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ABSTRACT

Modeling and Simulation (M&S) techniques have been proven to be effective to understand how diseases
spread and assess the effectiveness of decisions aimed to control them (e.g., mobility restrictions). Recently,
governments used this approach to determine the evolution of the COVID-19 pandemic. In this context,
M&S tools that consider geographical information can improve the quality of the simulations. This research
presents a methodology that allows modelers to prototype disease spread models that include geographical
information. The model can be easily parameterized for other geographical regions and diseases. We
present a case study of a disease spread model to show how this methodology works.

Keywords: Cell-DEVS, Geographical Model, Irregular Topologies, Disease Spread.

1 INTRODUCTION

Understanding how a disease is spread is critical to make decisions aimed to control it. There are many
factors that affect how a disease spreads, such as the capacity to isolate symptomatic individuals and how
close contacts are traced and quarantined (Fraser, et al. 2004). These two factors can be controlled by
decision makers, but there are others, such as the behavior of individuals, that cannot be fully controlled.
For example, the COVID-19 pandemic has revealed that the effectiveness of some measures that would
work in an ideal scenario is reduced due to behavioral factors. When dealing with lockdown measures,
some studies revealed that repression did not play a significant role in compliance. Instead, moral, and
social motivations produced better results (Kuiper, et al. 2020).
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The intrinsic complexity of human behavior and the large number of factors affecting the spread of a disease
makes simulation a useful tool to study these problems. We can simulate how a specific decision works in
different scenarios, for instance, quarantines and lockdowns with different compliance rates. With such
analysis we could determine the minimum compliance rate to have a given outcome.

Recently, governments have been using this kind of analysis to determine the evolution of the COVID-19
pandemic and decide which measures should be in place. For example, Currie, et al. (2020) highlight the
importance of simulation for making decisions that (1) affect disease transmission, (2) determine how
resources should be allocated, and (3) influence the priorities for care.

When developing simulation models in the context of spread of diseases, geographical information (such
as population demographics, borders, or transportation infrastructure among territories) can improve the
quality of the results obtained. For example, Zhong, Huang and Song (2009) introduced a geographical
Cellular Automata (CA) corresponding to a Susceptible-Infected-Recovered-Susceptible (SIRS) model
with multiple infection phases. The cell space represents irregular shapes with varying dimensions
corresponding to a geographical location. The length of the boundaries with the adjacent regions, and road
links between regions were used to determine the neighborhood. Carlucci, D’ Ambrosio and Balsamo (2020)
conducted a survey to analyze the effect of sociodemographic variables such as age, education, marital
status, geographic area and region, employment status, and annual income and their effect in compliance
with quarantine measures in Italy. They found out that women exhibited significantly higher levels of
adherence to quarantine guidelines than men. There were also significant differences based on age groups.
The 18-29 age group had significantly lower adherence to the rules than the other groups.

In most cases, these models are developed using ad-hoc techniques, and they are difficult to apply to other
geographical areas. Here, we present a methodological approach that allows modelers to define disease
spread models that include geographical information that can be easily parameterized for other geographical
regions. This approach is focused on providing rapid prototyping for model development. We define a
method based on Cell-DEVS specifications with irregular neighborhoods. We present a case study of a
disease spread model based on the model introduced by Zhong, Huang and Song (2009) to show how the
methodology works.

The rest of the paper is organized as follows. In section 2, we present related work on the study of the spread
of diseases and how geographical information has been considered in the literature. We also introduce the
formalism used in this research: cell-DEVS. In section 3, we define the model. In section 4, we focus on
the implementation details relevant to understand the proposed methodological approach. Section 5 focuses
on the analysis of some simulation results. Finally, in section 6, we present conclusions and future work.

2  BACKGROUND

There are numerous models to study the spread of diseases based on the foundational research by Kermack
and McKendrick (1927), who introduced a model that classifies the population into three different
categories: (1) Susceptible — i.e., individuals who can get infected with the disease, (2) Infected — those
who have contracted the disease, and (3) Recovered — people that recovered from the disease. The success
of this SIR model has led to several improvements and adaptations to study the spread of different diseases.
For example, Li and Muldowney (1995) include a fourth category: Exposed — individuals who do not
transmit the disease, but which eventually become infected. To model fatalities, different authors (for
instance, Matadi (2014)) include a category for those who die because of the disease.

