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Summary
Real-time (RT) systems include hardware and software components interacting
in a tight fashion. Although formal methods for RT systems development have
advanced, they are sometimes difficult to apply in practical applications, and
scalability is compromised as the complexity of the system scales up. Instead,
using modeling and simulation (M&S) methods and tools has showed to be use-
ful for verification of practical aspects of RT systems (and having the advantage
to be able to including models of the physical environment they interact with).
Although several efforts exist in M&S of RT systems, none of them has consid-
ered problems of transient overloading in the RT systems specifications. Here,
we introduce a new theoretical framework called I-DEVS (imprecise discrete
event systems specification) with the goal of guaranteeing responses to inputs
within specified time constraints under such transient overloading conditions.
The solution presented here has the advantages of a formal specification and the
practicality of an M&S-based approach. We also discuss how to define hierarchi-
cal models running in RT, and we present a set of tools that can be applied to
develop RT-embedded applications, and RT simulations.

1 INTRODUCTION

Real-time (RT) systems are usually built as software components embedded in specialized hardware interacting in a tight
fashion with their environment and satisfying “hard” timing constraints (with deadlines at millisecond scales). Decisions
taken by such RT systems can lead to catastrophic consequences (either financially or in human lives); thus, their correct-
ness and timeliness are critical. In recent years, RT systems have faced growth both in number and their complexity. The
ever-increasing demand for new features and quality (in terms of safety, dependability, fault-tolerance, power consump-
tion, etc.) combined with decreasing budget and time-to-market pose new challenges to RT systems designers. Various
systems ranging from autopilots, power plant control, transportation, and telecommunication, to customer electronics,
medical equipment, and intelligent and automated systems are examples of such hard RT systems.

A RT system is defined by Liu28 as “a system that is required to complete its work and deliver its services on a timely
basis.” Many of these systems are deployed in embedded microprocessors working in hardware computing platforms with
special configurations and interfaces. Reference 34 describes an embedded system as “a system designed to perform a ded-
icated function, typically with tight RT constraints, limited dimensions, and low cost and low-power requirements.” The
architecture of these systems usually integrates different types of hardware components such as processors, analog and
digital components, as well as mechanical (eg, sensors and actuators) and visual components, which demands increas-
ingly challenging multidisciplinary design and development efforts. In particular, when multiple tasks run in a single
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processor, we might end up not being able to execute all the tasks before their corresponding deadlines, producing what
is called an overrun condition in which we will miss deadlines until the condition is resolved (in some cases the over-
runs are caused by triggering of emergency tasks that use extra CPU cycles, and when the emergency ends, the overrun
condition is resolved).

Different formal methods have been proposed to design and develop these systems, since they provide a provable
hence reliable framework that facilitates the construction of such critical applications. These methods are special cases of
mathematical-based techniques for design, development, and verification of software and hardware systems.33 They allow
for appropriate mathematical specification and analysis of the designs, which can contribute to the reliability of the final
system, yet they add to the complexity of the design and increase the cost of the development. Therefore, they are mostly
appropriate for systems with critical applications where safety and robustness are a foremost aspect. Unfortunately, these
methods do not scale up well, as most formal proving mechanisms cannot provide formal proofs of correctness when the
complexity of the system grows.1,14

Instead, modeling and simulation (M&S) provides a practical solution in solving the above-mentioned difficulties in
the design of RT and embedded systems, caused by formal methods. Computer-based M&S is a useful tool for efficient
analysis, design, verification, and optimization of general dynamic systems. The use of M&S in software engineering
reduces costs and risks and allows for exploring different aspects of the system.

Formal M&S is a branch of M&S, in which the simulation models are defined using a formal approach. This tech-
nique has shown promising results in making multidisciplinary system development tasks manageable.49 It provides a
hierarchical design scheme in which higher abstract levels are branched into levels that contain more details. The system
specifications are expressed using mathematical notations in which the details of the behavior of the system are accurately
modeled. Other advantages of formal M&S are applying formal model checking techniques at design time,37,41 incremen-
tal refinement of the initial simulation models, simulation-based validation, reuse of the existing models, risk free testing
of critical RT applications.

We present new techniques to overcome overrun conditions in hard-RT systems designed using a M&S-driven
approach31,32 based on a formal specification: the DEVS (Discrete-Event System Specification) formalism.49 DEVS is an
increasingly accepted framework that provides an abstract and intuitive way of modeling, independent of underlying
simulators, hardware, and middleware. DEVS supports hierarchical and modular construction of models, which fits our
needs (models at different levels of abstraction can be defined independently, and later integrated into a hierarchy). DEVS
decouples model, experiments, and execution engines (allowing for portability and interoperability).

One critical aspect of a hard RT system is the production of outputs before the specified deadline. For instance, the
deadline to trigger the request to deploy an airbag after a crash is 10 ms, in order to meet the mandatory 55 ms deadline
for the airbag to be deployed. If that deadline is missed, the passengers can die. As we can see, late outputs in such
systems not only degrade the system performance but also produces catastrophic results (loss of lives and expensive
assets). However, in circumstances with system overloads, it might be impossible to meet the deadlines. Since RT systems
are not deterministic, tasks may enter the system at any time hence, there is no prior knowledge of their occurrence
times.

