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Abstract
We describe a number of modeling applications of advanced Cell-DEVS models, a modeling formalism Norbert
Giambiasi and I defined in the late 1990s. We discuss improved versions of these models built using the CD++ toolkit,
which was built in order to study, model, and simulate such cellular models. The models have removed some limitations
that standard cellular models have, which allow each cell to use multiple state variables and multiple ports for inter-cell
communications. We show the application of the formalism in three different areas of science and engineering: social
models, pedestrian analysis and occupancy in buildings, and virus spreading in computer networks.
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1. Introduction

In 1995, under the supervision of Norbert Giambiasi, we

started working on new modeling simulation techniques to

study complex systems. The idea was to help understand

the dynamic behavior of real systems where analytic solu-

tions are impossible to find. We were initially interested in

studying a combination of parallel simulation algorithms

and formal models that could be executed by simulation

engines. Formal models can improve the definition of the

model and making easier their execution, as these executa-

ble models can be verified against a formal specification.

A parallel simulator could run these executable models

with high performance. Such models, built using a model-

ing formalism, could also be used to translate formal spec-

ifications into executable models, making the modeling

process simpler. Even though it contains many assump-

tions, an executable model is far less ambiguous than a

text-based requirements document.

One such formalism, known as DEVS (discrete events

systems specification), was well suited to achieve our

goals.1 DEVS formal definitions allow modular descrip-

tion of the phenomena to model, and it attacks complexity

using a hierarchical approach. This hierarchical modeling

strategy allows the reuse of tested models, enhancing the

security of the simulations, reducing the testing time and

improving productivity. During our initial research on par-

allel simulation of DEVS models, we found an interest in

extending these concepts to cellular models, based on the

original formal specifications of cellular automata (CA).

CA is a formalism well suited to describe complex systems

with different description levels, using a spatial notation

that is useful to understand the results of the simulations,

and analyzing their results.2 A CA is a formal model

defined as an infinite regular n-dimensional lattice contain-

ing cells that can execute a local computing function. Each

cell state is discrete and is modified in discrete time steps.

To do so, it uses the local transition function based on the

present cell state and a finite set of nearby cells (called the

cell’s neighborhood).

One of the issues we wanted to address was the fact that

CA use discrete time, and DEVS is discrete-event. This is

a major difference when we build executable cell spaces.

DEVS timing representation is more general, and CA

time-stepped definition poses restrictions in the precision

of the model. Discrete time bases are more imprecise, as

the time is represented as a positive integer number. The

use of a continuous time base allows higher time precision
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to be achieved, periods of inactivity are skipped, and the

use of the computer resources is improved. Likewise,

using a discrete time base makes it difficult to integrate

phenomena with different timing delays. Finally, combin-

ing CA with other models is complex. Considering these

issues, we extended the original definition of cellular mod-

els and defined Cell-DEVS, a timed cellular model specifi-

cation based on DEVS with explicit timing delays. Based

on Norbert’s experience in the circuit design domain, we

added semantics for transport and inertial delays, two basic

constructions usually employed in circuit design. Norbert

had a long research experience in the domain of digital cir-

cuits, and his experience was focused on this part of the

formalism. Transport delays reflect the straightforward

propagation of signals over lines of infinite bandwidth.

Inertial delays, instead, allow defining preemptive seman-

tics in the models. These constructions are very useful to

define advanced timing delays in the cells, and we showed

in different case studies how to use them to model other

physical phenomena that can be described as cell spaces

(i.e., fire propagation, environmental models, urban traffic,

crowd modeling, etc.). The original ideas were presented

elsewhere.3–6

It is important to notice that each of the cells in the cell

space is updated at different times (a real number, or

extended representations like the ones defined in Goldstein

et al.),7 as set by a rule’s delay component. This is a clear

departure from the classical approach to CA, where all

active cells are updated at the same time, thus reducing

computation time. Another advantage is that expressing

timing delays is simple, which allows the modeler to

reduce the development time related with timing control

modeling. The specification of such a cellular model can

be translated into an executable model.

The Cell-DEVS formalism has been used for modeling

and simulation of varied phenomena,8–11 based on our

work with Norbert and our original discussions. This non-

comprehensive list can be classified in various areas: traf-

fic,12–16 physics,17–19 environmental modeling,19–25 net-

working,26–29 architecture and construction,30–34 biology

and medicine,35–39 defense and emergency planning,40–48

social models,48–50 crowd modeling,51–54 and many others,

ranging from power models, music generation, image

detection, etc.55–57

Cell-DEVS was extended and combined with different

methods to improve the modeling further. One of the first

contributions in the year 2000 was the definition of activ-

ity-based models, in which we proposed to use the level of

activity of the different cells in the model to reduce the

computation required to run the Cell-DEVS models. This

idea, based on the dynamic quantization of the cell’s value,

was presented in the paper by Wainer and Zeigler and

recently detailed by Wainer.58,59 By conducting varied

experimentation, we could realize that when we use a

quantizer for a cell, and we reduce the outputs generated

by each of them, we gain speed while having a cost of

added error. We saw that when we increased the quantum

size for the active cells, they became inactive quickly and

reduced computation time (at increased error rate). Thus,

detecting the activity level in the different zones of the cell

space would improve the performance of the simulation

even further. Then, we combined Cell-DEVS was com-

bined with G-DEVS, another contribution of Norbert

Giambiasi, in which we approximate the local computation

function using a polynomial approximation of the local

computing function.60 We also combined with quantized

DEVS models with hysteresis, which later became forma-

lized and extended as the set of quantized state system

numerical methods.61 Other extensions included extending

Cell-DEVS for quantum dot computing, computational

fluid dynamics,62 and finite element and finite differences

methods.63

The Cell-DEVS formal specifications allowed us to

define a variety of simulation algorithms in different envir-

onments, which include parallel simulation using conser-

vative approaches,64,65 optimistic algorithms, multi-core

architectures, and using multi-coarse-grained paralle-

lism.66–69 All the models can also be executed in distribu-

ted fashion using a variety of distributed middleware

algorithms.70–72 The executable specification and the inde-

pendence between simulation algorithms and model speci-

fication provided by DEVS allowed us to define these

multiple simulation engines with ease.

