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This work proposes a complexity metric which maps internal connections of the system and its relationship with the environment
through the application of sensitivity analysis. The proposed methodology presents (i) system complexity metric, (ii) system
sensitivity metric, and (iii) two models as case studies. Based on the system dynamics, the complexity metric maps the internal
connections through the states of the system and the metric of sensitivity evaluates the contribution of each parameter to the
output variability. The models are simulated in order to quantify the complexity and the sensitivity and to analyze the behavior of
the systems leading to the assumption that the system complexity is closely linked to the most sensitive parameters. As findings
from results, it may be observed that systems may exhibit high performance as a result of optimized configurations given by their
natural complexity.

1. Introduction

The scientific and technological advances of the second
half of the twentieth century have generated significant
changes in the dynamics of human civilization. The cre-
ation of electronic systems and their network structure
revolutionized communication systems, modifying the social
and economic relations in the world. The systems became
more integrated and interdependent, consequently, more
complex; since the network structure was not restricted to
the computational systems, it is embedded in the human
relationships.

Bar-Yam [1] argues that this increase in complexity is
directly related to the increasing interdependence of the
global economic and social systems, as well as political
instabilities. According to Bar-Yam [1], the interdependence
is characterized by the network control structure, which
considers lateral interactions and transfers decision making
to teams due to the high complexity of collective behavior.

The network structure assigns a prominent role to the
interactions that, in turn, are responsible for the holistic
approach in the study of systems [2–4]. For centuries, scien-
tists tried to explain the whole by its parts, making successive
divisions in search of the smallest structure that characterized
each system and, ultimately, all systems. According to Bak
[5], physicists have been reductionist in considering that the
world could be understood in terms of the properties of
simple building blocks. Although they have been successful
in some cases, the complexity of the systems requires a global
analysis instead.

Likewise, in engineering studies, researchers have real-
ized that subdividing systems to analyze them may cause
significant losses in the internal structure of the original
system [6]. Considering the use of computational tools, it
is preferable to carry out the study throughout the system,
modeling it in terms of inputs and outputs to simulate
its behavior. Another relevant aspect is the number of
parameters with their respective variabilities, which may
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constitute a bottleneck in understanding the systems. In
order to reduce the number of variables, several studies use
sensitivity analysis for fixing nonessential parameters, since
they generate low impact on the output of the system [7, 8].

This holistic approach to systems is based on a philo-
sophical assertion that the whole is more than the sum of
the parts. According to Simon [9], in complex systems, this
statement means that the properties of the whole cannot be
easily inferred from the properties of the parts and their
interaction laws. For this reason, complexity has arisen as a
unifying feature of our world, regardless of the scale and of
the kind of system in analysis [1, 10].

According to Holland [11], the term complexity has
assumed such importance that now designates a scientific
field with many branches. Some authors consider that the
science of the 21st Century is the science of complexity [12].
However, there is no consensus on the quantitative definition
of complexity. None of the various measures of complexity is
universally accepted by scientists, nor they are practical [13].

Lloyd [14] argues that the measures of complexity are
developed to respond to questions about the system with
respect to (i) difficulty of description, (ii) difficulty of cre-
ation, or (iii) degree of organization. In these categories, the
complexity has been approached in different ways, such as
entropy [15, 16], statistics [17, 18], fractal dimension [19, 20],
algorithmic information content [21, 22], dynamic depth [23],
tracking performance [24], and connections [25], among
many other forms.

Based on the fractal dimension asmeasure for self-similar
objects, Balaban et al. [26] proposes a metric for quantifying
emergence and self-organisation extending fractal dimension
to a function, since most of the fractal-like objects have mul-
tiple scaling rates. Thus the multifractal analysis investigates
the statistical scaling laws of complex fragmented geometrical
objects as bacteria aggregates. Balaban et al. [26] observe
the evolution of the spatial arrangement of Enterobacter
cloacae aggregates and apply multifractal analysis to calculate
dynamics changes in emergence and self-organisation within
the bacterial population. As experimental results, the emer-
gence degree decreases as aggregates populate the plate while
the self-organisation degree increases.

Given the relevance of geometrical and computational
frameworks, Joosten et al. [27] define the space-time dia-
grams using small Turing machines with a one-way infinite
tape as a computational model and translate these diagrams
to fractal dimension. The results from this work have shown
that there is a strong relation between the fractal dimension
of the Turing machine used and its runtime complexity.

Among the complexity metrics, fractal dimension is
frequently applied to the analysis of textures, shapes, and
network structures [20, 28, 29]. However, when the detailed
system dynamics is available, other metrics may be more
effective, such as those based on interactions, for instance,
the metrics proposed by Koorehdavoudi and Bogdan [2]
for quantifying complexity from spatiotemporal interactions,
which estimates the free energy landscape of the states
and distinguishes between stable and transition states. This
framework was applied to three natural groups: swimming
bacteria, flying pigeons, and ants.The analysis has shown that

the collective group has had lower energy level and higher
degree of complexity at stable states compared to transition
ones.

Regarding the connections, the complexity may be mea-
sured from the evolution of the system over time, considering
the active connections in each state. The connections depend
mainly on (i) the transition from one state to another due
to the occurrence of events and (ii) the change of the input
parameters that lead to variation in the systemoutput [25, 30].
Through sensitivity analysis, the effect of a given input is
measured on the output, assessing how the uncertainties in
the parameters affect the uncertainty in the system response
[31].

