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ABSTRACT 

Sensor fusion is a technique used to combine sensor data and improve the description of the physical 
property measured by these sensors. Sensors working alone could provide data that is erroneous, incomplete 
and uncertain. Several algorithms have been developed for sensor fusion, some of which are complex to 
understand and difficult to implement. The extensive list of algorithms often leaves designers confused 
about what choices to make as regards which algorithm is best and this discourages them from 
implementing sensor fusion. In this paper, we propose a generic sensor fusion framework to facilitate the 
implementation of sensor fusion algorithms using the Discrete-Event Modeling of Embedded Systems 
(DEMES) which is a model-based development methodology for cyber-physical systems based on discrete-
event systems specifications (DEVS). 

Keywords: CPS, DEMES, DEVS, Sensor Fusion 

1 INTRODUCTION 

Sensor fusion is the combining of data from multiple sensors to provide more reliable and accurate 
information when compared to the information obtained from a single sensor system. Sensor data can be 
erroneous, incomplete and uncertain, but with the application of sensor fusion, we can tackle these problems 
thereby providing robustness and reliability, extended coverage, improved resolution and increased 
confidence within sensor systems (Liggins II et al. 2017). Sensor fusion systems are now widely used in 
various fields such as sensor networks, robotics, video and image processing, intelligent systems design 
and many more (Khaleghi et al. 2013). 

With the flattering benefits of applying sensor fusion, one would expect that every sensor system employs 
the use of sensor fusion. However, this is not the case for several reasons. Firstly, sensor fusion has certain 
drawbacks which include: the fact that you cannot obtain better data than what the individual sensors offer, 
hence there is no substitute for a good sensor and fusion techniques cannot correct errors in measurement 
(Akyildiz, et al. 2002); Secondly, there are many fusion algorithms that are rarely used during the design 
of cyber-physical systems (CPS) because it is difficult to make a choice on what fusion algorithm to use, 
what advantages they offer and the implementation of these algorithms is not trivial (Lee et al. 2010); 
Finally, it is difficult to implement sensor fusion and reap the benefits because most design techniques do 
not provide a framework to implement them thereby discouraging the designers. Incorporating sensor 
fusion in a design technique is one way to encourage the application of sensor fusion within every sensor 
system. 
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Several techniques have been applied in the design of cyber-physical systems such as traditional methods 
which are heavily dependent on hardware and software design, co-design with hardware in the loop, the 
use of programming tools, and modeling and simulation. (Khaitan, and McCalley 2015). Among these 
techniques, modeling and simulation is gaining popularity because of its low development cost, short 
development time as well as its ability to provide a formal framework for reusability and testing (Niyonkuru 
and Wainer 2016). If sensor fusion is to be inherent in any design technique, modeling and simulation 
would be a good place to start. Hence it is important to include sensor fusion in a modeling framework and 
DEMES is a formal modeling technique based on DEVS with good prospects for extending its capabilities 
to include sensor fusion. 

This paper aims to incorporate a novel generic framework for implementing sensor fusion in DEVS so that, 
the benefits of sensor fusion can be enjoyed within the modeling phase of the design process. The sensor 
fusion framework is expanded to account for important aspects of sensor fusion while reducing the level of 
complexity.  

2 BACKGROUND AND RELATED WORK 

The design of cyber-physical systems involves three major disciplines: control, systems, and software 
engineering each of which has its design principles. Each of these disciplines has well established formal 
methods for design and implementation and it is difficult to adopt any of these disciplines as a universal 
approach to the design of cyber-physical systems. This has led to an increase in complexity in the design 
of cyber-physical systems with no unified design method adopted. (Sanislav and Miclea 2012). Although 
there is no unified method for designing cyber-physical systems, modeling and simulation can be seen as a 
method that cuts across these three disciplines and can connect the different areas of cyber-physical systems 
(Rajkumar et al. 2010).  