The formal specifications for Cell-DEVS models were

defined by different teams of students throughout the

years, based on the formal specifications built based on our

discussions with Norbert. The tools are different instantia-

tions of the CD++ toolkit,7 which was originally built to

simulate DEVS and Cell-DEVS models. CD++ was

originally built including a high level modeling language

for binary CA combined with timing delays. It was then

extended to include an advanced modeling language,

which was further extended to enhance expressivity for

defining complex applications.73,74 All these advances

have been summarized in Figure 1.

In the following sections we will discuss the basic ideas

of Cell-DEVS, introduce the CD++ modeling language

for modeling Cell-DEVS applications, and will present

different case studies that are useful to understand the

formalism better. We will first present a simple example

of a social model in which we study the influence of peers

for choosing products in a duopolistic markets. We then

focus on a complete different area: modeling of pedestrian

movement and occupation of buildings, and the integration

of the cellular model with three-dimensional (3D) visuali-

zation engines. Finally, we show a model of malware in

computer networks, showing how Cell-DEVS models can

be used to study this modern security problem. The mod-

els are based on existing literature, in which the authors

have conducted validation of the correctness of the models

466 Simulation: Transactions of the Society for Modeling and Simulation International 98(5)



proposed. Here we show how to define those models and

some basic extensions as Cell-DEVS models, and their

implementation in CD++ , as a way to show concrete

results of the theoretical work we conducted with Dr.

Giambiasi in three different areas of knowledge.

2. Formal description of Cell-DEVS
models (revisited)

As discussed in the Introduction, Cell-DEVS was defined

as a combination of CA and DEVS with explicit timing

delays. The DEVS formalism provides a framework for

the construction of modular hierarchical models, allowing

for model reuse, and for reducing development time and

testing. In DEVS, basic models (called atomic) are speci-

fied as black boxes, and several DEVS models can be inte-

grated together forming a hierarchical structural model

(called coupled). DEVS not only proposes a framework

for model construction, but also defines an abstract simu-

lation mechanism that is independent of the model itself.

Cell-DEVS define a cell as a DEVS model and a cellular

automaton as a coupled model, and introduces an explicit

timing mechanism for each cell.

Using Cell-DEVS has different advantages. First, we

have asynchronous model execution, which, as shown in

our work with Giambiasi,3,4 results in improved simulation

execution times. Timing constructions permit defining

complex conditions for the cells in a simple fashion, as

showed in also early work done on the topic with

Norbert.5,6 As DEVS models are closed under coupling,

seamless integration with other types of models in differ-

ent formalisms is possible. The independent simulation

engines permit these models to be executed interchange-

ably in single-processor, parallel or real-time simulators.

Cell-DEVS allows building cellular models in which

each cell holds a state variable and a computing apparatus.

This function is in charge of updating the cell state accord-

ing to a local rule, by using the present cell state and those

in a finite set of nearby cells (called its neighborhood).

Each cell is defined as a DEVS atomic model, and it can

be later integrated to a coupled model representing the cell

space. A Cell-DEVS atomic model is defined as follows:

TDC=\X , Y , I , S,E, delay, d, dint, dext, t, l, ta.

- X2 R is a set of external input events;

- Y2 R is a set of external output events;

- I is the model’s modular interface; I = \h+ g, Px,

Py. defines the model interface. Here, h, g2N are

the number of inputs coming from the neighborhood

size and other inputs, and, for I = X or I = Y, PI is a

port definition (input or output, respectively), where

PI = {(Ni
I, TiI) / " i 2 [1, h+ g], Ni

I2 [I1, Ih] (port

name), and Ti
I =binary (port type)};

- S is the state set, where S = {(s, s queue) / s 2 R,

squeue = squeue={((v1, s1),...,(vm, sm))/m2N

^ m \N ^ " (i 2 N, i 2 [1,m]), vi 2 R^ si2 R0
+[

N}}; for transport delays.

The formal specification of a cell with inertial delays only

changes the state definition:

S= f (s, f, s) = s, f 2 R, ands 2 R0
+ [ ‘g ;

- E is the set of values for the input external events;

E 2Rh+ g, is the set of the external events (from

the neighborhood’s and other inputs);

- delay is the type of delay: transport, inertial, or others

defined;7

- d 2 R0
+ is the delay value for the cell;

- dint: S!S is the internal transition function;

- dext: QxX ! S is the external transition function,

where Q is the state set defined by Q = { (s, e) / s 2
S, and e 2 [0, ta(s)]};

- t: E ! S is the local transition function;

- l: S !Y is the output function; and

- ta: S !R0
+[N, is the time advance function.

A cell uses a set of input values E to compute its future

state, which is obtained by applying the local computation

function t. A delay function is associated with each cell,

deferring the output of the new state to the neighbor cells.

