
Real-Time Fault Detection and Diagnosis of
CPS Faults in DEVS

Joseph Boi-Ukeme
Department of Systems and Computer

Engineering
Carleton University
Ottawa, ON, Canada

joseph.boiukeme@carleton.ca

Cristina Ruiz-Martin
Department of Systems and Computer

Engineering
Carleton University
Ottawa, ON, Canada

cristinaruizmartin@sce.carleton.ca

Gabriel Wainer
Department of Systems and Computer

Engineering
Carleton University
Ottawa, ON, Canada

gwainer@sce.carleton.ca

Abstract— The technological advancement in Cyber-
Physical Systems (CPS) has evolved into sophisticated
hardware, leading to systems that are complex and
interconnected. This trend has made modern CPS
susceptible to faults. Traditional methods for fault
detection and diagnosis are unable to adequately scale up
to manage the faults that occur in CPS because of the tight
interconnectivity between the physical and cyber parts of
CPS. Also, hard real-time constraints present challenges
that are not sufficiently addressed by traditional fault-
tolerant design approaches; therefore, new methods are
needed to deal with these faults. Here, we present a new
scheme to detect and diagnose CPS faults, which relies on the
combination of knowledge-based and model-driven Fault
Detection and Diagnosis (FDD). The method is developed to
be applied when building CPS using Discrete Event
Methodologies.

Keywords—FDD, Cyber-physical systems, DEVS

I. INTRODUCTION

The steady advancement in sensing, actuation, and
control system computing technologies has led to the
development of complex systems, including
smartphones, autonomous vehicles, smart grids,
automated buildings, smart cities [1]. The common
characteristic of these systems is the tight coupling of
hardware and software capabilities and constraints as
well as the combination of heterogeneous components.
These devices have hardware with advanced sensing and
actuation with embedded computing capabilities.
Similarly, the software now includes tools for data
management, learning methods, and optimization [2]

This level of complexity has necessitated the
development of theoretical and practical methods for
developing CPS. The main objective of the theory of CPS
is to ensure that the interaction between software and
hardware designs is better coordinated. Better
coordination is achieved through improved awareness of
the constantly evolving environment and improved
capacity to handle huge amounts of data. [3]

Current CPS are such that their designs are

combinations of several subsystems and can become
large and difficult to manage. Similarly, there is a tight
interconnection between the physical and cyber parts, and
these are closely designed together, which adds another
level of complexity. In addition to the complexity of the
design process, modern-day CPS are fully or partially
autonomous with multiple and diverse applications. The
literature in the field shows a wide acceptance of the
benefits that automated control brings to manage this
complexity. However, with increased complexity, tight
interconnection, and automation, CPS are more
susceptible to faults, making them more fragile [3][4].

Despite the complexity inherent in the design of CPS,
the sensitivity of the applications of CPS require that they
must be fault and failure tolerant. To design failure and
fault-tolerant CPS, design methods must be able to
anticipate the occurrence of faults, detect faults, and
respond to these faults thereby preventing them from
escalating to failure. Fault detection and diagnosis
methods, when incorporated into the design of CPS, are
computationally intensive. Therefore, they should be
event-triggered and must be able to differentiate between
faults and uncertainties.

With this panorama in mind, we will propose a
generic fault detection and diagnosis scheme capable of
diagnosing CPS faults in real-time. The scheme is
developed to accommodate different modeling methods
but for clarity of explanation, we adapt it to the Discrete
Event System Specification (DEVS) formalism. To
assess the scheme, we implemented a library to store fault
codes in a data structure and developed intelligent logic
to ensure faults are correctly detected and isolated.

II. BACKGROUND

The main goal of Fault Detection and Diagnosis
(FDD) is to correctly determine the nature, extent,
location, and time of detection of a fault, based on
available measurements obtained from the system [5]. To

57

2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys)

978-1-7281-7651-2/20/$31.00 ©2020 IEEE
DOI 10.1109/DependSys51298.2020.00017

20
20

 IE
EE

 6
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

ep
en

da
bi

lit
y

in
 S

en
so

r,
Cl

ou
d

an
d

Bi
g

Da
ta

 S
ys

te
m

s a
nd

 A
pp

lic
at

io
n

(D
ep

en
dS

ys
) |

 9
78

-1
-7

28
1-

76
51

-2
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DE

PE
N

DS
YS

51
29

8.
20

20
.0

00
17

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.

properly detect and diagnose a fault, several researchers
have proposed the following sequence: firstly, execute a
fault detection step, where faults are detected using any
mechanism prescribed by the system designers; after a
fault has been detected, isolate the fault and determine the
physical location of the fault; then, determine the nature
of the fault and determine the extent of the impact of that
fault in a process called fault identification and risk
assessment [3][6].