The imprecise computation (IC) technique25 helps to overcome these high computation peaks by discarding unnec-
essary computations in overload conditions. The main idea is to separate the computations into mandatory and optional
chunks (the mandatory computation affects the correctness of the result and the optional one affects its quality). This
research aims at introducing a flexible RT task execution paradigm for DEVS by incorporating IC technique into the
DEVS task model (note: although we use the DEVS acronym throughout the paper, the research is based on P-DEVS with
ports). Based on the requirements in a hard RT system, it is safer for a task to produce less accurate results on time, rather
than producing the accurate result, late. The motive is to employ IC with the proposed RT DEVS approach32 in order to
have a formal platform for designing hard RT systems. The objective is to address the above challenges in the proposed
DEVS-based RT design scheme, without complicating the formalism or adding extra processing burden and maintain-
ing the backward compatibility in order to reuse previous models. The contributions of this paper can be summarized as
follows:

• We discuss in detail the use of Imprecise DEVS (I-DEVS), which provides flexibility to the user by separating the
behavior of the system to mandatory and optional, to achieve a more reliable RT task scheduling from the processor.31

The imprecise computing approach allows early detection of system overloading, which, in turn, can improve fault
tolerance which is crucial in the field of embedded systems.
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• A detailed (model-independent) task model of DEVS formalism is presented. The idea is that, starting from an I-DEVS
model, we can construct a standard scheduling task model (which can be used for schedulability analysis), in which we
identifies processing tasks from the I-DEVS specification, and we define a method to convert in schedulable CPU cycles
to be executed in a RT DEVS-based system. This proposal is then used to develop RT IC-based scheduling algorithms.

• An early reaction algorithm to the overrun conditions in DEVS-based hard RT systems is proposed, in which the system
can act early enough to save the critical tasks from lateness.

• The I-DEVS M&S framework is implemented on E-CD++ M&S software,44 providing a development platform for
imprecise modeling and execution using DEVS formalism.

The I-DEVS “flavor” is provides a few advantages over standard DEVS. As it has been formally proven that DEVS is
the most generic Discrete-Event System Specification,49 I-DEVS can be considered as an instance of DEVS. Nevertheless,
I-DEVS simplify the task of the modeler, who only needs to identify if a task is mandatory or optional, and this provides
various advantages, summarized here:

• Identifying the mandatory and optional tasks at the model level, allows one to define, study, verify and properly imple-
ment independent simulation/real-time engines, so that modelers can focus on the imprecise models themselves,
instead of needing to implement the imprecise computing methods as parts of their own models, making the modeling
task simpler.

• The semantics of I-DEVS is different, as it will be discussed in detail in the following sections: differently from DEVS,
the optional tasks do not execute under transient overloads. A formal specification of the operational semantics of
I-DEVS (which is outside of the scope of this article), could be used to define and study properties of the models defined,
allowing early detection of errors in the model specification.

• Having a mandatory/optional task definition mechanism allows the modeler to conduct model design with that mind-
set and makes accessible the use of the imprecise computing method, which, at present, is not being used by designers
as they are not aware of it. By providing the methods and tools to use imprecise computation improves the modeling
approach from the design phase.

• Using this approach, we can rely on the various schedulability tests that exist for guaranteeing timeliness of hard
real-time tasks using imprecise computing. Although this research is outside the scope of this paper, we have explored
these methods29 showing how, from a I-DEVS specification, we can formally analyze the schedulability of a set of tasks
defined as I-DEVS models.

The rest of the paper is organized as follows: section 2 introduces related work; section 3 defines the task model
derived from RT-DEVS. Section 4 introduces the I-DEVS methodology, after which, section 5 introduces and discusses a
case study showing implementation results.

2 BACKGROUND

In this section we introduce related work and background information for this research. It includes two sub-sections, the
first introducing RT systems with imprecise computations, and the second introducing DEVS and RT DEVS.

2.1 RT systems and imprecise computations

The imprecise computations (IC) technique25 is a useful approach for handling RT scheduling issues under transient
overloads. It introduces a methodology for separating the critical (mandatory) part of a task from its uncritical (optional)
part, thus making it possible for a RT system to accept more tasks to the system while trying to run as many optional sub-
tasks as possible. This allows the system to be dynamically configured to accept more tasks when the system's processing
traffic is high, by producing less accurate results, and on the other hand, when the system burden is low, execute tasks
completely to produce accurate results.

Within the IC definition, a monotone task is defined as a task in which “the quality of its intermediate result does not
decrease as it executes longer.”24 Monotone tasks can be found in almost all RT applications and their flexibility in terms
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F I G U R E 1 A monotone task divided to mandatory and optional
parts25 [Color figure can be viewed at wileyonlinelibrary.com]

of duration of computation helps designers to implement the IC technique. A solution to handle high processing peaks
in an RT system is to divide the monotone tasks into two versions of a computation: the primary, which executes longer
and produces more accurate result and the secondary version which executes shorter but produces less accurate result.
Whenever the deadline is short, the secondary version can be processed to meet the deadline while having an acceptable
result.

Contrary to monotone tasks, tasks with 0/1 constraints must be executed to completion or not executed at all.
Scheduling 0/1 constraint tasks is more difficult.24

The following definitions are used in scheduling algorithms for imprecise computations: Considering a task set
T = (T1, T2, … , Tn) of preemptable tasks, the following parameters are defined regarding each task Ti: ri is the time at
which task Ti is released; di is the deadline at which task Ti must be completed; ti is the processing time required for task
Ti; and wi is the weight of the task Ti which is the relative importance.

Every task Ti is composed of two subtasks: Mandatory and Optional. The mandatory subtask Mi needs processing
time mi and the optional subtask Oi needs processing time oi. Then mi + oi = ti. Figure 1 illustrates these definitions.

In a schedulable RT system, each task Ti is referred to as “being executed” when at least all its mandatory subtasks
included in the associated jobs are executed (jobs are instances of tasks occurring during the execution). The optional
subtasks of task Ti are available for execution only if the mandatory subtasks of Ti are executed properly. The scheduler
can terminate an optional subtask at any time during its execution. Based on this definition, a perfect hard RT system is
a system in which all the tasks are composed of mandatory subtasks and a perfect soft RT is a system in which all the
subtasks are optional.25

IC has been well investigated and many RT scheduling algorithms have been introduced (some of these algorithms are
presented in section 3). Imprecise scheduling algorithms benefit from the separation of mandatory and optional subtasks,
in which they apply appropriate scheduling procedures for each processing type. The priority of the jobs is also considered
by some of the algorithms and there are algorithms for periodic jobs, too. Moreover, the concept of error is defined based
on the portion of the optional subtask that has not been executed in the context of a full task.