Two types of delays were defined originally, which are

used in most applications: inertial and transport delays

(although there are other variations).7 When a transport

Figure 1. Timeline: definition of Cell-DEVS specifications, algorithms, tools, and major applications.
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delay is used, the future value will be added to a queue

sorted by output time. Therefore, all the previous values

that were scheduled for output but that have not yet been

transmitted; will be kept on the queue. On the other hand,

inertial delays use a preemptive policy: any previous

scheduled output value, unless the same as the new com-

puted one, will be deleted and the new one will be sched-

uled. This activation of the local computation is carried by

the dext function.

After the basic behavior for a cell is defined, the com-

plete cell space will be constructed by building a coupled

Cell-DEVS model:

GCC= \Xlist, Ylist, I , X , Y , n, t1, :::, tnf g, N , C, B, Z.

- Ylist = {(k,l) / k 2 [0,m], l 2 [0,n]} is the list of output

coupling;

- Xlist = {(k,l) / k 2 [0,m], l 2 [0,n]} is the list of input

coupling;

- I = \ h, gx, gy, px, py . represents the definition

of the interface for the modular model whose size is

h 2 N ,h\‘; px is the set of all input ports (h neigh-

bor ports+gx external ports) and py is the set of all

output ports (h neighbor ports +gy external ports);

- X2 R is a set of external input events;

- Y2 R is a set of external output events;

- n2 N is the dimension of the cell space;

- {t1,...,tn} with ti i2 N" i 2 [1, n] is the number of cells

in each of the dimensions;

- N ={ (i, j) / i, j 2 Z i, j \ N } is the neighborhood

set;

- C ={ Ck1,...,kn) / ki2 [0, ti]} is the cell space;

- B 4 C [ {;} is the set of border cells; and
- Z: PijYq ! Pkl

Xq, where Pij
Yq 2 Iij, Pkl

Xq 2 Ikl, q

2[0, h] and, " (f, g) 2 N, k = (i+ f) mod m;

l=(j+ g) mod n;

- Zij: Y(f,g)i! X(k,l)j"(f,g) Ylisti, and (k,l) Xlistj.; and

- select, is the tie-breaking selector function, with the

restriction that select 4 mxn ! / " E 6¼ {;},
select(E) 2 E.

This specification defines a coupled model composed of

an array of atomic cells. Each cell is connected to the cells

defined in the neighborhood, but as the cell space is finite,

either the borders are provided with a different neighbor-

hood than the rest of the space, or they are ‘‘wrapped,’’

meaning that cells in one border are connected with those

in the opposite one. Finally, the Z function defines the

internal and external coupling of cells in the model. This

function translates the outputs of the mth output port in

cell Cij into values for the mth input port of cell Ckl. Each

output port will correspond to one neighbor and each input

Figure 2. Definition of transition functions for cells with transport delays.
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port will be associated with one cell in the inverse

neighborhood.

The transport delay model allows introducing a delay

between the occurrence of an external transition function

and the state change of the cell. Only when the transport

delay is consumed, the internal transition function is exe-

cuted and the system changes its state. The squeue is intro-

duced because new external events can occur while the

transport delay is consumed. These must be recorded and

later executed by the internal transition functions.

In this definition, presented in Figure 2, insert, first,

tail and empty are the traditional functions employed to

manage a FIFO queue. The external transition function

schedules a new time for an internal transition function.

To do so, it uses the value of the transport delay. The

local transition function is executed using the new input

values stored in E. Then, we update the times of the wait-

ing events in the transport delay queue, and update the

state of the cell. This is only done only if there was a

change; otherwise, the cell passivates. The output func-

tion is activated at the next time for an internal event,

and it generates an output based on the first element in

the queue. The internal transition function then cleans up

the queue and schedule the next internal event based on

the queue information.

The inertial delay constructions allow a behavior to be

represented with a preemptive semantic. The construction

says that, if an input value is not kept a certain period (the

inertial delay), the state change is not recorded. Instead, if

the value is kept during that time, the state changes after

the delay. To model this kind of delays, the transition func-

tions are different.

The last arrived event can be preempted if a new exter-

nal event (with different value) arrives before the end of

the inertial delay. If a new external event has the same

value of the old one, the result is equivalent to have a

unique external event. This is described in Figure 3.

If an event occurs in one cell, the neighbors are influ-

enced through the execution of the Z function. Besides, cer-

tain cells in the space can be chosen as input and output

cells, and they will be included in the Xlist and the Ylist,

respectively. Xlist is a list of cell’s positions where the inputs

to the model are received. Ylist records the cells whose out-

puts will be sent to the other models in the hierarchy.

When a Cell-DEVS model is executed, the Zij function

translates inputs into outputs by using both lists. The

names of the input and output ports are also defined by

using the contents of the Xlist and Ylist.

The specification models here presented are indepen-

dent of the simulation technique used. Therefore, they

Figure 3. External and internal transition function for inertial delays models.
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allow specifying the system behavior independently of

the implementation details of the chosen simulation

technique.

3. The CD++ toolkit

CD++ is a tool built to implement DEVS and Cell-

DEVS models.7 There are numerous tools, and some

recent efforts include DesignDEVS,75 DEVS-SOA,76

PythonDEVS,77 and others.78–80 The tool allows models to

be defined according to the specifications introduced in

the previous section. DEVS atomic models can be incor-

porated into a class hierarchy in C++ . Coupled and Cell-

DEVS models are defined using a specification language

specially defined with this purpose, following DEVS and

Cell-DEVS formal definitions. The tool includes an inter-

preter for a specification language that allows describing

the behavior of each cell, including the local computing

function and delay. In addition, it allows defining the

coupled model, including size of the cell space and its

connection with other DEVS models, the border and the

initial state of each cell.

