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ABSTRACT 

With the rise of Internet of Things devices, there is an increasing demand for embedded control systems. 
Discrete-Event Modeling of Embedded Systems (DEMES) is a Discrete Event System Specification 
(DEVS) based model driven development methodology that increases reliability and improves time to 
market by simplifying the development and testing of embedded systems. The existing toolchain used to 
implement DEMES, ECD-Boost, has some shortcomings that are addressed and improved in Real-Time 
Cadmium (RT-Cadmium); which is a Real-Time (RT) DEVS kernel developed on top of the Cadmium 
DEVS Simulator. RT-Cadmium allows users to switch between simulating and deploying their models with 
ease. RT-Cadmium is portable between target platforms and it already supports MBed Enabled ARM 
microprocessors and Linux based systems. RT-Cadmium can also handle asynchronous events, which are 
important for embedded system design and do not exist in standard DEVS simulators.  

Keywords: DEVS, RT-DEVS, Embedded System, Embedded DEVS Simulator. 

1 INTRODUCTION 

With the rise of Internet of Things devices, there is an increasing demand for embedded control systems. 
These systems are increasing in complexity and often designed in an ad-hoc fashion resulting in large 
expensive code bases that are prone to errors and difficult to test. To resolve these issues, the Discrete-
Event Modeling of Embedded Systems (DEMES) propose an agile model driven software design 
methodology for the development of embedded systems, whose goal of this methodology is to provide a 
formal development process that produce embedded software systems with reusable modules that can be 
tested in simulation before deployment on the target hardware (Wainer 2019). 

The DEMES methodology is built on top of Discrete Event System Specification (DEVS), which is a formal 
discrete even modeling specification. The methodology requires a tool suite with a simulator to simulate 
discrete-event models and a kernel that will run the same models in Real-Time (RT) on an embedded target. 
In this paper we will refer to the kernel as the RT runner that executes the models on the target hardware. 
The latest DEMES tool suite uses CD-Boost as the simulator and ECD-Boost as the RT-DEVS kernel 
(Niyonkuru and Wainer, 2016).  

This paper discusses the limitations to ECD-Boost found during a case study described in (Earle, et al., 
2019). The lessons learned in this case study were used to designing and implement the newest RT-DEVS 
Kernel, RT-Cadmium. In the background section we provide a brief description of the DEVS formalism 
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and the DEMES methodology. Next, we explain the design goals and improvements made on ECD-Boost 
in RT-Cadmium. Then we describe the implementation of a simple RT scheduler and the adaptations made 
to the DEVS abstract simulator to accommodate asynchronous events. Lastly, we will describe some case 
studies and conclude with future work.  

2 BACKGROUND 

DEVS is a modular and hierarchical formal modeling language used to describe discrete event systems. 
There exists an abstract DEVS simulator, which is an algorithm to simulate DEVS models. The algorithm 
has been proven to be correct and closed under coupling making DEVS an ideal modeling and simulation 
framework for this application (Chow, Zeigler and Kim., 1994). This algorithm is implemented in both 
DEVS simulators discussed in this paper. Cadmium uses the Parallel DEVS (P-DEVS) variant. 

DEVS is composed two types of models: atomic and coupled models. Atomic models describe the behavior 
of a given component. Atomic models have a current state, a time that they will stay in that state if 
uninterrupted, input ports, and output ports. Coupled models are used to link groups of models (atomic or 
coupled). The outputs of one DEVS model can be passed into the inputs of another DEVS model and the 
coupled model is used make these links. The coupled models can contain both types of DEVS models and 
are used to create modular hierarchical designs. (Wainer, 2009) 

Note that all data types and functions mentioned in this section are defined by the modeler. (E)CD-Boost 
and (RT-)Cadmium both C++ provide an interface for users to create DEVS models and run them in on 
their respective implementation of the abstract simulator.  

DEMES is a formalized methodology for model driven development of embedded control systems. DEVS 
is the modeling paradigm of choice as it is the most general discrete event formalism (Zeigler et al. 2000). 
The methodology is iterative and agile, it capitalizes on the modularity and reusability of DEVS, and 
facilitates testing and validation of systems using simulation. The following figure describes the DEMES 
process. 

 

Figure 1: DEMES Workflow Diagram (Wainer 2019). 