Different combinations of these categories exist, such as SEIR, SIRS, SIRD, or SEIRDS. Models based on
these categories calculate the number of individuals in the different categories using models described with
differential equations. Many of these models have been applied to study the spread COVID-19. For
example, Caccavo (2020) adapted a SIRD model that adequately describes the outbreaks in China and Italy.
However, these models rely on the law of large numbers and cannot capture interactions between groups
across time and space.
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Other approaches, such as metapopulation (Ajelli, et al. 2010, Chen, et al. 2019) and cellular models, have
adapted these mathematical models to integrate the spatial aspects of the spread of the disease. For example,
Bin, Sun, and Chen (2019) used population density, gender, and age structure to set the evolution rules of
a SEIRDS the model using CA. They applied their model to study the spread of influenza A (HIN1).
Fuentes and Kuperman (1999) also used CA combined with SIR models to study the effect on immunity in
the spread of a disease. Recently, Cardenas, et al. (2020) replicated the results of CA models using Cell-
DEVS, focusing on the advantages of Cell-DEVS over CA for disease spread models.

Some models include spatial aspects in a more realistic way. For example, Zhong, Huang and Song (2009).
presented a geographical CA corresponding to a SIRS model with multiple infection phases. Each infection
phase has associated a different probability of spreading the virus and a different recovery rate. In this
model, each cell represents a geographical location. They have irregular shapes and different dimensions
based on the geographical location they represent. The neighborhood of a specific cell is defined based on
the length of the boundaries with the adjacent regions, and road links between them.

In many cases, the geographical characteristics of these models are specific for a region. These are difficult
to apply to other regions We present a method to develop rapid prototypes of geographical models for the
spread of diseases. These models that can be easily adapted to other geographical regions by just modifying
the parameters of the model (i.e., without changing their implementation). In that way, the modeler does
not need to go over the verification process every time the model is adapted to a different geographical area.

2.1 The Cell-DEVS Formalism

The Cell-DEVS formalism (Wainer 2017) allows defining n-dimensional cell spaces in which each cell is
an independent discrete-event model based on the Discrete EVent System Specification (DEVS) (Zeigler,
Prachofer and Kim 2000). Cell-DEVS divides the space of the system into a collection of cells. Each cell’s
next state depends on its current state and input events received from neighboring cells or any other DEVS
model. Figure 1 shows a cell and a 2-dimensional Cell-DEVS model.

X
IN —> T =" —>» OUT I

(@) (b)
Figure 1. Cell-DEVS model schematic.

As shown in. Figure 1(a), when cells receive any input event, they trigger their local computing function t
to compute their corresponding next state. Cell state changes are transmitted as output events after a time
delay specified by a delay function d. State changes are sent to neighboring cells. Figure 1(b) depicts an
illustrative example in which the neighborhood set of cell i, Vi, corresponds to a Moore neighborhood (Gray
2003). Cell-DEVS allows cells to interact with other DEVS models, tools, data sets, and visualization
mechanisms, making it easy and efficient to build complex cellular models. Although most Cell-DEVS
models represent the space as a regular lattice of cells, the formalism allows defining irregular
neighborhoods for each cell.

In this research, we use the Cadmium simulator (Belloli, et al. 2019). Cadmium is a C++17 header-only
DEVS M&S library. Cadmium follows a strong-typed approach to ensure that all the DEVS models comply
with the DEVS formalism before simulating them. It also supports the description of Cell-DEVS models.

Authorized licensed use limited to: Carleton University. Downloaded on April 14,2022 at 15:19:49 UTC from IEEE Xplore. Restrictions apply.



Cardenas, Ruiz-Martin, Wainer, Dobias, and Rempel

As far as our knowledge, Cadmium is the first simulation engine that enables the definition of Cell-DEVS
models with irregular topologies and complex neighborhood sets.

3 MODEL DEFINITION

In this section, we present a space-based pandemic model for scenarios with irregular topologies based on
geographical data using the Cell-DEVS formalism. The model is based on previous work proposed by
Zhong, Huang, and Song (2009), and it is an extension of an early version (Cardenas, et al. 2020). We
adapted the model to support irregular geographical topologies, and we include additional compartments
and configuration parameters to model the pandemic.