Several modeling approaches and tools have been developed to address the heterogeneity as well as tackle 
specific applications within the cyber-physical system design domain (Khaitan, and McCalley 2015) which 
shows that modeling and simulation is gaining popularity among researchers (Lee 2015). Some of the 
modeling approaches used include metamodeling and metaprogramming methods, formal methods, 
continuous-time models, finite state machines, and discrete event methods (Khaitan, and McCalley 2015). 
There have also been several model-based applications for cyber-physical systems, for example, (Douglas 
et al. 2019) applied modeling and simulation for modeling cyber-physical attacks on water distribution 
systems using MATLAB while (Jo et al. 2012) developed a model-based fusion method where they 
combined data from GPS with data obtained from in-vehicle sensors to adequately determine the position 
of a vehicle in real-time.  

Some researchers have made significant attempts to develop formal modeling and simulation techniques 
for designing cyber-physical systems. For example, (Yue et al 2010) proposed an adaptive discrete event 
method that incorporates discrete event calculus with the concept of abnormal reasoning to handle 
unexpected events. Lee (2010) introduced two approaches that complement each other, one to cyberize the 
physical by introducing software abstractions and the other to physicalize the cyber which introduces 
physical abstractions around software and communication components. Another method is Discrete-Event 
Modeling of Embedded Systems (DEMES) (Niyonkuru and Wainer 2016), which is based on DEVS and it 
is the one adopted in this research because of its advantages such as reliability, model reusability, process 
flexibility and improved testing (Wainer and Castro 2011). (DEMES is further discussed in section 2.4) 

Although there have been significant advances in modeling and simulation as a method for designing CPS’, 
not much can be said about the cyber-physical design methods that incorporate sensor fusion. There has 
been some work done on MATLAB (Raol 2009) with the introduction of a sensor fusion toolbox to 
implement a few fusion algorithms. This is very useful but does not take away the complexity and difficulty 
in deciding what algorithms to use and what happens when new types of sensors are introduced. There has 
also been some work done on the use of modeling and simulation for specific applications in the sensor 
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fusion domain which is relatively successful (Khaitan, and McCalley 2015). However, there is still room 
for improvement. Integrating sensor fusion within a modeling framework would go a long way in reducing 
complexity and encouraging more CPS’ that employ sensor fusion. 

In the sections that follow, we describe a few concepts that would make it easier to explain the proposed 
fusion framework and the choices adopted in terms of configuration and level at which sensor fusion would 
be done. Some of these concepts include sensor fusion, failure checking, and DEMES. 

2.1 Sensor Faults 

Failure is the inability of a system/component to perform a required function according to specification 
while a fault is a condition that could lead to failure (Chen and Patton 2012), therefore it is important to 
tackle faults early so that they do not lead to failure. In this section, we discuss various common sensor 
fault types that occur in cyber-physical systems, the list discussed here is not exhaustive but captures the 
relevant faulty sensor behavior for this work. 

Sensor faults occur due to several reasons including aging, battery exhaustion, physical damage and noise 
(Raposo et al. 2017).  Individual sensor faults can affect the performance within a wireless sensor network, 
studies have reported multiple instances of transient faults in sensor readings within a sensor Network 
(Sharma et al. 2010). 

We define sensor faults as faults that prevent us from capturing the changes in the physical process 
correctly. The sensor faults discussed here are classified in terms of how the sensors are configured to work; 
it could be a sensor working on its own or a group of sensors connected to form a sensor network. If we 
have a sensor working on its own, we call it an individual sensor and if we have a group of sensors working 
together, we call it a sensor network. It is important to note that there could be faults in any of the two cases 
described above and some faults are common to both cases. We classify these faults as follows: 

2.1.1 Individual sensor faults 

For an individual sensor, typical faults could be classified based on the observed pattern of the sensor 
behavior or based on the reason why the sensor is faulty.  In terms of the pattern of the fault, we classify 
them as follows 

• Bias: The physical characteristics of these sensors change over time, resulting in different behavior 
when compared to expected behavior, this is known as bias. In some cases, the bias is an offset from the 
original sensor, meaning it still obeys the normal sensor behavior, but the values are either above or 
below the expected value, while in other cases, the bias does not follow the original behavior. Internal 
sensor bias could increase based on usage time. Sensor bias is a sensor fault and we could have fixed 
bias or constant bias (Sharma et al. 2010). 

