
Formal Abstract Modeling of Dynamic Multiplex Networks

Cristina Ruiz-Martin
Carleton University /

Universidad de Valladolid
Ottawa, ON K1S 5B6 Canada

cruiz@eii.uva.es

Gabriel Wainer
Carleton University

Ottawa, ON K1S 5B6 Canada
gwainer@sce.careleton.ca

Adolfo Lopez-Paredes
Universidad de Valladolid

Valladolid, Castilla y León 47250 Spain
aparedes@eii.uva.es

ABSTRACT
We describe an Abstract Model for Diffusion Processes to simu-
late diffusion processes in multiplex dynamic networks using
formal modeling and simulation (M&S) methodologies (in this
case, the DEVS formalism). This approach helps the users to im-
plement diffusion processes over a network by using the net-
work specification and the diffusion rules. The result of combin-
ing the network specifications and the diffusion rules is an Ab-
stract Model for Diffusion Processes, which is formally defined
in DEVS, and can be converted into a computerized model. Using
the proposed Abstract Model for Diffusion Processes, we can
study a diffusion process in multiplex networks with a formal
simulation algorithm, improving the model’s definition. We pre-
sent a case study using the CDBoost simulation engine.

KEYWORDS
Diffusion Processes, Multiplex Networks, DEVS, Formal Model-
ing and Simulation

ACM Reference format:

Cristina Ruiz-Martin, Gabriel Wainer, and Adolfo Lopez-Paredes. 2018.
Formal Abstract Modeling of Dynamic Multiplex Networks. In Proceed-
ings of SIGSIM Principles of Advanced Discrete Simulation (SIGSIM-
PADS’ 18). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3200921.3200922

1 INTRODUCTION
A diffusion process is a phenomenon where an element is

spread from a place with high concentration to a place where the
concentration is low. The study of such phenomena has been
useful in various domains [1]: Medicine (e.g. studying of spread-
ing of disease over a population), Management (e.g. analyzing
how a new idea or change is accepted in a company), Social Sci-
ence (e.g. checking the effect of an information disseminated in a
Social Network in the behavior of the people), etc.

Diffusion processes have been studied building a multiplex
network (i.e. a set of interconnected entities with different types
of relations) that defines the relations between the entities in-
volved in the process and defining the rules the diffusion process
follows [2]. Then, these specifications are translated into a com-
puter program that is simulated to generate results. Unfortunate-
ly, most of the existing research about simulation of diffusion
processes in multiplex or multiplex dynamic networks does not
provide insight on the M&S methodology and platforms they
use. For example, Xiong et al [3] run a numerical simulation to
study the effect of the diffusion of innovation in social networks
but no information on the simulation aspects is presented. Khelil
et al [4] use their own simulator written in Java to implement a
model to study information dissemination strategies in mobile ad
hoc networks, but no information is provided about the simula-
tion details. Numerous cases are similar to these.

Not only the simulation aspects are neglected: the model def-
inition is normally informal, and difficult to analyze. To over-
come the lack of formalization, and the details of implementa-
tion, we here propose a formal Abstract Model for Diffusion Pro-
cesses (from here on, DAM, Diffusion Abstract Model) that allows
us to define and implement diffusion processes in multiplex dy-
namic networks by using the definition of the network and the
diffusion rules for the process. This model is an integral compo-
nent of a formal architecture defined in [5] that allows defining
and studying diffusion processes in multiplex networks.

Having the DAM formally defined allows one having the dif-
fusion model and its implementation separated, therefore model
verification and validation are simplified and development time
reduced. One can think about the formal model prior to imple-
mentation, analyze different experiments that could be conduct-
ed on the model, and finding complex errors before spending
valuable time in coding. In our case, we use Discrete Events Sys-
tems specifications (DEVS) [6] since diffusion process in multi-
plex networks can be modeled using a discrete event approach
and DEVS is well suited. It provides a formal framework to study
hierarchical modular models, which is well adapted for modeling
diffusion models. Since the models, simulators, and experiments
are independent, the same model can be implemented on differ-
ent platforms and the verification process can be improved. As
the simulation algorithms for DEVS have been formally defined,
this helps in achieving separation of concerns and building com-
plex applications that can be verified with ease, focusing only on
the modeling aspects. To simulate the DEVS models, we use the
CDBoost framework. CDBoost is a cross-platform DEVS simula-
tor implemented in C++11 that allows a direct conversion of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specif-
ic permission and/or a fee. Request permissions from Permissions@acm.org.
SIGSIM-PADS '18 , May 23–25, 2018, Rome, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5092-1/18/05…$15.00
https://doi.org/10.1145/3200921.3200922

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

61

https://www.acm.org/publications/policies/artifact-review-badging#available
https://www.acm.org/publications/policies/artifact-review-badging#reusable

DEVS functions into C++ code. This is the formal methodology
and the simulation tools used to define the DAM, can be used to
achieve repeatable simulation studies.

Some of the advantages of this new model architecture are as
follows:

- the model can be defined using formal modeling and simu-
lation (M&S) methodologies

- we can study dynamic networks, and defined a mecha-
nism for storing the time when the change occurs

- we can update the properties at runtime.
- we defined an XML specification for the behavior of the

diffusion model, which allows us to define complex rules. This
allows us to remove software dependencies.

The rest of the paper is organized as follows. In section 2, we
discuss related work on diffusion processes and we briefly ex-
plain DEVS and CDBoost. In section 3, we present the DAM and
the architecture where it is integrated. In section 4, we explain a
general implementation of the DAM using DEVS. In section 5,
we present some simulation results of the application of the
DAM to study an information diffusion process inside an organi-
zation. Finally, in section 6, we present the conclusions of this
work.

2 BACKGROUND
Many diffusion processes have been specified using differen-

tial equations or other types of rules such as if-then rules. For
example, many diffusion processes in medicine have been stud-
ied using Susceptible-Infected-Recovered (SIR) models, which are
formally defined using differential equations. (e.g. [7]).

In fact, much of the research work on diffusion processes is
based on the definition of new algorithms invented in the field of
Medicine. There are algorithms to study preventive measures to
protect the population against a disease [8], [9], to study the
propagation of specific diseases such as dementia [10], etc. These
algorithms, although developed for medical applications, have
sometimes been applied to study problems in other fields, such
as communications in mobile networks [4] or the diffusion of in-
formation and opinion adoption in social networks [11]–[13].

However, as mentioned in the introduction, the diffusion al-
gorithms are normally converted into ad-hoc computer pro-
grams that include the network. There is no formal definition of
the model. Likewise, the M&S methodology used or the simula-
tion platform where the model is implemented are not detailed.

Generalizing diffusion processes from simplex to multiplex
networks is not simple. Although there have been some advanc-
es in this area, it is still an open research field [14]. For example,
several diffusion processes (e.g. linear diffusion, random walks,
etc.) have already been generalized [2], [15]. In [16], the authors
proposed a match between the elements of diffusion processes in
social networks and the concepts used in Agent Based Modeling
(ABM) techniques. They also proposed to use ABM to study the
diffusion problem in social networks as a method to obtain em-
pirical results and to connect theoretical and empirical research.

Some recent research has focused on formalizing the study of
diffusion processes in multiplex networks [17], [18] using ABM,

Network Theory and DEVS. The authors presented an architec-
ture to simulate information diffusion processes in multiplex dy-
namic networks. They defined a model using a server-proxy ar-
chitecture where the servers represent the behavior of the nodes
in the network model (i.e. the rules to transmit and assimilate
the information), and the proxies define the diffusion rules for
each type of link (i.e. the different types of connections between
nodes) in the network model. Both servers and proxies are mod-
eled using DEVS, and they are coupled to represent network
nodes. The connections between the nodes in the networks are
used to build the DEVS Top Model that represents multiplex
networks. In order to be able to model dynamic networks
(changes on the number of nodes or the connections between
them), the authors store all possible network configurations and
they use Dynamic DEVS [19], and a database to store all the
network configurations and the properties that define the behav-
ior of the nodes.

In [20], the authors adapted the above-mentioned architec-
ture to study business processes in the healthcare sector. They
modified the architecture to include Business Process Model and
Notation (BPMN) in order to study the impact of dynamic alloca-
tion of patients in the healthcare pathway.

Following the research line presented in [17], [18], we intro-
duce a new architecture where the model (DAM) is abstract and
generic and can be instantiated to simulate any kind of diffusion
process in multiplex networks.