There have been many methodologies proposed for
FDD. However, FDD in CPS is challenging. The
complex nature of CPS makes it difficult to distinguish
faults from uncertainty (noise) and we need robust FDD
to avoid false alarms. Faults in CPS can affect multiple
components, therefore, FDD in CPS must be able to
handle multiple faults. In large CPS, it is difficult to
isolate faults that occur within their sub-systems and
when these faults occur, they could quickly escalate to
failures; hence, another challenge is to ensure that the
faults are detected and isolated promptly [3]

Timeliness is particularly important for safety-critical
CPS systems in which the control of the CPS is done with
the aid of sensors, a control algorithm, and actuators. In
these systems, failing to meet timing deadlines can have
significant effects. Undetected faults can affect
timeliness, leading to potential system instability with
catastrophic consequences [7]

There have been different methods proposed for FDD
for CPS, which can be classified based on three major
paradigms, viz., model-based, data-driven/knowledge-
based, and hardware-based [8]. Several methods have
been proposed for each of these paradigms and it is
important to note that they are not mutually exclusive but,
in the following, we will adopt this classification.

- Model-Based FDD: they are based on the use
of a model developed based on some of the properties of
CPS physics. These models can be qualitative, in which
input-output relationships are expressed as qualitative
functions; or quantitative, where the input-output
relationship is expressed in terms of a mathematical
function. [9].

- Data-Driven/Knowledge-Based FDD: they
use models obtained from known input and output CPS
data. This generates a data-driven model of the process.
The model is then compared with real-time process data
to find faults.

- Hardware-Based FDD: we could use
dedicated hardware or hardware integrated as part of the
CPS. Typically, methods that fall within this category do
not use models (unlike the other two methods).

Model-Based FDD methods are the most effective in
detecting and diagnosing unknown faults because the

method does not depend on large real-time data for its
detection and diagnosis. On the downside, the models
used must define the input/output relationships
accurately, and not all modeling techniques are adequate
for this. The Knowledge Based FDD methods are
particularly good for real-time FDD, however, they
require large sets of historical data which may increase
computational complexity. In this work, we explore the
advantages of combining the knowledge-based and
model-based FDD approaches [10].

As discussed in the introduction, we are interested in
applying these methods to the development of CPS using
the DEVS formalism, a formal modeling methodology
based on systems theory [11]. The DEVS formalism
decomposes complex systems into atomic and coupled
models, where the atomic models specify the behavior,
and the coupled model specifies the structure [12]. In
DEVS, a CPS can be modeled as a composite of atomic
and coupled models. DEVS provides a rich structural
representation of components and can explicitly specify
timing, which makes it easily adaptable for real-time
systems. Various real-time systems have been
successfully developed using DEVS [13][14][15].

The application of DEVS for real-time systems adds
another level of difficulty because real-time constraints
require that models now must interact with the
environment in real-time. The environment could include
software, hardware components, or human operators.
DEVS by default is unable to manage this for a few
reasons. DEVS uses virtual time (periods of inactivity are
skipped) and we need to use a real-time clock for real-
time CPS. The computing platforms used can affect the
physical time it takes to execute a model, which creates a
disparity between a simulated model and what happens in
the physical system. Similarly, state transitions in DEVS
events are defined to occur instantaneously (e.g., an event
is defined as taking zero time); however, in real-time
simulation state changes and operations may occur during
a time interval (or a time window). Finally, it is difficult
to validate simulated models in the real world [16][17]

To address the problem of adapting DEVS for real-
time systems, different researchers have produced
different approaches that fall under two categories: new
design methods for modeling real-time systems (for
example, extending the DEVS formalism) or executing
logical models using real-time DEVS simulators.