• Out of Range: Sensors exhibit a proportional response during operation within set parameters and this 
is called the normal range of the sensor, outside this set parameter, they are now out of range. Out of 
range faults occur when a sensor behavior deviates from what it should be when compared to the normal 
range. It could occur as a result of a problem within the sensor itself or as a result of extreme environ-
mental factors (Sharma et al. 2010, Ganeriwal et al. 2008). 

• Distortion as a result of noise: Sensors typically respond to changes in physical process and output an 
electrical signal, the electrical signal outputted can be distorted by noise. This noise signal is any un-
wanted signal that degrades the integrity of the sensor signal. Noise can lead to sensor faults and it is 
important to deal with these kinds of noise (Sharma et al. 2010, Tönshoff and Inasaki 2001). 

As we can see from the foregoing, sensor faults can be observed from the sensor readings by comparing 
them with an expected value, however, that does not show the underlying cause of the sensor fault. Some 
common reasons why sensor faults occur include (Sharma et al. 2010). 

- Aging, battery exhaustion, physical damage, and noise  
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- Calibration Faults 
- Connection Faults 

2.1.2  Sensor Networks  

For sensor networks, in addition to the faults that occur with individual sensors, typical faults that could be 
seen from the systems point of view called system-view faults or by observing the data known as data-
centric faults. The typical faults within these categories include: 

Data-Centric Faults: A fault determined based upon observing data from a sensor network. Typical faults 
could be any of the following: Outliers, Spikes, Stuck-at, or Noise (Ni et al. 2009). 

System-View Faults: Faults are classified based on the reason why it occurred. They include Calibration 
Faults, Connection/Hardware Fault, Low battery and Environment out of range (Ni et al. 2009). 

2.2 Sensor Fusion Configurations and Algorithms 

To combine sensors to achieve sensor fusion benefits, we need to decide how the sensors would be 
connected, i.e., we need to decide the sensor fusion configuration. There are different sensor fusion 
configurations (Liggins II et al. 2017): 

- Complementary fusion: Sensors work independently and complement each other giving a more 
complete view of the object or parameter being observed. 

- Competitive configuration: Sensors get an independent measurement of the same property, 
thereby building confidence in the measured data. The competitive configuration is often used in 
fault-tolerant systems. 

- Cooperative configuration: Sensor fusion could combine information from independent sensors 
that ordinarily would not be available from an individual sensor in a cooperative configuration. For 
example, combined different two-dimensional images from two-dimensional cameras to produce a 
three-dimensional image. 

There are several ways to classify sensor fusion methods or algorithms, but for this work, we stick with 
classifying them according to the level in which sensor data is fused. This is called the three-level 
categorization. (Elmenreich 2002): 

- Low-Level Fusion: It is also known as raw data fusion and it fuses several sources of raw data to 
create new data that is expected to be more informative than the input data. It is generally simple 
to implement and can be done in real-time but is heavily sensor dependent and sensitive to noise 
and interference. 

- Intermediate-Level Fusion: It is also known as feature level fusion and it fuses object features 
like edges, lines, textures that can be used for detection. It is generally less dependent on the sensor 
but complex in dealing with these features. 

- High-Level Fusion: It is also called decision level fusion and it combines decisions from several 
experts. Generally, some processing is done at the sensor level before data is fused. At this level, 
we can deal with any type of information including rules, since some level of decision is made at 
the sensor level. 