We used the DEVS formalism [6] as the formal basis to de-
velop the DAM, as DEVS provides a framework to develop hier-
archical models in a modular way, allowing model reuse and
thus, reducing development time and testing. There are different
DEVS simulators such as JAMES [21], JDEVS [22], DEVSJava
[23], CDBoost [24], etc. We used CDBoost, a fast cross-platform
DEVS simulator implemented in C++11. CDBoost provides sim-
ple interfaces to the modeler, who can transform a DEVS model
to a DEVS simulation. At the user level, it allows defining atomic
and coupled models, and since the output format of the simula-
tion is flexible (i.e. the user can configure it), it can be defined in
such way that helps the analysis of the results. Figures 4 and 5
show the CDBoost simulator definition to implement DEVS
models. Figure 1 shows a template to implement an atomic mod-
el, and figure 2 a template to define coupled models.
1 struct AtomicName_defs{ //Input&Output Port declaration

2 struct input_port1 : public in_port< MSGi1> {};

3 struct input_portn : public in_port< MSGin> {};

4 struct output_port1 : public out_port< MSGo1> {};

5 struct output_portn : public out_port< MSGon> {}; };

6

7 template<typename TIME>

8 class AtomicName{

9 using defs=AtomicName_defs;//port definition in context

10 public:

11 struct state_type{ //Define your state variables here };

12 state_type state;

13 AtomicName() noexcept {//parameters/initial state values}

14

15 //DEVS functions

16 void internal_transition() {//Define internal transition

17 function }

18 void external_transition(TIME e, typename make_message_bags

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

62

19 <input_ports>::type mbs) {

20 //Define your external function here }

21 void confluence_transition(TIME e, typename

22 make_message_bags <input_ports>::type mbs) {

23 // confluence function here }

24 typename make_message_bags<output_ports>::type output()

25 const { // Output function

26 typename make_message_bags<output_ports>::type bags;

27 //Define your output function here. Fill bags

28 return bags; }

29 TIME time_advance() const {

30 //Define the time advance function }

31 };

Figure 1. DEVS atomic model implementation in CDBoost.

As seen in the figure, first, we declare the model ports as a
structure (lines 1-5) and the atomic model as a class (lines 7-31).
Each atomic model class has the set of state variables grouped
together in a structure (lines 11). It also has a model constructor
to instantiate the model parameters and initial values (line 13).
We implement all the DEVS functions (internal, external, conflu-
ence, output and time advance, in lines 15-31) in C++. The code
in bold cannot be modified (it is part of the simulator).

The coupled models are implemented using the template pro-
vided in figure 2. We instantiate all the atomic models with their
parameters (lines 1-6) and then we define the coupled models
(including the top model).
1 //*****INSTANTIATE ATOMICS *******//

2 template<typename TIME>

3 class iestream_int : public iestream_input<int,TIME> {

4 public:

5 iestream_int(): iestream_input<int,TIME>

6 ("inputs/test_filterNetworks.txt") {}; };

7 //*****DEFINE COUPLED *******//

8 struct inp_in_1 : public in_port<int>{};

9 struct outp_out_2 : public out_port<double>{};

10 using iports_C1 = std::tuple< inp_in_1 >;

11 using oports_C1 = std::tuple< outp_out_2 >;

12 using submodels_C1=models_tuple<filterNet, iestream_int> ;

13 using eics_C1=tuple<EIC

14 <inp_in_1,iestream_int, iestream_defs::in> >;

15 using eocs_C1 =tuple< EOC

16 < filterNet, filterNet _defs::out, outp_out_2> >;

17 using ics_C1=tuple<IC

18 <iestream_int,iestream_defs::out,

19 filterNet, fiterNet _defs::in> >;

20

21 using C1=coupled_model <TIME,iports_C1,oports_C1,

22 submodels_C1,eics_C1,eocs_C1,ics_C1>;

23

24 int main(){ //Call the simulator

25 runner<NameOfTimeClass, NameOfTopModel, logger_top> r{0};

26 r.runUntil(300000); }

Figure 2. DEVS coupled and top model implementation in
CDBoost.

Figure 2 is an implementation of the coupled model shown in
figure 3. We first declare the coupled model ports (lines 8-9). We
then define the top model components: input ports (line 10),
output ports (line 11), submodels (line 12), external input
couplings (line 13-14), external output couplings (line 15-16) and

internal couplings (line 17-19). The coupled model (line 21-22) is
a tuple of all these components. The last step is to call the
simulator (lines 24-26). We set the name of the time class and the
top model name (line 25), and simulation running time (line 26).

Figure 3. Example of DEVS coupled model defined in fig. 2

3 ABSTRACT MODEL FOR DIFFUSION PRO-
CESSES DEFINITION
To model and simulate diffusion processes in multiplex dy-

namic networks, we proposed the architecture presented in fig-
ure 4 [5], whose main component is the diffusion abstract model.

Figure 4: An architecture to simulate diffusion processes
in multiplex dynamic networks

The architecture includes six components as follows:
a) Diffusion experiment data collection: we need to ob-

tain all the requirements, specifications, and data available for
the problem under study. This information can be gathered
manually (e.g., through interviews or text analysis), or automati-
cally (e.g. using different types of sensors). In general, the diffu-
sion experiment data is provided by experts in the domain. If the
information is incomplete, the domain experts should provide
additional data, instructions about how to collect it, or, if not
available, approve a set of assumptions.

b) Network model: it is an organized representation of the
Diffusion experiment data using Network Theory. It provides a
formal representation of the relations among the components of
the system. Although this is a formal model, there are different
tools like Gephi [26], Pajek [27], MuxViz [28], etc. that allows the
model to be defined using a graphical interface, and it allows sto-
ring the network model in various formats (tables, graphs, XML).
The model is built following the Diffusion experiment data doc-
ument.

c) Agent-Based model: it is a representation of the behavior
of those in charge of the diffusion process, the objects they use

DIFFUSION
EXPERIMENT

DATA COLLECTION

NETWORK
MODEL

AGENT
BASED
MODEL

DIFFUSION
ABSTRACT

MODEL

DIFFUSION
COMPUTERIZED

MODEL

RESULTS
ANALYSIS

Modeling Modeling

Model Transformation

Modeling Modeling

Model Implementation

Experimental Frame

Operational Validation

Verification Verification

Verification

System/Problem Specification

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

63

for diffusing the element, and the properties of the relationships
among these objects. It is defined using ABM techniques, and it
can be implemented using different methods: specific software
platforms such as NetLogo, Repast [29], using an XML definition,
or a formal specification like a DEVS model.

d) DAM: the DAM, the main object of this research, is an ab-
stract and formal representation of the Diffusion experiment data
that matches elements in both the Network and the Agent-based
models. It is a formal specification (in our case, we use DEVS,
but it could be defined using other formalisms, like System Dy-
namics, State charts, etc.). One could also define the DAM com-
bining different formalisms, as long as there is a way to connect
them (for instance, a metamodel).

e) Diffusion Computerized Model (DCM): it is a computer
implementation of the DAM. It can be built using different simu-
lators; in our case, we used a DEVS simulator called CDBoost
[30]. Once all the components of the DAM are implemented, the
top-level model can be defined either manually or automatically
by processing the Network and Agent-based models.

f) Results Analysis: the results provided by the DCM can be
analyzed using different methods, statistical and data visualiza-
tion tools (such as R [31], PowerBI [32], etc.).

The DAM is the central part of the architecture, which we
will describe in detail. It is defined a generic container that fol-
lows the structure presented in figure 5.

Figure 5. DAM structure

It includes nine components.
1. Node: it is a representation of a vertex in the Network

model, including all its input and output connections. It also
matches an Agent in the in the Agent-Based model, since the
Agents are the nodes in the Network model. Here is where we
define the behavior of the diffusion process on each node.

2. Indirect Link: it represents the properties of the input and
output connections of a node in the Network model. It also
matches the objects used by the agents to carry the diffusion
process. Each of them is different. Once all the objects used by
the agents to carry the diffusion process have been modeled,
each Indirect Link will contain a different subset of them based
on input and output links of the node.

3. Direct Link: it represents direct connections between
Node models. It represents the properties of the links in the Net-
work model that have a direct connection between nodes. In the
Agent-based model, it represents the connections handled with-

out using any additional objects. It can be defined as an atomic
or coupled model based on the complexity and the level of detail
needed for diffusion rules on direct connections. For example, in
the case of information transmission face-to-face, it can be as
simple as an atomic model that transmits the message after a de-
lay or it can be a coupled model that combines the environmen-
tal noise and the distance between the people and introduce a
disturbance in the contentment of the message.

4. Link Connectors: this single model represents how the
objects used by the diffusion agents are connected. It does not
have a direct match to the Network model. In the Agent-based
model, it represents the properties of the relations among the In-
direct Links and how they are connected. Link Connectors are
similar to Direct Links, but they represent the rules the diffusion
process follows between indirect links. For instance, in a diffu-
sion process for communication, if indirect links represent mes-
sages through Facebook or text messaging, the Link Connectors
model can be defined as a coupled model with two components:
Internet and Mobile Network, with a switch to direct the messages
to the appropriate network.

5. Diffusion Element Generator: it generates elements to
be diffused over time. It defines the initial location of the diffu-
sion elements in the Network and Agent-based models, and the
new ones introduced over time.

6. Updaters: they modify the properties of the models at
runtime. They allow us to model dynamic Networks where not
only change the connections but also the nodes and links. With
the updaters, we can modify the properties of the Indirect Link,
Link Connectors, Node and Direct Link models without modifying
any model in the structure.

As we have already mentioned, each of these components
could be modeled and implemented using different formal meth-
ods. In this paper, we will show its definition using DEVS.

