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Cell-DEVS for Social Phenomena Modeling

Hoda Khalil

Abstract— Motivated by the need for formal methods as well as
supporting tools to model and simulate social systems, we propose
cellular discrete-event system specification as a formalism for
modeling social systems. We also propose the use of a toolkit
that implements the formalism of cellular discrete-event system
specifications to implement and visualize models of social systems.
We present examples of social system models that are different in
sizes, nature, and rules controlling the interactions within those
systems. We show that cellular discrete-event system specification
with its unique features can successfully deal with the short-
coming of other modeling techniques. In addition, we show that
together with its supporting toolkit, cellular discrete-event system
specification is suitable for modeling, simulating, implementing,
and visualizing social systems.

Index Terms— Cellular discrete-event specification (Cell-
DEVS), cellular automata (CA), DEVS, modeling and simulation
(M&S), social systems.

I. INTRODUCTION

ODELING was perceived in the past as a helping

tool for software development by providing information
about the consequences of building certain artifacts before
they are actually made [37]. In other words, software systems
that are subject to being implemented were the focus of
modeling. Computer modeling then progressed into a way of
understanding the environment and for predicting the evolution
of different phenomena [69].

Different methods of computer modeling have been used
to model, simulate, and, accordingly, understand environ-
mental, biological, social, and other types of systems. For
social systems, natural observations of social changes require
performing social experiments overextended periods, which
makes them sometimes infeasible and even not useful. In addi-
tion, natural observations and social experiments allow us
to study social phenomena that already occurred [7], while,
in reality, there is a clear need for predicting the future
of these phenomena. Modeling and simulation (M&S) and
available data collected from previous social events can be
used for this purpose. Hence, computer modeling became the
solution that allowed researchers and scientists to model and
simulate complex social systems changes while overcoming
the disadvantages of traditional analytical tools [41].

Many computer modeling theories have been used to model
social systems (e.g., [6], [15], [20], and [26]-[28]), and among
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them is the cellular automata (CA), sometimes referred to as
the computer scientist’s counterpart of a physicist’s field [58].
A CA can be defined as a grid of specified shape that evolves
through a number of discrete-time steps according to a set of
rules based on the states of neighboring cells [65]. Although
CAs are very useful for modeling complex systems, they have
limitations that restrict their applicability (see Section II-A).

Some of these limitations have been solved by combining
CA and discrete-event specification (DEVS) models [62] (see
Section II-B). The cellular DEVS (Cell-DEVS) formalism has
its own supporting tools that facilitate its use, for instance,
the CD++ framework [59].

Motivated by the continuous need to model social systems
and inspired by the advantages that Cell-DEVS can bring to
this field of study, we will show how Cell-DEVS and CD++
can be successfully used to formally model, implement, sim-
ulate, and visualize social systems. Note that the definition of
a social system is “the patterned series of interrelationships
existing between individuals, groups, and institutions and
forming a coherent whole” [72], which means that it is not
necessarily limited to systems representing interrelationships
between people but can also include animals, for example,
as we will show in our experiments.

We will start by introducing some background information
about CA and Cell-DEVS (see Section II). In Section III,
we review related work that uses CA and Cell-DEVS for mod-
eling social systems. In Section IV, we show some examples
of how to use Cell-DEVS to formalize social systems. In all
the models presented in this article, we use CD++ as an
implementation tool [59]. We model three main social systems:
the spread of avian flu, survivorship of clonal organisms, and
drug consumption in high-risk communities. For each model,
we describe the conceptual model, formalize the definition of
the model, show the rules implemented in CD++, and show
the simulation results. All the simulations are reproducible,
and the models are available through the advanced real-time
and simulation (ARS) lab models’ repository [73]. In addition,
videos showing the simulation are available in our YouTube
channel [2].

II. BACKGROUND
A. Cellular Automata

The most common method for cellular computing is CA.
CA is a regular uniform n-dimensional lattices with a discrete
variable at each site (cell). The state of the CA is determined
by the values of the variables in each cell [65]. The values of
the variables in one cell at a certain timestamp are determined
by the values of the variables in a finite set of cells comprising
the neighborhood of that cell in the previous timestamp.
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Fig. 1. CA.

This update happens in a synchronous manner in all the cells
of the CA. Hence, the CA evolves in discrete timestamps [66].
Fig. 1 shows a simple sketch of CA; the shaded area represents
the neighborhood that affects the value of the core cell (starred)
in the next timestamp.

The neighborhood can be defined differently depending on
the model. The following is the definition of a conceptual CA:

CCA = (S,n,C, N,T,, C*Z(T)

where S is the set of states, n is the dimension of cell space,
N is neighborhood set, T is the global transition function, 7
is the local computing function, and c*Zar is the discrete-time
base for the CA.

On one hand, CA is simple enough to allow for detailed
mathematical analysis. On the other hand, combining simple
computations in individual cells makes it sufficient to model
complex systems [65]. Being simple, homogenous, and yet
capable of handling complex systems makes CA a suitable
and popular technique for modeling and simulating complex
phenomena in various domains [1], [5], [14]-[16], [18], [19],
[29], [30].

CA is a common cellular method for cellular computing
[39]. However, it has its drawbacks in terms of power, usabil-
ity, and feasibility.

1) The fact that CA is based on discrete-time cell updates
affects the performance and precision in modeling com-
plex systems.

2) While CA updates are asynchronous in nature, it has to
be implemented using synchronous digital computers.

3) It is hard to handle time-triggered activities in each cell
using a CA [60].

B. Cell-DEVS

Cell-DEVS overcomes most of the limitations of CA by
combining CA and DEVS formalism [70]. DEVS mathemati-
cally formalizes the definition of systems using a hierarchical
composition of behavioral and structural models, referred to
as atomic and coupled, respectively [62].

DEVS as a mathematical formalization is independent of
any tool or language used for M&S. Consequently, different
tools were developed to address the unique needs and uses of
DEVS. A DEVS atomic model is formally described by

M = (X7 Sa Ya 5int,5exta /1; ta)

,/-'.'

{ lit=

B

Neighborhood

Fig. 2. 2-D Cell-DEVS informal sketch.

where X is the input events set, S is the set of states, Y is the
output events set, diy 1S the internal transition function, dex is
the external transition function, 4 is the output function, and
ta is the time advance function.

A DEVS atomic model is seen as having input and output
ports to communicate with other models. Jiy changes the
internal state of the model after a period defined by ta, while
Jext Specifies how the model reacts to inputs received from
other models and collected through the input ports. The output
ports transfer the output generated by the output function 4 to
the outer world. The output function is fired before changing
the internal state of the model.

Cell-DEVS is an extension of the DEVS formalism that
implements the general concept of CA while handling the
shortcomings of the classic CA.

Fig. 2 shows an informal sketch that illustrates how Cell-
DEVS is a combination of both DEVS and CA. A Cell-DEVS
model is an n-dimensional lattice of cells where every cell is
an atomic model, and the whole-cell space is a coupled DEVS
model [62]. Each DEVS model in the lattice can interact
with other cells through the model’s interface (ports) and can
interact with models outside the defined cell space [60].

The first step to define a Cell-DEVS model is to define the
atomic model of each cell, as shown follows:

TDC = (X, 7Y, S, N, delay, d, din, Oext, T, 4, D)

where X is the input events set, S is the set of states, Y is
the output events set, N is the set of input values, the delay
is the type of delay, d is the delay duration, dyy is the internal
transition function, ey is the external transition function, 7 is
the local computing function, 4 is the output function, and D
is the state’s duration function [36].