Different approaches extend the DEVS formalism;
for instance, [18] introduced the use of time windows or
the concept of uncertainty intervals explored in [19]. A
time window is a function that can take a value within a
range instead of a single instant like the time advance; this
allows events to occur within a period. In [17], Real-Time
DEVS (RT-DEVS) was proposed; RT-DEVS is a major

58

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.

milestone because other approaches that extended the
DEVS formalism have some similarities with RT-DEVS.
In RT-DEVS, real-time execution of models is facilitated
by the addition of time interval functions (time-
windows). With time windows, we can restrict the
simulation time to ensure real-time execution. The
concept of activity specification with constraints is
defined for each state, which means some computation
can be done without any modification to the state. The
drawback of the RT-DEVS formalism is that activities
are not explicitly included in the internal and external
transition functions making it impossible to prioritize
activities and it does not support receiving multiple inputs
and sending multiple outputs because it is based on
Classical DEVS. To tackle these drawbacks, [16]
proposed the Action Level RT DEVS, which specifies
constrained and schedulable actions in addition to
individual state changes. Other researchers that employed
an RT-DEVS simulator include DEVS on a chip [20],
ECD++ [21], Power DEVS [22], and ECDboost [23]. The
advantage of adding real-time functionalities to a DEVS
simulator is that it does not add an extra level of
complexity for the modeler and models developed using
these simulators are backward compatible with existing
DEVS models.

In analyzing the definition of a fault, it is important to
note that when the model has been designed and the
modeler considers it is correct, it will not normally
change. However, when this model is deployed to the
target platform as a control software using DEVS which
we call the Discrete Event Control Software (DECS), the
DECS could violate the specification originally described
by the model. From the foregoing, we will say that a fault
in a DEVS-based CPS has occurred when the behavior of
the CPS does not conform to the specification defined in
the DEVS model.

III. GENERIC FDD IN DEVS

In this section, we propose a generic FDD scheme to
detect and isolate faults. The scheme is designed to satisfy
the following requirements:

1. Correctly identify faults and distinguish them from
noise or uncertainty
2. Isolate faults within a complex CPS
3. Manage multiple faults
4. Prevent faults within subsystems from escalating
into major faults
5. Consume minimum resources and have fast
computation.

The scheme is event-based, and it only triggers the
fault tolerance algorithm when the values that fall out of
range within the CPS are confirmed to be faults. This is
because not all values that fall out of range are faults. It

could just noise or uncertainty. Within the CPS model,
we would define algorithms for fault tolerance. These
algorithms would only be executed when a fault has been
confirmed by the FDD scheme presented in this section.
The scheme is shown in Fig. 1.

Fig. 1. Proposed CPS FDD Scheme

The first component is the CPS DEVS Model. It is a

model of the CPS using DEVS, which is used for testing
and to populate the Knowledge Base with faults. Once
this model has been specified and implemented, we can
execute it in a simulation environment: the CPS
Simulation Environment component. This is a model of
the environment of the CPS that allows us to simulate the
CPS DEVS Model. With these simulations, we can study
the model’s behavior in various scenarios. Based on the
simulation results, we can go back to the CPS DEVS
Model, modify the specifications if needed, and run new
simulations. We also use the CPS Simulation
Environment to study the model for possible faults. These
studies would provide data to populate the Knowledge
Base component. Once we are satisfied with the
simulation results, the CPS DEVS Model, which was
already evaluated using the CPS Simulation
Environment, is deployed into the target platform and it
is transformed into the DECS.

The DECS component is deployed into the target
platform for operational purposes. After the model has
been ported to the target platform, we perform further
testing and calibration. We may need to go back and
redefine the CPS DEVS Model as the testing of the DECS
in the real world or the CPS Simulation Environment may
reveal some potential faults or design errors that were not
properly captured in the initial specification. In that case,
we would always go back to the CPS DEVS Model and
modify it. Every modification should be done in the
original model. Any fault information observed during
testing and calibration of the DECS is stored in the
Knowledge Base component.

The Knowledge Base (KB) is a database that holds
information about the known set of faults that can occur
in the CPS. The Knowledge Base evolves through the

CPS DEVS
Model

CPS Simulation Environment

CPS
Simulation

Model

Model of
Environment

Knowledge
Base

Supervisor DECS

DEVS Based CPS

59

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.

lifetime of the CPS because as new faults become known,
information about these faults would be updated in the
Knowledge Base. The information about faults is
obtained from the simulation of the CPS DEVS Model in
the CPS Simulation Environment, and in the experiments
performed on the DECS. The supervisor communicates
with the Knowledge Base to confirm faults.

During its operation, if a fault occurred, the DEVS
Based CPS would send the fault information to the
Supervisor, an intermediate component between the
DEVS Based CPS and the Knowledge Base that manages
the fault detection process. When the DEVS Based CPS
notifies values out of range, it confirms with the
Knowledge Base if a fault has occurred. If a fault
occurred, it notifies the DEVS Based CPS to take the
recommended actions about that fault.