In our model, each cell represents a region of the scenario space. For example, if the scenario corresponds
to a city, each cell could represent a health unit. Eq. (1) shows the tuple that represents the state of cell i

0i = {P, Si, Ig1y, -+ oy Raiay -+ Reirg)s Di (1

P, is the total population of cell i. S; is the population ratio that is susceptible to the disease. 1 ) represents

the ratio that has been infected during x consecutive days. A person can be infected for up to T; consecutive
days. Rj xy corresponds to the ratio of individuals that recovered and have been immune to the disease
during x consecutive days. After Ty days being immune, recovered people become susceptible again.
Finally, Direpresents the people that died because of the pandemic. The sum of all the compartments that
comprise the cell state must be equal to 1, as stated in Eq. (2):

T T
Si + Zn1=1 I(i,n) + Znil R(i,n) + Di =1 (2)

The new state of cell 7, 0'; = {P, S'y, I'ci1y, =, I'cirpy R'iay > R i), D'iJs is computed every time the
local computing function is triggered. Figure 2 shows how people transition from one compartment to
another when the cell state changes.
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Figure 2. Transitions between epidemiological compartments of cell i.

Eq. (3) describes how the compartments ratio changes every time the local computing function is triggered.
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The terms yy and &, correspond to the recovery and mortality factors (i.e., the probability of a person that

has been infected during x consecutive days recovering and dying, respectively). Also, i; represents the

ratio of susceptible people that got infected since the last time the local computing function was triggered:
Pj

i; =0-min {1, Zjevi (Pi,j r Z:ll=1 Un-* I(j,n))} “)

where ¢ is the susceptibility factor (i.e., the probability of a susceptible individual getting infected if
exposed to the illness), v, is the virulence factor (i.e., the probability of a person that has been infected
during x consecutive days exposing others to the disease), and p; ; corresponds to the correlation factor
(i.e., the degree of influence of cell j over the state of cell 7).

The correlation factor between cells allows considering the effect of some cells over others differently. The
way we compute the correlation factor is a configuration parameter of the presented model. For instance,
when working with irregular topologies in which each cell represents a geographical region, we can
compute p; ; as the length of the shared border divided by the perimeter of the region represented by cell i.
Alternatively, if we have enough data about the area of interest, p; ; could depend on the average mobility
of people from cell j to cell i. Figure 3 illustrates how geographical data can be processed to generate a
Cell-DEVS model that supports irregular topologies. For each geographical region in Figure 3(a), a cell
with the same identification number is created in Figure 3(b). The arrows between cells represent the cell
neighborhoods. The color of the arrows interconnecting cells indicates the degree correlation factor.

v 5 I>

(b)
Figure 3. Irregular Cell-DEVS schematic.

Cell i is usually a neighbor of itself, and its autocorrelation factor, p; ;, is usually close to 1 (in Figure 3(b),
these autocorrelation arrows are black). Correlation factors can by directed (i.e., p; j # pj;, if i # j) For
example, p3 4 is high, as people of region 4 usually move to region 3. However, p, 3 is close to 0 (in the
figure, the arrow’s color is light gray). It is also possible that cell i belongs to the neighborhood of cell /,
but cell i does not consider cell j as a neighbor (this is the case between cells 2 and 4 in Figure 3(b)).

The versatility of the proposed model allows exploring the effect of different countermeasures to reduce
the impact of the pandemic under study. For instance, when studying a disease that presents airborne
transmission (e.g., COVID-19), it is easy to develop a prototype that modifies the virulence and/or
susceptibility of the individuals to emulate the use of masks. Additionally, correlation factors between
neighboring cells can be modified to emulate mobility restrictions from one cell to another.
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4 BUILDING A MODEL WITH GEOGRAPHICAL DATA

This section illustrates how to define a simulation scenario from geographical data. The framework is
publicly available in our GitHub repository, in which we enumerate all the dependencies required to
compile the application, as well as instructions to run simulations.

Let us assume that we want to simulate a pandemic scenario over the geographical data presented in Figure
4. Each cell of the scenario must be configured according to the available geographical data and the data
that characterizes the spread of the disease under study.