The local computing function 7 calculates the future state
of the cell (s € S). After a transport delay d elapses,
the output values are transmitted. The inertial delay is used
as a preemptive mechanism; it prevents any scheduled change
from taking place upon receiving an external event from a
neighbor cell before the scheduled time. This can result in
the present state acquiring a different value [59]. Each state
has a lifetime defined by the duration function D. When the
duration is consumed, diy is fired to change the internal state
of the cell. Before activating the internal transition function,
the output function 4 generates the model’s output Y. When an
external event arrives through the input ports, dex is triggered.
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Now, as the atomic model is defined for the cells, the next
step is to define the complete cell space. A Cell-DEVS space
is formally defined as a coupled model as follows [36]:

GCC= (Xlist>ylist>ls X> Ys ;73 {tls"'stn}> N9 C>B9Z>

where Xjii is the list of external input coupling, Vi is the
list of external output coupling, 7 is the set of states, X is the
set of external input events set, Y is the set of external output
events set, 7 € N is the neighborhood size, {7, ..., #,} is the
number of cells in each dimension, N is the neighborhood set,
C is the cell space, B is the set of border cells, and Z is the
translation function.

The border cells B can have different behavior than the rest
of the cell space (or borders can be wrapped). The translation
function Z defines the internal/external coupling of cells in
the model; it translates the outputs of the m°" output port in a
cell Cjj into inputs to be fed to the m®" input port of another
cell Cy.

We can summarize the ways Cell-DEVS overcomes the
drawbacks of classic CA (see Section II-A) as follows.

1) Cell-DEVS provides asynchronous execution to model
the asynchronous nature of a system.

2) This results in better execution times [36].

3) One can simply define complex timing conditions in
cells using the available timing constructions.

4) Cell-DEVS allows for certain areas in the lattice to have
different defined behavior, which is a more accurate
representation of many natural phenomena.

5) Cell-DEVS inherits the property of being closed under
coupling from DEVS, which makes it easier to integrate
with other modeling formalisms [36], [60].

C. Modeling Social Systems

As mentioned in Section I, modeling is an interdisciplinary
approach where mathematics and software integrate with other
disciplines and sciences to understand, simulate, and predict
different phenomena. Applications of social computing are
expanding and expected to multiply [63]. Social changes and
their impacts are among the disciplines where modeling is
essential and can complement analytical methods to facilitate
social studies. Social modeling has become even more relevant
with the increasing risks, concerns, and unpredictable social
phenomena [63] (e.g., privacy concerns, social media effects,
the impact of technologies on cultural norms, and global
warming and its effect on epidemics and social changes).

Different studies have been conducted to use computer
models for social phenomena research. Examples include
modeling residential migration [14], crowd behavior [26],
[33], epidemiology [35], and social influence [9], [63]. Many
modeling techniques aim at modeling and simulating social
systems. This includes but not limited to agent-based modeling
(e.g., [8] and [46]), regression models (e.g., [40]), CA (e.g.,
[54]), and DEVS (e.g., [52]). Regression modeling requires
specifying explicitly the type of relation expected between
variable; this cannot be specified properly in an area, such
as social systems [17]. There is important research in social
modeling that explores the theoretical aspects in terms of
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finding mathematical models that are suitable for social phe-
nomena. For example, Curiel [13] introduces mathematical
models to consider different social challenges. Other research
projects on social modeling are concerned with the use of
certain approaches for modeling specific social phenomena,
for example, on the use of CA to model pedestrian behavior
[16], [26], [32]. Other research focuses on how to narrow the
gap between social scientists (who do not necessarily have
the technical background to develop models as expected by
simulation tools) and toolkits developers. For example, Pavon
et al. [46] use a graphical agent-based language for speci-
fying social models. The models can then be automatically
transferred into a format that suitable to be fed to INGENIAS
Development Kit [46]. There are numerous approaches for
simulation in social sciences, but this research focuses on the
use of spatial models, in particular those that can be formalized
and subsequently executed by automated means derived from
the formal specifications (such as CA, Cell-DEVS, or DEVS)
to model social behavior. The rest of the literature discussed in
Section III focuses on the body of related work that has been
done in this area, including a discussion of the advantages of
our approach as a complete modeling solution.

III. RELATED WORK

We divide this section into two subsections. The first subsec-
tion discusses how CA has been used in the literature to model
social phenomena (see Section ITI-A). Then, in Section III-B,
we review the research work that uses Cell-DEVS and DEVS
for social modeling.

A. CA for Social Modeling

CA is used extensively in the literature to model social
behavior. For example, pedestrians’ dynamics is one of the
aspects that have been modeled using CA [21], [29], [32], [42],
[68]. Burstedde et al. [75] represened pedestrians’ behavior by
using a 2-D grid of cells where each cell can be occupied by at
most one pedestrian. The authors introduce the concept of floor
field to determine the transition probabilities of pedestrians.
The floor field concept considers the interactions between
pedestrians as well as the geometry of the building. The floor
field modifies the transition probabilities in a way that gives
preference to moving in the direction of a larger field. The
idea is to substitute the need for long-ranged interactions
(interacting with people walking ahead) into a local interaction
based on the trace that a pedestrian left a while back. This
makes it more efficient and easier to calculate [26]. This
concept later became a standard in pedestrians modeling [67],
[68]. Researchers used the floor field CA modeling concept to
model pedestrians’ behavior extensively [16], [21], [25], [38],
[47]. For example, Zheng et al. [71] proposed a fire evacuation
model based on CA. Their work is based on the floor field
concept proposed by Burstedde et al. earlier. The model shows
that the number of pedestrians who manage to evacuate the
room is highly related to the design of the room and the
original fire location [71]. Fu et al. [22] also used the floor
field concept to simulate the evacuation of 1000 pedestrians
randomly distributed with different velocities and capabilities
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to move. The simulation shows that the total evacuation time
is mostly determined by the slower evacuees even if they
compose the smaller portion of the population [22].

Another important social study area where CA modeling
has been applicable is epidemiology. Researchers use CA to
model the spread of different diseases among the population.
White et al. [30] created a 2-D CA model to simulate epidemic
spreading. Each cell represents a geographical area, and it is
affected by only four neighbors. The authors report that their
results mimic real-life scenarios for epidemic spread. The
authors assume homogeneous distribution of the population;
all the cells have the same number of residents. They also
assume that the total population is constant [30]. Athithan
et al. [5] proposed a dynamic CA for both homogenous
populations and heterogeneous populations confined in small
geographical locations (patches). The authors also consider
the movement of the population across different locations
and the effect of this on the epidemic behavior [5]. For
more information on the effect of social interactions on
the epidemic spread, the reader is referred to the relevant
literature [19], [28], [29], [48], [49], [55].

Another area of social modeling that benefit from CA is
peer influence on the social habits of individuals. Jackson
et al. have developed the “Binge Drinking Cellular Automata”
program to model the effect of peer pressure on the drinking
behavior of undergraduate students. The authors model the
good and bad influence of individuals on other members of
the group, and they discuss how this affects the drinking
habits of the whole group. Dabbaghian et al. [15] used CA to
model the transformation of members of a community from
being healthy individuals to using drugs due to peer influence.
The authors also examine the transition of individuals into
being heavy drug addicts and committing crimes to afford
their expensive addiction habit. They also examine positive
peer influence and discuss how it can help the rehabilitation
of an individual so they can become healthy [15]. Another
interesting social study is conducted by Osipian [44] where the
author models the corruption in educational organizations. The
author offers a framework based on CA to model corruption
in large education institutes and to predict the possible scale
of corruption within the organizations. The author studies
the effect of the economic benefits, the cost of corruption
(consequences), and the effect of peer pressure on the moral
constraints of individuals [44].

The examples mentioned in this section are only one of the
areas where CA is used to model different social phenomena.
The research literature is rich with other studies that utilize
CA to model social behavior (e.g., [20], [27], [28], and [50]).
In the next section, we will focus on social studies that use
DEVS and Cell-DEVS as a mean of M&S.

B. DEVS and Cell-DEVS for Social Modeling

The work of Seck et al. [52] uses DEVS to model human
behavior for the sake of achieving a high level of realism for
computer-generated forces (CGFs). Seck ef al. [52] proposed
a framework for modeling human behavior under constraints
such as stress and tiredness. The behavioral atomic model

introduced by the authors represents a set of tasks (states)
and the set of transitions between the tasks belonging to the
same mission. They introduce a stress state model consisting
of five states and four categories of external events that are
especially applicable for the military. Those events transfer
the model from one state to the other. The duration of a task
and the difficulty level of a task that an individual performs
within the system are the factors considered when calculating
tiredness. The proposed framework paves the way for adding
new performance moderators and complexities [51].