The behavior specification of a cell is defined using a

set of rules, each indicating the future value for the cell’s

state if a precondition is satisfied. The local computing

function evaluates the first rule, and if the precondition

does not hold, the following rules are evaluated until one

of them is satisfied or there are no more rules. Figure 4

shows an example for the specification of a Cell-DEVS

model developed using CD++ . The specification fol-

lows the Cell-DEVS coupled model’s formal definitions

introduced in the previous section. In this case, Xlist =

Ylist = {;}. Here, the dimension n = 2, therefore the set

{t1, t2} is defined by the keywords width-height, which

specifies the size of a two-dimensional (2D) cell space (in

this example, t1 = 20, t2 = 40). The N set is defined by the

sentence neighbors. The border (B) is wrapped. Using this

information, CD++ builds an executable cell space,

defines the I/O ports, and the Z translation function fol-

lowing Cell-DEVS specifications.

The behavior of these rules, which define the local

transition function, is defined using a set of rules in

which there is a precondition to the right, a postcondition

to the left, and a delay value between them. When the pre-

condition is satisfied, the new value of the cell should

change the postcondition value. The output of such value

should be delayed using a transport, inertial, or other delay

for the specified time. The tool’s main operators available

to define rules include: Boolean, comparison, arithmetic,

neighborhood values, time, conditionals, angle conversion,

pseudo-random numbers, error rounding and constants

(i.e., gravitation, acceleration, light, Planck, etc.). In the

example, the local computing function executes very sim-

ple rules. The first one indicates that, whenever a cell state

is 1 and the sum of the state values received in the input

set E is 7, the cell state changes to 0. This state change

will be spread to the neighboring cells after 200 ms. The

second rule states that, whenever a cell state is 0 and the

sum of the inputs whose value is 0 is smaller than 4, the

cell value changes to 1 and the output is sent after 300 ms.

In any other case (t = true), the result remains unchanged,

and it will be spread to the neighbors after 110 ms. As we

can see, cells evolve using a discrete-event approach.

The local computing function scans the specification,

verifying the logical expressions included and computing

the new state value for the cell. Several errors of the speci-

fication can be found at runtime, allowing the detection of

inconsistencies in the model definition:

- Ambiguous models: a cell with the same precondition

can produce different results;

- Incomplete models: no result exists for a certain

precondition;

- Non-deterministic models: different preconditions are

satisfied simultaneously. If they produce the same

result, the simulation can continue, but the modeler is

notified. Instead, if different results are found, the

Figure 4. A Cell-DEVS specification in CD+ + .
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simulation should stop because the future state of the

cell cannot be determined.

CD++ extended the concept of ‘‘one state variable per

cell’’ defined by CA, and also includes the means to define

ports to/from the neighbors, which are used to send/receive

values from one cell to another in a coupled cell model.

Using this idea, we need to declare state variables, which

is done as follows (once declared, the state variables can

be referenced in the rules). The first line declares the list

of state variables that can be used by every cell. The sec-

ond line declares the default initial values for these states

variables.74

StateVariables: pend temp vol
StateValues: 3.4 22 -5.2

The basic grammar for the rule is as follows:

[\port_assigns.] \value.
[ \assignments. ] \delay.

\precondition.

The precondition is a set of expressions that, if met,

will result in the postcondition. This is a mix of three com-

ponents: assigning values to output ports (optional, if there

are any), to state variables (if any), and changing the value

of the current cell’s main state variable.74 A variable is

referenced by the name declared in StateVariables sen-

tence, preceded by a $, from any part of a rule, for

instance:

rule: { (0,0,0)+1 } { $temp:=$vol/2;
$pend:=(0,1,0); } 10 { (0,1,0) . 5.5 }

In the example, we are not using the optional port

assignment section. Here, if the condition (0,1,0) . 5.5 is

true, the variable temp will be assigned half of vol value,

pend will be assigned the value of the neighbor cell

(0,1,0), and vol’s value will remain unmodified. The new

value will be the one the cell holds plus one, and this value

will be transmitted after 10 time units. The identifier ‘:=‘

is used to assign values to a state variable. Assignments

can be placed in an expression within the rules (enclosed

between curly brackets). A list of assignments can be

defined, separated by semicolons.74

We can use multiple I/O ports to communicate with the

neighbors (besides a default port that transmits the cell’s

value). They are defined as a list of neighbor port names

as follows:

NeighborPorts: alarm weight number

The input and output neighbor ports share names, mak-

ing possible to calculate automatically the influences: an

output port from a cell will influence exclusively the input

port with the same name in every cell in its neighborhood.

In the example, we define three ports (alarm, weight, and

number). When a cell outputs a value through one of these

ports, it will be received by all its neighbor cells through

their input ports with the same name.74 A cell can read the

value sent by one of its neighbors, specifying the input

port. Both the cell and port must be specified, separated

by a tilde (~):

rule : 2 300 {(1,0)~weight. 20 }

In this case, if the cell receives an input in the weight

port from the cell to the left and that value is larger than

20, the cell state will change to 2, and this change will be

transmitted through the default output port 300 time units

after that. As one might need to output values through

many ports at the same time, the assignment can be used

as many times as needed (each followed by a semicolon),

as follows:

rule: { ~alarm := 1; ~weight := (0,-1)~weight;
} 100 { (0,1)~number . 50 }

In this example, if we receive a value larger than 50

from the port number in the cell to the right, we will wait

100 time units, and we will generate an output of 1 in the

alarm port, and we will copy the weight value received

from the cell to the left into the weight output port.74

The rules defining the models coupling and those

related to the behavior of a cell should be translated into

an executable definition. To do so, the rules specifications

are associated with a function’s identifier, which is regis-

tered by each cell, and each one of the rules is represented

with a tuple (value, delay, condition) represented by a tree.