The Indirect Link Updater, Link Connectors Updater, Direct
Link Updater and Diffusion Element Generator are defined as four
different instances of a DEVS atomic model that is parameterized
to generate updates in the properties of the other components.
This is done using the information in an external file. It can also
include the element to be diffused in the model. In order to
instantiate these models we use any C++ type (i.e. int, pair, struct
etc.) that matches the information stored in the external file.

The Node Updater can be either an atomic or a coupled model
(depending on the complexity of the rules to update the proper-
ties of the node). It updates the properties of the Nodes like the
other updaters, but in this case, the properties can be updated us-
ing both information stored in an external file and data included
in the model (e.g. the properties of other nodes)

Node and Indirect Link are DEVS coupled models that have
several filters and atomic or coupled models that represent the
behavior of the diffusion process. The atomic and coupled mod-
els inside Node and Indirect Links are parameterized based on the
specifications provided in the Network and the Agent-based
models. We broadcast the diffusion messages, and filter the ones
that should be assigned to each component. The components of
the model identify if the message (i.e. a diffusion element or a
property update) is for them.

Node
Updater

Diffusion
Element

Generator

Link
Connectors

Indirect
Link

Updater

Node
Indirect

Link

Link
Connectors

Updater

Direct
Link

Direct
Link

Updater

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

64

Figure 6 represents the structure of the Indirect Link Coupled.
It has one filter for each input port and an atomic or coupled
model for each type of link on the Indirect Link. It also contains a
Sink (added for validation purposes; if a message arrives at the
Sink, it means that the model received a message for a link not
included in the model; this means there is an implementation er-
ror or a mismatch in the model definition).

Figure 6. Indirect Link coupled model

All these models (both atomic and coupled) have been defined
formally using DEVS. In Appendix I we show the formal defini-
tion of one of these DEVS atomic models: the Switch, used to re-
direct the messages that come from the Indirect Links to the cor-
responding model inside the Node. The implementation of this
model and its behavior is explained in section 4, figure 7. Like-
wise, in Appendix II we show the formal definition of a DEVS
coupled model: Indirect Links (figure 6).

All the models have been defined using the same process. As
we can see, the formal definition of the model contributes to
model validation. For example, in the Switch (see Appendix I), we
may forget to passivate the model when messagesPassing is emp-
ty and we can find such errors by just looking at the formal defi-
nition. We can also find varied errors in the model definition; for
instance, if when there is an input in setAnswerIn we set the state
variable state to SEND, instead of ANSWER, we can detect that
by simply checking the formal model (prior to any implementa-
tion or simulation). In the Indirect Links coupled model (see Ap-
pendix II), we know that the type of message in NodeIn port is
DiffusionElements. When we connect Indirect Links to Node mod-
el, we know that the type of message in the port IndirectLinksOut
of Node model must be DiffusionElements. Otherwise, the model
is not valid. We can find these errors in the model formal speci-
fications with ease, without wasting valuable time in building a
computer model that is wrong, in the early phases of the model,
which will save efforts in the latter phases.

4 DAM IMPLEMENTATION USING DEVS1
As discussed earlier, once all the models have been formally

defined and its formal behavior studied, we to translate them in-
to computerized DEVS models using the CDBoost simulator. The

1 The documentation is available at:
https://github.com/SimulationEverywhere/NEP_DAM.git

parameterized DEVS atomic models, introduced in section 3, are
implemented using the template provided in figure 1.

Figure 7 shows the implementation of the switch atomic mod-
el that is used to redirect the messages that comes from the Indi-
rect Links to the corresponding model inside the Node. We chose
this example as it allows showing some of the implementation
details and the DEVS functions are simple (the rest of the atomic
models are built following a similar logic: they are formally spec-
ified using DEVS, and implemented in CDBoost).
1 struct switch3Out_defs{ //Port definition

2 struct sendOut,answerOut,decideOut: public out_port<MSG> {};

3 struct diffusionElementIn : public in_port<MSG> {};

4 struct setAnswerIn,setDecideIn: public

5 in_port<SET_STATE_ANS> {};

6 struct setSendIn : public in_port<SET_STATE_SEND> {};

7 };

8 class switch3Out { // DEVS atomic model definition

9 public:

10 DeviceType id; //Parameter

11 enum SwitchState{ANSWER,SEND,DECIDE};//state definition

12 state_type state;

13 struct state_type{

14 vector <MSG> outMsg;

15 SwitchState state; };

16..

17 void internal_transition() { state.outMsg.clear();}

18

19 void external_transition(TIME e, typename

20 make_message_bags<input_ports>::type mbs)

21 if(!get_messages<typename defs::setAnswerIn>(mbs).empty())

22 state.state = SwitchState::ANSWER;

23 if(!get_messages<typename defs::setSendIn>(mbs).empty())

24 state.state = SwitchState::SEND;

25 if(!get_messages<typename defs::setDecideIn>(mbs).empty())

26 state.state = SwitchState::DECIDE;

27 for (const auto &x : get_messages<typename

28 defs:: diffusionElementIn >(mbs)) {

29 if(x.to.type == id) state.outMsg.push_back(x); } }

30

31 typename make_message_bags<output_ports>::type output()

32 const { // output function

33 typename make_message_bags<output_ports>::type bags;

34 switch(state.state){

35 case SwitchState::ANSWER:

36 for (int i = 0; i < (state.outMsg.size()); i++)

37 get_messages<typename defs::answerOut>(bags).

38 push_back(state.outMsg[i]);

39 case SwitchState::SEND:

40 for (int i = 0; i < (state.outMsg.size()); i++)

41 get_messages<typename defs::sendOut>(bags).

42 push_back(state.outMsg[i]);

43 case SwitchState::DECIDE:

44 for (int i = 0; i < (state.outMsg.size()); i++)

45 get_messages<typename defs::decideOut>(bags).

46 push_back(state.outMsg[i])

47 }

48 return bags; }

49

50 TIME time_advance() const { // time_advance function

51 return (state.outMsg.empty() ? infinity() : TIME());

52 }

53 };

Figure 7. Computer Model of the Switch atomic model

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

65

The model redirects the message in the DecideIn port to the
appropriate output port based on the model state (answer, de-
cide, send). We use different output ports according to the mod-
el’s state. The model follows the template presented in Section 2.
The external transition function (lines 19-29) stores a messages
received through diffusionElementIn port in OutMsg variable. It
also sets the value of the state variable based on the inputs in the
other ports SetDecideIn, SetSendIn and SetAnswerIn. When the
time is consumed, we activate the output function (lines 31-48),
which sends the messages stored in the OutMsg variable through
the output port that the state variable determines. Then, we exe-
cute the internal transition function (line 17), which clears the
OutMsg variable. Finally, the time advance function (lines 50-52)
passivates the model if there is nothing to send, and triggers an
instantaneous event (time advance 0) is there is something to
send.

We store the parameters that define the behavior of each
model in XML files. If the behavior of all nodes is the same, we
will only have one XML with the parameters for that behavior
(for example, if we study the diffusion of a virus over a popula-
tion, where the individuals are infected with the same probabil-
ity). If we need more complex behaviors, we can define it in dif-
ferent XML files (for instance, if different groups of individuals
react differently to the virus, we might have different XML files
to define the behavior of the nodes; for instance, the individuals
that do not are infected because they are immune, the ones that
are infected with low probability because they are vaccinated
and the ones that are infected with high probability). An extreme
example is where all the nodes have different behavior. In this
case, we have as many XML files as nodes. This case is the one
presented later on to study the information dissemination inside
an organization.

We parse these XML files to instantiate the parameterized
DEVS models in CDBoost and build the DAM automatically. The
model parameters are dependent on the application, however,
the process and the general implementation can be adapted easi-
ly. Here we show how to build the DAM using as a case study a
diffusion process inside an organization.

Figure 8 presents an example of an XML file where we define
the behavior of a person. It represents how the person behaves
in terms of information transmission. In our model, some charac-
teristics are attributes (i.e. they are fully specified in the diffusion
model and therefore, they remain constant) and other are pa-
rameters (i.e. they are not completely defined in the model due
to lack of information, or we want to change them to study their
effect on the process). We use XML tags to define each of the pa-
rameters and attributes (and their values are defined as the con-
tent of the tags).
1 <?xml version="1.0" ?>

2 <AgentBehavior>

3 <Id>First Responder 20</Id>

4 <Location>55D6</Location>

5 <ReactionTime>00:00:10:000</ReactionTime>

6 <AnswerPriorityType>DEVICE_PRIORITY </AnswerPriorityType>

7 <SendPriorityType> PRIORITY_LIST </SendPriorityType>

8 <MyDevices>

9 <PriorityDevice priority="1" device="MOBILEPHONE"

10 send2Multiple="false" sendSeparateFromReceive="false"/>
11 ...

12 </MyDevices>

13 <SortedTasks>

14 <PriorityTask priority="1" task="ANSWER"/>

15 <PriorityTask priority="2" task="SEND"/>

16 ...

17 </SortedTasks>

18 <AnswerDevicePriority>

19 <PriorityDevice priority="1" device="RADIO" />

20 ...