As a part of the poly-functional intelligent operational
virtual reality agents (PIOVRA) project [12], Seck et al. [51]
added to their previously proposed framework openness as
an example of what they call personality filters that affect
human performance and behavior. This is done by introducing
a cognitive complexity variable to the tasks integrated into the
previously explained framework. Different individuals repre-
sented in the model will perform the tasks differently in terms
of time and decision-making based on the filters incorporated
in the complexity variable (openness in this example) [51].

The objective of Simulation Constructive et Modélisation
des effets des Opérations d’influence dans les réseaux Sociaux
(SICOMPRE) [74] is to model a social network, simulate
the effect of information on them, and observe how the
propagation of information affects this population [20]. As a
part of SICOMOPRE, Bouanan et al. [10] presented a Cell-
DEVS model for how humans deal with information, and it
is propagated [10]. Like us, the authors use CD++, an M&S
tool for DEVS and Cell-DEVS [59], to build their models.
Each cell represents an individual with a set of attributes (e.g.,
gender and age), which are combined to form a cell space
representing the network of the population [10], [11] modeled
with Cell-DEVS.

Behl et al. [6] discussed the DEVS and Cell-DEV'S models
and present a schema to study how social interaction affects
the formulation of human opinions using Cell-DEVS and
agent-based modeling. They extend the work of Bouanan
et al. [11] by testing the effect of varying some parameters
in the model; they perform their experiments using different
population sizes, different neighborhood shapes, and variable
thresholds when an individual adopts a new opinion [6].

DEVS and Cell-DEVS have also been used to model other
social phenomena, such as epidemics and the spread of viruses
through social interactions between animals or humans. For
example, based on a CA model of a population affected
by the plague [18], Shang and Wainer [53] present a Cell-
DEVS model to describe the interactions between individuals
and viruses using CD++. Individuals and viruses reside in
the different cells of the model, and the rules applied to
implement interactions between the cells consider age, people
reproduction, change in the state of the virus (active and
inactive), and competition between viruses and individuals
(which one beats the other) [53].

Crowd behavior is another area where Cell-DEVS has been
used as an approach to model social behavior. Al-Habashna
and Wainer [1] propose Cell-DEVS models to model and
simulate movements of crowds. The authors present models
for handling evacuation and movement in multiple floor
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buildings. The aim of the model is to use the results of
the simulation to provide recommendations for architects in
the design process of multiple floor buildings. The authors
conclude that Cell-DEVS can be adequately used to model
pedestrians’ behavior [1].

As mentioned earlier, Cell-DEVS is suitable for modeling
and simulating complex systems with advantages over CA.
However, up until now, the M&S research literature has not
shown how DEVS and Cell-DEVS can be applied for perform-
ing various categories of social systems research. In addition,
the tools needed to perform such M&S to facilitate social sys-
tems experimentations have not been explored in this context.

The use of Cell-DEVS provides advantages compared with
other modeling approaches. Cell-DEVS is an extension of
DEVS, which provides the advantages of a discrete-event
approach in terms of execution performance. Discrete-event
models evolve in continuous time. Events are instantaneous
and can occur asynchronously at unpredictable times. DEVS
simulators use hierarchical schedulers of events that activate
the corresponding submodels. The schedules allow skipping
periods of inactivity in the simulation. This is a clear departure
from time-based approaches (including CA) where all compo-
nents are updated at the same time, even when they do not
need to. Another advantage is that expressing a timing delay
is done in a natural fashion, allowing the modeler to reduce
the development time related to timing control programming.
Another advantage is that the complexity of this physical phe-
nomenon is such that the inclusion of other external influences
is difficult to be considered. As Cell-DEVS models are DEVS
models, we can combine the social models with other external
models defined in a different formalism, using DEVS as a
mechanism to assemble models in a seamless fashion [62].
Other existing formalisms can be expressed as DEVS models
(including Petri Nets, FSM, State Charts, and timed automata).
Consequently, a modeler can express different properties in
an adequate formalism and use DEVS hierarchical coupling
as integration. In this way, one can take advantage of the
current expertise of scientists in different domains. Modelers
can describe individual components of cellular models using
their own methods, which could result in the enhanced model
definition and would help to bridge the gap between traditional
modeling techniques and cellular computing. Other advantages
can be summarized as follows.

1) Our solution, compared with the use of tools and
informal methods, provides the advantages introduced
by formal mathematical specifications. A formal model
is simpler to verify and then can be validated, improv-
ing the error detection process and reducing testing
time. DEVS models are closed under coupling; there-
fore, a coupled model is equivalent to an atomic one,
improving reuse. DEVS supplies facilities to translate
the formal specifications into executable models. In this
way, the behavior of a conceptual model can be vali-
dated against the real system, and the response of the
executable model can be verified against the conceptual
specification.

2) DEVS is a complete M&S technique. It provides a way
to specify models that can be coupled into higher level
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ones, which are later simulated by independent abstract
entities (in single-processor or parallel architectures).
Each model can be associated with an experimental
framework, allowing the individual testing of compo-
nents and making integration testing easier.

3) DEVS can be applied using predictive quantization of
arbitrary ordinary differential equation models. Quan-
tized models improve substantially performance with
bounded error.

This research, thus, focuses on how to provide a complete solu-
tion that covers the entire process for modeling and simulating
social systems using a formal approach and automated means
for the simulation process. The solution that we propose covers
the process starting by formalizing the model using Cell-
DEVS theoretical concepts and using CD++ to implement the
formal models, execute the simulation, and, finally, visualize
the results.

Based on previously created CA models [15], [19], [38], in
Section IV, we present DEVS and Cell-DEVS models in three
different fields that belong to the social category of models.
We use the CD++ toolkit for M&S [59]. We prove through
our models that DEVS and Cell-DEVS formalisms from one
side and CD++4 as an implementation toolkit from the other
are suitable and effective in modeling complex phenomena
in different social contexts that involve both the behaviors of
humans as well as other living creatures.

IV. SociAL APPLICATIONS EXAMPLES

In this section, we discuss three different examples rep-
resenting social changes and their consequences in different
communities with variable characteristics. First, we present
a group of models of the spread of avian flu (H5N1) in
poultry and animals (see Section IV-A). The spread of the
virus happens through interactions between birds, or birds and
animals. This model shows how social interactions among ani-
mals affect their wellbeing as well as the health of individuals
in direct contact with the infected animals. In addition, it has
been shown that there is a resemblance between the spread of
viruses and information propagation in social networks, and
therefore, models similar to the virus-spreading models can
be used to simulate the spread of information in communities
[9]. Second, we propose models of the phenomena of the
survivorship of colonel organisms (see Section IV-B). Through
the proposed models, we explore how the interaction between
different members of the colony affects the survivor of mem-
bers of the colony. Finally, in Section IV-C, we discuss how
drug usage evolves in high-risk communities and can affect
the crime rate using n-dimensional Cell-DEVS.

It is evident in our experiments presented in this section that
in all the models, Cell-DEVS allows us to separate the for-
malism from the implementation, which facilitates describing
the problem clearly and independently of the implementation
mechanism.

After the formal specification is defined, we implement our
models using CD++ [58], [59], a toolkit that implements
DEVS and Cell-DEVS theoretical concepts. Using the toolKkit,
one can define an atomic model using C++ or graphical
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notation, while Cell-DEVS models are specified using a spec-
ification language provided by the tool. Reference [59] has
more details about using CD++ for M&S.

A. Avian Influenza

The first group of models that we introduce in this section
studies diverse aspects of the spread of avian influenza
(H5N1). We first propose the basic scenario of the spread
of the virus with different probabilities using simple neigh-
borhood definition (see Section II-B). Then, we introduce
boundaries to the model to prevent the spread of the virus
outside a certain community. Finally, we expand the neighbor-
hood, introduce the concept of distinct types of neighbors, and
add states to represent immunization and death as a possible
consequence of the virus infection. We must clarify that the
size of the cells is not representative of spatial size, but of
topology and location. That is, one cell in the model might
represent 1 km? and the other 1000 km?. The neighborhood
relationship represents the movement of birds between areas
of influence, which has been used to describe the migratory
behavior of the birds. This type of migratory specification has
been presented in various CA models of birds [34], [54], [67]
and other animals [43]. In fact, CAs have been used on a wider
scale to model population movement and disease transmission
in general [23].