Sensitivity analysis is relevant to the study of complexity
because certain variables may eventually emerge and have a
significant impact on the system. Even if the variables are
hidden, the relevance of each one may be defined previously
by means of its sensitivity and so anticipate strategies if
such variables emerge. According to Holland [11], emergence
characterizes complex systems and helps distinguish these
systems fromothers; however this characteristic has no sharp
demarcation. To define the system as complex is still a
subjective effort.

Here, we focus on the degree of system complexity as
a measure that comprises mechanisms related to internal
and external interactions of the system. Thus considering
(i) the increase in complexity, (ii) the holistic approach to
systems, (iii) complexity as a unifying variable, and (iv)
the absence of a practical and representative quantitative
definition of complexity, we propose a complexity metric
based on connections, which may be weighted according to
the relevance of each one. This metric is applicable to any
system that may be modeled and simulated from its input
parameters and output variables.

The proposed metric covers a wide range of systems in
the physical world. Using this metric, it is possible (i) to
say how complex a particular system is or how much more
complex one system is than another, (ii) to use the complexity
in the objective function of optimization process, in order to
minimize it, or as a constraint, in order not to exceed the value
defined as a reference, and (iii) to support decision making.

In order to apply the proposedmetrics, Section 2 presents
complexity metric developed by adapting the Second Law of
Thermodynamics. Our proposed methodology is presented
in Section 3, where the connection-based complexity and
sensitivity metrics are defined and two systems are modelled
as case study. The complexity and sensitivity of different
models are analyzed in Section 4, leading to the proposal to
include the sensitivity index in the systems complexity metric
as a factor of relevance of each connection (Section 5). By
including this factor, the complexity metric will consider the
descriptive and organizational aspects of the systems, verified
by the number of connections and the relevance of each
connection, respectively.

2. Metric of System Complexity

Several metrics to calculate the complexity have been devel-
oped based on the size of the system, entropy, information,



Complexity 3

cost, hierarchy, organization, and other criteria [14]. The
complexitymeasures are used to compare systems or different
configurations of the same system [13, 32]. In some cases,
these measures are dimensionless, allowing to compare one
value to another one measured in the same system or in
different systems, as long as the nature of them allows
comparison [32, 33].

Some complexity metrics are proposed based on the
information entropy [32, 34–37]. Considering the system
connections, Paiva [33] presents the modeling of Shannon
[38] adapted by Lemes [35] tomeasure the system complexity
using

Γ (]) = −
|]|

∑
𝑖,𝑗=1

𝑝 (𝜒)𝑖,𝑗 log2𝑝 (𝜒)𝑖,𝑗 (1)

where Γ(]) is the complexity of the system connections
equivalent to the entropy in information exchange, ] is the
set of connections between elements of the system, |]| is the
total number of connections, 𝑝(𝜒), ∀𝜒 ∈ ] | 𝑖 ̸= 𝑗 is the
frequency with which the connections between elements 𝑖
and 𝑗 occur, where 𝑝 is given by 𝛼/|]|, in which 𝛼 is the
number of connections between the elements 𝑖 and 𝑗.

3. Methodology

3.1. Proposed Metric of System Complexity. Based on the
Paiva’s [33] modeling, the proposed method measures the
complexity of real systems using expression (2). This met-
ric considers the connections regardless of information
exchange, observing their probabilities according to expres-
sion (3).

𝜓 (𝑐) = −
𝜌

∑
𝑖=1

𝑃 (𝑐𝑖) ⋅ log2𝑃 (𝑐𝑖) (2)

𝑃 (𝑐) = 1
𝑛𝑒 ⋅ (𝑛𝑟 + 𝑛𝑞) (3)

where 𝜓(𝑐) is the system complexity based on connections,
𝑃(𝑐𝑖) is the probability of occurrence of the connection
𝑐𝑖 between two elements, and 𝜌 is the number of active
connections at the instant 𝑡, expressed by (4). The variables
𝑛𝑒, 𝑛𝑟, and 𝑛𝑞 correspond to the number of entities, resources,
and queues at the instant 𝑡, respectively. These variables are
components of the system according to the discrete-event
modeling, which is applied to the systems investigated in
the case studies. In this kind of model, the dynamics of the
system is known with respect to the interaction between
its components, which enables its modeling in terms of
connections.

𝜌 =
𝑘

∑
𝑖=1

𝑛𝑐𝑖 ⋅ 𝑛𝜀𝑖 (4)

where 𝑘 is the number of entities states, 𝑛𝑐 is the number
of active connections per entity in each state, and 𝑛𝜀 is the
number of entities in each state.

４1
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＇2

＄1１％4％5％6

４2４3

Figure 1: Representation of the connections established by the
entities 𝐸1 to 𝐸6.

In (3), 𝑛𝑒 may be generalized to the function 𝑒(𝜉),
seeing that some constraints may rule out the connection
between entities and resources or queues. In this function,
𝜉 corresponds to the constraints, which lead to the decrease
in the number of relationship possibilities. The function 𝑒(𝜉)
may assume values in the interval 1 ≤ 𝑒(𝜉) ≤ 𝑛𝑒.

Expressions (3) and (4) are useful in the context of
discrete event systems, which consist of a class of dynamic
systems that depend on the occurrence of events to the state
change, i.e., new set of values of the attributes at a given
instant [30]. The concept of queue is commonly used in
discrete-event modeling, since the entities often need to share
the system resources. In these cases, the entities have to wait
in queue in order to use certain resources, which provide
them some service or something they need [39].