Figure 1 shows the architecture of DEMES. A designer starts (1) by modeling the System of Interest (a 
RTS and its environment) using formal specifications (for instance DEVS, Bond Graphs, etc.). These 
models subsequently transformed into TA and verified using model-checking tools (2). In parallel with this 
formal verification phase, we use the same models to test the components in a simulated DEVS environment 
(3). The physical environment can also be simulated (4) together with the RTS model under particular loads 
(5). These tested submodels can be deployed incrementally into the target platform (6). Most of the testing 
phase (7) can be done using simulation (with faster than RT performance), even if the hardware is not 
available, if there are risks, or practical issues. Design changes are done incrementally in a spiral cycle (8), 
providing a consistent set of apparati throughout the development cycle. The cycle ends with the RTS fully 
tested, and every model deployed in the target platform (9). Stubs for these drivers are created during the 
simulation phase, however, they will need to control the physical I/O ports on the target platform. The stubs 
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are then replaced with the real sensor drivers as they sensors become available and software is developed. 
This will decouple the control system from the I/O drivers, allowing them to be developed in parallel, 
reducing the potential for errors, and facilitating an agile development style.  

3 RT-CADMIUM DESIGN 

The RT-Cadmium kernel was designed with six requirements: (1) it must be backward compatible with all 
existing Cadmium models, (2) it must conserve the DEVS simulator structure, (3) the models must have 
identical behavior when simulated and deployed on hardware, (4) it must be easy to compile the project for 
the simulator and the RT target, (5) the tool should be portable between target platforms, and (6) the tool 
must support asynchronous events. The tool is open source and publicly available (Earle & Bjornson, 
2019a). Requirements 1-3 are to allow for reusability of models and maintain the integrity of the DEVS 
simulator. The latter requirements are improvements on ECD-Boost and will be discussed in the remainder 
of this section.  

3.1 Interchangeability of simulation and deployment 

When following the DEMES workflow, DEVS models are developed incrementally in an agile fashion. 
Therefore, an ideal tool for DEMES must be able to switch between testing a project on the simulator and 
deploying it to hardware with ease. Unfortunately, in the ECD-Boost toolset this switch is not simple and 
quick. It was designed to be used in a waterfall development fashion, where the initial modeling and 
simulation is done in CD-Boost. Then, when the user is satisfied, they make a new ECD-Boost project that 
will reuse these models adding some features to make them compatible with the Target Platform. This 
workflow is not realistic and drives most users to skip simulating their system all together. RT-Cadmium 
is designed in such a way that encourages users to follow the DEMES workflow; this is done by programing 
it, so the same project is both simulated and deployed. From the perspective of the user, the only difference 
is a compiler flag. RT-Cadmium also comes with visualizations tools to help debug simulated models, and 
runtime model verification (inherited from the Cadmium base). 

3.2 Platform portability 

To facilitate the growing number of embedded platforms, the RT-DEVS tool should be portable to many 
platforms. ECD-Boost was written solely for ARM platforms without considering portability. RT-
Cadmium uses abstraction to remain hardware independent, requiring only three components to port it to a 
new a target system. The following list shows the three things that are needed to port the tool to a new 
platform. 

1. A C++17 Compiler for the target 
2. A RT Clock class relating simulation time to microseconds 
3. DEVS models that encapsulate IO drivers 

To demonstrate the portability, these components have been developed for ARM MBed and standard Linux 
systems. The ARM MBed package includes many standard port drivers and examples on our GitHub (Earle 
& Bjornson, 2019a). The Linux package is less developed, it is missing DEVS models encapsulating port 
drivers. In the future we hope to develop some I/O drivers to allow for the development of interactive 
applications using RT-Cadmium. Additionally, the Linux drivers would lend naturally to a Raspberry Pi 
system.  