1) Problem Definition: H5NI is a highly contagious viral
disease that spreads among poultry and may attack other
species of animals as well. The virus first emerged in 1996 in
Eastern Asia and has been spreading among birds’ population
since then. Outbreaks caused by the virus resulted in ani-
mal health and economic crises worldwide. The virus also
attacks humans through direct contact with living infected
poultry or animals and, in unusual cases, through human-
to-human interaction [45]. However, when it attacks people,
the mortality rate becomes 60% [64]. The preemptive actions
in terms of control and immunization can help to avoid the
grave consequences of the virus spread.

HS5N1 has received attention from scholars as a potential
pandemic threat. Due to the threats, consequences of the virus
spread, and the unique nature of the virus, different attempts
have been made to model the spread of the virus [32], [49].
In our example, we are not trying to discuss the biological
aspects of the spread of avian influenza. Instead, we focus on
modeling the social aspect of epidemiology, in terms of the
spread of the disease in a social system and possible ways to
control it.

2) Conceptual Model: The model that we propose, based on
the one in [55], is presented to show how DEVS, Cell-DEVS,
and CD-++ are adequate for modeling social systems. The
model we use here is based on the work done by Situngkir [55]
to model spatial epidemiology using CA. More sophisticated
models can be introduced by using and expanding the main
concepts that we use here. The avian flu model involves the
transmission of the virus among animals living in the same
area. We model a population of 1225 agents (individuals)
represented as a grid. We limit the discussion to birds for
simplicity; however, including humans and other animals in

the model is possible with modifications. Using Cell-DEVS,
we construct a 2-D 35 x 35 square grid of cells where each
cell represents an individual acting as part of the population.
We assume that the individuals are residing in the same area
as direct contacts.

Everyone residing in a cell can be in one of the few states
as will be described in the next section. The state of the
individual (infected, susceptible, and so on) changes based
on the individuals in the cell’s neighborhood surrounding that
individual.

3) Formal Models Specifications and Simulations: We study
three different main models in this section. First, we model a
basic case where we have only two states for infected and
susceptible cells. We assume that each cell is affected by
a neighborhood of nine near neighbors. Second, using the
same neighborhood of the basic case, we model the population
when boundary cells are introduced to control the spread of
the disease. Finally, we expand our neighborhood to consist
of 24 neighbors classified in two different proximities from
the core cell. We also introduce three more states in this last
model as will be explained in Section IV-A3.b.

a) Basic scenario: The first model shows the spreading
of the virus with different probabilities. We use two states
to model the spread of flu: susceptible (S) and infected
(D). A susceptible cell has not been infected, but there is a
probabilistic potential that it can be infected in the future,
while an infected cell is a cell that caught the virus. The
neighborhood for the core cell is the Moore neighborhood,
which includes the cell’s nine near neighbors.

The following is the formal definition of the 2-D Cell-DEVS
space in the first out of three models, as defined in Section
II-B:

AVian_BaSiC = (Xlisl, Ylisl, Ia X, Y, 71, {tla tz}a N, C, B, Z>

where Xji = Yig = {01, 1 = {0,2},X =Y =0,n =9,
th = tp = 35 and N = {(-1,0),(0,—-1),(0,1),(1,0),
(090)9 (_ls _l)s (_la 1)9 (la _1)5 (15 l)}

For the basic scenario model, we use two states only (I =
{0, 2}), where O is the state of the susceptible inhabitant and
2 represents an infected cell. Infected cells are responsible for
spreading the flu. In this model, we consider an area containing
1225 inhabitants, and one of them is the root cause.

The transition (S to /) indicates that the inhabitant was
infected by the avian flu and that it will spread the flu to
others. We initially set one inhabitant as infected. The rule in
CD++ can be written as follows:

2 100 {(0,0) = 0 and stateCount (2) > 0
and random < 0.3}

{(0,0)} 100 {t}.

rule:

rule:

The first rule indicates that if the core cell is not infected
(0), and there is one or more neighboring cells infected (value
of 2), then the core cell will change randomly to become either
susceptible (0) or infected (2). The second rule means that
in all other cases, the cell will keep its current value. Fig. 3
shows the progress of a simulation scenario of the basic model
with a diffusion rate of 0.3, where the susceptible inhabitant
cells are shown in light shade and the infected cells are dark.
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Fig. 3. Avian flu basic scenario: snapshots of the simulation at different
times with diffusion rate 0.3. (a) time = 0 ms. (b) time = 100 ms. (c) time
= 1000 ms. (d) time = 4400 ms.

The simulation starts at time O where there are two cells
initially infected [see Fig. 3(a)] and ends at time 4400 [see
Fig. 3(d)] when there are no more events to execute. Fig. 3(b)
and (c) shows the spread of the virus at times 100 and 1000,
respectively.

b) Introducing boundaries: The second model shows
the spread of the virus with different probabilities inside a
predefined boundary and is formalized as follows:

AVian_BOundarieS: (Xlisls Ylisls 19 X9 Y’ ’7’ {t19 t2}’ N9 C9 B9 Z)

where Xy = Yig = {21 = {0,2,5},X =Y =
O,n =91t =t =235 and N = {(—1,0),(0,—-1), (0, 1),
(1,0), (0,0), (=1, —=1), (=1, 1), (1,—-1),(1, 1)}, where the
state O represents the susceptible inhabitant, 2 represents the
infected ones who are responsible for spreading the flu, and
5 represents the boundary. This model uses zones in CD++,
which helps modeling behavior. The boundary model defines
a zone where the flue spreading rules are applicable (and
different rules outside that zone). The following shows how
zones are defined. This means that rules labeled “flu” are only
applicable inside the defined zones

zone : flu {(0,0)..(0,7)}
zone : flu {(1,0)..(7,0)}
zone : flu {(1,7)..(5,7)}
zone : flu {(7,1)..(7,10)}
zone : flu {(5,8)..(5,12)}
zone : flu {(8,9)..(17,9)}
zone : flu {(7,22)..(17,22)}
zone : flu {(18,22)..(18,31)}
zone : flu {(19,31)..(32,31)}
zone : flu {(30,5)..(30,15)}
zone : flu {(31,15)..(31,32)}.

The boundary cells can be mapped to boundaries around
the infected avian community that is introduced to limit the
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¢} time = 1000ms d)  time - 2300ms
Fig. 4. Avian flu boundary scenario: snapshots of the simulation at different

times with diffusion rate 0.5. (a) time = 0 ms. (b) time = 100 ms. (c) time
= 1000 ms. (d) time = 2300 ms.

Fig. 5.

Avian flu: 5 x 5 neighborhood.

spread of the disease. Fig. 4 shows how the virus spreads with
a 0.5 diffusion rate at various times when boundary areas are
introduced. The simulation shows how introducing a boundary
area can stop the disease from spreading to the rest of the
population after 2300 time units when the simulation stops.

A video of the simulation for this model can be found in
the ARSLab YouTube channel [3].

c) Larger neighborhood and more states: In the next
iteration, we introduce a new neighborhood definition with
two kinds of neighbors. The first type we have is the “adjacent
neighbor” that is next to the core cell, and the second type is
the “remote neighbor” that is one cell farther (see Fig. 5).
Inhabitants have 24 contacts that can be used to spread the
flu: 16 of them are remote, while 8 are adjacent. Adjacent
neighbors have more chances of infection compared with the
remote ones.