A common problem in hard RT systems is the occurrence of overrun situations when the system does not have enough
processing resources to fulfill all the requesting processes. This issue poses critical risks to the machinery under control,
and it may cause catastrophic results. IC technique offers an effective way of resource utilization in such circumstances.
We show how to use this technique for the proposed RT DEVS framework32 by introducing the Imprecise-DEVS (I-DEVS)
methodology. This approach combines the dynamic advantages of the IC technique with the rigor of a formal modeling
methodology.

Imprecise computation has been used for minimizing error in RT task scheduling.5 The error is calculated as a function
of the amount of discarded optional processing as a result of overrun situation happening in the system. Many off-line
task scheduling algorithms have been proposed in the past, based on IC technique (refer to References 3,27,and 38). There
is no optimal algorithm that minimizes total error in on-line RT scheduling systems, when a feasible schedule exists,
because of the lack of a-priori knowledge of the occurrence time of the jobs.39

The mandatory first algorithm assigns processing times to mandatory tasks first, based on statistics to reduce the total
error (refer to References 4 and 12).

The NORA (No-Off-line tasks and on-line tasks Ready upon Arrival) algorithm40 is based on EDF (Earliest Deadline
First) algorithm and is mainly designed for online task systems, in which each task is ready upon arrival. Each task is
assigned a reserved interval based on reverse scheduling algorithm. Each task's mandatory subtask is assigned a reserved
execution time starting from its deadline equal to the amount of processing time required for its mandatory subtask, based
on the EDF algorithm. As long as the mandatory task set is feasible a reserved interval set can be found.

The DOT_Sched algorithm10 is an extension to the NORA algorithm for online tasks that are ready upon arrival. It
uses three reservation lists: R(M) for mandatory tasks, R(O) for optional tasks, and R(M + O) for both of them. Like NORA
algorithm each task is assigned a reserved interval in R(O) or R(M) and R(M + O) lists, starting from its deadline way
back equal to its processing time.

http://wileyonlinelibrary.com
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RT-Frontier22 is a RT operating system that presents an imprecise computation framework for constructing RT appli-
cations. It decomposes computations to mandatory, optional, and wind up parts. The wind-up part works as a termination
function after the termination of an optional part, reducing the termination cost and increasing portability. A novel
scheduling algorithm called Slack Stealer for Optional Parts (SS-OP) is used in RT-Frontier which is based on the above
mentioned three segment imprecise computation model and imposes small overhead to the system, while applying
dynamic load balancing scheme.

Except the work presented in Reference 22, which only applies IC in a specific operating system, no research aims at
integrating this technique with a formal methodology to be used in RT and embedded system design and construction.
The proposed I-DEVS approach, allows the model designer to deploy this technique at the design time, specifying the
optional and mandatory behaviors of the target system.

IC has been applied to different fields, including RT and embedded systems,22,26,46 multimedia processing,9,13,20 plan-
ning and artificial intelligence,15,35 and databases.18,2 Despite all of these efforts, IC is not yet widely used in industrial
embedded applications. In recent years it has also found its way into other related fields, including scheduling in fog
computing,7 energy-aware systems,50 Operating Systems design,11 between others. The reason might be related to “strict
theoretical assumptions and the lack of cost-effective support method that can be easily implemented in embedded
systems.”22 Here, we want to address these issues in the context of RT DEVS-based systems.

2.2 The DEVS formalism

DEVS is a formal M&S methodology, based on generic dynamic systems, including well-defined coupling of compo-
nents, hierarchical, modular construction, support for discrete event approximation of continuous systems and support
for repository reuse.8 A real system modeled with DEVS is described as a composite of sub-models, each of them being
behavioral (atomic, see Figure 2) or structural (coupled). The complexity of these systems has encouraged the use of
model-based approaches for designing purposes. M&S techniques provide solutions for efficient analysis, design, verifi-
cation, and optimization of these systems reducing cost and risk. Related works based on DEVS for RT are presented in
Reference 16.

A DEVS model is described as a set of basic atomic and coupled models. Atomic models are still the most basic con-
structions, which can be combined with other models into coupled models. The DEVS atomic model has the following
structure:

AM =< XM,YM, S, 𝛿ext, 𝛿int, 𝛿con, 𝜆, ta >,

where XM = {(p, v) ∣ p∈ IPorts, v∈Xp} is the set of input ports and values. YM = {(p, v) ∣ p∈OPorts, v∈Yp} is the set of
output ports and values. S is the set of sequential states. 𝛿ext Q×XM

b → S is the external state transition function. 𝛿int S→ S
is the internal state transition function. 𝛿con Q×XM

b → S is the confluent transition function. 𝜆 S→YM
b is the output

function. ta S→R+
0,∞ is the time advance function; with, Q: = {(s, e) | s ∈ S, 0≤ e≤ ta(s)} the set of total states.

The semantics of the DEVS definition are as follows. At any given time, a basic model is in a state s. and in the absence
of external events, it will remain in that state for a period of time as defined by ta(s). When an internal transition takes
place, the system outputs the value 𝜆(s), and changes to state 𝛿int(s). If one or more external events E = {x1 … xn/x ∈XM}
occurs before ta(s) expires, that is, when the system is in the state (s, e) with e≤ ta(s), the new state will be given by

F I G U R E 2 DEVS atomic component state transition sequence [Color
figure can be viewed at wileyonlinelibrary.com]
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𝛿ext(s, e, E). Suppose that an external and an internal transition collide, that is, an external event E arrives when e = ta(s),
the new system's state could either be given by 𝛿ext(𝛿int(s), e, E) or 𝛿int(𝛿ext(s, e, E)). The modeler can define the most
appropriate behavior with the 𝛿con function. As a result, the new system's state will be the one defined by 𝛿con(s, E).