The proposed metric maps the active connections related
to entities, resources, and queues at any given time 𝑡,
expressed through the relationship matrix𝑀. Figure 1 shows
a system configuration with the entities 𝐸1 to 𝐸6 (in orange)
and the resources 𝐷1, 𝐷2, 𝑇1, 𝑇2, 𝑇3, 𝐺1, and 𝐺2 (in gray).

In Figure 1, there are 8 active connections in the system:
(i) 𝐸1 and 𝑇2, (ii) 𝐸2 and 𝑇3, (iii) 𝐸3 and 𝑇1, (iv) 𝐸3 and 𝐷2,
(v) 𝐸3 and 𝐺1, (vi) the queue 𝑄 and 𝐸4, (vii) 𝐸4 and 𝐸5, and
(viii) 𝐸5 and 𝐸6. No entity is connected to the resources 𝐷1
and 𝐺2; hence they are idle.

3.2. Proposed Metric of Sensitivity Analysis. In this work, a
quantitative analysis is proposed of the curves that express
the impact generated by the changes of the input parameters.
These changes are carried out from the base values of the
parameters, which may be defined as optimized solution
or as the best bet for parameters. While one parameter is
changed, the others are held at their base values and the
output is measured.This approach is known as one-at-a-time
measures.

The system output is given by the function 𝑦 = 𝑓(𝑥1,𝑥2, . . . , 𝑥𝑚). When 𝑦 is the output corresponding to the base
values of the parameters, 𝛽 = 𝑦. A base axis is defined
parallel to the axis of the abscissa in the graph, presenting
constant value in the ordinate corresponding to the output
𝛽, as represented by the dashed line in Figure 2.

Theproposedmethod based on Saraiva [40] calculates the
area of the polygons formed by the base axis and the curves
related to the one-at-a-time measures in order to determine
the system sensitivity to variations in the parameters. The
coordinates in the graph represent the relation between the
inputs and output, enabling the computation of the absolute
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Figure 2: Example of area delimitation for the parameters 𝑥1 and𝑥2.

difference given by the output value obtained and the value 𝛽
(for the base case).

This sensitivity metric has mathematical properties of
entropy related to the lack of information about system
behavior. Likewise the fact that the entropy is maximum
when the most uncertain situation is expressed in terms of
probabilities [38], the most sensitive parameter is the one
that generates greater variability in the model output for the
same conditions of analysis. Besides that, similarly to classical
mechanics in which the experimenter controls the microstate
by manipulating parameters from usual macroscopic ones
[41], the sensitivity analysis addresses the internal mecha-
nisms of the system through the manipulation of its inputs
and outputs.

In order to determine the parameters sensitivity, the
proposed metric requires few one-at-a-time measures (set of
parameters values and the respective output value), which
may be obtained either by experiments performed in the
real system or by simulations performed in the model. In
both cases, the system is observed as a whole, leading us to
believe this may be an appropriate mechanism to measure
complexity. Some researches have showed the relationship
between complexity and sensitivity [42–44]; however none
of them proposes to measure complexity using sensitivity
analysis.

The parameters influence on the model output may
be quantified by the sensitivity indices. Here, we define
sensitivity index 𝑆𝑥𝑖 as the contribution of the area 𝐴𝑥𝑖
concerning the parameter 𝑥𝑖 in relation to the total area,
where𝑚 is the number of parameters, given by

𝑆𝑥𝑖 =
𝐴𝑥𝑖

∑𝑚𝑖=1 𝐴𝑥𝑖 (5)

Figure 2 presents the polygons used to calculate the
sensitivity index for the interval from −60% to 60% of
parameter change from base values. This interval represents

an example of area delimitation for applying the proposed
metric. One may choose any interval comprising between
−100% and 100% of parameter change. The area 𝐴𝑥1 (in
orange) is defined by the base axis and the curve in red given
by variation in parameter 𝑥1 while 𝑥2 is held in its base value
𝑥∗2 . The area 𝐴𝑥2 (in gray) is defined by the base axis and the
curve in blue given by variation in parameter 𝑥2 while 𝑥1 is
held in its base value 𝑥∗1 . The number of polygons for each
parameter is defined by the intersections of the base axis with
the curve of the parameter 𝑥𝑖 that is varying for interval of
interest, as expressed by

𝛿𝑥𝑖 = 𝜂𝑥𝑖 + 1 (6)

where 𝛿𝑥𝑖 is the number of polygons and 𝜂𝑥𝑖 is the number
of intersections of the 𝑥𝑖 curve with base axis in the analysed
interval.

3.3. Model for the Distribution Center Problem. The distribu-
tion center of a company consists of the logistics of products
delivery. After separating the products, an order of delivery
is generated. During the center operation, the following steps
are performed: (1) the distribution center generates the orders
of delivery; (2) the orders are kept in queue until the resources
are available; (3) the truck stays on the dock while the
loading process is performed; (4) the truck leaves for delivery,
releasing the dock and the group of workers for new loading;
(5) the products are transported to their destinations; (6) the
truck comes back to the distribution center for newdeliveries.
In themodel, the duration at each stage corresponds to values
given by probability distributions.