The RT Clock implementation can be found in the ‘/include/cadmium/real_time/<platform>/ rt_clock.hpp’ 
folder in the Cadmium source files. The implementation of a basic real time scheduler is described in section 
4. The portability of the simulator allows for users to create custom schedulers and add them to the 
Cadmium tool. In the future we plan to create a selection of RT schedulers allowing the user to select the 
appropriate one for their project. 
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3.3 Asynchronous event handler 

Any platform for embedded system development must support asynchronous events. Many standard DEVS 
simulators (ECD-Boost included) do not support this. All DEVS events are deterministic from the 
perspective of the simulator (i.e. they need to be defined at run time before the model goes to sleep). Any 
time a DEVS model goes to sleep, it will always tell the simulator the time when it should be woken up 
again. An asynchronous model, for example a model of an interrupting input, cannot tell the RT engine 
when it will generate its next output. RT-Cadmium uses an observer pattern to add support for asynchronous 
events, while maintaining the top down coordinator tree structure of the DEVS abstract simulator. This 
solution lets the asynchronous atomic model notify the DEVS engine of the event at the top coordinator 
level. The asynchronous event handler will be described in detail in section 5. 

4 REAL-TIME CLOCK 

The real-time clock is a fundamental component of Real-Time Cadmium that relates the software handling 
of time to actual time delays. Cadmium’s execution loop is in an object called the runner; the standard 
runner takes the following steps:  

a. Collect outputs from atomic and coupled model ports. 
b. Advance the simulation by executing the appropriate DEVS functions. 
c. Update the current time to the time of the next event. 
d. Repeat until termination. 

Note that in in the third step Cadmium instantly advances time to the time of the next event. RT-Cadmium 
requires the engine to run in actual time steps; therefore, it cannot advance time instantaneously. For every 
time advance in RT-Cadmium, there must be an actual delay equivalent to the time advance. The RT runner 
relies on the RT Clock to time the waits between scheduled events. The clock is decoupled from the core 
Cadmium engine because it is target specific. This section will walk through the architecture of the RT 
Clock, iteratively improving on the design, then finish by describing the two available implementations for 
MBed and Linux targets.  

The first step taken was to add a delay to the runner’s execution loop that would wait until the time of the 
next event in the engine. This simple implementation is shown in Figure 2. 

 

Figure 2: Simple Real-Time Clock Algorithm. 

Figure 2 shows the two main jobs of the Cadmium runner in the top activity bubble: collect outputs and 
advance the simulation. The lower bubble represents the delay of exactly the time to the next event. The 
problem with this implementation is that it does not consider the time passed while collecting outputs and 
advancing the engine.  

On the target platform code will execute in a non-zero amount of time. The additional delay introduced by 
the engine is significant and must be considered in the RT waits. A better solution, considering the engine’s 
runtime is shown in Figure 3.  
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Figure 3: Real-Time Clock Measuring Execution Time. 

The execution is surrounded by a timer to record the execution time of every step. The execution time is 
then used to offset the wait time for the next time advance. The wait time is calculated as the next event 
time subtracting the execution time. If this evaluates to zero or a negative number, then the wait activity is 
skipped. If this occurs, it indicates that the engine took longer to execute than it had time allowed to it by 
the previous time advance. Here, this issue is ignored but if this situation regularly occurs the real-time 
clock will drift. This problem is addressed in the next iteration.  

The following solution, shown in the Figure 4, addresses possible clock drift with the concept of a scheduler 
slip time. Unlike above, if a scheduled time advance step is missed, the amount of time it was missed by is 
recorded. A maximum allowed slippage is defined by the modeler which the recorded slip time is checked 
against. If the slip is too high, the simulation engine fails. If not, the simulation engine continues as before. 

 

Figure 4: Real-Time Clock with Adjustments for Scheduler Slip. 

Unlike the execution timer, the scheduler slip is accumulated over every execution step of the engine. 
Therefore, small amounts of slip can accumulate over many advances of the engine, which could still cause 
the engine to fail. Although, this also works in reverse. If there is excess time between when the engine is 
done executing and the next time step, time will be subtracted from the total slip. This is done to make up 
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the time from missed deadlines. If the next time advance is greater than the total accumulated slip, then the 
slip is reset to zero, and the simulation engine waits the remaining time. 

4.1 MBed Implementation of Real-Time Clock 

For any real-time clock implementation, there needs to be a way to relate the model time to real time. Real-
time cadmium clocks are designed for use with the Natural Deep Time class included with Cadmium. This 
class separates time values into hours, minutes, seconds, milliseconds, microseconds, and so on. The 
implementation converts these values into one long integer that represents the natural deep time in 
microseconds. 