In the rest of the section, each component that makes
up the FDD scheme shown in Figure 1 is explained in
more detail.

A. CPS DEVS Model
The first step for developing the CPS DEVS Model is

understanding the CPS of interest and defining a
requirements document about the expected behavior of
the system. Deviations from the expected behavior are
going to be considered faults, and they will be added to
the Knowledge Base. With the information obtained from
the requirements, we build a model of the CPS, including
mechanisms to report deviations in the expected
behavior. The model would be designed to send a special
type output whenever these values fall out of range, called
fault messages (fm). The fm is a unique code with
information about the atomic model and the state variable
out of range. The structure of the fm message is like the
fault_id in the Knowledge Base, which would be
described in section D. We do not call it fault_id because
it is not yet confirmed as a fault from the Knowledge
Base. While an fm can be a fault or uncertainty, a fault_id
will be used for actual faults.

After the model has been specified, we would test it
using the CPS Simulation Environment. After we are
satisfied with those tests, we would port it to the target
platform where more tests and experiments are done. The
tests and experiments conducted in both the simulation
environment and the target platform can yield results that
will result in a redesign of the model.

B. CPS Simulation Environment
The CPS Simulation Environment allows us to

evaluate the CPS DEVS Model. During this testing
phase, we confirm that the model behaves as expected.
We also deliberately inject possible faults (for example
feeding the model with inputs that are out of range to
observe how the model responds to these faults. This

provides more information about faults. It also allows us
to improve the model with different methods to respond
to these faults. Once we are convinced with the
simulation results, we port the CPS DEVS Model to the
target platform. The model deployed into the target
platform is the DECS detailed in section C. Information
about faults discovered during the simulations is used to
populate the Knowledge Base component described in
section D.

C. DECS
The CPS DEVS Model ported to the target platform

and now operating in its environment is the DECS. This is
controlling a physical system in its operating environment
and thus it is prone to faults and uncertainties. Therefore,
after the models have been ported to the target platform,
we conduct more tests. If new faults are discovered
during them, we may redefine the CPS DEVS Model,
and we would include the information about these new
faults in the Knowledge Base. After testing is complete,
the DECS is now ready for the operating environment.

During its operational phase, the DECS
communicates with the Supervisor through its physical
output ports. The DECS would send an output fault
message (fm) to its physical output port whenever there
is a value or a set of values out of range. As the DECS is
the CPS DEVS Model in the target platform, fm is the
message earlier explained. Each component specified as
a DEVS atomic model would be able to generate an fm
to indicate that there is a value out of range, and
therefore, there may be a fault within the CPS.

D. Knowledge Base
The Knowledge Base is a database that holds

information about faults that can occur in the DEVS
Based CPS. To initially populate the Knowledge Base,
this information is obtained from the following sources:

• CPS DEVS Model: possible faults that can occur
identified during the analysis of the system and the design
of the model

• CPS Simulation Environment: faults identified
during experimentation on the simulated environment.

• DEVS Based CPS: Experimentation and testing
operation of the CPS within its operating environment

The Knowledge Base is updated whenever new faults
are identified using the actual data retrieved from the
DEVS Based CPS operation. It is important to remark
that the Knowledge Base would evolve through the life
cycle of the CPS. Not all faults can be captured in the
design stage, therefore if new faults appear during the
operation of the CPS, they will be added to the
Knowledge Base.

60

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.

The faults in the Knowledge Base are associated with
a frequency of occurrence. The frequency of occurrence
is updated using the faults that occur during the CPS daily
operations.

The information stored in this component is important
for two reasons. Firstly, it would be a source of
information to update the models if needed; for example,
if we obtain fault information from a test or the physics
of the CPS that was not captured in the original design,
we can use this information to update our CPS DEVS
Model. Secondly, it is a critical component in the FDD
schema because we will use this information to confirm
the presence or absence of a fault in the CPS.

To ensure proper operation of the FDD scheme, the
Knowledge Base component must meet the following
requirements:

• Minimize memory usage: Because CPS have
memory constraints, the added FDD should minimize
memory usage to ensure it does not degrade the
performance of the original CPS.

• Allow for quick and reliable search: The real-time
requirement of the CPS makes any FDD scheme useful
only when it can produce a quick and accurate result.

• Mutable: The Knowledge Base can be updated at
any time during the life cycle of a CPS. This is important
to allow us to include new faults that were not discovered
during design and experimentation.