The following is the formal definition of the model:

Avian_Advanced = (X, Viist, [, X, Y, 1, {t1, »}, N,C, B,Z)

where Xjig = Yie = (P, X = Y = 0,1 =
{(-1,0,1,2,3}, = 25, 44, = tb = 35 and N =
{(_1’0)’ (09_1)’ (09 1)’ (130)’ (Os O)’ (_17_1)’ (_131)’
(19 _1)’ (1’ 1)’ (_29 _2)’ (_29 _1)7 (_2) 0)’ (_29 1)7 (_2a 2)’
(_19_2), (_132), (Os _2)’ (09 2)’ (13_2)’ (132)’ (23 _2)’
2,-1), (2,0), (2, 1), (2,2)}.

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:30:11 UTC from IEEE Xplore. Restrictions apply.



732 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 3, JUNE 2020

a)  time = 0ms

¢ time = 400ms d)  time = 1400ms

Fig. 6. Advanced avian flu: diffusion rate calculated based on the outer and
inner neighbors. (a) time = 0 ms. (b) time = 100 ms. (¢) time = 400 ms.
(d) time = 1400 ms.

Here, the states are defined with a value of O for the suscep-
tible inhabitants, 2 for the infected ones who are responsible
for spreading the flu, 1 is a questionable cell, —1 is an immune
cell, and 3 is a dead cell. Questionable, immune, and dead
states are explained later in this section.

The following is the rule that defines the spread of the flu
based on the new neighborhood for this model and before
adding the new states:

rule: 2 100 {(0,0)=0 and stateCount(2)
random < #macro (Spreading) * (
#macro (Inner) * #macro(inner_2)/8 +

#macro(Outer) * #macro (outer_2)/16)}.

> 0 and

Inhabitants are infected by the flu, which is spread by
animals. The possibility of transition is calculated based on
the number of infected inhabitants in the neighborhood along
with the diffusion rate with a higher probability of spreading
when the infected cells are closer to the core cell. The diffusion
rate is calculated as shown in the abovementioned rules. The
Appendix shows the different macros and how the diffusion is
calculated. Inner and outer indicate the possibility of infection
by the influence of the adjacent and remote neighbors, respec-
tively. The variables inner_2 and outer_2 indicate the number
of inhabitants infected in the set of “adjacent neighbors” and
the set of “remote neighbors,” respectively. Fig. 6 shows the
results when introducing the new neighborhood design.

As shown in Fig. 6, when introducing remote neighbors,
the disease spreads faster compared with the basic model of
Fig. 3 where only adjacent neighbors are considered.

In the next iteration of the model, we still use the neigh-
borhood of Fig. 5. However, we notice the risk of flu and
possible steps that may be taken to immunize the inhabi-
tants. Inhabitants will try to get immune after flu symptoms
have been noticed. To do so, we add new states defining
questionable and immune individuals; this is done simply by
introducing new state values. A cell becomes questionable

g} time = [000ms fi  time=12100ms

Fig. 7. Avian flu: 24 cells neighborhood: immunization and vigilance of the
inhabitants is considered after noticing symptoms. (a) time = 0 ms. (b) time
= 100 ms. (c) time = 200 ms. (d) time = 600 ms. (e) time = 1000 ms.
(f) time = 12 100 ms.

based on probabilities calculated for immune cells (0.1, as
shown in the Appendix). The vigilance of the inhabitants is
also considered while considering its 24 neighbors’ states and
their proximity to the core cell. The immune state is a virus-
free state. This means that they may spread no or less flu
virus.

The rules for this model are defined as follows:

rule: 1 100 {(0,0)=0 and (#macro (Inner) *
#macro (inner_2) + #macro(Outer) *
#macro (outer_2) >3) and random < (
#macro (Vigilance) * (#macro (Inner) *
#macro (inner_2)/8 + #macro(Outer) *
#macro (outer_2)/16))}
rule: 1 100 {(0,0)=0 and (#macro (Inner) *
#macro (inner_1) + #macro(Outer) *
#macro (outer_1) > 0) and random < (
#macro (Vigilance) * (#macro (Inner) *
#macro(inner_1)/8 + #macro(Outer) *
#macro (outer_1)/16))}

rule: {if (random < #macro (Immune), -1,0)}
100 {(0,0)=1}
rule: 2 100 {(0,0)=0 and stateCount(2) > 0

and random < #macro (Spreading) * (
#macro (Inner) * #macro (inner_2) /8 +
#macro (Outer) * #macro(outer_2) /16)}

rule: {(0,0)} 100 {t}}.
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Fig. 8. Avian flu: neighborhood of 24 cells: inhabitants who are not
immunized die due to the dangerous flu. (a) time = 0 ms. (b) time = 100 ms.
(c) time = 200 ms. (d) time = 600 ms. (e) time = 1000 ms. (f) time =
4200 ms.

The simulation results of this model are shown in Fig. 7.

In Fig. 7(a), the simulation starts with two cells initially
infected. Then, in Fig. 7(b), the virus spreads and some
cells become questionable. In Fig. 7(d), immunization starts
to appear. This limits the spread of the disease as we can
observe comparing Figs. 6(d) and 7(f). While in Fig. 6(d),
the whole population is infected, Fig. 7(f) shows a few infected
individuals surrounded by the immune population.

In the last model, we add a dead state and one new rule
to the previous model. We assume that inhabitants who do
not get the treatment die because of the dangerous flu. The
following is the rule added for this model:

{if (random < #macro(dead), 3, 0)} 100

{(0,0)=2}.

rule:

Fig. 8 shows the simulation results when considering death
due to a lack of immunization. The simulation starts with
two infected cells [see Fig. 8(a)]. Then, the disease starts to
spread among the neighboring cells [see Fig. 8(b)]. The dead
cells start to appear in Fig. 8(c) at the center of the infected
population. The dead cells are surrounded by questionable
cells at this point in the simulation. Then, in Fig. 8(d), some
immune cells start to appear, but also the number of dead
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individuals increases. Then, gradually, the number of immune
cells increases at a faster rate [see Fig. 8(e)]. At the end of
the simulation, no more questionable cells are present. This is
shown in Fig. 8(d), where there are only three types of cells:
infected, immune, and dead cells.

4) Discussion: We presented Cell-DEVS to model the
spread of avian flu using a different number of states, different
rules, and different neighborhoods. Our experiments show how
different parameters that affect the spread of the disease can
be modeled and how the effects of such parameters can be
simulated using Cell-DEVS as formalism and CD++ as an
implementation tool.

For example, we were able to represent different probabili-
ties of the spread of disease based on the spatial proximity of
the individuals from the infected person using neighborhoods
modeling in Cell-DEVS. Similarly, CD++ allowed for the
implementation of zones (quarantine areas), outside of which
the disease cannot spread. Furthermore, using Cell-DEVS and
CD++ to define and implement multiple states allowed for
representing stages of the disease (e.g., immune, suspectable,
and infected). The models can be used to simulate aspects of
social interaction that can affect the spread of a viral infection.

B. Genet and Ramet Survivorship

Genet is a single genetic individual that can be comprised of
separate colonies (ramets) [57]. The models we present in this
section try to model the survival behavior of genet nodes. We
start by defining the problem. Then, we introduce a general
conceptual model. Then, we present the simulation results of
a simple model with only one ramet and a small cell space
(10 x 10), then, a model with two types of ramets with a larger
lattice (15 x 15), and finally, a complete model with a 60 x 60
lattice and nine different ramets located at random.

1) Problem Definition: Clonal organisms are comprised of
modules that are either semi-independent or partially indepen-
dent to the level that they can survive the death of part of the
colony. The study of the traits and behavior of such colonial
organisms was introduced by Inghe [31], where the authors
presented a 2-D CA to analyze this problem. In this section,
we build a 2-D Cell-DEVS model based on [31] to explore the
interaction and survival behavior among different genet nodes.

2) Conceptual Model: The main model we present includes
nine different genets that are spread randomly in a cell-
space of 60 x 60. The model shows how each genet
colony interacts with the other, showing whether the colony
expands or decreases in size. The original purpose is to show
the relationship between clonal growth (i.e., producing later-
ally spreading shoots that become at a later stage physically
independent ramets [31]) and genet survival under spatially
localized disturbances where the size of the disturbance can
be varied.