21 </AnswerDevicePriority>

22 <AnswerPersonPriority>

23 <PriorityPerson priority="1" id="1"/>

24 ...

25 <PriorityPerson priority="3" id="97"/>

26 </AnswerPersonPriority>

27 <SendCommandPriority>

28 <PriorityCommandTo priority="1" to="1" msg="

29 Tell population to stay at home" />

30 ...

31 <PriorityCommandTo priority="3" to="97" msg="

32 Tell population to stay at home" />

33 </SendCommandPriority>

34 <ActionExecutionPriority>

35 <PriorityAction priority="1" id="Tell population to stay

36 at home"/>

37 </ActionExecutionPriority>

38 <CommunicationRelations>

39 <RelationPerson id="1">

40 <Device device="RADIO"/>

41 <Device device="MOBILEPHONE"/>

42 </RelationPerson>

43 <RelationPerson id="5">

44 <Device device="BEEPER"/>

45 </RelationPerson >

46 ...

47 </CommunicationRelations>

48 <MessageBehavior>

49 <MsgReceived from="1" content="Tell people to stay at

50 home">

51 <Msg2Send to="5" content="Tell people to stay at home

52 acknowledgement" cmpulsory="true" send2Multiple="false"/>

53 <Action2Do id=" Tell population to stay at home "/>

54 </MsgReceived>

55 </MessageBehavior >

56 <ActionBehavior>

57 <Action id="Tell population to stay at home">

58 <AverageExecutionTime time="00:10:00:000"/>

59 <Location>55D6</Location>

60 <Msg2Send to="1" content=" Tell population to stay at

61 home completed" compulsory="true" 57bsend2Multiple =

62 "false"> <Device device="BEEPER"/></Msg2Send>

63 </Action>

64 </ActionBehavior>

65</AgentBehavior>

Figure 8. XML definition a person’s behavior

The behavior of node (i.e. person) is defined between the tags
<AgentBehavior>. Id is an attribute that identifies the person,
based on the organizational structure. Location is a dynamic at-
tribute that represents the location of the person. Reaction Time
is a parameter that indicates how long it takes to react to a stim-
ulus. Answer Priority Type is a parameter that identifies the pri-
ority of the person to receive a specific command (i.e. the ele-

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

66

ments that are diffused in the model), and it can be based on who
is sending the command, on the device that is receiving the mes-
sage, or at random. Send Priority Type identifies how the person
chooses the commands s/they will send. Their priority can be
based on a priority list, on arrival time or at random. The value
inside the tags represents the value of the attribute. Here, we
have First Responder 20, located in position 55D6. Their reaction
time is 10s, and they prioritize the reception of commands based
on the device they came from. For sending commands, they have
a priority list. MyDevices includes all the devices the agent can
use; and it has as many elements as devices. Each device is rep-
resented as a tag (PriorityDevice) with four attributes (priority,
device, send2Multiple, sendSeparateFromReceive). SortedTasks
represents how the agent sorts the tasks they should conduct
under an emergency scenario. AnswerDevicePriority can have as
many entries as devices. AnswerPersonPriority has as many ele-
ments as individuals the agent has relation with, with two at-
tributes: priority and id. In this example, receiving a message
from person 1 has the highest priority. Person 97 has priority 3.
SendCommandPriority classifies the set of messages the person
may send during an emergency. Every element has three attrib-
utes: priority, receiver (to) and content of a message (msg). In this
example, transmitting “Tell population to stay home” to person 1
has a high priority. Transmitting “Tell population to stay home”
to person 97 has priority 3. ActionExecutionPriority has two ele-
ments: priority and id. In this case, “Tell people to stay at home”
has the highest priority. CommunicationRelations identifies the
relations with different individuals. It has one element per indi-
vidual the agent is connected to. MessageBehavior represents
how the agent behaves when they receive messages. Finally, Ac-
tionBehavior identifies how the person should behave when do-
ing an action.

As we mentioned, in order to implement the coupled models,
we first need to instantiate the atomic models inside them. To do
so, we use one function for each type of coupled. An example of
this function is shown in Figure 9.
1 /***Instantiate atomics inside the coupled***/

2 pair<vector<string>,vector<string>> AtomicsCoupled;

3 create_atomics_text_msg_device(DeviceType, Id, delay,

4 outOfOrderAcknow){

5 create_atomic_inbox(DeviceType,Id, delay,outOfOrderAcknow);

6 string inbox = "inbox"+DeviceType+Id;

7 create_atomic_outbox(DeviceType,Id,delay, outOfOrderAcknow);

8 string outbox = "outbox"+DeviceType+Id;

9 create_atomic_msgClassifierNewReadCon(DeviceType, Id));

10

11 /****Define coupled: first the I/O ports ****/

12 "using iports_"+DeviceType+Id+"=<inp_setOutOfOrder,

13 inp_network, inp_fromKeyboard>;"; // input ports

14 "using oports_"+DeviceType+Id+

15 "=<outp_toScreen,outp_network>;";

16

17 "using submodels_"+DeviceType+Id+"= models_tuple<"+inbox+

18 ","+outbox+","+msgClassifierNewReadCom+">;"; // SUBMODELS

19

20 //External Input Couplings ‐ eics

21 "using eics_"+DeviceType+Id+" =tuple<"EIC<

22 inp_setOutOfOrder," +inbox+",inbox_defs<SetDeviceState>

23 ::setStateIn>,";

24 "EIC<inp_setOutOfOrder,"+outbox+",outbox_defs

25 <SetDeviceState>::setStateIn>,";
26 "EIC<inp_network,"+inbox+", inbox_defs<SetDeviceState>

27 ::newIn>,";

28 "EIC<inp_fromKeyboard,")+msgClassifierNewReadCom+",

29 msgClassifierNewRead_defs<Communication>::in>>;";

30

31 //External Input Couplings ‐ eocs

32 "using eocs_"+DeviceType+Id+" =tuple<";

33 "EOC<"+inbox+",inbox_defs<SetDeviceState>::displayOut,

34 outp_toScreen>,";

35 "EOC<"+outbox+", outbox_defs<SetDeviceState>::displayOut,

36 outp_toScreen>,";

37 "EOC<"+outbox+", outbox_defs<SetDeviceState>::networkOut,

38 outp_network>";

39 >;"

40

41 //Internal Couplings ‐ ics

42 "using ics_"+DeviceType+Id+" =tuple<";

43 "IC<"+msgClassifierNewReadCom+",msgClassifierNewRead_defs

44 <Communication>::newOut,"+outbox+",outbox_defs

45 <SetDeviceState>::newIn>,";

46 "IC<"+msgClassifierNewReadCom+", msgClassifierNewRead_defs

47 <Communication>::readout,"+inbox+" ,inbox_defs

48 <SetDeviceState>::readIn>>;";

49 }

Figure 9 Generating the DEVS computerized model of the
coupled models e-mail, beeper, and fax

These functions use the XML file in figure 8, and we convert
it into the syntax needed by CDBoost. The connections inside
the coupled are defined using the logics explained in figure 2 for
the coupled models implementation. The rules are written in a
way that the output of the function (shown in figure 10) contains
all the code needed. Figure 9 shows the implementation of the
function used to instantiate a coupled model representing devic-
es that send/receive text (i.e. email). Figure 10 shows the output
of this function: the atomics inside the coupled are instantiated
and the coupled model is defined following CDBoost definitions,
so it can be simulated. We have chosen a simple example to ex-
plain the logic behind it. The rest of the functions are imple-
mented following a similar logic taking into account more pa-
rameters of the XML file.
1 //Atomic models inside the instantiated coupled model

2 template<typename TIME>

3 class msgClassifierNewReadCom : public

4 msgClassifierNewRead<Communication, TIME> {

5 public:

6 msgClassifierNewReadCom(): msgClassifierNewRead<

7 Communication, TIME>(TIME("00:00:500")) {};

8 };

9 template<typename TIME>

10 class inboxFAX1 : public inbox<SetDeviceState, TIME> {

11 public:

12 inboxFAX1():inbox<SetDeviceState,TIME>(DeviceId (DeviceType

13 ::FAX,"1"),TIME("00:00:500"), TIME("00:01:000")){};

14 };

15 template<typename TIME>

16 class outboxFAX1 : public outbox<SetDeviceState, TIME> {

17 public:

18 outboxFAX1(): outbox<SetDeviceState, TIME>(DeviceId

19 (DeviceType::FAX,"1"),TIME("00:00:500"),TIME("00:01:000"))

20 {}; };

21 // instantiated coupled model

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

67

22 using iports_FAX1 = tuple<inp_setOutOfOrder,inp_network,

23 inp_fromKeyboard>;

24 using oports_FAX1 = tuple<outp_toScreen,outp_network>;

25 using submodels_FAX1=models_tuple<inboxFAX1,outboxFAX1,

26 msgClassifierNewReadCom>;