• Unique Fault ID: Each fault store in the Knowledge
Base must have a unique and consistent fault id. To
achieve these requirements, we should follow a specific
convention - for example, A12. This will allow us to
quickly isolate faults by simply looking at this fault_id

One of the requirements is a consistent pattern for the
fault_id. To obtain a consistent fault id, we can use, for
example, an alphanumeric coding convention (e.g. A1).
Using this convention, we will label the atomic models in
the DECS as alphabets and the state variables in terms of
a number, hence A1 would mean, atomic model A and
state variable 1 within the atomic model. Typical faults
within a CPS model are not localized in one atomic
model. A fault code can indicate that state variables from
more than one atomic model are out of range. For
example, A1B1 would mean that both atomic models A
and B have the state variable 1 out of range. As we detail
in the next section, the Supervisor oversees generating
these combined codes. The alphanumeric convention is
just an example. Other conventions may be used if they
provide unique fault ids and allow us to quickly isolate
faults through the fault id.

To satisfy the other requirements, different
implementations could be adopted depending on the size
of the CPS. To keep modularity, a clear separation of
components, and boost reusability, the Knowledge Base

component is defined as a DEVS model that manages a
database. The database will be implemented in different
formats based on the application. For example, we can
define the database as a plain text file where each row
represents a fault and the associated frequency of
occurrence. We can also define it as a set of two data
structures where the first one would be a bloom filter to
store the faults in a manner in which we can quickly
confirm if a fault is present or not, and the second one is
a standard hash to store the details of the faults and
frequency of occurrence that can be retrieved if the
presence of that fault has been confirmed. The bloom
filters are data structures that do not store actual values
hence they are relatively fast and require low storage and
the storage is usually fixed and does not change when
more data is added to the filter. They are also good
because they do not return false negatives and have a low
probability of false positives. An additional useful
property of the bloom filter is that when data is stored, no
deletion is allowed.

The Knowledge Base component is formally defined
using DEVS as the following atomic model:
KB = <S, X, Y, δint, δext, δcon, λ, ta>
S = {s1 {notify, passive} kb_match {True,
False} DB = associated database}

X = {fault_id string}
Y = {True, False}
δint (s) = {if s1 = notify then s1 = passive}
δext (s,e,x) = {

if s1 = passive, then

Check if X (i.e. fault_id) exists in DB
If fault_id exist, then

kb_match = True
increment Freq of fault_id DB

else
kb_match =False

end if
s1 = notify

else
//This case should never be reached }

δcon = δint + δext
λ (s1=notify, kb_match, DB) = {kb_match}
ta (s1 = passive, kb_match, DB) = INFINITY
ta (s1 = notify, kb_match, DB) =
checktime}

Regardless of the implementation of the database,

when the Knowledge Base receives an input with a
fault_id, if the fault_id is in DB, it will update the
frequency of the fault_id in the database (DB) and update
its state variable kb_match to True. Otherwise, kb_match
will be updated to false. In any case, the state variable s1
will be updated to notify. After the checktime (i.e., the
time it takes the Knowledge Base to confirm the presence
of a fault in its database), it will output the value of the
kb_match variable and update its state variable s1 to

61

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.

passive. The model will remain passivated until a new
fault_id is received.

E. Supervisor
The purpose of the Supervisor is to ensure that the

process of FDD between the DECS and the Knowledge
Base is event-driven. The Supervisor would watch all the
fault outputs from various atomic models to determine
which part of the entire DECS sends an fm signal
indicating a likely fault. The fm from the atomic models
does not necessarily mean a fault has occurred. A fault
has occurred only when the Supervisor has confirmed the
fault_id from the Knowledge Base, a fault message (fm),
or a combination of fault messages (fms) from the
fault_id. By looking at the fm, the supervisor can
determine where the fault signal is coming from, which is
useful in isolating faults. On receiving an fm or multiple
fm messages, the supervisor creates the fault_id and sends
a request to the Knowledge Base to confirm that this is a
fault. Once the supervisor confirms that a CPS fault has
occurred, we can initiate any prescribed action for that
fault within the atomic model responsible for that part of
the CPS. In summary, the supervisor receives a fault
message, creates a fault_id following a predefined
convention, requests a check from the Knowledge Base
and if the fault is present, it sends an output to the affected
atomic model.

The Supervisor is defined as a DEVS model with two
input ports and two output ports. In the first input port, it
receives fault messages (fm), while in the second input
port it receives the confirmation of faults (i.e. true/false).
Its first output port is used to send a check request (i.e. a
fault_id) while the second output port is used to send an
output trigger to confirm the presence of a fault.