3) Formal Model Specifications and Simulations: For the
model, survivorship will be compared in relation to the popu-
lation. The model is represented by a cell-space that consists
of 60 rows x 60 columns. The cells have two states, either
empty or occupied by one ramet. The cell-space is wrapped.
The top row is wrapped with the bottom, and the most-right
column is wrapped with the most-left column.
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Fig. 9. Genet and ramet: 13 members’ neighborhood.

The neighborhood of each cell includes 13 cells (including
the core cell itself); the shape of the neighborhood is shown
in Fig. 9. If the cell is empty and that there is only one
growing ramet in the neighborhood, then the ramet will
colonize (growth rule) the empty cell with a probability P.
The probability P; for each cell in the neighborhood is shown
in Fig. 9.

If more than one growing ramet exists in the neighborhood,
then they would compete in colonizing the empty space. In this
case, the probability for each competing ramet will be P/,
which is given by

()

The death rules assumed in this model is that the death of
an individual is caused by an overcrowded population. The
simulation will start by randomly sowing nine genets, each
consisting of one ramet and then exposing them to the death
rule. Subsequent iterations will then be conducted by applying
the growth rule, followed by the death rule.

We use, for this example, three Cell-DEVS coupled models,
but they are all similar with few differences in the cell
space dimensions and the initial values. The main Cell-DEVS
coupled model is defined as follows:

Genet_Ramet = <Xlist> YliSb 19 Xs Y> n, {tla tz}s Ns C> B>Z>

where Xjiy = Yie = {4}, I = {0,1,2,3,4,5,6,7,8,9},
X =Y =0,n =131, = b = 60, N = {(—2,0),
(_l> _1)7 (_190)’ (_19 1)7 (0> _2)7 (Os _l)v (Os O), (0> l)v
(0,2), (1, =1), (1,0), (1, 1), 2,0)}, C = {C;;/i € [0,59] A
Jj €10,59]}, B ={0@} is a wrapped border in our case.

There is only one set of 14 rules in total. The first 12 rules
are similar in that they calculate the probability of cell (0,
0) being colonized. Each rule corresponds to one of the
neighbors.

Rule 1, which calculates the probability of the neighboring
cell (=2, 0) colonizing cell (0, 0), is shown in the following
as an example:

rule : {(-2,0)} 1000 {(0,0)=0 and (-2,0)>0 and
random < ((0.1/(if(((-2,0)>0),0.1,0) +
if(((-1,-1)>0),0.25,0)+ if(((-1,0)>0),0.4,0)
+ if(((-1,1)>0),0.25,0) +
if(((O,—2)>O) 0.1,0)+ if(((0,-1)>0),0.4,0)+
£(((0,1)>0),0.4,0)+ if(((0,2)>0),0.1,0)+
if(((l -1)>0),0.25,0)+ 1if(((1,0)>0),0.4,0)+
if(((1,1)>0),0.25,0)+ if(((2,0)>0),0.1,0)))
*(1- (if(((-2,0)>0),0.9,1) *
if(((-1,-1)>0),0.75,1) *

&) Smnof Sumilsion = b)) Few Steps Late

Fig. 10. Single ramet simulation. (a) Start of simulation. (b) Few steps later.

Few Steps Later

a)  Start of Simulation by

Fig. 11
steps later.

Two ramet colonies simulation. (a) Start of simulation. (b) Few

if(((-1,0)>0),0.6,1)* if(((-1,1)>0),0.75,1)~*
if(((0,-2)>0),0.9,1)~ lf(((O, 1)>0),0.6,1)
* 1f£(((0,1)>0),0.6,1)* if(((0,2)>0),0.9,1)*
if(((1,-1)>0),0.75,1)* if(((1,0)> ),O 6,1)*
£(((1,1)>0),0.75,1)* 1i£(((2,0)>0),0.9,1))))}.

If the conditions of rule one are met, the contents of cell
(0, 0) will be replaced with the contents of cell (—2, 0). Rule
13 is shown below where there is a 40% chance of killing the
ramet in cell (0, 0) if there are less than 3 empty cells around
1t

rule : {0} 1000 {((0,0)

(falseCount < 3)

> 0) and
and (random < 0.4)1}.

We first simulate a single ramet test that uses only one type
of ramet and a small cell space with the dimensions (10, 10).
This test is to visualize the spread of a ramet. Fig. 10 shows
the cell space at the start of the simulation [see Fig. 10(a)]
and a few steps afterward [see Fig. 10(b)].

The two colonies’ simulation uses two types of ramets, each
producing a colony. This visualizes the interaction between
more than one colony. The dimension of the cell space here
is 15 x 15. Fig. 11 shows the cell space at the start of the
simulation and few steps afterward. The results show a colony
moving into the center of another colony and dispersing, while
the surrounding colony has spread throughout the cell space
and has the chance to take over the contained colony.

Once these basic scenarios were completed, we executed
various complex scenarios. Fig. 12 shows one of those sce-
narios. A simulation video showing how the colonies interact
and evolve is available in the ARSLab YouTube channel [4].
Fig. 12 shows the colonies near the start, middle, and end
of the simulation. The first stage shows when the simulation
starts with nine ramets placed randomly in a 60 x 60 cell space
[see Fig. 12(a)]. The second stage is the rapid growth and col-
onization of the whole cell space by the ramets until different
colonies collide [see Fig. 12(b)]. The third stage occurs when

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 15:30:11 UTC from IEEE Xplore. Restrictions apply.



KHALIL AND WAINER: CELL-DEVS FOR SOCIAL PHENOMENA MODELING

by Mud-Poit

a)  lnitinl Placement.

Fig. 12.

the colonies start competing for empty cells near each of the
colonies’ borders; colonies here may increase or decrease in
size, shift places, diffuse into one another, and/or die out [see
Fig. 12(c)]. Note how the colonies shift, as we can see clearly
by comparing the colonies from Fig. 12(b) and (c). One of the
colonies [close to the bottom right corner of Fig. 12(b)] can
be seen dying out by comparing Fig. 12(b) and (c). We can
deduct from this simulation that colonies that start with no
competition tend to spread at a faster rate than colonies with
the competition. In addition, colonies that start by being placed
close to another colony tend to be smaller and are more prone
to dying out than colonies that start by being placed further
apart.

4) Discussion: In this section, we presented a Cell-DEVS
model based on the work presented by Inche [31] to explore
the relationship between clonal growth and the genet survival
through interactions between the different colonies. The sim-
ulation shows that colonies placed apart are more likely to
survive. Our model can be improved by adding new death
rules for example. However, we show in our experiments that
Cell-DEVS formalism and CD+4-+4 tool kit are suitable for
modeling, simulating, and implementing the survivorship of
the ramet as a species. Using Cell-DEVS, we could model a
different kind of neighborhood that did not resemble the rec-
tangular shape represented in the previous example. We could
also define, simulate, and implement a wrapped cell-space
that modeled the boundaries of the represented area. Using
CD++ allowed for defining different initial values of the
cells to simulate the diverse types of ramets. In addition,
we were able to implement the possibility of a cell colonizing
its neighbor based on different probabilities using the unique
features CD++.

C. Influence of Drug Use for Crime in High-Risk
Communities

In this section, we present three different models to study
the spread of drug usage, addiction, and crime in a high-
risk community. We first introduce a simple scenario where
a person starts consuming drugs, while the second model
shows the evolution of a drug user into an addict. The third
model focuses on the transition of an addict into criminal
activities and considers the possibility of treating a drug addict.

735

Ramet colonies simulation at different timestamps. (a) Initial placement. (b) Midpoint. (c) End of simulation.

As described in previous sections, we start by defining the
problem and introducing the conceptual model. Then, we
formally define the models and show the simulation results.

1) Problem Definition: Drug addiction has been identified
as a major cause of different criminal acts. In this case,
the addicts conduct crimes for the sake of covering the cost
of the expensive drugs that they are dependent on [56]. In this
section, we model the spread of drug addiction in a high-risk
community, as well as the influence of introducing treatment
and rehabilitation of the addict, and how this can affect the
whole community in terms of criminal acts and addiction
patterns.