In order to evaluate a rule, we evaluate the tree that repre-

sents the condition recursively. If the result of the evalua-

tion is True, we evaluate the trees corresponding to the

value and the delay, and the result of these evaluations are

the values used by the cell. To do so, we built a lexical

analyzer for the new language, whose grammar can be

found in the Appendix. The \ port_assignments. pro-

duces a sequence of output operations triggered by the out-

put function.74

rule: { ~alarm := 0;send(alert, 1);} 100
{portref(alert)=0 and ~alarm!= 0 }

4. Simulation mechanism

The software architecture of CD++ is based on the algo-

rithms presented elsewhere,1,4,5,8 which use the architec-

ture in Figure 5. Models is the basic abstract class, from

which all the models are subclasses. It is responsible for

managing all the input and output ports, knowing when

the next event is scheduled, and knowing its identifier and

Wainer 471



its parent model. Atomic is an abstract specialization of the

model class that represents the interface of an atomic

model. In addition to all the responsibilities inherited from

model, it also provides the interfaces for the initialization

function, the internal and external transition functions, the

output function, and the time advance function. Atomic

Cell, which is focused on Cell-DEVS models specifically,

is a specialization of Atomic that provides the interfaces for

the cells of a cellular model. Its responsibilities are to

knowing the local computation function, the cell’s neigh-

borhood, the available ports, and the cell’s value. When an

instance of a non-abstract subclass is created, this class will

take care of notifying the neighbor cells the cell’s initial

value (using default ports called neighborChange for inputs

and out for outputs; the other ports are created dynamically

and they stored in two lists named in and output).

As described in Zeigler et al.’s Theory of modeling and

simulation,1 the simulation mechanism is driven by mes-

sages passing between processing entities (processors).

This simulation mechanism has been described in the liter-

ature and will not be repeated in this section.1,8 In order to

implement the simulation algorithms, we use different

message types carrying information specific to the type of

event they represent (input, output, internal transition,

etc.). The message passing mechanism is encapsulated,

thus the message distribution policy can be changed with-

out affecting the rest of the software modules.

Figure 6 shows the root abstract class for all messages.

It is responsible for knowing the time of the message and

its sender. Here, InitMessage is a subclass of Message rep-

resenting the information that the processors receive when

the simulation begins. InternalMessage tells the destina-

tion processor that the time for an internal event has

arrived. ExternalMessage is used to transmit the informa-

tion carried by external events (X set). In addition to the

information provided by Message, this class includes the

port of arrival, and its value. DoneMessage sent from a

child processor to its parent indicating the time for the

child’s next scheduled event (which is defined by pro-

gramming the time advance function ta as discussed ear-

lier). OutputMessage represents the output messages (Y

set). In addition to the information provided by its super-

class, it includes the output port, and its value.

As we discussed in the previous section, the rules used

for defining the models coupling and the cell’s behavior

should be translated into an executable definition. We will

now discuss how the rules for cellular models are evalu-

ated (and the expressions used for defining coupled models

are handled similarly). The rules specifications are associ-

ated with a function’s identifier, which is registered by

each cell. When the models to be simulated are loaded, if

the definition of a transition function is not is registered,

then it is added to a table that includes the function name

(identifier), and each of the rules represented as a tuple

(postcondition, delay, precondition). Each element of the

tuple is represented as a tree. The following class hierarchy

Figure 5. Model hierarchy.

Figure 6. Message hierarchy.
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is devoted to build such rule definition tree presented in

Figure 7.

SyntaxNode is an abstract class that allows describing a

node in the rule evaluation tree. It is composed by the fol-

lowing subclasses:

- ConstantNode: it is used to store a constant with

domain in the Reals, Integers, or three-valued logic.

- CountNode: it allows defining the functions

TrueCount, FalseCount, and UndefCount.

- VarNode: it stores a reference to a neighbor cell,

defined as an offset from the present cell.

- PortDefNode: it defines a reference to an input port

of the cell.

- StringNode: it contains a string of characters repre-

senting the name of an input port of the cell. It is used

to evaluate the PortValue function.

- TimeNode: it allows defining the Time function,

which returns the present simulated time.

- OpNode: it is an abstract class representing functions

with one or more parameters. It has the subclasses:

UnaryOpNode, BinaryOpNode, ThreeOpNode, and

FourOpNode, which represent the functions with 1–4

parameters, respectively.

Each rule defining the behavior of a cell can be repre-

sented by a tree structure. For example, let us assume we

want to represent the following rule extracted from the Life

Game Cell-DEVS model:8

rule : 1 10 { (0,0) = 1 and (truecount = 3) or
(truecount = 4) }

This rule says that whenever there is a cell with value

of 1, and 3 or 4 neighbors with value 1, the cell’s next state

is still 1. This information is transmitted to the neighbors

after 10 time units. Internally, such a rule is represented as

in Figure 8.

Figure 7. Subclasses of a SyntaxNode.

Figure 8. Tree structure used to represent the rule above.
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After the rule tree is defined, every time we need to

evaluate it, the tree that represents the condition is parsed

recursively. If the result of the evaluation is True, it pro-

ceeded to evaluate the trees corresponding to the value

and the delay, and the result of these evaluations is the val-

ues used by the cell.