A coupled model connects the basic models together in order to form a new model. This model can itself be employed
as a component in a larger coupled model, thereby allowing the hierarchical construction of complex models. The coupled
model is defined as:

CM =< X,Y,D,EIC,EOC, IC >

X is the set of input ports and values, Y is the set of output ports and values, D is the set of the component names, EIC
(external input couplings) connects the input events of the coupled model itself to one or more of the input events of its
components, EOC (external output couplings) connects the output events of the components to the output events of the
coupled model itself, IC (internal coupling) connects the output events of the components to the input events of other
components.

The DEVS formalism was originally defined to allow the definition of discrete-event models and their simulation. In
order to extend this formalism to RT simulation and application development, we proposed the RT DEVS as a RT extension
to DEVS32 to provide RT simulation capability as well as a formal methodology for simulation-driven development of RT
and embedded applications. Unlike RT-DEVS,19 this formalism applies minor modifications to DEVS, allowing for easy
reuse of the previous models.

The most critical characteristic of a RT system is the availability of output within the specified deadline. RT DEVS
assigns a deadline to each output in the atomic component, and it verifies the deadline when the associated output is
produced. Hence, the concept of deadline is embedded in the formalism and it is implemented in the abstract simulation
mechanism.

The atomic component of RT DEVS is formally defined by

AMRT =< X, S,Y, 𝛿ext, 𝛿int, 𝛿con, 𝜆, ta, d >, (1)

where X, S, Y, 𝛿ext, 𝛿int, 𝛿con and 𝜆 are the same as DEVS.
ta: S→R+

0,∞, time advance function (which is tied to physical clock of the system).
d: S→R+

0,∞ is the relative deadline of each state for output production. The deadline starts at the end of the associated
state when the output function is invoked to produce an output (ie, considered the release time of the output task).
The deadline is allocated to each output generated by the output function. Management of the deadline is done by the
time-advance function.

The engines that execute atomic and coupled components provide an abstract simulation mechanism, referred to as
simulators and coordinators, respectively. Thus, the control hierarchy is composed of coordinators as middle nodes and
simulators as the leaves. The top-most coordinator, referred to as Root Coordinator (RC) initiates each simulation phase
by sending the following messages to the simulators: (q, t) representing an input message that carries an input value from
external environment and the time stamp of the message. The collect message (@, t) gives an instruction to generate an
output. The internal message (*, t) is for an imminent simulator. The output message (y, t) is produced in response to a
collect message.

A coordinator is responsible for converting output messages to input messages in case of an internal coupling. It is also
responsible for sending the smallest time of internal event (also referred to as next change (tN)) among its components.
The last change time (tL) is the relative time from the last activity in a component to the current time. The following
snippet represents collect message handling algorithm in a P-DEVS simulator.

1 when receive (@, t):
2 if (t = tN) then
3 y = 𝜆 (s)
4 send (y, t) to the parent coordinator
5 send (done, t) to the parent coordinator
6 else
7 error
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The following snippet represents input message handling in P-DEVS.

1 when receive (q, t):
2 Add event q to the bag
3 send (done, t) to the parent coordinator

The receipt of input message does not trigger the external transition function. Instead, the input is inserted in the
bag, allowing for processing simultaneous inputs stored in the bag, when an internal message is received. The following
snippet represents the internal message handling.

1 when receive (*, t):
2 if (tL ≤ t< tN) and bag is not empty
3 e = t − tL
4 s = 𝛿ext(s, e, bag)
5 empty bag
6 tL = t
7 tN = tL + ta(s)
8 else if (t = tN) and bag is empty
9 s = 𝛿int(s)

10 tL = t
11 tN = tL + ta(s)
12 else if (t = tN) and bag is not empty
13 s = 𝛿con(s, bag)
14 empty bag
15 tL = t
16 tN = tL + ta(s)
17 else if (t> tN or t< tL)
18 error
19 send (done, tN) to parent coordinator

The internal message will produce three different executions: line 2 is the case when the internal message is received
before the end of current state's lifetime and the input bag is not empty. This means there are inputs to be serviced; hence
the external transition is invoked. Line 8 is when the internal message is received at the end of the lifetime of the current
state, while the input bag is empty, indicating an internal transition. Line 12 shows when internal message is received at
the end of the state and there are inputs to be served. Therefore, confluent function must be called to handle the collision
of external and internal transitions.

3 RT DEVS TASK MODEL

The main computations in a RT DEVS runtime engine occur in state transition functions (ie, the functions defined by the
modeler in the atomic models) as well as in scheduling and message transfers (described in the coordinator/simulator
subsystem in section 2). Assuming that the message transfer has overhead associated to the context switching between
the standard DEVS tasks in the system, the set of tasks in a RT DEVS system (in theory) is composed of transitions
and output functions. This information is used to map the DEVS functions (𝛿ext, 𝛿int, 𝛿conf, and 𝜆) run by the RT
simulator into an RT kernel and scheduler, providing a platform where IC can be applied. The set of tasks in a RT
DEVS system (in theory) is composed of transitions and output functions (𝛿ext, 𝛿int, and 𝜆) run by the RT simula-
tor. Figure 3 shows the processing tasks in such a RT DEVS atomic component during a state transition (note that
in this example, used to show the process, we assume that each transition function takes 1 time unit, and the con-
text switch between them is negligible; the figure shows how to map the DEVS transition functions into a scheduling
timeline).

As we can see, the external transition (𝛿ext) is mapped into a task named “TX ” that initiates the state S. The task's
release-time is equal to the arrival of the input at the system. No deadline is assumed for the TX task (as it is an input and
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at wileyonlinelibrary.com]

it can arrive at any time). The output task “T𝜆” and internal transition (𝛿int) task “TI” are considered to execute together
forming T𝜆TI task (as outputs in DEVS are always followed by an internal transition). The release time of task T𝜆TI is
equal to the end of the state S and specified by ta(s) (indicated as T in Figure 3). Its deadline is specified by the d(s)
function in Equation (1) (and indicated as d in Figure 3).

