts a 
sample of collision counts recorded. In the absence of any 
distracted pedestrians, only a handful of instances of high 
collision likelihood have been observed. The count increases 
exponentially as the ratio of distracted entities increases 
within the dense crowd. These collisions count were also 

inversely proportional to corridor width; not due to increased 
bidirectional flow density, but rather due to the lack of 
additional space for undistracted pedestrians to perform their 
avoidance maneuvers. Collisions counts were much less 
pronounced in unidirectional flow, where the biggest effect 
was instead the slowdown of surrounding entity motion. This 
can be explained by the fact that relative velocities between 
the entities are on-average less than the relative velocities in 
bidirectional flow, which gives fully-aware entities a larger 
amount of time to react and manoeuvre around the distracted 
crowd when needed.  

 

Figure 10. Collision counts recorded from scenario in Figure 9. 
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Figure 7. A north-south bound (red-blue) bidirectional flow. Left: entities disrupting the flow by standing still (shown in green) 
lead to pockets of congestion across the entire corridor within a few of minutes. Right: an unimpeded corridor captured at the 

same simulation time as the left scenario; here, lane formation across the full width (~40m) resulted in a more spread-out 
distribution of density, while having already let more people pass through at that point in simulation time.  

Figure 8. The personal space (PS) weight map for a pedestrian 
distracted on their phone (left) is culled from the front due to lack 
of visibility, in contrast to a normally walking CPD kernel from [9].  

Figure 9. An example of 30% distracted pedestrians in north-
south bidirectional flow. Red indicates detected instance of high 
likelihood of collision. Orange indicates all distracted pedestrians. 
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5 ORGANIZED GROUPING 
Up to this point, we’ve assumed that entities are entirely 
individualistic with little to no relation between them; and 
we saw how phenomenon like lane formation which appear 
to be organized are in fact just emergent global behaviours 
due to each entity pursuing entirely individualistic pedestrian 
dynamics. In this section, we examine scenarios that involve 
intentional organization. For example, pedestrians travelling 
in groups (e.g. tourists in a tour group, or a family staying 
close together at a crowded festival). In those cases, the 
entities require additional social forces to be accounted for 
when computing each entity’s net force. But we note that 
personal space (centroidal) forces don’t change just because 
people have organized into groups; every entity still wants to 
maintain a reasonable personal space within its surrounding.  

The difficulty in pursuing such experiments is the lack of real 
data on micro-grouping configurations, especially from 
controlled experiments, to help us calibrate and further 
validate the simulated results. Such large-scale crowd data 
capture projects are in demand. 

5.1 Disruptive Flocking 
In this scenario, a crowd of 990 entities is in bidirectional 
flow through a 40m corridor. Ten special entities are then 
grouped by implementing Boids flocking rules [14] of 
separation, cohesion, and alignment. These forces are fed to 
the special entities’ net force calculation (from Figure 1).  

The special group underwent two simulation tasks: 

a) Starting from the sideline, the group is asked to 
move across the bidirectional stream to reach the 
opposite end together. (as shown in Figure 11). 

b) Starting from the north, the group is asked to move 
along the bidirectional stream to reach the south. 

The average time it took the group to complete task a) is 
83.75 seconds. Task b) took 68 seconds. This confirms the 
intuitive notion that going across the established flow of a 
dense crowd will be slower, as the group has to either wait 
for openings to cross or force their way to disrupt the 
bidirectional flow. While opposing flow enjoyed lane 
formation as an emergent optimization strategy, micro-
groups flocking across the corridor did not display any 
particular flow-optimizing behaviour, further explaining the 
delay in performing task (a). 

The disparity between tasks (a) and (b) did not noticeably 
change for larger micro-groups of more than ten individuals, 
however, as the groups got smaller, nearing individualistic 
behaviour, the disparity between the two tasks was 
significantly reduced, and almost imperceptible in groups of 
two. The immediately observable explanation is that smaller 
groups can seize on smaller “openings” available to cross 
amidst the dense crowd. Additionally, task (b) is limited by 
the emergent bidirectional flow rate, which at high enough 
densities effectively equalizes movement speed for large 
portions of the crowd. In other words, even through task (b) 

seems easier, overtaking people ahead of you in a very dense 
crowd is quite difficult; hence the reduction in disparity 
between tasks (a) and (b).  

5.2 Competitive Pathing 
In this section, we demonstrate an experiment that illustrates 
the potential for architectural/urban design to address dense-
crowd issues.  

The scenario is an artificial setup, where entities are initially 
arranged equally around a ring. Each entity’s target is to 
arrive at the opposite side of the ring. There are no other 
global paths and no organized grouping. This artificial setup 
is designed to test an algorithm’s ability to handle the least 
optimal configuration: all pedestrians are headed into each 
other, and all are competing for the center of the ring to reach 
the other side in the shortest path possible. Such scenarios 
are not too far off from reality. Indeed, major crossing such 
as Shibuya Crossing in Japan can display such a massively 
competitive pedestrian scenario. 