2.3 DEVS formalism 

DEVS formalism is a formal modeling methodology that is based on systems theory. In DEVS, a system 
can be modeled by specifying atomic and coupled models (Zeigler, Kim, and Prähofer 2000).  An external 
input received by such a system would cause a state change after a time delay elapses. The DEVS 
decomposes complex systems into atomic and coupled models, where the atomic models specify the 
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behavior and the coupled model specifies the structure (Wainer 2009). DEVS provides a rich structural 
representation of components and can explicitly specify the timing, which makes it adaptable for real-time 
systems. Various real-time systems have been successfully developed using DEVS (Song and Kim 2005; 
Earle et al. 2019; Ruiz-Martin et al. 2019). DEVS is developed in such a way that other discrete event 
formalisms can easily be mapped into DEVS (Mittal and Mart 2013, Wainer 2019). In addition to the well-
developed mathematical foundation of the DEVS formalism, it also proposes an abstract simulation 
algorithm independent of the models developed. DEMES uses discrete event methodology and DEVS is a 
well-known example. 

2.4 Discrete-Event Modeling of Embedded Systems (DEMES) 

DEMES analyzes the cyber-physical system and allows the original model to be part of the final product 
while using formal models to study the interaction with the physical environment. This is done by gradually 
replacing models with hardware surrogates and new software components without changing the original 
models. Migration can be done in stages. After thorough testing, models are incorporated into the target 
environment and reused throughout the development process (Niyonkuru and Wainer 2016). In DEMES, a 
cyber-physical system of interest would be modeled using the DEVS theory by properly describing the 
systems requirements and the environment in which it operates after which these models can be formally 
validated. Simulations and tests can be run by using sensor data and when the behavior of the model(s) is 
satisfactory, the models can be implemented on a target platform with real sensors (Niyonkuru and Wainer 
2016). 

DEMES has a structured development cycle. The steps involved in the DEMES development cycle are 
described in Figure 1. 

 
Figure 1: DEMES Development cycle (Wainer and Castro 2011). 

In Figure 1, the first step is to identify the cyber-physical system of interest, after identification of the 
system, the system is modeled and transformed into DEVS models (atomic and coupled models). The next 
step is to check these models and run simulations to ensure the models valid. The DEVS models can also 
be used to derive test cases, which can be used for more simulation studies. The valid models are then 
implemented on a target platform through the DEVS real-time executive and if there were parts of the 
models that were unverified within the simulation environments, they can be tested on the target platform. 
If further modifications are required, we can go back to the same DEVS models and implement these 
changes (Niyonkuru and Wainer 2016). 

3 PROPOSED SENSOR FUSION FRAMEWORK 

In this section, we describe the proposed sensor fusion framework and the various requirements and design 
considerations. 
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3.1 Design Considerations  

The sensor fusion framework will receive inputs from different sensors and give out an output with the 
measured property after the fusion algorithms are applied. 

In section 2, different configurations on how sensors can be fused were discussed and the various algorithms 
to implement sensor fusion would depend on how the sensors are configured. Therefore, configuration 
selection is an important consideration for our proposed sensor fusion framework. The sensor fusion 
algorithm is the core of any sensor fusion system; therefore, we also have to consider algorithm selection 
within the proposed framework.  

It has also been established that the quality of the sensor inputs to a fusion system greatly affects the 
outcome of the fusion process with the possibility of degrading its performance, therefore our proposed 
framework would consider the option to deal with corrupt sensor data and guarantee a fused sensor output 
with better quality than the input. 

Another important consideration is how to integrate the sensor fusion framework with DEVS. The first 
possibility would be to modify the input within the DEVS formalism. This is possible but brings few 
challenges such as backward compatibility to the original DEVS (which is a well-established method) and 
an increased level of complexity for the modeler which defeats the purpose of our proposed framework. 
The second possibility would be incorporating sensor fusion within a Real-Time (RT) DEVS simulator. In 
this case, the entire fusion process would be hidden from the modeler making it simpler and we would also 
preserve the DEVS formalism and backward compatibility with other DEVS models. The second case 
presents more advantages and has been adopted for this framework. 