This RT DEVS definition provides an M&S-based design scheme method for engineering RT systems, in which system
components can be simulated (and formally analyzed) before the actual development and deployment.

Let us assume a scenario where the system receives a large number of inputs. In that case, the system needs to exe-
cute many transitions and produce the corresponding outputs, making the output tasks delayed (and even exceeding
their deadlines). Figure 4 shows such an overload scenario when four inputs are injected, starting external transitions on
different atomic components.

As discussed in Figure 3, we can see the release time of the tasks triggered by the time advance function ta(s) for each
task, depicted as Ti in Figure 4. Also, we show the associated deadlines for each of the tasks. There is only one processor
that executes the transition functions (showed in yellow/green/red under the timeline). As can be seen, T𝜆1, T𝜆2, and
T𝜆4 meet their deadlines; however, T𝜆3 and T𝜆2 (the second instance produced by an internal transition at time 18) do
not. The internal transition task TI2 produces a new state with ta(s) of 4 time units, which exceeds its deadline at time
17. This situation can be avoided if multiple internal transitions tasks happen sequentially. However, it could have been
prevented, if the system would have detected the overload conditions early enough to apply IC-based scheduling. In order
to avoid this overload scenario, we divide the tasks into mandatory and optional parts. The states of the atomic model
are categorized as mandatory and optional. A mandatory state will lead to a mandatory output function (represented as
output task) and an optional state will lead to an optional output task. This abstraction in the definition of mandatory
and optional tasks in the level of state machine, allows the system designer to define imprecise components without
being involved in the details of the lower level tasking system. Assuming input TX tasks are always mandatory (to avoid
missing any inputs) non-critical output represented by T𝜆 tasks can be optional. The T𝜆 subtask of an optional T𝜆TI task
can be terminated under transient overloads. In other words, during overrun situation, the system skips optional outputs
to save time and resources for the mandatory ones. For instance, an aircraft or an automobile control system during a
critical stormy situation with a bulk of reconnaissance and control tasks can discard infotainment tasks to respond to the
critical control commands. A similar scenario can occur in any RT system where a sequence of non-critical outputs can
be skipped to alleviate the overload situation by keeping the necessary outputs produced on time.

A RT system can be prone to overload conditions at any time during execution, posing risks and reducing the reliability
of the system in hard RT conditions. Nevertheless, the overrun situation can be transient, happening at very random
occasions. The nondeterministic nature and lack of a-priory knowledge of the occurrence times of the tasks, adds to this
issue severing the risk. Based on these ideas, we propose using an IC-based approach in the context of RT DEVS modeling.
Defining a clear theoretical tasking system of RT DEVS provides a reliable starting point to employ various available
techniques and algorithms for reliable scheduling and also schedulability analysis of these systems. The proposed I-DEVS
approach with minimal modification to DEVS, allows for well-organized integration of IC technique with DEVS.

4 IMPRECISE DEVS

As mentioned earlier, we want to provide an IC framework for applications where the job arrival times are not known
a-priori. The approach tries to balance the computation when the system is busy and on the other hand not reducing

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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its performance, while keeping the run-time overhead of the implementation as low as possible. The method combines
theoretical concepts in IC and DEVS modeling, while having the power to be used in practical projects based on this
technique.

I-DEVS uses RT DEVS and adds a mandatory or optional condition for each state, as follows:

AM =< X, S,Y, 𝛿ext, 𝛿int, 𝛿conf, 𝜆, ta, d >

where X, Y, 𝛿ext, 𝛿int, 𝛿conf, 𝜆, ta and d are the same as in RT DEVS, S {(s, c) | s∈Z+
0 and c ∈ {mandatory |

optional}}.
The states of the atomic model are categorized as mandatory and optional. A mandatory state will have a

mandatory output function (represented as an output task) and an optional state will produce an optional output
task. This abstraction in the definition of mandatory and optional tasks in the level of state machine allows the
modeler to define imprecise models without being involved in the details of the lower level tasking system. This
artifact allows implementing a real-time engine that executes the model, making the execution mechanisms (the
“simulator” if running in simulation mode, or the “real-time engine” when running in real-time) independent of
the model specification, making easier the implementation of those execution artifacts and related schedulability
tests.

The main runtime algorithm performed in the Root Coordinator (RC) (the top coordinator in the DEVS abstract
runtime hierarchy introduced earlier49) is unchanged. It is started first by waiting for an external or internal event. RC
routes external input through an external message (q) to the destination atomic model (which triggers the 𝛿ext func-
tion). Otherwise, it waits for the closest internal event (𝜆1), and then sends collect (@) and internal messages (*) to
the target atomic model to trigger 𝜆 and 𝛿int functions, respectively. The collect message executes the 𝜆 function on
the atomic model and the internal message executes 𝛿int. The atomic model responds to the @ message by executing
the 𝜆 function and returning the output value through an output (y) message. The atomic model also executes 𝛿int in
response to a * message and returns its next internal event time by a done message. The time advance is driven by the RT
clock.