As typical discrete event system, the distribution center
is modelled in terms of entities, queues, and resources. The
entities are the orders of delivery, which are waiting in line
for the availability of the resources: docks, trucks, and group
of workers. The set of discrete states concerning the orders
are (i) waiting in the queue, (ii) being loaded, and (iii) being
transported. Based on the states, how many resources are
being used at every instant of time 𝑡 is determined.

The distribution center works like an open system, in
which new entities may be integrated at any moment; hence
the number of entities (orders of delivery) and the demand
for resources (docks, trucks, and groups of workers) vary over
time. Different performance measures may be chosen for the
problem of the distribution center, e.g., the average waiting
time in queue, the average time for transportation, or the
percentage of use of the system resources.

At this work, the delivery time 𝑡𝑑 of orders is considered
as performance measure, which is the time spent between
the moment that the order is generated and the delivery to
the customers is performed. The variable 𝑡𝑑 is composed of
the sum of the times of (i) waiting in queue, (ii) loading the
products into the truck, and (iii) transporting the products
from the distribution center to the customers. That system is
represented by 𝜆.

The measure for complexity is calculated by (2), in which
the active connections are mapped based on the states of the
orders. The number of active connections is determined by
(4), in which the order in state waiting in the queue adds one



Complexity 5

connection to the system (with the order ahead of it), the
order in state being loaded adds three connections (one with
the dock, one with the truck, and another with the group of
workers), and the order in state being transported contributes
with one connection to the system (with the truck).

The probability of connection occurrence in the distribu-
tion center problem is given by (3), in which the number of
entities is equal to the total number of orders in the system
at the instant 𝑡, considering that each entity (order) may be
attended by any system resource or be kept in queue. In this
model, there is only one queue and the number of resources is
equal to the sum of the number of docks, trucks, and groups
of workers. The queue modeling applies the FIFO (first-in-
first-out) policy, in which the first entity that arrives in the
queue is the first one to be attended and, consequently, to
leave the queue.

Considering that there are 2 docks, 3 trucks, and 2
groups of workers into the distribution center, the system
configurationmay occur at any instant 𝑡 according to Figure 1.
This configuration is expressed by relationship matrix𝑀𝜆 in
(7), in which the columns represent the entities 𝐸1 to 𝐸6 and
the rows represent the queue 𝑄, docks 𝐷1 and 𝐷2, trucks 𝑇1
to 𝑇3, and group of workers 𝐺1 and 𝐺2, in this sequence.

𝑀𝜆 =

[[[[[[[[[[[[[[[[[
[

0 0 0 1 1 1
0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

]]]]]]]]]]]]]]]]]
]

(7)

In (7), the orders 𝐸1 and 𝐸2 are being transported in
trucks 𝑇2 and 𝑇3, respectively, the order 𝐸3 is being carried
by the group of workers 𝐺1 into the truck 𝑇1 parked in the
dock𝐷2, and the orders𝐸4,𝐸5, and𝐸6 are waiting in line.The
resources dock𝐷1 and group of workers𝐺2 are idle; no entity
is connected to them. The number of active connections is
computed from the matrix𝑀𝜆.
3.4. Model for Medical Center Problem. The medical center
consists of the processes of medical care and basic pro-
cedures. The flow at medical center is as follows: (1) the
patients arrive at the medical center; (2) the patients wait
in queue for medical assistance; (3) the patients get the
medical appointment; (4) after the appointment, some of the
patients are released and others are forwarded to (5) perform
basic procedures (receiving medication or doing medical
exams); (6) after medication or exams, some of the patients
are released and others perform new exams or take more
medication, returning to step 5, and some of them wait in
queue to come back to the physician; (7) after a new medical
appointment, some of the patients are directed to further
exams ormedication, returning to step 5, and the others leave
the center.

During the care process, queues of people may be gen-
erated in order to wait for (i) medical appointment, (ii)
medication, and (iii) medical exams. The set of discrete
states concerning patients are (i) waiting in queue, (ii)
having medical appointment, (iii) receiving medication, and
(iv) doing exams. The resources are used according to the
demand.

The medical center is also an open system. It means
that the number of entities (patients) and the demand for
resources (physicians, nurses, and technicians) vary over
time. In this model, the time between arrival and leaving
of patients 𝑡𝑝 is adopted as the performance measure. The
medical center system is represented by 𝜙.

The complexitymeasure is calculated by expression (2), in
which the active connections of medical center are mapped
based on states. The number of active connections is deter-
mined by (4), in which each patient adds one connection, no
matter which state he or she is in.

The connection probability in the medical center is given
by expression (3), where the number of entities is equal to
the total number of patients in the system at the moment
𝑡, considering that each patient may be attended by any
system resource or be waiting in any queue.The resources are
computed by the sum of the number of physicians, nurses,
and technicians. There are four queues in the system: (i)
queue 𝑄1 for medical appointment on arrival, (ii) queue 𝑄2
formedication, (iii) queue𝑄3 for examination, and (iv) queue
𝑄4 for appointment onmedical return after basic procedures.
The queues 𝑄1, 𝑄2, 𝑄3, and 𝑄4 are defined according to the
FIFO (first-in-first-out) policy, which states that each entity
waiting for resource availability is added to the end of the
respective queue.

Considering the medical center have 2 physicians, 2
nurses, and 1 technician in its staff, the configuration pre-
sented in matrix 𝑀𝜙 (8) may occur at any instant. Each
column represents the patients𝑃1 to𝑃7 and the rows represent
the queues 𝑄1 to 𝑄4 and the resources: physicians 𝐹1 and 𝐹2,
nurses𝑁1 and𝑁2, and technician 𝐶1, in this sequence.