3.2 Requirements 

The requirements that describe the functionalities of the sensor fusion framework are as follows: 

- Works for all applications: The sensor fusion block is designed to be generic and can be used for 
any application irrespective of the type of sensor employed. The framework would take advantage 
of sensors being either analog (output being a change in voltage) or digital (output being a sequence 
of bits).  

- Flexible and extensible: The framework would provide a collection of different fusion algorithms 
that cover the range of application of sensor fusion and allow for the user to implement different 
algorithms if needed  

- Ensure the core requirements of sensor fusion are met: The fusion block is designed to ensure 
the core advantages of sensor fusion which include robustness and reliability, extended coverage, 
improved resolution, and increased confidence are met. Output values should be more reliable than 
the input property value. It should be easy to incorporate new algorithms to the fusion block and 
we should have a way of handling missing measurement and incorrect sensor data.  

- Receive a set of inputs and give a single output at an instant of time: The idea is to ensure that 
the modeler would not face increased complexity with the addition of the sensor fusion framework, 
it would be the same level of complexity assuming the modeler was working on a single sensor 
system. 

- The output should be identical to the output from a single sensor for property in question: 
An identical output data type from the sensor fusion block with a single sensor system would reduce 
complexity.  

- Properties should have unique identifiers and timestamp: This would help us keep track of the 
sensor data that has been fused.  
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3.3 Description of the Sensor Fusion Framework  

In this section, the proposed fusion framework developed to meet the requirements outlined in section 3.2 
is described. Let us assume we have a system of sensors (S1…. Si) measuring the same property and these 
sensors are inputs to our sensor fusion block as shown in Figure 2. In Figure 2, we see that the fusion 
framework has two layers, the first layer is the sensor layer which has several sensors (S1…Si), and the 
fusion layer which is made up of four blocks namely: configuration selection, fusion algorithm layer, failure 
checking layer, and fault-tolerant layer. The configuration layer is the input decision for the fusion 
algorithm selection. The failure checking layer works with the inputs and outputs of the sensor fusion layer 
as its input and it serves as the decision input for the fault tolerance layer. 

 

 
Figure 2: Proposed Sensor Fusion Framework. 

3.3.1 Sensor Layer 

In the sensor layer, we have a group of sensors measuring the same property, these may be the same sensor 
type or different sensor types, but the key point is that the property they measure must be the same. For 
example, we can sense temperature changes using a thermistor or a thermocouple. If we are to fuse different 
data obtained from sensors measuring different properties, then we would have more than one sensor layer.  

3.3.2 Fusion layer 

The fusion layer has the following four blocks: 

Configuration Selection 

As discussed in section 2, we have different configurations for combining sensor data. In this layer, the 
modeler can select one of three possible configurations namely, Competitive, Cooperative or 
Complementary. The choice of the configuration would depend on the objective of the sensor fusion. 

The configuration layer would be the input decision for the algorithm layer. In this layer, more than one 
configuration can be chosen at different times. For example, a modeler may want to do a two-phase 
configuration for sensor fusion; phase 1 can be competitive to ensure reliability and accuracy while phase 
2 can be complementary for completeness. 

Fusion Algorithm Selection  

In this layer, we have a collection of fusion algorithms based on the sensor configuration. For this 
framework, to be generic, the high-level or decision level of sensor fusion would be adopted. The algorithms 
would be classified based on configuration, and when the modeler selects a configuration with an objective 

Configuration Selection 

Fusion Algorithm Selection 

Failure Checking 

 
S1 Si S2 

FUSION 
LAYER 

SENSOR 
LAYER 
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in mind then the decision level fusion algorithms would be streamlined to fulfill those objectives. The 
decision level algorithm has been chosen for several reasons: 

1) It allows for the fusion block to be general-purpose.  
2) It avoids the need for low-level interpolation.  
3) Because the decision would be made at the sensor level the sensor data would be checked twice 

improving the confidence in the fused sensor data.  
4) It would allow for an easy combination of sensor data for control and allow new sensors to be 

incorporated into an existing design easily. 
The algorithm selection layer also allows for more than one algorithm to be implemented. For example, a 
weighted fusion algorithm can be used to fuse sensor data and a filtering algorithm can be used to obtain 
true values. The output of the fusion algorithm selection layer would have one sensor value at an instance 
of time which would be similar to the output that would have been obtained from a single sensor. 