27 using eics_FAX1 =std::tuple<

28 EIC<inp_setOutOfOrder,inboxFAX1, inbox_defs

29 <SetDeviceState>::setStateIn>,

30 EIC<inp_setOutOfOrder,outboxFAX1, outbox_defs

31 <SetDeviceState>::setStateIn>,

32 EIC<inp_network, inboxFAX1, inbox_defs

33 <SetDeviceState>::newIn>,

34 EIC<inp_fromKeyboard,msgClassifierNewReadCom,

35 msgClassifierNewRead_defs<Communication>::in> >;

36

37 using eocs_FAX1 =tuple<

38 EOC<inboxFAX1,inbox_defs<SetDeviceState>::displayOut,

39 outp_toScreen>,

40 EOC<outboxFAX1, outbox_defs<SetDeviceState>::displayOut,

41 outp_toScreen>,

42 EOC<outboxFAX1, outbox_defs<SetDeviceState>::networkOut,

43 outp_network> >;

44

45 using ics_FAX1 =std::tuple<

46 IC<msgClassifierNewReadCom, msgClassifierNewRead_defs

47 <Communication>::newOut, outboxFAX1,outbox_defs

48 <SetDeviceState>::newIn>,

49 IC<msgClassifierNewReadCom, msgClassifierNewRead_defs

50 <Communication>::readOut,inboxFAX1, inbox_defs

51 <SetDeviceState>::readIn> >;

Figure 10. Output of the function explained in Figure 9

In Figure 9 (lines 1-9), we instantiate the atomic models used
inside the couple as we show in Figure 10 (lines 1-20). We call a
function that takes as inputs the atomic model parameters and
returns the model instantiated in a format that CDBoost under-
stands. The function takes as inputs the type of text message de-
vice (i.e. e-mail, fax or beeper), the id of the person that owns the
device (i.e. the Id in the agent XML file), and two characteristics
of the devices: the delay introduced in the communication and
the time it takes to acknowledge that it is out of order.

The rest of the figure defines the coupled model instantiation.
Lines 11-19 (Figure 9) returns the coupled model input and out-
put ports and the submodels inside the coupled implemented as a
tuple as shown in Figure 10 (lines 21-26). Lines 20-30 (Figure 9)
generates the External Input Couplings (EIC) as a tuple of tuples
of 3 elements: the name of the input port, the name of submodel
connected to the input port, and the input port name of the sub-
model (lines 27-36 figure10) External Output Couplings (EOC)
are defined as the EIC but with a different order: submodel
name, output port name of the sub model and output port name
of the coupled (see lines 31-39 in Figure 9 for the function defini-
tion and lines 37-43 in Figure 10 for the output). Finally, Internal
Couplings (IC) are defined as a tuple of tuples of four elements:
name of the outcoming subcomponent, sub model output port
name, the name of the incoming sub, sub model input port name.
In Figure 9 (lines 41-49), we show the code that generates the
implementation. The output of the code is shown in Figure 10
(lines 45-51).

The top-level model is built using a program that takes the
XML files where the agents are defined, it reads each XML file
and transforms them into a structure to generate the parameters
of all the functions explained earlier in this section. The output is
a file with thousands of lines of code that CDBoost understands.
This file includes all the atomic and coupled models’ instantiat-
ed, which, once compiled, generates the Diffusion Computer
model ready to generate results.
1 int main(int argc, char ** argv) {

2 int numberOfPersons = stoi(argv[1]);

3 string folder = argv[2];

4 string mainModel = string("../TOPMODEL/MainTop.cpp");

5 string content, tSUBMODELS, tIC, tEIC, tEOC, tIPORTS;

6 string tOPORTS = "outp_taskDeviceFinished,

7 outp_taskActionFinished";

8

9 myModelfile.open(mainModel);

10 TOP = open_coupled(string("TOP"));

11

12 ifstream infile("NEP_Cadmium_Headers");

13 //Define Headers and I/O ports inside MainTop.cpp

14 for(int i=0; infile.eof()!=true ; i++)

15 // get content of infile

16 content += infile.get();

17 myModelfile << content << endl;

18

19 for(int i = 1; i <= numberOfPersons; i++){

20 // DEVICES

21 in = folder+string("P")+to_string(i)+string(".xml");

22 person.load(in);

23 DEVICES = DevicesCoupledModel(person);

24 for(int j = 0; j<DEVICES.first.size(); j++)

25 myModelfile << DEVICES.first[j] << endl;

26 for(int j = 0; j<DEVICES.second.size(); j++)

27 myModelfile << DEVICES.second[j] << endl;

28 }

29 ...

Figure 11. Code snippet of the top model generator

Figure 11 shows a part of the program that generates the top
model (i.e. an instance of the DAM to study an information dif-
fusion process), which can be seen in Figure 12. The rest of the
program is developed following the same logic. We use the
number of agents (i.e. the number of XML files to be loaded) and
their directory path. The number of agents is used to define the
number of instances of Devices and Person models inside the
coupled model, as shown in lines 2 and 19. In lines 5-7 we define
all the variables needed to define the top coupled model. Then,
we define our coupled model. First, we parse a file where the
headers of CDBoost and of the parameterized DEVS atomic
models are defined (lines 12-17). The top model ports are also de-
fined in that file. The output of this part of the program is shown
in figure 18, lines 1-8. Then, we call the functions explained ear-
lier to generate the DEVS component in the top model. In lines
19-28 (Figure 11), we show the definition of all the Devices cou-
pled models. For each agent, we define a Devices model by load-
ing the proper XML and calling the function that generates the
coupled model (line 23). We then generate all the atomic instan-
tiated models and the coupled model in MainTop.cpp (lines 24-
27). Figure 12 shows a code snippet of the output of this.

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

68

1 struct inp_generator : public in_port<Command>{};

2// SET INPUT PORTS FOR COUPLED

3 struct inp_network : public in_port<Communication>{};

4 ...

5 outp_myLocation : public out_port<PeopleLocation>{};

6 // SET OUTPUT PORTS FOR COUPLED

7 outp_network : public out_port<Communication>{};

8 ...

9 template<typename TIME>

10 // Define atomic and coupled unit devices

11 class filterDevicesNetwork1: public

12 filterDevicesNetwork<TIME> {

13 public: filterDevicesNetwork1():

14 filterDevicesNetwork<TIME>("1") {}; };

15

16 template<typename TIME>

17 class filterDevicesSetOutOrder1: public

18 filterDevicesSetOutOrder<TIME> {

19 public: filterDevicesSetOutOrder1():

20 filterDevicesSetOutOrder<TIME>("1") {}; };

21

22 template<typename TIME>

23 class phoneMOBILEPHONE1 : public phone<SetDeviceState,

24 TIME> {

25 public: phoneMOBILEPHONE1(): phone<SetDeviceState,TIME>

26 (DeviceId(DeviceType::MOBILEPHONE, "1"),TIME("00:00:500"),

27 TIME("00:01:000")) {}; };

28

29 template<typename TIME>

30 class phoneLANDLINEPHONE1 : public phone<SetDeviceState,

31 TIME> {

32 public: phoneLANDLINEPHONE1(): phone<SetDeviceState,

33 TIME>(DeviceId(DeviceType::LANDLINEPHONE,"1"),

34 TIME("00:00:500"),TIME("00:01:000")) {}; };

35//DEFINE COUPLED DEVICE

36 using iports_DEVICES1 = tuple<inp_setOutOfOrder,

37 inp_in_com,inp_network>;

38 using oports_DEVICES1 = tuple<outp_out_com, outp_network>;

39 using submodels_DEVICES1 = models_tuple<

40 filterDevicesSetOutOrder1, filterDevicesNetwork1,

41 filterDevicesMicroKeyboard, sinkDevices_atomic,

42 phoneMOBILEPHONE1, phoneLANDLINEPHONE1,>

43 using eics_DEVICES1 = tuple<

44 EIC<inp_setOutOfOrder,filterDevicesSetOutOrder1,

45 filterDevicesSetOutOrder_defs::in>,

46 EIC<inp_in_com,filterDevicesMicroKeyboard,

47 filterDevicesMicroKeyboard_defs::in>,

48 EIC<inp_network,filterDevicesNetwork1,

49 filterDevicesNetwork_defs::in> >;

50 ...

Figure 12. Output of the program defined in Figure 11

5 CASE STUDY: INFORMATION DIFFUSION
In this section, we present a case study where the DAM is

used to simulate an information diffusion process in an organiza-
tion. Inside the organization, the people have different commu-
nication mechanism to transmit the information such as Land-
line Phones, Radio, E-mail, Mobile Phones, Face-to-Face commu-
nications, etc.

We used the original data from an existing Nuclear Emergen-
cy Plan (NEP) in Spain. All the requirements related to the prob-
lem are defined in a requirements document [33]–[35] that con-
tains a comprehensive definition of the NEP organization, the

communications means to transmit the information and the rules
each person follows to transmit the information. Using this data,
we defined the XML files presented in Figure 8 for each person
involved in the diffusion process.

To study the information diffusion process we instantiate the
DAM into a NEP DAM as follows:
‐ Each Node is instantiated as Person (i.e. as a person working

in the emergency), whose behavior is defined using a pa-
rameterized DEVS coupled model.