𝑀𝜙 =

[[[[[[[[[[[[[[[[[[[
[

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0

]]]]]]]]]]]]]]]]]]]
]

(8)

In (8), the patient 𝑃1 is doing exam with the technician
𝐶1, patients 𝑃2 and 𝑃6 are receiving medication by nurses
𝑁1 and 𝑁2, respectively, patient 𝑃3 is waiting in queue 𝑄3
to be examined, 𝑃4 and 𝑃5 are consulting with physicians 𝐹1
and 𝐹2, respectively, and 𝑃7 is waiting in queue 𝑄1 to get an
appointment.
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Figure 3: Delivery time 𝑡𝑑 and complexity 𝜓(𝑐)𝜆 measures related to scenarios of the distribution center.

4. Results

4.1. Case Study 1: Distribution Center. The simulation of the
distribution center model presented in Section 3.3 gener-
ated orders of delivery with probability distribution 𝑍𝜆1 ∼
exp(120), the groups of workers loaded the products in the
truck during time 𝑍𝜆2 ∼ 𝑁(100, 30), and the truck spent time
𝑍𝜆3 ∼ 𝑈(120, 240) for transporting the products to customers
and𝑍𝜆4 ∼ 𝑈(120, 240) for returning to the distribution center.

The number of resources used in the simulation ranged
from 1 to 10 for docks, 1 to 15 for trucks, and 1 to 10 for groups
of workers, compounding 1, 500 scenarios. The simulation
was performed for 180 days by scenario, considering 24
daily hours of operation and that each order of delivery
corresponds to the truckload. In the simulated scenarios,
complexity 𝜓(𝑐)𝜆 and delivery time 𝑡𝑑 were calculated.

Thenormalized values of 𝑡𝑑 and𝜓(𝑐)𝜆 for all scenarios are
presented in Figure 3. As the simulation is the combination
of resources docks, trucks, and groups of workers, in this
order, in Figure 3, the peaks of 𝑡𝑑 (in blue) correspond to the
combinations in which there was only one truck. At every
change in the number of docks, one truck was used during
10 scenarios, leading to the highest values of 𝑡𝑑 and 𝜓(𝑐)𝜆
(in red). Furthermore the oscillations that occur between
values 0.1 and 0.3 of 𝜓(𝑐)𝜆 are derived from changes in the

number of trucks, indicating greater sensitivity in this system
parameter.

Figure 3 shows that whenever the number of truck is > 6,
values of 𝑡𝑑 approach 𝑧𝑒𝑟𝑜. In the 1, 500 scenarios, the lowest
complexity is 𝜓(𝑐)𝜆 = 0.2768, which corresponds to lowest
delivery time and to scenario with the greatest number of
available resources, as shown in Table 1. The highest delivery
time is 𝑡𝑑 ≈ 340× bigger than the lowest time and it
corresponds to the greatest complexity and lowest number of
resources.

The complexity measure is a way of seeing the system
as a whole. The connections mapping concerning the states
expresses the system configuration. Thus the relation 𝑅𝜆𝑐
between performance measure and complexity expressed by
(9) may lead to some findings.

𝑅𝜆𝑐 = 𝑡𝑑
𝜓 (𝑐)𝜆 (9)

The lowest (in bold) and greatest (in italic) values of 𝑡𝑑,𝜓(𝑐)𝜆 and normalized 𝑅𝜆𝑐 are shown in Table 2. The lowest
value of 𝑅𝜆𝑐 refers to 𝑡𝑑 = 3.15 ⋅ 102, only 1.12× the lowest
𝑡𝑑, whereas the number of resources was approximately 72%
lower than the scenario of lowest 𝑡𝑑.The system performance
was 300× greater than the worst case and only 0.11× lower
than in the best case.This shows that the use of resources was



Complexity 7

Table 1: Scenarios related to the lowest and greatest values of 𝑡𝑑, 𝜓(𝑐)𝜆, and 𝑅𝜆𝑐 .
𝑡𝑑 𝜓(𝑐)𝜆 𝑅𝜆𝑐 dock truck group of workers
2.81 ⋅ 102 0.277 0.007 10 15 10
3.15 ⋅ 102 0.686 0.003 2 6 2
9.46 ⋅ 104 2.778 0.222 1 1 1
9.46 ⋅ 104 0.617 1 10 1 10

Table 2: Scenarios related to the lowest and greatest values of 𝑡𝑝, 𝜓(𝑐)𝜙, and 𝑅𝜙𝑐 .
𝑡𝑝 𝜓(𝑐)𝜙 𝑅𝜙𝑐 physician technician nurse
5.34 ⋅ 101 0.252 0.082 8 10 13
5.59 ⋅ 101 0.241 0.089 8 10 15
5.82 ⋅ 101 0.359 0.062 7 7 5
1.16 ⋅ 103 0.493 0.908 3 3 15
1.03 ⋅ 103 0.811 0.490 3 2 5
1.06 ⋅ 103 0.410 1 3 8 15

optimized, since the ratio value 𝑅𝜆𝑐 indicates the lowest cost
in terms of complexity for each minute of permanence of the
entities in the system.