Region 1
(100 people)

Region 3
(150 people)

Region 2 (100 people)

Figure 4. Example of geographical data for simulating the spread of a disease.

From the geographical data, we must obtain two configuration parameters: a) the population of each cell
(depicted in the figure), and b) the correlation factor between each cell. In this example, we define the
correlation factor p; ; as the length of the border shared between regions i and j divided by the perimeter of
cell i. However, it is possible to define different approaches to compute the correlation between cells (e.g.,
the percentage of people that moves daily from cell i to cell j). Table 1 shows all the correlation factors in
this scenario. Rows correspond to the cell i of the correlation, whereas columns represent the cell ;.

Table 1. Correlation factor of cells in the scenario.

Region 1 Region 2 Region 3 Region 4
Region 1 1 0 0.5 0
Region 2 0 1 0.25 0.167
Region 3 0.3 0.15 1 0.1
Region 4 0 0.25 0.25 1

The rest of the parameters of the model depend on the disease under study. Table 2 shows all the parameters
used to characterize the disease in our case study. The table shows the Virulence, Recovery, and Mortality
factors for each population group. In this example, the population is divided in 5 groups, all of them with
the same factors. The population is divided based on age, level of education or income among other factors.

Table 2. Configuration parameters of the disease.

Configuration Parameter Value
Maximum days of infection T; 5
Maximum days of recovery Ty 10
Susceptibility factor o 1
Virulence factor v, 0.05,vx € {1,---,5}
Recovery factor y, 0.1,vx € {1,---,5}
Mortality factor €, 0.05,vx € {1,---,5}

The framework allows rapid prototyping of multiple pandemic scenarios. To do so, it generates any scenario
using a JavaScript Object Notation (JSON) configuration file. Once the models comprising the study are
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completed and they are compiled, the simulation framework can run multiple scenarios using the external
JSON configuration file. Code 1 shows this JSON object for our case study.

Code 1. Description of default cell configuration.

“default”: {
“state”: {
“population”: 100,
“susceptible”: 1,
“infected”: [0, O, O, O, 0],
“recovered”: [0, O, O, O, O, O, O, O, O, O],
“deceased”: 0O

}.
“config”: {
“susceptibility”: 1,
“virulence”: [0.05, 0.05, 0.05, 0.05, 0.05],

“recovery”: [0.1, 0.1, 0.1, 0.1, 0.1],
“mortality”: [0.05, 0.05, 0.05, 0.05, 0.05],

}

The file must contain a “default” JSON object that describes the default configuration of all the cells
present in the scenario. Here, the default configuration contains all the parameters shown in Table 2 and
the most recurring initial state of all the cells in the scenario (i.e., 100 inhabitants, all of them susceptible
to the disease). Additionally, the configuration file must contain a JSON object for every cell. The object
corresponding to each cell is treated as a JSON patch (Internet Engineering Task Force 2013). Thus, the
JSON object must contain only those fields that differ from the default configuration. Code 2 contains all
the configuration patches for the cells in the example.

Code 2. Region-specific configuration patches.

“region_17: {
“state”: {
“susceptible”: 0.99,
“infected”: [0.01, 0, O, 0, O]

¥,
“neighborhood”: {“region_1": 1, “region_3”: 0.5}

¥
“region_2": {

neighborhood”: {*“region_2”: 1, “region_3”: 0.25, “region_4”: 0.167}

3,
“region_37: {

“state”: {“population”: 150},

“neighborhood”: {*region_1": 0.334, “region_2”: 0.15,

“region_3”: 1, “region_4”: 0.1}

“regi’on_4”: {
“neighborhood”: {*“region_2”: 0.25, “region_3”: 0.25, “region_4": 1}
}

Regions 2 and 4 have the default configuration. Thus, we only must indicate their neighborhood. The
neighborhood is described in the “neighborhood” object. For each neighboring region j, we indicate the
correlation factor p; ;. In case of the region 3, we only must modify the population of the region, as this
region has 150 inhabitants. Inside the “neighborhood” object, we only have to overwrite the “population”
value. Finally, let us assume that, initially, 1% of the population of region 1 are infected. In this case, we
also must overwrite the “susceptible” and “infected” parameters of the region corresponding to this
region, as they do not coincide with the default configuration.
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Figure 5 shows how to conduct experiments with this framework. A Cell-DEVS generator reads from a
geographical data source (for instance, a file defined in GeoJSON (Internet Engineering Task Force 2016))
and builds the corresponding scenario configuration file. The Cell-DEVS generator identifies which regions
conform the scenario, obtain their population, and computes the correlation factor between them. The
function that computes the correlation factor can be redefined to explore different neighborhood
configurations. Once the scenario JSON configuration file is generated, the epidemic simulator presented
earlier executes the scenario and returns the simulation results, which can be analyzed.