Failure Checking 

In this layer, we check the inputs that have been fused to determine problems with input data and check the 
quality of the fused sensor output at different time intervals to be sure that they are representative of the 
physical property being observed.  

A proposed failure checking function would be checking individual sensor values for n consecutive time 
intervals separated by ∆t (the value of ∆t is obtained from experiments based on the maximum time in 
which a sensor change would be expected) and if the value never changed then there is likely a sensor fault. 

Other failure checking mechanisms can also be employed for example checking the absolute difference of 
sensor values and weighted average values within an acceptable limit defined by the modeler. The main 
idea is that this layer would be able to identify a fault in the sensor layer and/or the fusion layer. 

3.4 Sensor Fusion Framework within a CPS control system 

A DEVS based CPS control system is shown in Figure 3. The control system is made up of the environment 
that is to be controlled, the sensors to observe changes in certain physical properties within the environment, 
the sensor fusion block described earlier, a DEVS-based controller, an actuator used to switch the devices 
responsible for maintaining a set point for the property to be controlled.  

 

Figure 3: A Control System. 

With this proposed framework, we would have a RT-DEVS simulator that can perform sensor fusion and 
perform tasks to control the entire system. As seen from the control system, with a RT-DEVS simulator, 
we can implement a DEVS-based controller that can run directly on hardware seamlessly. With sensor 
fusion integrated, it would be possible to deploy new sensors seamlessly both in the models and on the 
target platform as old models can be reused. This is a very attractive feature because sensors are evolving 
every day.  

RT-DEVS Simulator 

Environment  

Sensors 

Sensor 
Fusion Block 

Actuator 

DEVS Controller   

Devices 
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4 IMPLEMENTATION OF THE SENSOR FUSION FRAMEWORK 

To illustrate the applicability of the sensor fusion framework, we implemented an example. For this 
example, the competitive configuration is adopted; the sensor fusion algorithm implemented is derived 
from the concept of principal component analysis (PCA), and a simple failure checking algorithm is also 
incorporated; the failure checking algorithm ensures that sensor data should also follow a correct trend, for 
example, it should have a linear response and not have random spikes except it is out of range. 

The algorithm takes raw data from the sensors as inputs within a timeframe, performs principal component 
calculations and returns a single output at an instant of time. The value generated by the algorithm is 
representative of the correct raw data from the sensors even though there may be erroneous readings on 
some sensors. The algorithm is based on the paper presented in (Hongyan 2009); a summary of the steps in 
the algorithm is as follows 

• Compute the distance function  
• Use distance function to create a support degree matrix 
• Calculate the eigenvalues for each sensor support degree matrix 
• Use these eigenvalues to compute the principal components 
• Compute the integrated support degree score for each sensor  
• Discard invalid sensor reading 
• Compute fused output by the weighted average sum of valid sensors 

The failure checking block checks for the following conditions: 

• No change in sensor output after a specified time elapses (sensor value is stuck) 
o Stuck Time Interval (-s): Specifies how long (in minutes) beyond which, the sensor is stuck, 

and no longer valid. Depending on the property in question, there is a time for an expected 
change s (for example if it is temperature, we can expect a change every 1 hour, therefore, s = 
1 hour) 

• Sensor values lie outside a prescribed range (outlier) and Spikes in sensor data  
o Lower Limit Value (-l): Specifies the lower limit below which the sensor will be marked out 

of range. 
o Upper Limit Value (-u): Specifies the upper limit above which the sensor will be marked out 

of range. 
The user of the algorithm can modify these parameters to suit the desired application. 