We have now defined Cell-DEVS models formally,

then we have discussed the implementation of Cell-DEVS

models in the CD++ tool, and we will now show differ-

ent application examples, focusing on the use of the form-

alism in different domains. We have chosen three different

areas. We will first show a social model in which we use a

cellular model implemented in Cell-DEVS to study the

influence of consumers in a duopolistic market based on

consumer preference and their influence to their peers. We

then show the application of Cell-DEVS to human move-

ment in buildings and the application of this model to

study occupancy in buildings and integration with 3D

tools. The objective of this example, which has been pre-

sented earlier in related research, is to show a different

version of the model in which we can see how to build a

four-dimensional (4D) model in Cell-DEVS, showing a

higher dimensional model, and discussing advantages and

issues with such approach. Finally, we focus on a model

with application to information technology. In this case,

we discuss a model of malware spreading in computer net-

works. This model shows the application of an advanced

model using varied state variables and input/output ports

on each of the cells.

5. A model of consumer influence in a
duopolistic market

As discussed earlier, in this section we show a Cell-DEVS

model representing the influence of consumers in making

their choices for a given product in a duopolistic market.

Consumers choose among competing products, and their

purchasing decisions are normally made not only based on

their own preferences but also under the influence by oth-

ers. The model is based on that proposed by Martı́n del

Rey,82 in which the author discusses a cellular model in

which three factors contribute to consumers’ purchasing

behavior: the utility obtained, the effect of network extern-

ality (i.e., the influence exerted by peers), and price. Based

on the original article’s ideas, we here show how to build a

Cell-DEVS version of such model in CD++ , in which

each cell in the space represents an individual who will

choose between products in a duopolistic market.

There are two choices of products (representing, for

instance, two types of cell phones or internet service pro-

viders). Each cell has three possible states: it has one

instance of Product A, of Product B, or none (denoted as

1, 2, or 0, respectively). We use the following notation to

describe a cell’s state variable: X(cij, n, t), with n = 1 or 2

for cell cij, which represents a user of product n at time t.

X(cij, n, t) = 0 if the cell cij does not have a user. There is

only one possible product for each cell. The values of the

contributing factors to make a decision are computed as

follows:

V cij, n, t
� �

=U cij, n, t
� �

+E cij, n, t
� �

�P cij, n, t
� �

for all the three possible states, and choose the state that

maximizes V(cij, n, t) as its next state. Here:

U cij, n, t
� �

=Umin+ u Umax�Uminð ÞL cij, n, t
� �

is the utility of the product. Umin is the basic utility for a

beginner user, while Umax is the maximal utility that a user

can get within a time cycle. The second term represents

the effect of consumers’ learning-by-doing: the utility of

the product increases when we use it longer. Here, L(cij, n,

t) is the skill needed for using a product that a consumer

has acquired until time t. The skill is defined as

L cij, n, t
� �

=
0 fort= 0

eX cij, n, t� 1
� �

, e= l 1� lð Þ fort5 1

�

where l is a constant between 0 and 1 that represents the

speed of skill depreciation. L(cij, n, 0) is an initial condition

between 0 and 1. As a result, the learning-by-doing effect

is the product of the skill accumulation L(cij, n, t) and its

absolute weight on the total utility u(Umax2Umin).

E cij, n, t
� �

= 1� uð Þ Umax�Uminð ÞN cij, n, t� 1
� �

is the network externality, where N(cij, n, t2 1) =P
neighborhoodX(cneighborhood, n, t2 1) /h. Here h is the

number of cell’s neighbors. For each cell, we compute the

number of neighbors that use the product n at the previous

time step. The term (1 2u)(Umax2Umin) is the absolute

weight for the effect of network externality.

P cij, n, t
� �

= X cij, n, t
� ��

+X cij, 3� n, t
� �

ÞPn cij, n, t
� �

n=1or2

is the pricing function, where Pn(cij, n, t) is the price for

the corresponding product, defined as follows:

Pn cij, n, t
� �

=Q n, tð Þ+R m, n, tð Þ

Here Q(n, t) is a given constant representing the global

price for a product and R(m, n, t) is a variable representing

the changing price for the product. In order to maintain a

balance between profits and market share, companies may

reduce the local price to attract more consumers when it

loses market share to its rivals, and raise the local price to

gain more profits when it has a bigger market share than

its competitors. The changing local price is defined as

follows:
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R m, n, tð Þ=Rnmin +m Rnmax�Rnminð Þ
N cij, n, t� 1
� �

�N cij, 3� n, t� 1
� �� �

where Rnmax and Rnmin are the maximum and minimum

local price for the product, and m is a constant represent-

ing a fluctuation coefficient. The value of N(cij, n, t2 1)

2N(cij, 3 2n, t2 1) reflects the influence of the market

share on the local price. When a product has a bigger

share of the local market, this item has a positive value,

which means the local price will rise; when the local mar-

ket share goes down, the local price will fall accordingly.

We used these rules, which were defined by Martı́n del

Rey as a standard CA,82 and we redefined them using Cell-

DEVS formal specifications and executed the model using

CD++ . In the following discussion, we will use a

303 30 cell space that represents the market, with Moore

neighborhood (the 9 near neighbors) and transport delays.

Based on this, the coupled Cell-DEVS model is as follows:

Duopolistic Market

=\Xlist, Ylist, I , X , Y , n, t1, t2f g, N , C, B, Z, select.

where Xlist = Ylist = I = X = Y= F as this is a closed

model.

As this is a 2D model, n = 2, and {t1, t2} = {30, 30}.

N is the neighborhood set, defined as N = {(21,21),

(21,0), (21,1), (0,21), (0,0), (0,1), (1,21), (1,0), (1,1)}.

C is the cell space set, defined as C = {Cij / i 2 [1,30],

j 2 [1,30]}, where each Cij is an atomic Cell-DEVS model

that will be defined below.

B is the border cells set, here the cell space is wrapped,

that is, B = {v}.

Z is the translation function, defined by:

The tie-breaking function select = {(21,21), (21,0),

(21,1), (0,21), (0,0), (0,1), (1,21), (1,0), (1,1)}.