The Supervisor component is formally defined using
DEVS as the following atomic model:
SUPERVISOR = <S, X, Y, δint, δext, λ, ta>
S = {passive, check, key, out_key, accommodate}
X = {fm =fault_id, match = {True, False}}

Y = {chk string, read string}
δint (S) = {

if S = check then S = passive
else if S = accommodate then S = passive
else if S = check then S = passive }

δext (fm, state == passive) {

If fm does not exist
key = fm

else

key = composed (fm)
S = check }

δext (match is True, S == passive)
{ out_key = matched_id
S = accommodate }

δext (match = false, S == passive) {

// do_nothing}
δext (match = true, S == check) {S = check}
δext (fm, S == accommodate) {S = accommodate}
λ(check) {send key to read}
λ(accommodate) {send out_key to chk}
ta(passive) = INFINITY
ta(accommodate) = triggerttime
ta(check) = checkingtime

IV. CASE STUDY OF FDD
To show the usability of the FDD scheme presented

in this paper, we design a simple example where we
explain the major components of the FDD scheme. In this
example, for simplicity, we have designed, tested, run
simulations, and experiments on a CPS DEVS model.
After completing the design, we discovered that the CPS
has yielded seven types of faults and we have uniquely
defined the fault_ids and stored their values in the
Knowledge Base presented in Table I.

Fig. 2. Model Structure for FDD scheme

We also obtained information about the nature of the
faults that would help us set the priorities of the various
fault messages from the atomic models that make up the
CPS. The DECS, Knowledge Base, and Supervisor are
shown in Fig. 2. The figure shows three (3) blocks that are
from the FDD scheme presented in section III. In this
figure, the DECS has been expanded to show its
component models which are discussed in the subsequent
sections.

A. DECS
In this case, we use four (4) fault generators (Model

A, Model B, Model C, and Model D) which are modeled
using DEVS to produce faults in a random pattern which
is consistent with the way a CPS fault would present
itself. These models would each have one state variable
each A1, B1, C1, and D1, respectively. We define a
possible fault as a state variable that is out of range and
produces a message.

Every time the model generates a message, it sends an
output to the supervisor. It is important to note at this
point that the fact that a state variable is out of range does
not mean that a fault is present, every fault would need to
be validated from the Knowledge Base.

Knowledge
Base

Supervisor

DECS
A

S1
B

S1

C
S1

D
S1

62

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.

B. Knowledge Base
For small CPS with minimum memory requirements,

we implemented the structure of the Knowledge Base as
a flat-file; the supervisor can read the content of the file
into memory and write to the file after a specified period.
This type of Knowledge Base would work well for simple
CPS; however, when the systems get large and complex
there would be performance issues as the size of the file
can grow large which would lead to slow and resource-
intensive read and write. To deal with this, we
implemented the Knowledge Base as a DEVS model that
is initialized with the known faults and communicates
through its inputs and outputs to the rest of the system.
The Knowledge Base receives an input in the form of a
fault_id and stores the fault information in a bloom filter
data structure, this would help us maintain consistent
performance, however, since the bloom filter does not
store the actual fault codes, it is difficult to retrieve the
frequency of occurrence of faults, and therefore an
additional data structure would be needed.

Table I. describes the initial state of the Knowledge
Base we use in the example presented in this paper. The
first two columns are part of the Knowledge Base
structure and the third column is just a description of what
the fault code means for readability purposes. The seven
different fault codes have zero occurrences at the initial
design stage before the start of the simulation.

TABLE I. THE INITIAL STATE OF THE KNOWLEDGE BASE

Fault id Frequency Description
A1 0 Fault indicated A1 being out of range

A1B1 0 Fault indicated by A1 & B1 being out
of range

A1C1 0 Fault indicated by A1 & C1 being out
of range

A1D1 0 Fault indicated by A1 & D1 being out
of range

B1C1 0 Fault indicated by B1 & C1 being out
of range

C1 0 Fault indicated by C1 being out of
range

C1D1 0 Fault indicated by C1 & D1 being out
of range

C. Supervisor
The Supervisor would watch the fault outputs from the

four atomic models (A, B, C, and D) to determine which
part of the DECS an fm signal indicating a likely fault
originates from. On receiving an fm or multiple fm
messages, the supervisor creates the fault_id based on the

detecting and isolating the faults. Prescribed action for
fault accommodation is reserved for future work.