4.2. Case Study 2: Medical Center. The model of the medical
center presented in Section 3.4 was simulated following the
flow in which the patients (1) arrive at the medical center
in time with probability distribution 𝑍𝜙1 ∼ exp(5); (2) wait
in queue 𝑄1 for medical appointment; (3) are attended by
physician for a time𝑍𝜙2 ∼ 𝑁(15, 5); (4) after the appointment,
1% of patients are released and 99% are forwarded to (5)
perform basic procedures, wherein (5a) 40% of them wait
in queue 𝑄2 in order to receive medication and (5b) 60% of
them wait in queue 𝑄3 for doing medical exams; (6) after
medication or exams, 10% of patients are released, 40%,
perform new exams or take more medication, returning to
step 5, and 50% wait in queue 𝑄4 to return to the physician;
(7) after a new appointment, 40% of patients are directed to
further exams or medication, returning to step 5, and the
other 60% leave the medical center.Themedication time lasts
𝑍𝜙3 ∼ 𝑁(20, 5), the duration of exams is 𝑍𝜙4 ∼ 𝑁(15, 5),
and the return to the physician in new appointment lasts
𝑍𝜙5 ∼ 𝑁(10, 5).

Thenumber of physicians, technicians, and nurses used in
the simulation ranged from 3 to 8, 2 to 10, and 5 to 15, respec-
tively, compounding 594 different scenarios. The simulation
was performed for 180 days by scenario, considering 24 daily
hours of operation.Themedical care time 𝑡𝑝 in minutes spent
within the medical center by patient and complexity 𝜓(𝑐)𝜙 of
the system was calculated for all scenarios.

The lowest complexity obtained from all scenarios
𝜓(𝑐)𝜙 = 0.2407 occurred when the greatest number of
resources were used, i.e., 8 physicians, 10 technicians, and
15 nurses. The greatest complexity 𝜓(𝑐)𝜙 = 0.8105 occurred
when there was the lowest number of resources, i.e., 3
physicians, 2 technicians, and 5 nurses, therefore lengthy
waiting times.

Figure 4 presents the percentage values of resource
utilization and the measure of normalized complexity for all
scenarios. It may be observed that in the 200 initial scenarios,
where there were less than 5 physicians, the utilization of
this resource got values between 0.9 and 1. The peaks of
complexity occurred whenever the number of physicians
was increased but the number of nurses and the number of
technicians were minimum for analyzed scenarios, causing
increase in the size of the queues 𝑄2 and 𝑄3.

In the scenario with the lowest complexity, the time 𝑡𝑝
that patients were in medical center was approximately 14.9,
58.7, 71.13, and 74.07minutes for those who left (1) without
examination or medication, (2) after doing exams and/or
taking medication, (3) after a new medical appointment, and
(4) after all procedures, respectively. For the scenario with the
greatest complexity, the times were 774.68, 1032.20, 1191.25
and, 1128.28minutes, respectively, due to the time in queues.

Considering the relation between performance and com-
plexity measures for medical center, expressed by (10), the
lowest (in bold) and greatest (in italic) values of 𝑡𝑝, 𝜓(𝑐)𝜙 and
normalized 𝑅𝜙𝑐 are shown in Table 2.

𝑅𝜙𝑐 =
𝑡𝑝

𝜓 (𝑐)𝜙 (10)

In Table 2, the lowest value of𝑅𝜙𝑐 equal to 0.062 represents
reduced number of resources compared to other scenarios
with lowest values of 𝑡𝑝 and𝜓(𝑐)𝜙. Even with fewer resources,
the system achieved near-peak performance values when
𝑅𝜙𝑐 = 0.062. The greatest values of all variables were found
when the number of physician was lowest, indicating this
parameter as the most sensitive in the system.

4.3. Case Study 3: Sensitivity Analysis. The complexity of
the distribution center and medical center was analyzed in
Section 4.1 and Section 4.2, respectively. As analysis findings,
some parameters were pointed out as more sensitive due to
the significant impact generated by their scarcity. In order to
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Figure 4: Resource utilization and complexity 𝜓(𝑐)𝜙 related to scenarios of the medical center.

Table 3: Data for sensitivity analysis of distribution center and
medical center.

resource range base values
dock 1 − 4 2
truck 1 − 12 6
group of workers 1 − 4 2
physician 3 − 8 7
technician 2 − 10 7
nurse 5 − 10 5

check how sensitive each parameter is, the metric proposed
in the Section 3.2 was applied to the models.

In order to obtain the one-at-a-time measures, the con-
figuration given by the lowest value of 𝑅𝑐 was assumed as
the optimized solution and the base for the local sensitivity
analysis, as presented in Table 3. The parameter influence
on model output was calculated according to the variability
of the parameters. The range chosen for variation expresses
values between −100% and 100% from base value of each
parameter, shown in Table 3. In both case studies, the
complexity was considered as model output for calculating
the sensitivity index.

The results obtained by the sensitivity analysis are pre-
sented in the following sections. The metric proposed in
Section 3.2 was used to calculate the sensitivity indices, which
measures howmuch the area between curve of the parameter
variation and base axis represents in relation to the sum of
the areas of all parameters. Before applying that method, two

Table 4: Sensitivity index for distribution center related to output
𝜓(𝑐)𝜆.
interval 𝑆𝜆𝑑𝑜𝑐𝑘 𝑆𝜆𝑡𝑟𝑢𝑐𝑘 𝑆𝜆𝑔𝑟𝑜𝑢𝑝
[−1, 1] 0.09 0.82 0.09
[−0.5, 1] 0.18 0.64 0.18

intervalswere chosen for analysis.Thefirst interval consists of
the variation of the parameters between−100%and 100%and
the second one refers to the interval in which all parameters
have been changed according to their range presented in
Table 3.