The atomic Cell-DEVS specification is as follows:

Market Atomic

=\X , Y , I , S,E, delay, d, dint, dext, t, l, ta.

where

X = {0, 1, 2} is the set of external input events;

Y = {0, 1, 2} is the set of external output events;

I = \h, g, Px, Py . , where h = 9, g =0, Px =

{(X1,integer), (X2,integer), (X3,integer), (X4,integer),

(X5,integer), (X6,integer), (X7,integer), (X8,integer), (X9,

integer)}, Py = {(Y1,integer), (Y2,integer), (Y3,integer),

(Y4,integer), (Y5,integer), (Y6,integer), (Y7,integer),

(Y8,integer), (Y9,integer)};

S = {s, squeue / where s 2 u, squeue = {((v1, s1),...,

(vm, sm)) / m 2 N ^ m \ N ^ " (i 2 N, i 2 [1,m]),

vi2 {0,1,2} ^ si2 R0
+[ N}, and

u = { value, vproduct1, vproduct2} = {0, 1, 2} x R0
+ x R0

+

is the set of states for the cell, where

0 represents no users; 1 represents users of product 1,

and 2 represents users of product 2;

E = {0, 1, 2}9;

delay = transport; d = 100;

dint: S�S, dext: Q 3 X�S, l: S�Y and ta: S�R0
+

[ N, are defined as in Section 2.

t: E�S is the local transition function, computed as a

set of rules considering the skill accumulation function

L(cij, n, t) discussed above, and the corresponding rules

shown in Table 1.

Using this formal specification as a basis, we defined

the corresponding rules and the coupled model in

CD++ , which can be categorized as rules for a mature

market and for a new market. The former group uses an

initial cell space where the three possible states for each

cell are uniformly distributed to represent a mature mar-

ket; the latter group uses only a few cells active. In each

group, we modeled products having the same price, prod-

ucts with different prices, and prices fluctuating. The

atomic Cell-DEVS specification uses variables vproduct1

and vproduct2 to keep the value of L(cij, n, t), whose val-

ues are updated at the beginning of each time step to keep

track of the values of L(cij, 1, t) and L(cij, 2, t), respec-

tively. The resulting rules are as follows:

[choice_rule]
% if state = 0, vProduct1 and vProduct2

are deprecated by l(1 - l), i.e., 0.25
rule :

{if((stateCount(1)+9*$vProduct1).(st-
ateCount(2)+9*$vProduct2), 1,

if((stateCount(2)+9*$vProduct2)-
.(stateCount(1)+9*$vProduct1), 2 ,0))}

PijY1�Pi,j-1X1 Pi,j+ 1Y1�PijX1

PijY2�Pi+ 1,j-1X2 Pi-1,j+ 1Y2�PijX2

PijY3�Pi+ 1,jX3 Pi-1,jY3�PijX3

PijY4�Pi+ 1,j+ 1X4 Pi-1,j-1Y4�PijX4

PijY5�Pi,j+ 1X5 Pi,j-1Y5�PijX5

PijY6�Pi-1,j+ 1X6 Pi+ 1,j-1Y6�PijX6

PijY7�Pi-1,jX7 Pi+ 1,jY7�PijX7

PijY8�Pi-1,j-1X8 Pi+ 1,j+ 1Y8�PijX8

PijY9�Pi,jX9 Pi,jY9�Pi,jX9

Table 1. Local transition function rules.

Result Rule

1 V(cij, 1, t) > V(cij, 2, t) AND V(cij, 1, t) > 0
2 V(cij, 2, t) > V(cij, 1, t) AND V(cij, 2, t) > 0
0 0 > V(cij, 1, t) AND 0 > V(cij, 2, t)
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{$vProduct1:=$vProduct1*0.25; $vProduct2:=$vProduct2*0.25;} 100 {(0,0)=0}

% if state = 1, vProduct1=(vProduct1+1)*0.25, vProduct2=vProduct2*0.25
rule : {if((stateCount(2)+9*$vProduct2).(stateCount(1)+9*$vProduct1), 2, 1)}
{$vProduct1 := ($vProduct1+1)*0.25; $vProduct2 := $vProduct2*0.25; } 100
{(0,0)=1}

% if state = 2, vProduct1=vProduct1*0.25, vProduct2=(vProduct2+1)*0.25
rule : {if((stateCount(1)+9*$vProduct1).(stateCount(2)+9*$vProduct2), 1, 2)}
{$vProduct1 := $vProduct1*0.25; $vProduct2 := ($vProduct2+1)*0.25; } 100
{(0,0)=2}

When we execute this model, the results obtained are as shown in Figure 9.

The simulation result shows that non-users begin to use one of the two products with approximately equal probability,

and users using the same products tend to aggregate together to form their own society, which in turn enhances the net-

work externality.

When we modify the model to consider products with different price, the local computation rules change as follows:

[choice_rule]
% if state = 0, vProduct1 and vProduct2 are deprecated by l(1 - l), i.e., 0.25
rule : {if((stateCount(1)+9*$vProduct1+2.25).(stateCount(2)+9*$vProduct2), 1 ,
if((stateCount(2)+9*$vProduct2).(stateCount(1)+9*$vProduct1+2.25), 2 , 0))}

{$vProduct1:=$vProduct1*0.25; $vProduct2:=$vProduct2*0.25;} 100 {(0,0)=0}

% if state = 1, vProduct1=(vProduct1+1)*0.25, vProduct2=vProduct2*0.25
rule : {if((stateCount(2)+9*$vProduct2).(stateCount(1)+9*$vProduct1+2.25), 2, 1)}
{$vProduct1 := ($vProduct1+1)*0.25; $vProduct2 := $vProduct2*0.25; } 100
{(0,0)=1}

% if state = 2, vProduct1=vProduct1*0.25, vProduct2=(vProduct2+1)*0.25
rule : {if((stateCount(1)+9*$vProduct1+2.25).(stateCount(2)+9*$vProduct2),

1 , 2)}
{$vProduct1 := $vProduct1*0.25; $vProduct2 := ($vProduct2+1)*0.25; } 100
{(0,0)=2}

When we execute this model, the results obtained are as in Figure 10.