‐ Each Indirect Link model is instantiated as a Devices model.
Devices is a coupled model that contains all the devices the
specific person can use. It is instantiated using the attribute
<MyDevices> in the XML file.

‐ The Links Connector is mapped into the Networks (i.e. a cou-
pled model that contains all the networks connecting
specific devices: Radio, Internet, satellite, etc.).

‐ The Direct Link is mapped to a Face-to-Face Connector be-
cause in our model the direct links represent people talking
face to face.

‐ Indirect Links Updater and Links Connectors Updater are in-
stantiated to Devices and Networks Updaters respectively
since they introduce change on the state of Devices and
Networks models. They model if the devices or networks
break or recover dynamically.

‐ Node Updater is mapped to People in Location, since the only
attribute of the Person model we want to track is the people
who share location and therefore they can communicate
face-to-face.

‐ Direct Link Updater is not included in this specific instantia-
tion since we are not interested in modifying the properties
that may affect face-to-face communications such as envi-
ronmental noise.

‐ Diffusion Element Generator is converted into the Command
Generator since the diffusion elements in this specific pro-
cess are commands that give information to people to solve
the emergency.

Based on this definition, we executed a version of the NEP
DAM including 149 persons with their Devices, including the
Head of the Nuclear Emergency Plan and the Radiological
Group. The Computer Model is generated automatically using
the XML files that represent the individual behavior of each per-
son, as explained in section 4. If the data presented in the re-
quirements document is stored in a structured way (e.g. tables),
it can be automatically parsed to create these XML files. The data
in the requirements document can also be directly stored in XML
format. If the data is stored in natural language as a set of text
specifications, it should be manually translated to XML format or
an intermediated structured format that allows creating the XML
files automatically.

We have focused on studying what happens when the com-
mand “Establish Emergency Level 0” is decreed by the NEP Di-
rector and the specific communication device inside the Radio-
logical Group fails with different probabilities. The failure may
represent that the device runs out of battery, it does not receive

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

69

a signal, it breaks, etc. We have simulated different scenarios
where this device fails with different probabilities (i.e. 10%, 20%,
etc.).The simulations represent a 95% Confidence Interval for the
mean of people that receive the command “Establish Emergency
Level 0”. The confidence interval is represented as notches in the
plot (figure 13). This analysis provides some information to deci-
sion makers and it is useful to validate our model.

Based on the NEP specifications, we know that 63 people
should receive a command from the head of the radiological
group. We also know that the Radiological group only uses a ra-
diological group device (RGD, a specific device with mixed radio-
phone communication).

Figure 13 shows the number of people that receive the com-
mand “Establish Emergency Level 0” when we simulate different
probabilities of failure of the RGD. We use a box plot in which
the triangle represents the mean, the horizontal line the median
and the circles the outliers.

Figure 13 RGD failures

We can see that, regardless the failure probability, some peo-
ple always receive the command. This number remains constant
since they are part of the NEP leadership and they do not use the
RGD to communicate. However, even with a 10% failure proba-
bility, in 75% of the cases, less than 40 people receive the com-
mand and the median is around 30. If the failure probability in-
creases to 20%, the median is drastically reduced to less than 20
people. This value remains constant when the failure probability
increases over 20%. Based on this analysis and taking into ac-
count the definitions of the NEP, we can conclude that we can-
not afford a failure rate of only 10% in the RGDs because in more
than 75% of the cases less than 40 people out of 63 receive the
command.

Figure 14 shows how many times each device is used based
on the failure probability of the RGD. We use these results to
validate our model.

In figure 14 a), we can see that the beeper is not used (the
mean, medium and quartiles are all zero). Although only the
beeper is shown, we obtain the same results for fax, e-mail, pri-
vate landline phone, two radio channels - REMAR and REMER -,
satellite phone, and TrankiE - a phone-radio used by the police -.
This result is correct, as the specification document says that
none of these devices should be used by the radiological group.

In figure 14 (b-e), we show that the data distribution is
uniform when we simulate failures in the RGD. The number of
attempts to establish the communication causes variability in the
different simulations. These results validate the model based on
the NEP specifications, which says that the Radiological Group
only use the RGD. This restriction justifies why the plots in
figure 14 (a-e) are uniform for the different failure probabilities.

(a)

(b)

(c)

(d)

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

70

(e)

(f)

Figure 14 Number of activations of the different devices
when the RGD fails with different probabilities.

Figure 14 f) shows two different trends. When the failure
probability is low (less than 50%), the number of activations of
the RGD is high. The variability for each failure probability is
also high (i.e. wide interquartile range). When the failure
probability is 50% or greater, the number of activations is
significantly reduced and the variability is lower. The mean of
the number of RGD activations shows a decreasing trend. When
the failure probability is low, there are many devices working. If
a device does not fail, the owner keeps trying to communicate
(i.e. the total number of activations of the device is high). But if
they see that their device is not working, they stop using it.
Therefore, when a device fails and the owner has something to
send the information transmission process is blocked. In those
cases, the number of activations for the devices is lower. An in-
crease in the failure probability is translated in an increase of the
number of devices broken. Then, the probability to block the in-
formation transmission increases. This explains why the mean
decreases. Additionally, figure 14 f) shows, that regardless the
failure probability, there are cases (i.e. simulations) where the
RGD is activated just one time. These results show that there is a
critical person in the process, and they can block the whole in-
formation transmission if their device is broken (this has been
confirmed analyzing the simulation logs and NEP specifications),
which confirms that if the device of the Radiological Group head
is broken, the whole process is blocked.

Based on these results, we can see we need to review the
communications within the Radiological group. The simulation
results allowed us to come with following questions that affect
the organization: why the people within the radiological group
cannot use their mobile phone or e-mail? Is there any security
issue (e.g. authentication, encryption, etc.)? The discussion of
these questions with decision makers will bring new scenarios to

analyze to test different solutions. Then, to simulate a new sce-
narios they just update the model parameters in the XML files,
such as the devices for each person or the communication devic-
es that they can use with other people. Then, they run the pro-
gram that automatically instantiates the DAM and generates the
computerized model and runs the simulation.

6 CONCLUSIONS
We presented an Abstract Model for diffusion processes in

multiplex networks, and discussed its definition and implemen-
tation using DEVS and CDBoost. To show how we get results us-
ing the DAM, we presented an information diffusion process in-
side an organization (a real nuclear emergency plan from Spain),
and studied the effects of failures in their communication chan-
nels, focusing on the effect of different failure probabilities.

By using the DAM to simulate diffusion process in multiplex
dynamic networks, we show how a formal definition provides
several advantages which were detailed along the paper. A major
advantage is that it allows validating the model before imple-
mentation, which improves the model quality and cost. The case
study presented this the paper has shown how the DAM can
generate results for different scenarios without modifying a line
of code. We have also provided information to decision makers
in order to improve the communications inside one group of the
NEP: the radiological group.

Future research lines will focus applying the DAM to study
other diffusion processes in multiplex dynamic networks.

REFERENCES
[1] M. Newman, “The structure and function of complex networks,” SIAM Rev.,

vol. 45, no. 2, pp. 167–256, 2003.
[2] S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno,

and A. Arenas, “Diffusion Dynamics on Multiplex Networks,” Phys. Rev. Lett.,
vol. 110, no. 2, p. 28701, 2013.

[3] H. Xiong, W. Puqing, and G. V Bobashev, “Multiple Peer Effects in the
Diffusion of Innovations on Social Networks: A Simulation Study,” SSRN
Electron. J., 2015.

[4] A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An epidemic model for
information diffusion in MANETs,” Proc. 5th ACM Int. Work. Model. Anal.
Simul. Wirel. Mob. Syst. - MSWiM ’02, p. 54, 2002.

[5] C. Ruiz-Martin, “An architecture to simulate diffusion processes in multiplex
dynamic networks,” in 2017 Winter Simulation Conference (WSC), 2017, pp.
4630–4631.

[6] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of modeling and simulation:
integrating discrete event and continuous complex dynamic systems. Academic
press, 2000.

[7] V. Capasso and G. Serio, “A generalization of the Kermack-McKendrick
deterministic epidemic model,” Math. Biosci., vol. 42, no. 1–2, pp. 43–61, 1978.

[8] W. Wang, Q.-H. Liu, S.-M. Cai, M. Tang, L. A. Braunstein, and H. E. Stanley,
“Suppressing disease spreading by using information diffusion on multiplex
networks,” Sci. Rep., vol. 6, no. 7600, p. 29259, 2016.

[9] C. Granell, S. Gomez, and A. Arenas, “Dynamical interplay between awareness
and epidemic spreading in multiplex networks,” Phys. Rev. Lett., vol. 111, no.
12, pp. 1–10, 2013.

[10] A. Raj, A. Kuceyeski, and M. Weiner, “A Network Diffusion Model of Disease
Progression in Dementia,” Neuron, vol. 73, no. 6, pp. 1204–1215, 2012.

[11] O. Yaǧan and V. Gligor, “Analysis of complex contagions in random multiplex
networks,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 86, no. 3, pp. 1–
11, 2012.