Whenever there is more than one output task to be serviced in an overrun situation (ie, when tasks drift later than their
release times), the mandatory ones have priority over the optional ones. If an optional output task is to be serviced later
than its release time plus a grace period, it will be discarded. The grace period depends on various factors and it defines
a threshold for tolerating lateness in processing optional tasks. In the case studies presented later in the paper, we use a
grace period of zero-time units, the most stringent scenario. In order to detect transient overload conditions, we check
to see if the tasks are drifted late from their release-times. When there is a drift from the release time, this might be an
indication of an overloaded system which, in the near future, could trigger new tasks to react to these conditions (using an
early reaction strategy). Using a grace period, we can decide on a threshold used to decide when the system starts dropping
optional tasks. The grace period is handled by the runtime engine, and it can be a function of the processing resources,
level of criticality of the optional tasks, or other function towards reacting to such conditions. The grace period can be
used to tune the system to obtain desirable tradeoffs between losing accuracy and meeting hard deadlines. Systems with
hard RT deadlines can have a shorter grace period in order to save time for mandatory tasks by sacrificing optional ones
and gaining higher reliability, while soft RT systems could tolerate delays sporadically in order to achieve higher precision
and quality. The grace period could also be modified dynamically by the runtime system, using learning algorithms to
adapt to changing conditions. On the other hand, these dynamic conditions can be explored by simulating the I-DEVS
model, allowing the modeler to conduct experiments in a risk-free environment with various test scenarios before it is
deployed on the target hardware.

The early reaction strategy helps the system to save time for later mandatory tasks that have not been released
yet. Whenever a sequence of optional events in a system is delayed, the system starts discarding the optional
tasks.

The early reaction strategy helps the system to save time for later mandatory events that have not been released yet.
Whenever a sequence of optional events in an atomic model is delayed, the atomic model starts discarding the output
functions. Therefore, the modified execution algorithm in an atomic model, when receiving a collect message is shown
below.
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1 Receive (@, t)
2 if (s is optional AND tL + ta(s) + tg < tnow)
3 raise error //optional tasks dropped
4 else if (tnow > tL + d(s))
5 raise error //deadline missed
6 else if (tnow ≤ tL + d(s))
7 y = 𝜆 (s)
8 send (y, t) to the parent coordinator
9 send (done, t) to the parent coordinator

Line 2 verifies if the optional output is going to be executed later than its release time (tL + ta(s)) plus the grace period
(tg). The idea is to add the grace period discussed earlier to the deadline of the optional output. Line 4 verifies the deadline
condition and finally line 6 is the case when the output function is qualified for execution. (tnow is the current simulation
time and tL is the time of the last event in the system).

4.1 Execution scenario

Figure 5A shows a sample RT system design hierarchy (designed in I-DEVS) where two atomic components A and B
are coupled into D, which is itself coupled with atomic component C. Various input/output ports connect these com-
ponents together, as shown in the figure. Figure 5B shows the state diagram of component A using DEVS-Graph.
The state diagram summarizes the behavior of a DEVS atomic component by presenting the states (circles), tran-
sitions (arrows), inputs, outputs, and state durations, graphically. Note that continuous arrows indicate external
transitions.

External transitions are triggered by external events; in this case, DEVS Graphs use a notation used in the CCS
formal language, meaning that there is an input (represented by the question mark “?”) coming on a given port
(to the left of the “?” sign), with a specific value (specified to the right of the “?” sign). When that input occurs, a
transition is triggered. As it can be seen, model A is initially in state A1 (with life-time = infinity, representing a
passive model waiting for an input), until an input xa is received on port InA. In that case, the external transition
causes a state-change to A2. The system stays in this state for 1t while its deadline is 4t (written inside the state
circle).

Internal transitions, represented by dotted lines, are triggered when the lifetime of a given state is consumed. As this is
a DEVS model, the transition is preceded by an output. Using CCS notation, here we use a question mark “!” to represent
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F I G U R E 6 Example transient overload scenario [Color figure can be viewed at wileyonlinelibrary.com]

the output, that is sent through a given port (to the left of the “!” sign), with a specific value (specified to the right of the “!”
sign). In our example, when the lifetime of the A2 is consumed, it produces the output y2a and transits to state A3 (internal
transition). A similar scenario can be seen in states A3, A4, and A5, with outputs y3a, y4a, and y5a produced, respectively.
Figure 5C,D shows the DEVS-Graphs for atomic components B and C, respectively. To clarify the details of the model,
the DEVS-Graph of atomic model C (shown in Figure 5D) can be formalized as a DEVS specifications as follows:

C =< X, S,Y, 𝛿ext, 𝛿int, 𝛿conf, 𝜆, ta, d >,

where X = {(InC, xc)}, S = {(C1, mandatory), (C2, mandatory), (C3, optional)}, and S0 = C1, Y = {(OutC, y2c), (OutC,
y3c)}, 𝛿ext (C1, e, <InC, xc>) = C2, 𝛿int (C2) = C3, 𝛿int(C3) = C1, 𝛿conf = 𝛿ext has priority over 𝛿int, 𝜆(C2) = <OutC, y2c>,
𝜆(C3) = <OutC, y3c>, ta(C1) = ∞, ta(C2) = 1t, ta(C3) = 2t, d(C1) = ∞, d(C2) = 4t, d(C3) = 5t.

The specifications of atomic models A and B are similar and straightforward.
For simplicity reasons, the state durations are considered small; however, in reality they are longer, compared to the

execution time of the TX , T𝜆, and TI tasks. In a RT system with large number of atomic components, overload conditions
can happen at different points of time (when multiple TX , T𝜆, and TI tasks from different atomic components collide, or
are scheduled very close to each other), causing a drift in the execution of the tasks. An input xa enters the system from
input port In at time zero, producing task Txa (with 1t processing time), at time 1 (ie, 1t) the atomic component A transits
from the initial state A1 to A2. The life-time of state A2 is 1t, thus at time 2, we run tasks T𝜆2TI2, producing the output
y2a (for simplicity reasons the outputs are not shown on the diagram in Figure 6) and causes an internal transition from
A2 to A3, (as specified in Figure 5B). The output produced by the atomic component A (y2a) via port Out1A is translated
into an input for B (see port connections in Figure 5A). Thus, task TXb is executed right after T𝜆2TI2, causing the atomic
component B to change state from B1 to B2. The rest of the system advances according to the specifications (in Figure 5).
At t = 18, tasks T𝜆4TI4 of A, T𝜆3TI3 of C, and T𝜆2TI2 of A, B, and C (shown in red in Figure 6) miss their deadlines because
of the overrun condition in the system, causing these tasks to drift later than their deadlines.