4.3.1. Sensitivity Analysis of Distribution Center. The one-at-
a-time measures for the distribution center are presented in
Figure 5 related to the complexity 𝜓(𝑐)𝜆 as model output. As
observed in the graphs, the lower the number of the resource
truck, the greater the impact on the complexity, especially
between −100% and −30%.

According to the values presented in Table 4, the resource
truck presented highest sensitivity index, equal to 82% for the
interval [−1, 1] and 64% for the interval [−0.5, 1], where all
parameters may be changed. Values change of that parameter
inferior to −30% from base value led to significant impact
on the system, corresponding to the scenarios in which there
were less than five trucks at the distribution center.

The resources dock and group of workers presented the
same values for sensitivity indices, equal to 9% for the interval
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[−1, 1] and 18% for the interval [−0.5, 1]. As it may be
observed, these resources have low impact on model output
because the dynamics of distribution center depends mostly
on the resource truck.

The optimized solution for distribution center, i.e., 2
docks, 6 trucks, and 2 groups of workers, may be regarded
robust for parameter change between −15% and 15%. In this
range, the complexity presented low variation, 0.64 ≤ 𝜓(𝑐)𝜆 ≤
0.74, which means that the increase or decrease of resources
in one unit has not significantly affected the system.

4.3.2. Sensitivity Analysis of Medical Center. Based on the
medical center simulation, Figure 6 presents one-at-a-time
measures for the complexity 𝜓(𝑐)𝜙 as model output. By

Table 5: Sensitivity index for medical center related to the output
𝜓(𝑐)𝜙.
Interval 𝑆𝜙𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑆𝜙𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛 𝑆𝜙𝑛𝑢𝑟𝑠𝑒
[−1, 1] 0.40 0.46 0.14
[0, 0.14] 0.46 0.29 0.25

analysing the graphs, it may be seen that all curves have
similar behavior; i.e., as the number of resources increased,
the values of 𝜓(𝑐)𝜙 decreased.

The resource physician obtained the higher sensitivity
indices as presented in Table 5, equal to 40% related to the
interval [−1, 1] and 46% related to [0, 0.14], concerning the
region in which all parameters have variation from base
values. Regarding these intervals, the resource technician pre-
sented sensitivity indices equal to 46% and 29%, respectively,
while the resource nurse was the least sensitive parameter,
with indices lower than 30%.The lowest indices for resource
nurse may be explained by the fact that the range was begun
from the base value, which is the optimized value for this
resource. So the situation of scarcity of that parameter was
not evaluated. In the opposite way, the resource technician
presented the worst case of scarcity, which explains its higher
sensitivity index related to the interval [−1, 1].

Between −15% and 20% of parameter change, low impact
on the output was observed, 0.35 ≤ 𝜓(𝑐)𝜙 ≤ 0.40, indicating
robustness around 15% of the configuration given by the
lowest 𝑅𝑐, i.e., 7 physicians, 7 technicians, and 5 nurses.
However when the number of physicians and the number
of technicians were minimum for analyzed scenarios, the
complexity was almost twice the value 𝛽.

5. Discussion

Thesystem complexity measure contributes to the knowledge
of the system as a whole. The simulated scenarios for the
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distribution center and the medical center have shown that
the system becomes less complex as the number of resources
increases. However, complexity saturates from a certain
number of resources, indicating idleness in the system.

As the complexity 𝜓(𝑐) is based on the connections,
complexity measures may reflect (i) configurations with
idle resources, (ii) optimized configurations, in which the
system exhibits high performance, or (iii) configurationswith
scarce resources, hence expressive size of queues. The type
of configurations may be distinguished one from another by
applying the relation 𝑅𝑐, expressed by

𝑅𝑐 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (11)

The lowest value of 𝑅𝑐 has indicated the suitable number
of resources for the system. In this configuration, there is a
measure that expresses the level of complexity in which the
system achieves its goal with high performance. We denote
this measure as natural complexity of the system, i.e., the
proper level of system complexity. By using natural com-
plexity as reference, the complexity decrease may mean that
resources are becoming idle and the complexity increase may
indicate that the system is overloaded and underperforming,
as expressed by

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ↓ 󳨐⇒ 𝑖𝑑𝑙𝑒𝑛𝑒𝑠𝑠
𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 󳨐⇒ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ↑

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ↑ 󳨐⇒ 𝑜V𝑒𝑟𝑙𝑜𝑎𝑑
(12)

In addition to the system overload, the complexity peaks
have indicated the most sensitive parameters. The sensitivity
analysis has been performed and has confirmed this point.
In this paper, the sensitivity analysis contributed to (i) quan-
tifying the influence of the parameters, (ii) understanding
relationships between input and output variables, and (iii)
checking the robustness of optimized solution. Besides that
we here propose that the sensitivity indices are used to
quantify the coupling between components of a system, since
its inner structure reveals the system relationship with its
environment.

So far we have measured the complexity based only on
system connections regardless of their relevance. In order to
make a complexity metric more comprehensive, this work
proposes the use of sensitivity analysis in the metric of
system complexity by the inclusion of relevance factor of
connection 𝛾. The sensitivity indices associated with each
connection allows the measure of complexity to become
greater expressive, regarding different strengths of coupling
in the system.