D. Results
This section describes the results obtained from the

implemented Knowledge Base using the data presented
in Table I, the DEVS based CPS and Supervisor
explained earlier. Fig. 3 shows the logs from four models,
which represent the fault messages for one simulation run
for ten seconds. There are 4 plots for model A, B, C, and
D respectively, the horizontal axis shows simulation time
in seconds, the vertical axis shows the outputs of the
atomic models with each spike representing a fault
message.

Fig. 3. Simulation Logs from Fault Messages

From the logs, we can observe the number of times

each model had a value that exceeded the specified range.
For this simulation run, model A has a count of 15, model
B 54, model C 20, and model D 37. The supervisor
checked the Knowledge Base and found the following
faults which are tabulated after simulation, the final
output of our model is the frequency of the faults and this
is equivalent to the number of times the supervisor sends
a trigger to each atomic model in a faulty state. This is
shown in Table II.

TABLE II. THE FINAL STATE OF THE KNOWLEDGE BASE

specification defined in section III. Then it sends a
request to the Knowledge Base to confirm that this is a
fault. Once the supervisor receives a confirmation that a
CPS fault has occurred from the Knowledge Base, we
send a signal to the atomic model affected. In this
implementation, we are not concerned about how the
model accommodates the fault. We are only interested in

From the results presented in Fig. 3. and Table II, the
supervisor received a total of 126 fault messages from the
atomic models. The total number of actual faults
confirmed by the supervisor was 50. This shows that the

Fault Code Frequency

A1 15

A1B1 4

A1C1 2

A1D1 2

B1C1 5

C1 20
C1D1 2

63

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.

scheme was able to distinguish between a fault and
uncertainty because 76 of those messages were an
indication of transient disturbance. Similarly, from the
scheme, each atomic model fault was sent within the
same time window and some messages appear at the same
time representing a scenario of multiple faults. The
results show that in such a situation, with the priority
method in the Supervisor, the Supervisor can react to
these multiple faults. From Table II, by simply looking at
the fault_id, we can tell which atomic model(s) and state
variable the fault originated from, this convention serves
two purposes. Firstly, it helps us quickly determine the
location of the fault, and secondly, the fact that it is
detected in the atomic model is early enough to prevent the
faults from escalating.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a fault detection and
diagnosis (FDD) scheme that is capable of detecting and
isolating faults in real-time, keep track of the frequency
faults, handle multiple faults when they occur, and
prevent false alarms by validating probable faults from
the Knowledge Base. The scheme is based on a
knowledge-based and model-based approach. The
scheme presented is consistent with the DEVS formalism
and is backward compatible with existing CPS models
built using DEVS. We also discussed various options for
scaling up the FDD scheme to more complex CPS. The
FDD scheme presented here is simple to implement,
however, CPS are complex and could generate more
faults that may reduce the performance of the FDD
scheme. Our future work includes deploying the FDD
scheme to a target platform to test various options for
physical storage of the Knowledge Base and apply the
options for scaling the scheme to more complex
applications to test its performance. One way to achieve
this is to have the FDD scheme in modules in different
parts of the CPS, this modular approach can be done in
two ways, one would be to have the complete FDD
scheme in different parts of the system or a second
approach would be to have multiple small Knowledge
Bases but one supervisor.

REFERENCES
[1] S. Chaterji, P. Naghizadeh, M. A. Alam, S. Bagchi, M. Chiang,

D. Corman, B. Henz, S. Jana, N. Li, S. Mou et al., “Resilient
cyberphysical systems and their application drivers: A
technology roadmap,” arXiv:2001.00090, 2019.

[2] S. Weerakkody, O. Ozel, Y. Mo, and B. Sinopoli, “Resilient
Control in Cyber-PhysicalSystems: Countering Uncertainty,
Constraints, and Adversarial Behavior,” Foundations and
Trends® in Systems and Control, vol. 7, no. 1-2, pp. 1–252,
2020.

[3] V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Sensor
Fault Diagnosis,” Foundations and Trends® in Systems and
Control, vol. 3, no. 1-2, pp. 1–248, 2016.

[4] Kröger Wolfgang and E. Zio, Vulnerable Systems. London:
Springer London, 2011.

[5] S. Katipamula and M. Brambley, “Review Article: Methods for
Fault Detection, Diagnostics, and Prognostics for Building
Systems—A Review, Part I,” HVAC&R Research, vol. 11, no.
1, pp. 3–25, 2005.