In Figure 5B-D, the mandatory and optional states are marked with an M or an O, respectively. By applying the pro-
posed early-reaction scheduling and considering a zero grace period (a perfect hard RT system), T𝜆3 of A is skipped (see
Figure 7), because state A3 is optional. Due to later than “release-time (T3a) plus zero grace period” execution of T𝜆3TI3,
the system detected the overrun situation, therefore it is able to save other mandatory tasks by shifting T𝜆4TI4 to time 16.
As discussed earlier, we use a zero grace period as this is the most stringent scenario, and we want to show how to deal
with scheduling of the real time tasks for a hard RT application (ie, a system without a grace period in which we must
guarantee every deadline). The time conserved due to discarding T𝜆3, also caused Tasks T𝜆3TI3 of B and C as well as Txc
of C to be released after T𝜆4TI4, hence shifting the execution of later tasks to earlier times, saving other mandatory out-
put tasks. The same conditions happen for T𝜆3 of B and C at times 18 and 31. As a result, by discarding three optional T𝜆

tasks, the other three mandatory output tasks (tasks T𝜆4TI4 of A, T𝜆3TI3 of C, and T𝜆2TI2 of B) are saved from lateness.

5 CASE STUDY

The proposed I-DEVS formalism was implemented on E-CD++ an implementation of RT DEVS on the Xenomai RT
framework. In this implementation, TX tasks are made user configurable (ie, periodic or aperiodic), and their main job
is to run user-defined input driver programs as soon as they are spawned. The main RT task implements the RT DEVS
run-time abstract algorithm and takes care of T𝜆 and TI tasks. This task is also responsible to implement and verify the
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I-DEVS formalism and its execution. The implementation of the imprecise computation on E-CD++ is seamless and
backward compatible (ie, the previous models also can be executed and are considered precise models).

Following, we discuss different scenarios we used to test the implementation of I-DEVS on E-CD++. As a proof of
concept, we built a synthetic RT model with 20 atomic components each of them equipped with and input port and
an output port. The synthetic model's design is represented in Figure 8A, where atomic components are connected to
propagate the input to other components in order to create frequent flocks of T𝜆 and TI tasks. This scenario causes overrun
conditions due to the propagation of the events, which will be detected by I-DEVS execution engine and handled based on
the proposed IC-based computation. The atomic components follow the DEVS-Graph diagram in Figure 8B. The model
is composed of an initial state (with infinite lifetime), an optional state and a mandatory state. Whenever there is an
input the model transitions from “Idle” to “Mandatory” state, where after 500 ms it produces an output and transitions
to the “Optional” state (as this is a synthetic model, inputs and output values are also synthetic; in the DEVS Graph in
the example, it receives and sends a value of 1). The model with then toggle between the “Mandatory” state and the
“Optional” one, generating outputs every 500 ms. This model is used to perform comprehensive performance tests and
compare the results of the imprecise execution and precise execution. In the case of precise execution, all the states are
assumed mandatory by the system. In all the following test, an input was injected to the model after 1 second of execution
to trigger the state changes and output production.

For the first test, the model was executed in both precise and imprecise modes, for different execution times. Figure 9
illustrates the average response time of mandatory tasks (all tasks in case of precise mode) for execution times of 20,
50, 70, 120, and 180 seconds with 10 seconds processing time for T𝜆 and 5 seconds for TI . The charts show that aver-
age response time in imprecise mode is less than the precise mode, due to discarding the optional tasks as a measure
of once overrun prevention. The diagram also shows the number of discarded optional T𝜆 tasks. This result shows
the effectiveness of the early detection strategy in reducing the response time of the mandatory tasks. This test does
not use explicit deadlines for the models, as we are trying to show the response times under different conditions
(we create a synthetic overload scenario, and then study the response time for the precise and imprecise solutions,
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F I G U R E 9 Average response time in different run times
[Color figure can be viewed at wileyonlinelibrary.com]
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analyzing the number of tasks discarded, in order to see how the imprecise models can improve the number of tasks
executed).

Figure 10 shows the average response time of mandatory tasks as well as the number of optional discarded T𝜆 task
with zero processing time for TI tasks and 100 ms, 10 ms, 1 ms, and 100 μs for T𝜆 task in 20, and 50 seconds execution
time. Again, the chart shows the decline of response time of mandatory tasks when the imprecise processing is in effect.
It is also observed that longer processing time of T𝜆 tasks causes more decline in average response time, which is related
to more time that is saved by discarding optional T𝜆 tasks.

Figure 11 captures the response time of each T𝜆 task in precise and imprecise modes during an interval of about
2 seconds of the execution of the system. The grey areas depict the intervals when the early detection algorithm is engaged
and starts discarding the optional tasks. The chart shows that, when the optional T𝜆 tasks are dropped (grey area) the
response time of mandatory tasks also drops and stays flat around 10 ms until the high processing condition is relieved,
while in precise mode the response time of tasks peaks to about 70 ms. Due to the periodic nature of the execution of T𝜆

task in this model, this situation happens periodically, as seen in the chart.
Figure 12 illustrates CPU utilization vs processing time of T𝜆 task in 20 and 50 seconds of execution time. The chart

shows a meaningful decline in the CPU utilization in imprecise mode, due to the time saved by discarding optional T𝜆

tasks. Also, as the processing time of the T𝜆 tasks decreases, so the CPU utilization, because of the increase in the idle
time (500 ms state lifetime) of the system proportional to the processing time of it. These tests show that running I-DEVS,
the use of CPU is highly reduced, reducing the probability of overrun situations with a consistent and high margin of
effectiveness.