 

Algorithm Example 

For this example, we define the following parameters in the simulation; Stuck Time Interval as 10 minutes 
with sensor values range from 1 to 10 (s = 10 minutes, l = 1, and u =10). The sensor readings considered 
are shown in the following sensor readings in Table 1. 

Table 1: Sensor reading from 8 sensors at 4 different times. 

Time S1 S2 S3 S4 S5 S6 S7 S8 
1:20:00 PM 1.2 1.3 1.4 - 15 - 17 - 
1:50:00 PM 1.2 1.3 1.4 1.5 1.2 1.3 11 - 
2:00:00 PM 1.2 1.3 - 1.5 0 17 1.4 1.5 
2:10:00 PM 1.2 1.3 1.5 1.5 1.2 1.3 1.4 1.5 

 

The data from the table shows the different sensor readings and a few other readings that are out of range. 
After implementing the fusion algorithm and the failure checking block, we tested it using the data obtained 
from table 1. The sensor data output obtained is described in Table 2 and Figure 4. 
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Sample Output  

The output logs obtained from our fusion block gives us a timestamp, the fused sensor value at that time, 
and the statistics for each sensor’s contribution, a sample of this information is shown in Table 2. 
 

Table 2: Sample Sensor Fusion Output. 
 

Time Sensor Value Status  

1:50 S3 1.4 Valid 
Time Stamp 

=2:00pm 
1:50 S4 1.5 Valid  

2:00 S5 1.2 Valid 
Fused Sensor 

Value =1.3857 
2:00 S6 1.3 Valid  
2:00 S7 1.4 Valid  
2:00 S8 1.5 Valid  
1:20 S1 1.2 Stuck  
1:20 S2 1.3 Stuck  

 
Table 2 shows the fusion block output at 2:00 pm. The data involved includes data from sensors reporting 
their value at time T = 2:00 pm and also data from sensors that have not changed their values from the 
previous times of reporting. This data allows us to compute the fused sensor value using the algorithm and 
also to check for failures. As can be seen from the table, S1 and S2 are stuck at a value because they did 
not change within the expected period defined. The other results from the input sensor data can be explained 
using the plot in Figure 4. 

 
 

Figure 4: Sensor Fusion Output. 
 

Figure 4 shows the sensor fusion output for different timeframes. The horizontal axis shows time and the 
vertical axis is the fused sensor value. If we compare the different values of the input sensor with the fused 
output, we can see that we have a representative sensor output irrespective of the fact that there are some 
missing measurements and some sensor values out of range. 
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5 INTEGRATION OPTIONS TO A RT-DEVS SIMULATOR 

To incorporate the sensor fusion framework into a RT-DEVS simulator, we develop the sensor fusion 
algorithms and failure checking algorithms as DEVS models that can easily be coupled with other DEVS 
models and paves the way for combining more than one algorithm within a sensor fusion block. This ensures 
that all sensor fusion models would be independent of the simulator and can be backward compatible with 
existing models. The structure of how the framework fits with a RT-DEVS simulator is illustrated in Figure 
5. 

 

Figure 5: Integration of Sensor fusion framework with a DEVS Simulator. 

From Figure 5, we can see where the sensor fusion framework fits with the simulator. The integration is 
done such that when there is a single sensor system that does not need the fusion framework, the simulator 
can obtain sensor inputs directly from the sensors through the port drivers.  

6 CONCLUSION AND FUTURE WORK 

We have highlighted the challenges of sensor fusion for cyber-physical systems and discussed some of the 
efforts that have been put as regards modeling and simulation. A gap for improving a modeling and 
simulation technique has been identified and a framework for the inclusion of sensor fusion in DEVS has 
been proposed. This framework would make the implementation of sensor fusion less complex and easily 
accessible to the modeler as an option in a RT- DEVS simulator. In our future work, we would explore 
more algorithms for sensor fusion and failure checking. The framework would also be implemented on 
target hardware to allow us to perform more experiments to evaluate the performance of this framework. 
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