MBed provides a few methods of interfacing with onboard hardware timers. The first is the ‘Timer’ object. 
This is used for measuring the execution time. It can be started, stopped, reset, as well as read the number 
of elapsed microseconds. The second is the ‘Timeout’ object. This is used when the simulation engine must 
delay until the next time advance. To use, a callback function is attached, and the Timeout object is 
instructed to wait the provided microseconds. Both timers can only be guaranteed to utilize a 32-bit 
hardware counter. Therefore, it is only possible to delay approximately 35 minutes with one of these timers. 
Due to this, if the time until then next advance is greater than the maximum value the timer can wait, 
multiple timer waits are set up removing the 35-minute dependency. 

4.2 Linux Implementation of Real-Time Clock 

The Linux implementation of the real-time clock is the same as MBed, except for the timer. Here a C++ 
‘chrono’ object is used to keep track of time on the x86 environment. It uses a ‘chrono’ object both measure 
execution and provide a delay for the time advance function. 

5 ASYNCHRONOUS EVENTS 

To allow RT-Cadmium to be used to build embedded control systems, we should include services to handle 
asynchronous events, which by definition could occur at any time. Standard DEVS simulators, including 
Cadmium, are not designed to handle events of this nature. A modeler may believe that external inputs to 
the top model or any model using random time advances are asynchronous, but that is not the case. Although 
these events can occur ‘whenever’ from the perspective of the models, they are all deterministic for the 
engine at runtime. For instance, it can be the case that external inputs to the top model are predefined in 
files, which are parsed and loaded into a generator atomic model. The generator model knows the exact 
time it needs to generate its next event. This allows to schedule the generator as it would any other atomic 
model. Secondly, any probabilistic time advance function will be run before advancing the simulation, thus 
collapsing the random value at run time. The random delay will be returned to the simulator, allowing it to 
be scheduled the same as any other atomic model. Therefore, all DEVS events, even those seemingly 
unpredictable to the modeler, are deterministic from the perspective of the simulation engine at runtime.  

To understand the changes made to support asynchronous events one must first look at Cadmium’s original 
implementation of atomic models. The Cadmium simulator encapsulates models in objects. Coupled 
models are unpacked and loaded into coordinator objects. Atomic models are instantiated and stored in 
simulator objects. The simulator object manages the simulation time, stores the model’s unique ID and calls 
the user’s DEVS functions at the appropriate times. The atomic model relationship structure is shown in 
the following UML Diagram (figure 5). 
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Figure 5: Cadmium Atomic UML Diagram. 

Coordinator and Simulator objects share a common interface. The atomic model inherits from the model 
written by the user and an abstract atomic class. When a coordinator object is instantiated, it will receive a 
coupled model as a parameter. It then loops through all the models in the coupled model and instantiates a 
simulator object for each of the atomics it finds.  

There are four places in the simulator that required updates to add support for asynchronous events: the 
atomic model, the simulator, the coordinator, and the RT clock. The primary design goals considered while 
programing changes to the cadmium simulator are backward compatibility and preserving the DEVS 
structure used to design the simulator. This structure sates that all external events to the simulation engine 
must enter at the root coordinator level. To prevent backward compatibility issues the simulator and atomic 
model classes were not changed; instead new classes were created to have these functionalities. All the 
standard Cadmium classes that were reimplemented for the asynchronous event handler have the 
‘asynchronous_’ prefix. The coordinator and the runner changes were not done in this way because the 
coordinator changes were minor, and the runner is already RT DEVS specific. 

When an asynchronous event occurs, there are two objects that need to be notified: the 
asynchronous_simulator for the atomic model that will service the event, and the RT clock that handles the 
wait between events. The Observer Design Pattern (also known as the Publisher / Subscriber Pattern) was 
chosen because it is used to “[d]efine a one-to-many dependency between objects so that when one object 
changes state, all its dependents are notified and updated automatically.” (Sarcar, 2019) In this scenario the 
asynchronous model needs to notify two completely different objects about an event occurrence, therefore 
it fits very well. The observer pattern is made up of two abstract classes called the Subject and the Observer, 
the UML diagram for these classes is shown in figure 6.  

 

Figure 6: Observer UML Diagram (FuzzDuck 2020). 