5.1 Performance evaluation

In a different test scenario, a synthetic model is used to measure and compare the performance and overhead of the
execution of the imprecise vs precise models of the same scale. The tests are performed using two different sets of synthetic
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models with different depth and width in the model hierarchy. The hierarchical model includes one coupled component
and several atomic components in each level of the hierarchy. Figure 13A illustrates the Top coupled component along
with its interconnections. As we can see, the coupled model includes n Atomic components, and one Coupled. Each of
the Coupled models at each level in the hierarchy, has exactly the same structure as the one in Figure 12A. Figure 13B
shows the last level, which only has one atomic component. The hierarchy has m levels. An input to this model propagates
to each sub-component and is transmitted up to the last level. This will trigger the external function in each atomic
component. All of the atomic components follow the same behavior, in which they are in a passive state (ie, state with
ta(s) = infinity), until an input is received. The external transition (invoked by the input) changes the state to a temporary
state with zero time-advance, which produces an output and then transitions to a passive state, waiting for the next input.
This cycle continues as long as there is an input to the system.

The goal of this test is to measure the overhead of the processing occurred in the engine proportional to the processing
time of the model. The overhead of executing a model is mainly associated with the abstract simulation algorithm's mes-
sage transfer scheme, handling of input and message queues and the time-advance management. The major processing
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F I G U R E 14 Number of components per level vs
average response time [Color figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 15 Number of components per level vs overhead
percentage [Color figure can be viewed at wileyonlinelibrary.com]
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in a DEVS model is performed in the external and internal transition functions in the atomic component. The percentage
of overhead of the system relative to the model execution time is measured and compared. The percentage of software
overhead is calculated using the following equation:

Overhead% =
Total Processing Time − Total Transitions Processing Time

Total Processing Time
× 100. (2)

In this test, the models with fixed number of levels (four layers) and variable number of components in each level (ie,
4, 6, 8, 10, and 12) were used to measure the execution overhead and response time of the output tasks. The processing
time of the TX , T𝜆, and TI tasks was set to 10 milliseconds for each atomic component. Figure 14 shows the average
response time of the tasks during an execution time of 40 seconds for different number of components per level. The output
produced in each cycle of input, is marked as optional, therefore whenever the system faces an overrun condition, the T𝜆

tasks are skipped. The chart shows that the average response time of the tasks is slightly shorter in imprecise execution
in each scenario, due to the time saved because of dropping the optional tasks. On the other hand, it is observed that,
when the size of the model increases (the number of calls to the tasks also increases), the difference between the average
response time of imprecise and precise runs, also increases. This is due to heavier workload produced in bigger models
and propagation of data in the model, which is efficiently handled by the imprecise scheduling algorithm, reducing the
response time of the tasks.

Figure 15 represents the overhead percentage (calculated using Equation (1)) of the execution engine relative to the
tasks processing times, in imprecise and precise scenarios. The other parameters of the execution were the same as the
previous test. Based on the results presented in this figure, the overhead percentage in imprecise mode is less than the
one in precise mode, due to the drop of messaging overhead produced by the optional output tasks. A discarded output
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task eliminates the overhead required for transfer of (@, t) and (done, t) messages from the atomic component to the Top
model. The other interesting fact extracted from this diagram is the lower overhead percentage for heavier models (bigger
modeling hierarchy with computation intensive tasks), due to the increase of the task processing time portion over the
execution processing time. In other words, in a computation intensive model, as the size of the model grows the overhead
percentage decreases, because the processor is mainly busy with the tasks rather than the execution overhead. The other
interesting fact observed with this test is the lower overhead in the imprecise computation in heavy processing models.
This is due to the relief caused by dripping optional tasks, while a precise model is processing tasks non-stop.

6 CONCLUSIONS

We investigated a RT task model comprising of the DEVS intrinsic processes, which was integrated with Imprecise Com-
puting in an innovative method, in which the model behavior is prioritized, allowing for efficient and dynamic task
scheduling in the system. The overload management policy introduced in this framework provides an early reaction
mechanism to transient overrun situations, saving critical outputs from lateness, preventing catastrophic results in the
system.

The outcome of this research enables RT and embedded system designers to adopt an M&S-based approach, bridging
the gap between simulation and RT software development. It also opens a new horizon towards model-based operating
system design, allowing for creation of systems dedicated to running models as processes. All of our existing tools are
open source and current updates can be found at https://github.com/SimulationEverywhere/.

RT systems working in the context of embedded hardware are prone to several limitations. One major constraint in
these systems is the power consumption or battery life. High performance requirement in these systems conflicts with
the low power objective. To achieve these goals performance degradation strategies can be incorporated. I-DEVS can
be a natural choice for this purpose, providing a dynamic and early reaction scheme to tackle this problem. The grace-
ful degradation strategy based on Imprecise Computations theory allows for degrading the system performance when
needed by dropping the optional transitions. This threshold can include battery life or any other constraint conflicting
with performance of the system.

On the other hand, performance of the system also depends on the underlying hardware. Figure 15 can be viewed as
a scalability indicator in the current implementation of the I-DEVS approach on E-CD++ software. As the number of
components per level increases, so does the average response-time. This means that the tasks are executed later to their
release-times when the system scales up. Likewise, this delay also affects the deadline of the tasks, thus proposing a risk.
A simple solution might include upgrading the underlying hardware resources in order to solve the scalability problem.
As this will be a natural solution to this problem, however the “Speed-Performance Tradeoff Anomalies”6 dilemma shows
that in an RT system with timing and resource constraints, increasing the processor speed does not necessarily lead to a
better performance, and vice versa.

The DEVStone benchmark we introduced in References 17 and 45, which has become a “de-facto” standard for testing
DEVS environments,47,42 could be used to test different scenarios, including models with multiple levels, or others with
many subcomponents in a single layer, as done in References 47 and 45. The results presented here show that the imprecise
computing method has potential to improve the performance in these cases, although further analysis is needed.
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