[6] M. Blanke, M. Kinnaert, J. Lunze, and M.
Staroswiecki, Diagnosis and fault-tolerant control. Berlin:
Springer, 2016.

[7] L. Sherry and R. Mauro, "Controlled Flight into Stall (CFIS):
Functional complexity failures and automation surprises," 2014
Integrated Communications, Navigation and Surveillance
Conference (ICNS) Conference Proceedings, Herndon, VA,
2014, pp. D1-1-D1-11.

[8] A. Mouzakitis, “Classification of Fault Diagnosis Methods for
Control Systems,” Measurement and Control, vol. 46, no. 10, pp.
303–308, 2013.

[9] Z. Gao, C. Cecati and S. X. Ding, "A Survey of Fault Diagnosis
and Fault-Tolerant Techniques—Part I: Fault Diagnosis With
Model-Based and Signal-Based Approaches," in IEEE
Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3757-
3767, June 2015.

[10] S. Lazarova-Molnar, H. R. Shaker, N. Mohamed, and B. N.
Jorgensen, "Fault detection and diagnosis for smart buildings:
State of the art, trends, and challenges," 2016 3rd MEC
International Conference on Big Data and Smart City
(ICBDSC), Muscat, 2016, pp. 1-7.

[11] B. P. Zeigler, Prähofer Herbert, and T. G. Kim, Theory of
modeling and simulation: integrating discrete event and
continuous complex dynamic systems. San Diego: Academic
Press, 2000.

[12] G. A. Wainer, Discrete-event modeling, and simulation: a
practitioner’s approach. CRC Press, 2009.

[13] H. S. Song and T. G. Kim, “Application of Real-Time DEVS to
Analysis of Safety-Critical Embedded Control Systems:
Railroad Crossing Control Example,” Simulation, vol. 81, no. 2,
pp. 119–136, 2005.

[14] B. Earle, K. Bjornson, J. Boi-Ukeme and G. Wainer, "Design and
Implementation of a Building Control System in Real-Time
Devs," 2019 Spring Simulation Conference (SpringSim),
Tucson, AZ, USA, 2019, pp. 1-12

[15] C. Ruiz-Martin, A. Al-Habashna, G. Wainer and L. Belloli,
"Control of a Quadcopter Application with Devs," 2019 Spring
Simulation Conference (SpringSim), Tucson, AZ, USA, 2019,
pp. 1-12.

[16] H. S. Sarjoughian and S. Gholami, “Action-level real-time
DEVS modeling and simulation,” Simulation, vol. 91, no. 10, pp.
869–887, 2015.

[17] J. S. Hong and T. G. Kim, "Real-time discrete event system
specification formalism for seamless real-time software
development", Discrete Event Dynamic Systems: Theory Appl.,
vol. 7, no. 4, pp. 355-375, 1997.

[18] Q. Wang and F. E. Cellier, “Time Windows: Automated
Abstraction of Continuous-Time Models into Discrete-Event
Models in High Autonomy Systems∗,” International Journal of
General Systems, vol. 19, no. 3, pp. 241–262, 1991.

[19] D. Vicino, O. Dalle, and G. Wainer. 2015. “Using finite forkable
DEVS for decision-making based on time measured with
uncertainty,” 8th International Conference on Simulation Tools
and Techniques, Athens, Greece, 2015 pp. 89–98.

[20] Xiaolin Hu, B. P. Zeigler and J. Couretas, "DEVS-on-a-chip:
implementing DEVS in real-time Java on a tiny Internet interface
for scalable factory automation," 2001 IEEE International
Conference on Systems, Man and Cybernetics. e-Systems and e-
Man for Cybernetics in Cyberspace (Cat.No.01CH37236),
Tucson, AZ, USA, 2001, pp. 3051-3056 vol.5.

[21] Y.H. Yu and G. A. Wainer, "ECD++: an engine for executing
DEVS models in embedded platforms," 2007 Summer Computer
Simulation Conference (SCSC '07), San Diego, CA, USA, 2007,
pp.323–330.

[22] F. Bergero and E. Kofman, “PowerDEVS: a tool for hybrid
system modeling and real-time simulation,” Simulation, vol. 87,
no. 1-2, pp. 113–132, 2010.

[23] G. Wainer and R. Castro. "DEMES: A Discrete-Event
methodology for Modeling and simulation of Embedded
Systems," Modeling and Simulation Magazine, 2, pp.65-73,
2011.

64

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.