[12] E. Cozzo, R. A. Baños, S. Meloni, and Y. Moreno, “Contact-based Social
Contagion in Multiplex Networks,” Phys. Rev. E - Stat. Nonlinear, Soft Matter
Phys., vol. 88, no. 5, pp. 1–5, Jul. 2013.

[13] E. Estrada and J. Gómez-Gardeñes, “Communicability reveals a transition to
coordinated behavior in multiplex networks,” Phys. Rev. E - Stat. Nonlinear,
Soft Matter Phys., vol. 89, no. 4, pp. 1–5, 2014.

[14] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

71

Porter, “Multilayer networks,” J. Complex Networks, vol. 2, no. 3, pp. 203–271,
Sep. 2014.

[15] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gomez-Gardeñes, M.
Romance, I. Sendiña-Nadal, Z. Wang, and M. Zanin, “The structure and
dynamics of multilayer networks,” Phys. Rep., vol. 544, no. 1, pp. 1–122, 2014.

[16] Y. Jiang and J. C. Jiang, “Diffusion in Social Networks: A Multiagent
Perspective,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 45, no. 2, pp. 198–213,
Feb. 2015.

[17] Y. Bouanan, G. Zacharewicz, B. Vallespir, J. Ribault, and S. Y. Diallo, “DEVS
based Network : Modeling and Simulation of Propagation Processes in a Multi-
Layers Network,” in Proceedings of the Modeling and Simulation of Complexity
in Intelligent, Adaptive and Autonomous Systems 2016, 2016.

[18] C. Ruiz-Martin, Y. Bouanan, G. Wainer, G. Zacharewicz, and A. Lopez-Paredes,
“A hybrid approach to study communication in emergency plans,” in
Proceedings of the 2016 Winter Simulation Conference, 2016, pp. 1376–1387.

[19] F. J. Barros, “Modeling formalisms for dynamic structure systems,” ACM Trans.
Model. Comput. Simul., vol. 7, no. 4, pp. 501–515, 1997.

[20] M. Sbayou, Y. Bouanan, G. Zacharewicz, J. Ribault, and J. François, “DEVS
modelling and simulation for healthcare process application for hospital
emergency department,” Simul. Ser., vol. 49, no. 1, 2017.

[21] J. Himmelspach and A. M. Uhrmacher, “A component-based simulation layer
for JAMES,” in Proceedings of the eighteenth workshop on Parallel and
distributed simulation - PADS ’04, 2004, p. 115.

[22] J.-B. Filippi and P. Bisgambiglia, “JDEVS: an implementation of a DEVS based
formal framework for environmental modelling,” Environ. Model. Softw., vol.
19, no. 3, pp. 261–274, Mar. 2004.

[23] H. S. Sarjoughian and B. P. Zeigler, “DEVSJAVA : Basis for a DEVS-based
Collaborative M & S Environment,” in Proceedings of SCS International
Conference on Web-Based Modeling and Simulation, 1998.

[24] D. Vicino, D. Niyonkuru, G. Wainer, and O. Dalle, “Sequential PDEVS
Architecture,” in DEVS ’15 Proceedings of the Symp on Theory of M&S: DEVS
Integrative M&S Symposium, 2015, pp. 165–172.

[25] C. Ruiz-Martin, G. Wainer, and A. Lopez-Paredes, “DISCRETE-EVENT
SIMULATION OF DIFFUSION PROCESSES IN DYNAMIC MULTIPLEX
NETWORKS,” SIMPAT.

[26] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software for
exploring and manipulating networks.,” ICWSM, vol. 8, pp. 361–362, 2009.

[27] W. De Nooy, A. Mrvar, and V. Batagelj, Exploratory social network analysis
with Pajek. Cambridge University Press, 2005.

[28] M. De Domenico, M. A. Porter, and A. Arenas, “MuxViz: a tool for multilayer
analysis and visualization of networks,” J. Complex Networks, p. cnu038, 2014.

[29] C. Nikolai and G. Madey, “Tools of the Trade : A Survey of Various Agent
Based Modeling Platforms,” J. Artif. Soc. Soc. Simul., vol. 12, no. 22, 2009.

[30] G. Wainer, Discrete-Event Modeling and Simulation: A Practitioner’s Approach.
CRC Press, 2009.

[31] R. Ihaka and R. Gentleman, “R : A Language for Data Analysis and Graphics,”
J. Comput. Graph. Stat., vol. 5, no. 3, pp. 299–314, 1996.

[32] Microsoft, “Power BI,” 2015. [Online]. Available:
https://powerbi.microsoft.com/es-es/.

[33] C. Ruiz-Martin, “Modelo Organizational para la Gestión de Emergencias,”
Universidad de Valladolid, 2013.

[34] C. Ruiz-Martin, M. Ramírez Ferrero, J. L. Gonzalez-Alvarez, and A. Lopez-
Paredes, “Modelling of a Nuclear Emergency Plan: Communication
Management,” Hum. Ecol. Risk Assess. An Int. J., vol. 21, no. 5, pp. 1152–1168,
2015.

[35] C. Ruiz-Martin, A. Lopez-Paredes, and G. Wainer, “Applying complex network
theory to the assessment of organizational resilience,” IFAC-PapersOnLine, vol.
48, no. 3, pp. 1224–1229, 2015.

APPENDIX I
The formal definition of Switch atomic model is as follows: ܵܿݐ݅ݓℎ(݀ܫ) = < ܺ, ܻ, ܵ, ,ܽݐ ,௘௫௧ߜ ,௜௡௧ߜ ,௖௢௡ߜ ߣ >
Where

ܺ = ൞("diffusionElementIn",݂݂݀݅ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ),("setAnswerIn",ݎ݁ݓݏ݊ܣ݁ݐܽݐܵݐ݁ݏ),("setSendIn",݀݊݁ܵ݁ݐܽݐܵݐ݁ݏ),("setDecideIn",݁݀݅ܿ݁ܦ݁ݐܽݐܵݐ݁ݏ) ൢ
∋ ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅݀ ݏݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅ܦ ݏݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅ܦ ∈ ,ݎ݁ݓݏ݊ܣ݁ݐܽݐܵݐ݁ݏ "ℎ ݂݈݅݁݀ "݀݁stinataryݐ݅ݓ ݁ݎݑݐܿݑݎݐݏ∀ ,݀݊݁ܵ݁ݐܽݐܵݐ݁ݏ ݁݀݅ܿ݁ܦ݁ݐܽݐܵݐ݁ݏ ∈ ݁ݎݑݐܿݑݎݐݏ∀

ܻ = ۔ە
ۓ ,"ݐݑܱ݀݊݁ݏ") ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅݀ ∪ ,"ݐݑܱݎ݁ݓݏ݊ܽ") ܷ(∅ ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅݀ ∪ ,"ݐݑܱ݁݀݅ܿ݁݀")ܷ(∅ ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅݀ ∪ ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅݀|(∅ ∈ ݕݎܽݐܽ݊݅ݐݏ݁݀|ݏݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅ܦ) = ۘۙ(݀ܫ

ۗ

ܵ = ൞ ,݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉ ݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉ | ݁ݐܽݐݏ = ݕݎܽݐܽ݊݅ݐݏ݁݀ | ݐ݈݊݁݉݁ܧ݊݋݅ݏݑሼ݂݂݀݅݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉∪ ∅ = ∋ ݁ݐܽݐݏ{݀ܫ ሼܴܧܹܵܰܣ, ,ܦܰܧܵ {ܧܦܫܥܧܦ ൢ

=(ݏ)ܽݐ ൜ ݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉ = ∅ → ݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉∞ = ሼ݂݂݀݅ݕݎܽݐܽ݊݅ݐݏ݁݀ | ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ = {݀ܫ → ,ܵ)௘௫௧ߜ ൠݏ0݉ ݁, ܺ)
= ൞(ܺ ݅݊ diffusionElementIn |݀݁ݕݎܽݐܽ݊݅ݐݏ = (݀ܫ → =+݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉ ܺ(ܺ ݅݊ setAnswerIn) → ݁ݐܽݐݏ = (setSendIn ݊݅ ܺ)ܴܧܹܵܰܣ → ݁ݐܽݐݏ = (setDecideIn ݊݅ ܺ)ܦܰܧܵ → ݁ݐܽݐݏ = ܧܦܫܥܧܦ ൢ

(ܵ)௜௡௧ߜ = ሼ݉݁݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ = ,ܵ)௖௢௡ߜ {∅ ݁, ܺ) = (ܵ)௜௡௧ߜ + ,ܵ)௘௫௧ߜ ݁, (ܵ)ߣ (ܺ = ቐ ݂݅(݁ݐܽݐݏ = (ܴܧܹܵܰܣ → ݁ݐܽݐݏ)݂݅ ݐݑܱݎ݁ݓݏ݊ܽ ݕܾ ݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉ ݀݊݁ݏ = (ܦܰܧܵ → ݁ݐܽݐݏ)݂݅ ݐݑܱ݀݊݁ݏ ݕܾ ݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉ ݀݊݁ݏ = (ܧܦܫܥܧܦ → ݐݑܱ݁݀݅ܿ݁݀ ݕܾ ݃݊݅ݏݏܽܲݏ݁݃ܽݏݏ݁݉ ݀݊݁ݏ ቑ