2) Conceptual Model: The model that we present here
represents the criminal activities in an area and the hard drug
(for example, cocaine and heroin) consumption using a 3-D
Cell-DEVS and the influence that the addictions could provoke
in increased criminal activities in an area. The model is based
on a previous model proposed by Dabbaghian er al. [15].
We also consider incapacitation (treatment of drug users in
hospitals), which tends to reduce drug usage and criminal
activities, thus influencing the scenario in a positive way.

We incorporate, in our work, five basic types of
actors/characters: susceptible person (SP), low-risk person
(LRP), high-risk person (HRP), drug addict criminal person
(DCP), and incapacitated person (IP).

1) SP: An individual who currently does not consume drugs
but is vulnerable or likely to start taking drugs in the
future.

2) LRP: An individual who consumes drugs occasionally
but is not an addict.

3) HRP: An individual who consumes drugs and is
addicted.

4) DCP: An individual who is addicted to drugs and
commits a crime to support the drug habit.

5) IP: An individual who has been treated by doctors and
has successfully completed treatment.

The Cell-DEVS models that we introduce here analyze the
influence of drug pattern/influence, peer associations, drug
usage patterns, and criminality dependence.

3) Formal Model Specifications and Simulation: As men-
tioned earlier, we will discuss three: 1) a basic scenario when
someone starts consuming drugs; 2) an addiction scenario
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Fig. 13.

when the drug consumer becomes addicted; and 3) a criminal
scenario when an addict commits crimes to support their addic-
tion. We also add the possibility of treating and rehabilitating
the addict. Each cell contains an individual, and the cell value
is the state of that individual.

a) Basic drug use scenario: In this scenario, we have
two states: SP and LRP. When individuals start consuming
drugs, they transition from SP to LRP based on the states
of the neighbors. In this model, we use the Von Neumann
neighborhood; we consider only the North (N), East (E), West
(W), and South (S) neighbors. We assume here that a person
does not get impacted by all individuals surrounding them.
Instead, each individual is influenced by those whom they are
in social contact with [15]. The formal description of the basic
model is given as follows:

Basic = (Xjixt, Yiist, [, X, Y, n, N, {t1, 2}, C, B, Z)
Xig =Yg ={0); I={0,1}; X=Y=¢;
N ={(0,0),(-1,0),(0,-1), (0, 1), (1, 0)}

h=15=20; C={Gj/i €[0,19]A j €0, 19]}

n=>3

and
B = {7}

where B is the border type, which is wrapped in our case, and
the rules for this model are defined as follows:

1 200 {(0,0)=0 AND(0O,-1)=1 AND (-1,0)=1
AND(0,1)=1 AND(1,0)=1}
1 200 {((0,0)=0 OR(0,0)=1)
normal (0.4,0.3) > 0.7}
{(0,0)} 200 {t}.

rule:

rule: AND

rule:

The first rule forces the cell to switch to 1 after 200 ms if
all the neighbors are 1. In other words, if the four neighbors
with whom the individual is in social contact consume drugs,
then the individual starts consuming. In the second rule,
the individual can randomly start consuming drugs based on
a normal distribution randomization function. In this rule,
we consider a high-risk community where individuals could
start consuming drugs even if not all their social peers are drug
users. In any other case, the state of the individual remains
unchanged. Fig. 13 shows a simulation scenario for this basic
model.

©)  End of Simulatiog

Drug addiction basic model: transitioning from a healthy individual to drug consumer. (a) Initial placement. (b) Midpoint. (c) End of simulation.

Fig. 14. Drug addiction 3-D model: two-layer neighborhood.

b) Addiction scenario: The second model implements
an addiction situation, where a healthy person (SP) starts
consuming drugs and changes state (LRP). Finally, that person
becomes a drug addict (HRP). This model uses a 3-D Cell-
DEVS. The first dimension of the neighborhood of the model
is the same as the neighborhood of the previous model (Von
Neumann). However, there is a second layer of the neighbor-
hood where we consider five more neighbors in addition to
the neighbors defined in the base layer. The neighborhood for
this model is illustrated in Fig. 14.

The model defines two different zones with two different
behavioral patterns. Each zone is represented in one plane in
the model. Each zone represents one state variable.

The formal specifications of this model are

Drug_Addiction
= (Xiist, Yiise, I, X, Y., N, {t1, 2,13}, C, B, Z)
Xig = Yia = {0}, 1=1{0,1,2}; X=Y=0; n=10
N ={(0,0,0),(-1,0,0), (0, —1,0), (0, 1,0), (1, 0,0),
(-1,0,-1),(0,—-1,-1),(0,1,—1), (1,0, —1),

0,0,-1}
th=1=20;, 3=2
C ={Cijx/i €[0,191Aje€[0,191 Ak €][0,1]}; B={9}
and

Z ={(0,0,0)..(19, 19, 0)
use 71/7 1 =NonDrugPerson-transition;
0,0,1)..(19, 19, 1) use 72/72=DrugUser-transition}.
Note that the border here is wrapped, but cells in different

planes (zones) of the third dimension of the cellular model
use different transition functions. The rules for this model are
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Fig. 15. Drug addiction model: transitioning from a healthy individual to
drug consumer and then to a drug addict. (a) Plane 0 at = 450 ms. (b) Plane
—1 at t = 450 ms. (c) Plane 0 at t = 1950 ms. (d) Plane —1 at r = 1950 m:s.

[NonDrugPerson-transition]

rule: 1 150 {(0,0,0)=0 AND (0,-1,0)=1 AND
(-1,0,0)=1 AND (0,1,0)=1 AND (1,0,0)=1}
rule: 1 150 {(0,0,0)=0 AND normal(.4,.3) > .6}
rule: {(0,0,0)} 150 {t}
[DrugUser-transition]
rule: 2 150 {(0,0,0)=0 AND (0,0,-1)=1 AND
(0,-1,-1)=1 AND (-1,0,-1)=1 AND (0,1,-1)=1

AND (1,0,-1)=1}
2 150 {(0,0,0)=2}
0 150 {t}.

rule:
rule:

The first group of rules is the same as in the previous
model. It describes the transition of a person from state 0 (SP)
to 1 (LRP). The second group of rules (DrugUser-transition)
represents the behavior of a cell (individual) whose neighbors
(social influencers) are drug users. If the neighbors in the other
layer belong to the LRP group, this individual’s state becomes
state 2 (HRP). In other words, this individual becomes a drug
addict.

Fig. 15 shows the snapshots of two simulation scenarios of
the drug addiction model. Fig. 15(a) shows the first layer of
the model (SP and LRP individuals only). Fig. 15(b) shows
the point in time when few HRP individuals start to appear in
the second plane [see Fig. 15(b)]. Fig. 15(c) shows the state
of the individuals in the first plane of the mode at the end of
simulation where most of the population is in the LRP state,
while a small percentage of the population is still in the SP
state. Fig. 15(d) shows how this situation can progress due to
social interaction with more drug consumers and individuals
can become drug addicts (HRPs).

c) Crime as a result of addiction scenario: The last
version of the model includes all states; the transition of an
SP to an LRP, to an HRP, and then finally to a DCP. It also
considers the IP individuals who are in the stage of being
treated by doctors in the hospital to return to society as healthy
members (see Section IV-C2).
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We model the individual who is initially in an SP state in a
2-D plane, while the transitions to the four other possible states
(LRP, HRP, DCP, and IP) are modeled by three more planes
in the third dimension. There are four transition functions
for calculating the state of each variable in the cell based
on the variables of other cells within its neighborhood. The
neighborhood is a 3-D Von Neumann neighborhood with four
layers. The variables of LRP, HRP, and IP stages are supplied
to the model to simulate complicated drug patterns and crime
rates in an area. To generate random drug behavior, in the
beginning, the variables in different cells are changed from O to
1 following normal probability distribution. The cells that are
surrounded by persons who consume drugs are also susceptible
and will likely start to consume drugs.

The crime drug model defines four zones for using different
local computations as follows:

zone: LRP-transition{(0,0,0)..(19,19,0)}

zone: HRP-transition{(0,0,1)..(19,19,1)}

zone: crimedrug-transition{
(0,0,2)..(19,19,2)}

zone: Incapacitation-transition{
(0,0,3)..(19,19,3) 1.