Thus, we propose updating expression (2) to (13), given
by

𝜓 (𝑐, 𝛾) =
𝜌

∑
𝜅=1

𝛾 (𝑐𝜅) −
𝜌

∑
𝜅=1

𝑃 (𝑐𝜅) ⋅ log2𝑃 (𝑐𝜅) (13)

where 𝜓(𝑐, 𝛾) is the complexity of the system based on
weighted connections, 𝜌 is the number of active connections,

𝑃(𝑐𝜅) is the probability of occurrence of the connection 𝑐𝜅 , and𝛾(𝑐𝜅) is the relevance factor of connection 𝑐𝜅, defined based
on the sensitivity indices 𝑆𝑥𝑖 of the parameters. The results
obtained from sensitivity analysis have used complexity
measures as model output; however future works must use
another measure in order to apply the metric 𝜓(𝑐, 𝛾). We
recommend that sensitivity indices are calculated based on
system performance as model output.

In this paper, we presented a local sensitivity metric,
called method of the area. However the local approach may
make the complexity analysis unstable if the parameters
base values are in a region of system instability. In order
to overcome this problem, the global sensitivity analysis
should be performed to comprise regions of instability and
stability of the analyzed system. In this way, the impact of the
nonlinearity in every region of operation of the system will
be considered.

The proposed complexity metric abstracts aspects related
to the spatial arrangement of the system, taking into account
spatiotemporal interactions, as an alternative to Kooreh-
davoudi and Bogdan [2] approach. While the complexity
metric proposed byKoorehdavoudi andBogdan [2] is defined
as the product between emergence and self-organization,
both characteristics build on the missing information defi-
nition according to Shannon [38], the metric proposed here
captures the spatial arrangement in terms of connections
and uses the entropy conception to quantify the influence
of the uncertainty inside the system added to the influence
of the uncertainty generated by external elements, applying
sensitivity analysis.

The sensitivity analysis was chosen because even param-
eters considered as less important by the uncertainty analysis
(i.e., with low variability) may lead to significant changes on
the output model due their sensitivity [45].Thus we consider
that the metric using connections weighted by sensitivity
indices is able to capture the degree of system complexity as
the combination between order and disorder, regularity and
randomness, as discussed by Deacon and Koutroufinis [23]
and Kurths et al. [46].

For instance, if we apply the proposed metric to a control
system of DC motor, whose model presents continuous
variables and continuous time, we could observe that when
the motor is running, all connections are active and the
probabilities of occurrence of all connections are equal to 1;
thus the second part of the expression (13) is 𝑧𝑒𝑟𝑜 because
the uncertainty related to the connections does not exist
in this case. If any connection is broken, the system does
not work. Thus, the uncertainty in the system is attributed
to the parameters change (field voltage, control variables,
etc.), whichmay be evaluated through the sensitivity analysis.
In addition to operational aspects, the application of the
metric based on weighted connections may show observable
characteristics in structural terms and in relation with the
environment, given by the local or global sensitivity analysis.

This example of control system of DC motor shows
that some metrics such as fractal dimension could not be
used due the absence of geometrical patterns described
in phase space. Even for other types of systems, such as
those analysed in the case studies (distribution center and



Complexity 11

medical center), the fractal dimension would be not effective,
since the arrangements observable during simulation are
abstractions made from system operation, besides the fact
that they would not probably have self-similarity. Therefore
the proposed metric is able to quantify complexity related to
system dynamics in several contexts.

The complexity metric 𝜓(𝑐, 𝛾) considers both the diffi-
culty of describing systems and their degree of organization.
The configuration of the system in terms of the connections
between its parts is the modeling used to describe it. The
degree of organization, on the other hand, may be observed
by the relevance of each connection, given by the sensitivity
measures.

In future works, we intend to apply the proposed com-
plexity metric 𝜓(𝑐, 𝛾) to wide range of systems, both human-
made and natural ones. Another issue is to investigate
how complexity measures behave for different probabilities
distributions used in the models. When we applied the
complexity metric based on connections 𝜓(𝑐), we observed
that low complexity was related to scenarios of greater
number of resources, since the queue size decreased and the
probabilities of occurrence of connections were lower than
ones when there were few resources. However the probability
distribution of arrival of entities in the systems was modeled
as exponential distribution. Further researches could apply
other distributions and observe the results.

In this paper, the main contribution is the proposal
of integrating several system characteristics (configuration,
arrangement, performance, and workload) into the complex-
ity metric 𝜓(𝑐, 𝛾). The use of sensitivity indices as weights for
the connections enables combining features of external and
internal dynamics of the system. Another important contri-
bution is the conception of natural complexity of systems: a
new concept that could be investigated in futurework in order
tomake it a reasonable reference to evaluate the systems, since
the concept comprises both effectiveness and efficiency.

6. Conclusion

This paper has proposed sensitivity and complexity metrics
based on one-at-a-time values and system connections,
respectively. It has been observed that complexity may indi-
cate (i) most sensitive parameter, (ii) idleness or overload in
the system, and (iii) lowest or greatest number of resources.
The relation between performance and complexity has led
to scenarios with optimized configuration for meeting the
demand. Considering these cases, the paper has established
that systems have their proper level of complexity, denoted
natural complexity. Regarding the different types of couplings
in the system, the use of sensitivity analysis has been proposed
in order to determine the relevance factor of connection,
contributing to more accurate measurement of the system
complexity.
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