APPENDIX II
The formal definition of Indirect Links coupled model is as

follows: ݏ݇݊݅ܮ ݐܿ݁ݎ݅݀݊ܫ = < ܺ, ܻ, ,ܦ ሼܯௗ|݀ ∈ ,{ܦ ,ܥܫܧ ,ܥܱܧ ܥܫ >
Where ܺ = ቐ ("NodeIn",݂݂݀݅ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ)ܷ("LinkConnectorsIn",݂݂݀݅ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ)ܷ("UpdaterIn",݁ݐܽ݀݌ܷ݁ݐܽݐݏ) ቑ ݂݂݀݅ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ ∈ ݁ݐܽ݀݌ܷ݁ݐܽݐݏ ݏݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅ܦ ∈ ݏݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅ܦ ݏ݁ݐܽ݀݌ܷ݁ݐܽݐܵ ∈ ∋ stinatary" StateUpdates݁ܦ" ݈݂݀݁݅ ℎݐ݅ݓ ݁ݎݑݐܿݑݎݐݏ∀ ܻ "݁݌ݕܶ݇݊݅ܮ" ݈݂݀݁݅ ℎݐ݅ݓ ݁ݎݑݐܿݑݎݐݏ∀ = ൜ ,"ݐݑܱ݁݀݋ܰ") ,"ݐݑܱݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮ")ܷ(ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅݀ ൠ(ݐ݈݊݁݉݁ܧ݊݋݅ݏݑ݂݂݅݀

ܦ = ൝݁݀݋ܰݎ݁ݐ݈݅ܨ, ,ݎ݁ݐܽ݀݌ܷݎ݁ݐ݅ܨ ,ଵ݁݌ݕܶ݇݊݅ܮ,ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ , ଶ݁݌ݕܶ݇݊݅ܮ … , ݇݊݅ܵ݇݊݅ܮ,௡݁݌ݕܶ݇݊݅ܮ ൡ
ܯ = ቐܯி௜௟௧௘௥ே௢ௗ௘, ,ி௜௧௘௥௎௣ௗ௔௧௘௥ܯ … , ,௅௜௡௞்௬௣௘ଵܯ,ி௜௟௧௘௥௅௜௡௞஼௢௡௡௘௖௧௢௥௦ܯ ,௅௜௡௞்௬௣௘ଶܯ … , ௅௜௡௞ௌ௜௡௞ܯ,௅௜௡௞்௬௣௘௡ܯ ቑ ܥܫܧ
= ൞ ൫(݈݂ܵ݁, ݈ܵ݁ ே݂௢ௗ௘ூ௡), ,݁݀݋ܰݎ݁ݐ݈݅ܨ) ,ூ௡)൯,ቀ൫݈݂ܵ݁݁݀݋ܰݎ݁ݐ݈݅ܨ ݈ܵ݁ ௎݂௣ௗ௔௧௘௥ூ௡൯, ,ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ) ூ௡)ቁݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ ,൫(݈݂ܵ݁, ݈ܵ݁ ௅݂௜௡௞஼௢௡௡௘௖௧௢௥௦ூ௡), ,ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ) ூ௡)൯ൢݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ

ܥܱܧ
=

۔ۖۖەۖۖ
ۓ ൫(1݁݌ݕܶ݇݊݅ܮ, ,(1ே௢ௗ௘ை௨௧݁݌ݕܶ݇݊݅ܮ (݈݂ܵ݁, ݈ܵ݁ ே݂௢ௗ௘ை௨௧)൯,…൫(݊݁݌ݕܶ݇݊݅ܮ, ,(ே௢ௗ௘ை௨௧݊݁݌ݕܶ݇݊݅ܮ (݈݂ܵ݁, ݈ܵ݁ ே݂௢ௗ௘ை௨௧)൯൫(1݁݌ݕܶ݇݊݅ܮ, ,(1௅௜௡௞஼௢௡௡௘௖௧௢௥௦ை௨௧݁݌ݕܶ݇݊݅ܮ (݈݂ܵ݁, ݈ܵ݁ ௅݂௜௡௞஼௢௡௡௘௖௧௢௥௦ை௨௧)൯,…൫(݊݁݌ݕܶ݇݊݅ܮ, ,(௅௜௡௞஼௢௡௡௘௖௧௢௥௦ை௨௧݊݁݌ݕܶ݇݊݅ܮ (݈݂ܵ݁, ݈ܵ݁ ௅݂௜௡௞஼௢௡௡௘௖௧௢௥௦ை௨௧)൯ۙۘۖۖ

ۖۗۖ

ܥܫ

=

ەۖۖ
ۖۖۖ
ۖۖۖ
۔ۖۖ
ۖۖۖ
ۖۖۖ
ۓۖۖ ൫(݁݀݋ܰݎ݁ݐ݈݅ܨ, ,(௅்ଵை௨௧݁݀݋ܰݎ݁ݐ݈݅ܨ ,1݁݌ݕܶ݇݊݅ܮ) ,݁݀݋ܰݎ݁ݐ݈݅ܨ)1ே௢ௗ௘ூ௡)൯,…൫݁݌ݕܶ݇݊݅ܮ ,(௅்௡ை௨௧݁݀݋ܰݎ݁ݐ݈݅ܨ ,݊݁݌ݕܶ݇݊݅ܮ) ,݁݀݋ܰݎ݁ݐ݈݅ܨ)ே௢ௗ௘ூ௡)൯,൫݊݁݌ݕܶ݇݊݅ܮ ,(௅்௡ାଵை௨௧݁݀݋ܰݎ݁ݐ݈݅ܨ ,݇݊݅ܵ݇݊݅ܮ) ,݁݀݋ܰݎ݁ݐ݈݅ܨ)ே௢ௗ௘ூ௡)൯,…൫݇݊݅ܵ݇݊݅ܮ ,(௅்௠ை௨௧݁݀݋ܰݎ݁ݐ݈݅ܨ ,݇݊݅ܵ݇݊݅ܮ) ,ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ)ே௢ௗ௘ூ௡)൯,ቀ݇݊݅ܵ݇݊݅ܮ ,(௅்ଵை௨௧ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ ൫1݁݌ݕܶ݇݊݅ܮ, 1௎௣ௗ௔௧௘௥ூ௡ ൯ቁ݁݌ݕܶ݇݊݅ܮ ,…ቀ(ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ, ,(௅்௡ை௨௧ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ ൫݊݁݌ݕܶ݇݊݅ܮ, ௎௣ௗ௔௧௘௥ூ௡ ൯ቁ݊݁݌ݕܶ݇݊݅ܮ ,ቀ(ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ, ,(௅்௡ାଵை௨௧ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ ൫݇݊݅ܵ݇݊݅ܮ, ௎௣ௗ௔௧௘௥ூ௡ ൯ቁ݇݊݅ܵ݇݊݅ܮ ,…ቀ(ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ, ,(௅்௠ை௨௧ݎ݁ݐܽ݀݌ܷݎ݁ݐ݈݅ܨ ൫݇݊݅ܵ݇݊݅ܮ, ௎௣ௗ௔௧௘௥ூ௡ ൯ቁ݇݊݅ܵ݇݊݅ܮ ,൫(ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ, ,(௅்ଵை௨௧ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ ,1݁݌ݕܶ݇݊݅ܮ) ,ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ)1஼௢௡௡௘௖௧௢௥௦ூ௡)൯,…൫݁݌ݕܶ݇݊݅ܮ ,(௅்௡ை௨௧ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ ,݊݁݌ݕܶ݇݊݅ܮ) ,ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ)஼௢௡௡௘௖௧௢௥௦ூ௡)൯,൫݊݁݌ݕܶ݇݊݅ܮ ,(௅்௡ାଵை௨௧ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ ,݇݊݅ܵ݇݊݅ܮ) ,ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ)஼௢௡௡௘௖௧௢௥௦ூ௡)൯,…൫݇݊݅ܵ݇݊݅ܮ ,(௅்௠ை௨௧ݏݎ݋ݐܿ݁݊݊݋ܥ݇݊݅ܮݎ݁ݐ݈݅ܨ ,݇݊݅ܵ݇݊݅ܮ) ஼௢௡௡௘௖௧௢௥௦ூ௡)൯݇݊݅ܵ݇݊݅ܮ ۙۖۖ

ۖۖۖ
ۖۖۖ
ۖۘ
ۖۖۖ
ۖۖۖ
ۖۖۖ
ۗ

݊ = ݉ ݇݊݅ܮ ݐܿ݁ݎ݅݀݊ܫ ݊݅ ݏ݁݌ݕܶ݇݊݅ܮ# = ݈݁݀݋݉ ℎ݁ݐ ݊݅ ݏ݁݌ݕܶ݇݊݅ܮ# ݈ܽݐ݋ܶ

Session: Modeling and Prediction Approaches SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

72

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 369.90, 738.90 Width 209.70 Height 23.40 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 369.9039 738.8994 209.7022 23.4003

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 12
 0
 1

 1

 HistoryList_V1
 qi2base