Figure 12 shows the results of the crowd motion at various 
time instances. Recall that the default parameter values were: 
𝛼𝛼𝛼𝛼 = 0.9;  𝛽𝛽𝛽𝛽 = 0.25; and 𝛾𝛾𝛾𝛾 = 0.1. We created 3 variations of 
the crowd, as shown in Figure 12: 

a) High aggression: 𝛼𝛼𝛼𝛼 = 0.7;  𝛽𝛽𝛽𝛽 = 0.3; 𝛾𝛾𝛾𝛾 = 0.4. Here, the 
entities display higher-than-default drive towards the 
final destination (𝛽𝛽𝛽𝛽) and lesser regard for the personal 
space violations (𝛼𝛼𝛼𝛼). Additionally, the entities are highly 
resistant (𝛾𝛾𝛾𝛾) to paths that deviate from the optimal route 
(i.e. straight through the center of the ring). Hence, we 
see heavy congestion and a pattern where the red entities 
pierce through the blue entities to get to the other side. 
All entities share the same parameters; the colors only 
there to help visualize the overall effect.  

• Avg. density experienced by all entities: 0.3 ped/ft2 

• Peak density: 0.8 pedestrians/ft2 

b)  Low aggression: 𝛼𝛼𝛼𝛼 = 0.8;  𝛽𝛽𝛽𝛽 = 0.2; 𝛾𝛾𝛾𝛾 = 0.1. Here, the 
entities display higher regard for personal space 
violations than the aggressive entities in (a). They’re 
also more receptive to deviating from the optimal path.  

• Avg. density experienced by all entities: 0.3 ped/ft2 

• Peak density: 0.7 pedestrians/ft2 

Figure 11. The ten grouped entities (green-coded) are 
explicitly grouped to stay together using the Boids flocking 
rules as they traverse across the scene (task (a)). The rest of 

the crowd is in north-south bidirectional motion. 
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c) A round obstacle is inserted at the center of the ring, with 
the entities maintaining their low aggression parameters.  

• Avg. density experienced by all entities: 0.3 ped/ft2 

• Peak density: 0.5 pedestrians/ft2 

 As if guided by this new obstacle, a cyclone pattern quickly 
forms and facilitates the crowd’s motion. It might be counter-
intuitive to think that an obstacle would ease traffic, but this 
is an example where architectural design can experiment 
with ways to help guide flow without explicitly designating 
single-way lanes. This scenario could easily be a high-traffic 
zone in a busy mall, and the obstacle could be a seating area. 
One can imagine that this experiment could be automated 
through an optimization or artificial neural network (ANN) 
algorithm to find the optimal obstacle shape(s) for each 
setting.  

We’re additionally exploring the ability to run the simulation 
on mobile platforms. The idea is to empower contingency 
and event planners with simulation on-the-field. The CPD 
algorithm has been ported to run on Android (Java + 

OpenGL). Figure 13 shows a demo app running CPD crowds 
on a Nexus 6P.  

Videos of all experiments presented in this paper are made 
available at: http://cell-devs.sce.carleton.ca/publications/  

6 CONCLUSION 
Crowd simulation can be a powerful tool when planning for 
large-scale gatherings (e.g. concerts, sports events) and when 

Figure 13. Demo of CPD running on Android; providing on-
site scenario testing for event planners. It uses low-poly 3D 
character sprites, color-coded to indicate pedestrian density. 

time 

Figure 12. Concentric crowd motion under different parameter values: a) aggressive crowd; b) low aggression crowd;  
and c) round architectural artifact at the center of the ring with a low aggression crowd. 

a) 

b) 

c) 

Starting 
config. 

End 
goal 
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designing highly-trafficked pathways (e.g. in public transit 
stations). This paper presented details of the Centroidal 
Particle Dynamics (CPD) method in continuous form, and 
discussed behaviours observed in simulated crowds. 

We saw how periodically distracted pedestrians (e.g. on their 
phone) cause a non-linear increase in the frequency of 
accidental collision among dense crowds in bidirectional 
flow corridors. These experiments might be further extended 
to study specific pedestrian crosswalks, where cell-phone 
distractions increase the risk of severe injury with vehicles 
nearby. Indeed, there is an ongoing debate in several cities 
across Canada to consider banning the use of cell phones 
while crossing the street. Data-driven experiments on virtual 
crowds could contribute to such a discussion. 

Experiments on passage blocking by individuals in 
bidirectional flow have demonstrated how congestion can 
propagate across the width of a corridor, as the crowd slowly 
reacts to the reduced space available to self-organize into 
bidirectional lanes. This is an interesting phenomenon that 
warrants further detailed studies into the relationship 
between corridor width and congestion potential due to 
uncooperative individuals. The takeaway here is that 
increasing the width alone might not be a sufficient solution 
to reduce congestion propagation issues. Perhaps future 
experiments with more nuanced spatial design strategies 
could point to better solutions for congestion dissipation. 

Further validation efforts are warranted, especially when 
discussing the use of simulation for safety and contingency 
planning. As demonstrated in this paper, CPD is quite 
capable of reproducing the subtle details of emergent 
phenomenon in dense crowd scenarios (e.g. “fanning out” in 
Figure 3), and extrapolating pedestrian motion data collected 
from lab experiments to simulate much wider areas with 
higher crowd counts. However, there is still room for more 
rigorous validation against statistical crowd motion data. 
We’ve highlighted how controlled lab experiments are rare 
for larger crowd counts (thousands of entities and more), and 
how footage analysis is often reduced to macroscopic or 
aggregated statistical measures. So, we look forward to 
improvements in computer vision techniques that can trace 
the microscopic motion paths for individuals in a dense 
crowd, or at least capture detailed statistical measures related 
to their microscopic behaviour. 

In the end, virtual crowds are only a tool. Simulation is meant 
to complement, not replace, existing wisdom, experience, 
field studies, and analytical computations. This additional 
tool facilitates design iteration and visualization; and might 
help highlight previously unforeseen problem areas that 
warrant further investigation, if necessary. 
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