The subject maintains a list of observers that have subscribed themselves to its events. The observer’s 
constructor will accept one or more subjects to subscribe itself too. The observer has an abstract function 
called update, which will be implemented by the concrete class inheriting it. The subject has a notify method 
that loops through all subscribed observers calling their update function. The objects that wish to participate 
will inherit from these classes, call their constructor, and implement abstract functions as described.  
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In RT Cadmium’s implementation of the Observer Pattern the asynchronous model is the subject, and the 
asynchrnous_simulator and RT_Clock are the observers. The asynchronous atomic model’s UML diagram 
is shown below. 

 

Figure 7: Cadmium Asynchronous Atomic UML Diagram. 

When the asynchronous_simulator is instantiated, it will pass a reference to the abstract observer class’s 
constructor, which will subscribe it to the model. Whenever a coordinator object is instantiated it queries 
its sub-coordinators for a list of asynchronous subjects. The runner will get the complete list of 
asynchronous subjects from the top coordinator and pass them to the RT_Clock so it can subscribe to all 
asynchronous events. This is all done internally in the runner, this process will be transparent to the modeler. 
The only difference from their perspective is that their atomic models will be passed an interrupt_subject 
object in the constructor. The modeler must call the notify function on this object when their asynchronous 
event occurs. For example, if the event being monitored is an interrupt on a pin, the notify function should 
be run in the Interrupt Service Routine. Figure 8 depicts a simplified version of the asynchronous event 
state diagram.  

 

Figure 8: Cadmium Asynchronous Event Execution Diagram. 

When notified the asynchronous simulator and RT clock objects will update a local Boolean named 
‘interrupted’. The asynchronous simulator uses this variable to force the behavior of an external transition 
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at the next simulation step. The RT clock’s wait loop monitors the interrupted variable and will break out 
of its waiting loop and return the elapsed time to the runner when it is set. Using the elapsed time, the runner 
will update the current time of the simulation. If the elapsed time is less than the requested wait time the 
runner knows that an asynchronous event has occurred. The runner notifies the top coordinator of the event, 
then advances the simulation as per usual. The top coordinator will give all its sub-engines a chance to run 
if desired, which is when the asynchronous_simulator will generate the external transition in the 
asynchronous atomic model. 

As the engine runs DEVS models (which are hierarchical and modular), the tool only handles asynchronous 
atomic models at top layer. If we need to affect a model in a lower layer, the message will traverse the 
coordinator tree to wake all the parent coordinators of the simulator that must run, as in a standard DEVS 
model (but we need to include the links between layers to make that happen). In the future, we propose to 
extend the list of asynchronous subjects maintained in each coordinator will turn into a dictionary, 
containing the asynchronous subject and the sub-coordinator that told it about this object. This will allow 
each coordinator to notify the correct sub-coordinators until the proper simulator’s coordinator is awoken. 

5.1 MBed Implementation of Asynchronous Events 

There is one asynchronous event handler included with RT Cadmium written for the ARM MBED 
platform; it is the InterruptInput atomic model. The model will take a pin as an input and use the MBED 
library to set the I/O pin as an interrupting input. The asynchronous subject’s notify function is bound as 
the Interrupt Service Routine (ISR) for the rising and falling edges. The code for this is shown in figure 9.  

InterruptInput(cadmium::dynamic::modeling::AsyncEventSubject* sub, PinName pin) { 
  intPin = new InterruptIn(pin);               
  intPin->rise(callback(sub,&cadmium::dynamic::modeling::AsyncEventSubject::notify)); 
  intPin->fall(callback(sub,&cadmium::dynamic::modeling::AsyncEventSubject::notify)); 
  ... 
} 

Figure 9: Interrupt Input Atomic Model Constructor. 

This model is intended to be used for simple interrupt applications and as an example for more complex 
asynchronous atomic models.  

5.2 Linux Implementation of Asynchronous Events 

 There are no asynchronous event drivers written for Linux yet. There are plans to implement an 
interrupt handler like the one described in the MBed Implementation for a Raspberry Pi. This will be used 
in a sample project to show RT Linux users how to setup and use an asynchronous event. The next step will 
be to create a project that uses separate threads to generate inputs to the models asynchronously.  