The computation rules for each zone are defined as follows:

[LRP-transition]

rule: 1 100 {(0,0,0)=0 AND (0,-1,0)=1 AND
(-1,0,0)=1 AND (0,1,0)=1 AND (1,0,0)=1}
1 100 {(0,0,0)=0 AND normal(.4,.3) > .6}
{(0,0,0)} 100 {t}

rule:
rule:

[HRP-transition]

rule: 2 100 {(0,0,0)=0 AND (0,0,-1)=1 AND
(0,-1,-1)=1 AND (-1,0,-1)=1 AND
(0,1,-1)=1 AND (1,0,-1)=1}
rule: 2 100 {(0,0,0)=2}
rule: 0 100 {t}

[crimedrug-transition]

rule: 3 100{(0,0,0)=0 AND normal(.4,.1) > .6}

rule: 3 100 {(0,0,0)=0 AND (0,0,-1)=2 AND

((0,-1,-1)=2 OR (-1,0,-1)=2 OR
(0,1,-1)=2 OR (1,0,-1)=2)}

100 {(0,0,0)=3}

100 {t}

rule: 3
rule: 0

[Incapacitation-transition]

rule: 4 100 {(0,0,0)=0 AND (0,0,-1)=3 AND
(0,0,-2)=2 AND normal(0.4,0.3) > 0.1}

rule: 4 100 {(0,0,0)=4}

rule: 0 100 {t}.

The set of rules listed under the [crime-drug] are responsible
for switching the state of the cell to an HRP state if the core
cell in layer —1 (relative to the neighborhood) is 2 (HRP), and
atleast, one of its four direct neighbors in the same plane (N_j,
S_i, E_j, and W_,) is in the HRP state. The group of rules
listed under [Incapacitation-Transition] handles transitioning
the cell to the IP state. This happens when the value of the
core cell in layer —1 is HRP, and the value of the core cell in
layer —2 is IP using a random normal distribution generator.

Fig. 16 shows a snapshot of the simulation in the middle
of the execution of the model for the four different planes
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Fig. 16. Crime drug model: midpoint of simulation. (a) Plane 0 at t =
400 ms. (b) Plane —1 at # = 400 ms. (c) Plane —2 at t = 400 ms. (d) Plane
—3 att = 400 ms.
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Fig. 17. Crime drug model: end of simulation. (a) Plane 0 at t = 1300 ms.
(b) Plane —1 at + = 1300 ms. (c) Plane —2 at + = 1300 ms. (d) Plane —3 at
t = 1300 ms.

representing the four transition functions: Fig. 16(a): t1 (SP
to LRP); Fig. 16(b): 72 (LRP to HRP); Fig. 16(c): 3 (HRP to
DCP); and Fig. 16(d): t4 (HRP to IP). However, at this time
of the simulation, the last plane does not have any IPs yet.

Fig. 17 shows the end of the simulation where it is obvious
from the comparison of Figs. 16(b) and 17(b) that more
individuals are in the LR state (low-risk addicts) at the end of
the simulation. In addition, comparing Figs. 16(c) and 17(c)
illustrates that at the end of the simulation (see Fig. 17), many
individuals transition into the HRP state (high risk). Finally,
comparing the fourth plane of the simulation at a midpoint
[see Fig. 16(d)] and at the end of the simulation (see Fig. 17)
shows the transition of more than half of the population to the
IP state (individuals that have been incapacitated).

4) Discussion: In this section, we modeled how in a
high-risk community an individual state changes from being

a normal society member, into being a drug consumer,
addict, or crime committer for the sake of supporting a drug
usage habit. In addition, we simulated the possibility of being
rehabilitated to quit the drug addiction habit. We showed how
Cell-DEVS formalism and the CD++ tool could be used to
model and simulate the progress of such behavior or a similar
phenomenon in a community. In this example, we made
use of an additional feature of Cell-DEVS and CD++.
We used a multidimensional Cell-DEVS model with the n-
layered neighborhood. Cells in different layers use different
transition functions, which allowed us to differentiate between
the behavior of different individuals in the community (e.g.,
consumers and nonconsumers of drugs).

V. CONCLUSION

Modeling social changes has gained interest in the past, and
this interest has even increased due to changes in the social
environments (e.g., social networks and their effect on soci-
eties and human behavior). To model social systems efficiently,
simulate changes in societies, and predict future evolutions
without conducting long-term inaccurate observations, rigor-
ous improved formal modeling methods are required. Here,
we proposed Cell-DEVS as a formal method for modeling
social systems. We described three main conceptual models
of various kinds of social systems, formalized the models
using Cell-DEVS, implemented the models using CD++-, and
showed the simulation results of the implemented models.

We explained the advantages of Cell-DEVS for modeling
social systems in terms of performance, capabilities, and tool
support. Through the example models that we presented,
we showed how the unique features of Cell-DEVS (e.g., com-
plex timing and zoning) overcome the shortcoming of other
modeling formalism. In addition, we showed the availability
of solid tools (CD++ toolkit), which allows researchers to
implement the theoretical models formalized using Cell-DEVS
successfully. Therefore, we propose Cell-DEVS and CD+-+ as
a complete solution for modeling, implementing, simulating,
and visualizing complex social systems.

APPENDIX
ADVANCED AVIAN FLU MACROS

In following, we list the macros referred to in Section IV-
A3b

#BeginMacro (outer_2

_2)
if ((-2,-2)=2, l O) + 1if ((-2,-1)=2,1,0)
+ if ((-2,0)= ,0) + 1if ((-2,1)=2,1,0)
+ 1if ((-2, 2) ,l 0) + if ((-1,-2)=2,1,0)
+ 1f ((0,-2)=2,1,0) + 1if ((1,-2)=2,1,0)
+ if ((2,-2)=2,1,0) + 1if ((2,-1)=2,1,0)
+ 1if ((2,0)=2,1,0) + if ((2,1)=2,1,0)
+ 1if ((2,2)=2,1,0) + if ((1,2)=2,1,0)
+ 1if ((0,2)=2,1,0) + if ((-1,2)=2,1,0)
#EndMacro
#BeginMacro (inner_2)
if ((-1,-1)=2,1,0) + 1if ((0,-1)=2,1,0)
+ if ((1,-1)=2,1,0) + if ((1,0)=2,1,0)
+ 1if ((1,1)=2,1,0) + if ((0,1)=2,1,0)
+ if ((-1,1)=2,1,0) + 1if ((-1,0)=2,1,0)
#EndMacro
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#BeginMacro (outer_1)
if ((-2,-2)=1,1,0) + if ((-2,-1)=1,1,0)
+ if ((-2,0)=1,1,0) + if ((-2,1)=1,1,0)
+ if ((-2,2)=1,1,0) + 1if ((-1,-2)=1,1,0)
+ if ((0,-2)=1,1,0) + if ((1,-2)=1,1,0)
+ if ((2,-2)=1,1,0) + if ((2,-1)=1,1,0)
+ if ((2,0)=1,1,0) + if ((2,1)=1,1,0)
+ if ((2,2)=1,1,0) + if ((1,2)=1,1,0)
+ if ((0,2)=1,1,0) + if ((-1,2)=1,1,0)
#EndMacro
#BeginMacro (inner_1)
if ((-1,-1)=1,1,0) + if ((0,-1)=1,1,0) +
if ((1,-1)=1,1,0) + if ((1,0)=1,1,0) +
if ((1,1)=1,1,0) + if ((0,1)=1,1,0) +
if ((-1,1)=1,1,0) + if ((-1,0)=1,1,0)
#EndMacro
#BeginMacro (Immune) 0.1 #EndMacro
#BeginMacro (dead) 0.9 #EndMacro
#BeginMacro (Outer) uniform(0,0.05) #EndMacro
#BeginMacro (Inner) uniform(0,0.75) #EndMacro
#BeginMacro (Spreading) 0.2 #EndMacro
#BeginMacro (Vigilance) 0.6 #EndMacro.
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