S @020 B

Geographical Cell-DEVS Scenario Epidemic Simulation
data Generator JSON conf. file simulator results

Figure 5. Pandemic simulator workflow.

5 SIMULATING COVID SCENARIOS

This section shows different simulations conducted on the model presented in Section 4. We first introduce
a base case study scenario using the parameters in Table 2, in which we use the population age segments
presented earlier. This base scenario was used to show the effect of different control measures in the spread
of the disease. We also show how to modify the parameters of the model if the variables that define the
behavior of the disease (i.c., virulence, recovery, and mortality factors) change.

Figure 6 shows the simulation results for our base scenario, built using a Jupyter notebook application
available for studying the results of the simulation.

o "\ AT Susceptible
205 s O - Infected
£ o \\_ e Recovered
goo 2 — m=====sse=eeeeees e ====w=wwe=sezes= e =
1] 20 40 60 80 100 12
c 4 = New infected
201 H \ -~ New recovered
] r
g
£ 0.0 i A oy e i et e e S e e e e e e e e G B
2 20 = A0 00 80 100 12
. 0.050 R Deaths
2
£ 0.025
E
S 0.000
0 20 40 60 80 100 120
Time {days)

Figure 6. Base simulation Scenario

The top part of the figure represents the percentage of Susceptible (blue line), Infected (red line) and
Recovered (green line) population over time. The middle diagram shows the percentage of newly infected
(red line) and newly recovered individuals (green line) at a given time. Finally, the bottom part represents
the number of peopled that died due to the disease. Every figure presented in this section follows this same
structure. We can see that the population becomes infected quickly (red line in the top diagram) and that
new infections decrease after a couple of days. The highest percentage of newly infected individuals is
detected is at the beginning of the simulation (red line in the middle diagram), which is causing the new
recovery peak between day 10 and 12 (middle diagram, green line). At the end of the pandemic,
approximately 5% of the population died (bottom of the figure).

This basic case study shows how to analyze different scenarios by simply modifying the parameters in the
JSON file. For example, we can study the effect of a disease with a higher mortality rate in the elderly
population (e.g., 0.1 instead of 0.05). To do this, we simply modify the mortality rate for the elder age group
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in Code 1, defining mortality as ““mortality”: [0.05, 0.05, 0.05, 0.05, 0.1]” and using this file to
run the model again. The remaining parameters remain unchanged.

The simulation results for this scenario are shown in Figure 7. Compared to the base scenario, fatalities
(bottom of the figure) have increased from 5% to 15%. The curve for infected (top of the figure, red line),
susceptible (top of the figure, blue line), and newly infected (middle of the figure, red line) remains the
same. The parameter we modified did not affect these results. However, the percentage of recovered
individuals (top of the figure, green line) and new recovered individuals (middle of the figure, green line)
has slightly decreased. This has occurred because the remaining population either recovers or dies.

c s ) —— Susceptible
-S 0.5 === Infected
g —:= Recovered
goo —————————————

0 20 40 60 80 100 120
c ! -== New infected
201 \ -~ New recovered
H )
200 S N e e e e e e e e e s e e e e e e s s e e

g 20 e — L L — e — 120,

- Deaths

§o1
k|
a
200

0 20 40 60 80 100 120

Time (days)

Figure 7. Simulation scenario: mortality is higher for elderly people.

We can also study the effect of a change in the spread of the disease. In this case, we can study how the
pandemic will evolve if there are new variants of the virus that are more transmissible (i.e., the virulence
factor is higher). To do this analysis, we just need to modify the “virulence” parameters in the JSON file.
In this case, we set the virulence 5 times higher than the original value: “virulence”: [0.25, 0.25,
0.25, 0.25, 0.25] (Code 1). The remaining parameters do not change.