6 CASE STUDIES 

There are several RT-Cadmium projects available on GitHub (Earle & Bjornson, 2019b), all of which are 
made for the MBed target. The MBed board we used is a STM32F401RE, which has an ARM M4 
microprocessor. The first project that should be review by new users is the Blinky project. This project will 
flash the on-board LED and take input from a button. Its purpose is to test the user’s environment to ensure 
the tools have been downloaded and installed properly. Another small project titled SeeedBot is a simple 
implementation of a line following robot. The hardware used is a Seeed Shield Bot which is depicted 
alongside the board in the figure 10. There is a third sample project called DISCO-Demo that showcases a 
complex sensor driver implemented on the STM DISCO_F429ZI board. We developed these three projects 
to showcase RT-Cadmium and provide a template for other users. 
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Figure 10: Hardware Used for Case Studies. 

The system designed in (Earle, et al., 2019) was recreated in RT-Cadmium, it is titled Building-Controller 
in the RT-Cadmium model repository. This project is a control system for a model building with an 
intelligent lighting and alarm system. The building has two rooms, each with three light states: off, dim, 
bright. The lights are turned on if they detect a person in the room and the brightness is determined by the 
ambient lighting in the room. The emergency exits each have a mechanism to set off the alarm, and a red 
and a green light to show if the exit is safe. If a sensor alarms its light will go red, while the other light will 
be green, as long as its sensor also does not alarm. Additionally, if an emergency is detected then all the 
room lights will turn on, regardless of ambient light. The layout of the model is shown in figure 11.  

 

Figure 11: Model Building Floor Plan (Earle, et al., 2019). 

The control system for the building controller is split into two coupled models: one for the room LEDs and 
the other for the emergency notification system. Both of the coupled models have several atomic models 
that perform basic operations and interact to achieve the desired behavior. The block diagrams below show 
the hierarchical structure of control system built using DEVS models. 

         

Figure 12: Building Control System Block Diagrams (Earle, et al., 2019). 
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The diagram on the left is top model, it depicts the I/O interaction and the couplings between two main 
coupled models. The diagram on the right is the Emergency LED Controller coupled model from the left 
expanded and filled in. It has five atomic models that all interact to create the desired output, one of which 
(Alarm Out) is mapped to the Room LED Controller model. Each of the atomic models have a state and 
perform simple logic to update their state and send outputs. As the complexity of the model and the number 
of I/O ports increases the advantages of DEVS becomes apparent. In figure 13, we show a comparison 
between the DEVS block diagram and the state chart for the Room LED Controller.  

     

Figure 13: Block Diagram and State Chart (Earle, et al., 2019). 

As the number of ports or states in the system grows the state chart’s complexity will grow quickly. This is 
due to the need to define the transitions for each state and possible inputs. DEVS models provide the 
advantage of having a separation of concerns simplifying the system.  

Some of the case studies were built by undergraduate Systems Engineering students, and they were 
successful in recreating the system in RT-Cadmium. This proves that the tool provides the functionality 
required to facilitate the DEMES methodology. Additionally, the example models and documentation are 
sufficient to train a programmer to use the tool. Furthermore, it shows that the tools are accessible to a large 
community.  

7 CONCLUSION  

There is a need to formalize the development of embedded control systems; DEMES is a methodology that 
offers an elegant model driven approach that is formalized using the DEVS specification. The advantages 
to using this methodology are modularity, reusability, easier testing and validation. DEMES requires a tool 
set with a discrete event simulator and an accompanying RT-kernel. The previous toolset ECD-Boost had 
limitations that prevented users from properly adhering to the methodology; the authors presented RT-
Cadmium as a new and improved RT-DEVS tool. This paper explains the design goals of RT-Cadmium 
and documents the high-level design of its first RT scheduler and the modifications made to the abstract 
simulator for the Asynchronous Event Handler. Finally, we presented different case studies.  

There are several next steps for this research. It is important for us to create a complex sensor driver 
workflow that explains how to encapsulate advanced sensors in DEVS models. This is needed because the 
undergraduate students working with the tool have had some difficulty implementing more advanced 
sensors. Additionally, we are planning to develop libraries of prewritten drivers and utility models to make 
it easy and fast to make new projects. Currently, we are interested in developing distributed DEVS systems 
that pass DEVS messages over serial connections and RF links. Therefore, our focus has been making 
models to encapsulate communication interfaces. Another interesting direction for this tool would be to 
combine RT simulation with a digital twin and/or, human based controllers to make optimal decisions. As 
the development of this tool progresses, we hope to lower the barrier of entry using graphical modeling and 
libraries of prewritten drivers. 
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