In Figure 8, we present the simulation results for this new scenario. In this case, we can see that the
population gets infected earlier (top of the figure, red line).
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® 02 Ll »
: \
g 0.0 e e e e e e e e e et e e e e e e e s i -
0 10 20 € 1 EE 40 0 60
= 0.050 Deaths
o
% 0.025
2
£ 0.000 -
0 10 20 30 40 50 60
Time (days)

Figure 8. Simulation scenario: higher virulence.

Everyone gets infected in 15 days compared with the over 20 days in the base scenario. Additionally, the
infection peak (i.e., the amount of people infected at the same time) is also higher (top of the figure, red
line). The infection peak is an important measure as it is directly related with the number of people that
may require hospital care. At the bottom of the figure, we can appreciate that the percentage of deaths
remains the same because the mortality factor has not change and we are not considering the effect of
having hospitals overloaded.

Authorized licensed use limited to: Carleton University. Downloaded on April 14,2022 at 15:19:49 UTC from IEEE Xplore. Restrictions apply.



Cardenas, Ruiz-Martin, Wainer, Dobias, and Rempel

In this scenario, we expect that a reduction of the number of contacts per people will reduce the transmission
of the disease. This can be modeled including a new parameter to our model: the mobility factor. If we
decide to introduce a new parameter that was not originally available in the JSON configuration file, we
need to modify the implementation of our model. In this case, we modify the implementation of the model
to be able to study the effects of a lockdown, a measure that governments are taking to control the spread
of diseases. To do so, we introduce two new parameters: (1) the percentage of infected population that
triggers the lockdown, and (2) the reduction on the percentage of infected population that ends the
lockdown. To replicate the results in the base scenario (Figure 6), we need to set the first parameter to
100%. The value of the second parameter is not relevant to be able to replicate the results because the
lockdown will never be triggered.

In Figure 9, we show the results of this new model. We configure the model with a value of 20% for the
percentage of infected population that triggers the lockdown and 10% for the reduction on the percentage
of infected population that ends the lockdown. In this study, we assume an ideal scenario where there is no
disobedient population. At the top part of the figure, we can see that the percentage of infected population
(red line) is always under 20%. When the lockdown is in effect, the number of infections decreases. In this
scenario, the lockdown is long enough to extinguish the disease. There is a high percentage of the population
that did not get infected (top of the figure, blue line). Even though the mortality rate remains the same, the
number of deaths (bottom of the figure) decreases because less people had the disease.
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Figure 9. Simulation scenario: lockdown with no disobedient population.

The results presented Figure 9 can be modified by including an additional parameter: the percentage of
disobedient population. With this parameter, we can study different scenarios with different disobedient
rates and adjust the threshold to trigger the lockdown to get the expected outcome of the lockdown measure.
All these studies can be done with the version of the model available in our GitHub repository.

6 CONCLUSIONS AND FUTURE WORK

In this research, we have presented a methodology based on Cell-DEVS with irregular topologies for rapid
prototyping of new rules for the spread of communicable disease based on SIR models built as cell spaces.
In our models, each cell represents a geographical region. To implement the model that exemplifies our
methodology, we used Cadmium simulator. We used Cadmium because it is the only Cell-DEVS simulator
engine that allows to implement Cell-DEVS models with irregular topologies.

The models we developed are parameterized and they can easily be calibrated for different geographical
regions. All the model parameters are defined in an external JSON file. Therefore, once the model is
implemented and compiled, we can study different scenarios without modifying the implementation. We
just need to modify the parameters in the JSON file. It is important to remark that one of these parameters
is the neighborhood of each cell. Therefore, we can easily model different geographical areas.
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Future research will focus on adding individual interactions within the population of a cell. The future work
will also be focused on calibrating and validating the model using real data from Canada obtained during
the COVID-19 pandemic. To calibrate the model, we can use different values for the parameters defined in
the JSON file. It is important to remark that, for this analysis, the implementation does not need to be
modified. If the model ends up being not valid, we will modify the equations that defines the model, and
we will reimplement the equations in our cell. The advantage of Cell-DEVS and our implementation in
Cadmium is that changing the equations in the model is an easy task.
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