Figure 9. Mature market and same price scenario.
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Since the price for product1 is lower than for product2

and all other parameters are the same, most of the non-

users choose to use product1. At the same time, some orig-

inal product2 users shifted to product1 as well. The effect

of network externality results in the aggregation of users

of the same products.

When we consider a mature market with fluctuating

price, we modified he local computation rules as follows:

Figure 10. Mature market and different price scenario.

[choice_rule]
% if state = 0, vProduct1 and vProduct2 are deprecated by l(1 - l), i.e. 0.25
rule : {if((9*$vProduct1 - 9*$vProduct2).(0.4*stateCount(2) - 0.4*stateCount(1)), 1 ,

if((1.8*$vProduct2-1.8*$vProduct1).(0.08*stateCount(1)-0.08*stateCount(2)),
2, 0))}
{$vProduct1 := $vProduct1*0.25; $vProduct2 := $vProduct2*0.25; } 100 {(0,0)=0}

% if state = 1, vProduct1=(vProduct1+1)*0.25, vProduct2=vProduct2*0.25
rule : {if(1.8*$vProduct2-1.8*$vProduct1).(0.08*stateCount(1)-0.08*stateCount(2),
2, 1)}
{$vProduct1:=($vProduct1+1)*0.25; $vProduct2:=$vProduct2*0.25;} 100 {(0,0)=1}

% if state = 2, vProduct1=vProduct1*0.25, vProduct2=(vProduct2+1)*0.25
rule : {if((9*$vProduct1-9*$vProduct2).(0.4*stateCount(2)-0.4*stateCount(1)), 1, 2)}

{$vProduct1 := $vProduct1*0.25; $vProduct2 := ($vProduct2+1)*0.25; } 100
{(0,0)=2}

When we execute this model, the results obtained are as shown in Figure 11.

Figure 11. Mature market and fluctuating price scenario.

Wainer 477



In this case, product2 has higher pricing flexibility (m2

= 1), while product2 offers more rigid (m1 = 0.2) prices.

As a result, product2 gains bigger market share. Besides,

if the local market shares for both products are equal, i.e.,

for cells that have exact four red neighbors and four blue

neighbors, the price fluctuation disappears. A tie happens.

In this situation, the network externality becomes the sole

force in determining consumers’ decisions.

In the case of a new market with different price, the

local computation rules are the same as those in a mature

market (but the initial values of the model are different, as

seen in Figure 12). When we run this model, we obtain the

results shown in Figure 12.

Figure 12 shows how product1 rapidly monopolizes the

whole market by virtue of its lower prices (sensitivity of

price is high in a new market).

6. Occupancy model: pedestrian
movement in a building

In this section, we show a Cell-DEVS model that simulates

the behavior of individuals moving through a 3D object

representing a building, as presented elsewhere.30,34,52 As

can be seen in Figure 13, the building has two floors con-

nected by stairs. Each floor uses 103 22 cells to represent

the building space; cell (3, 0, 0) represents the entrance,

cell (8, 21, 1) represents the stair going downstairs, etc.

If we build this model using a traditional CA, we need

to consider that we have a single state variable per cell.

How can one model such application using a Cell-DEVS

model that mimics the CA behavior? In order to represent

a complex model like this one, we can use a higher dimen-

sional model, as seen in the figure. In this example, we

can add a fourth dimension to each cell to represent differ-

ent phenomena. We can see the model as a set of 3D rec-

tangular cuboid interconnected by a fourth dimension

orthogonal to each cell. Each cuboid contains the compu-

tation devices for different phenomena: movement, path-

way, layout, and hot zones. Therefore, each ‘‘cell’’ in the

figure above is, in reality, a 3D model with four layers

each. Each layer is defined as follows:

� Movement: this layer is used to track the move-

ment of individuals. A cell with a value of 0 is

empty, and 1 means the cell is occupied; the cuboid

also records other states related to four phases that

reflect the relationship with the neighbors.
� Phase: each person’s movement is done in a four

phase cycle (Intent, Grant, Wait, Move), whose

details will be discussed later.

Figure 12. New market and different price scenario.

Figure 13. Four-dimensional cells.
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� Pathway: shows the possible visit routes. Visitors

of the building tend to move following this pathway

with a given probability.
� Layout: the shape of the building, including walls

and obstacles.
� Hot zone: this cuboid reflects the popularity levels

of different areas of the building, which is defined

by using different delays. The higher value of the

hot zone is, the higher the probability that a visitor

would stay there.

In order to represent the people’s movement in all pos-

sible directions, the model uses a combination of an

extended Moore and Von Neumann neighborhood, as

shown in Figure 14.

We first use nine neighbors ((21,21,0,0).(1,1,0,0)),

indicating one cardinal direction each. For the stairs, we

need two other neighbors: one to go down (0,0,21,0), and

one for receiving people from upstairs (0,0,1,0). We also

need to access the pathway (0,0,0,1), the layout informa-

tion (0,0,0,2), and hot zone information (0,0,0,3), each rep-

resented by a different cuboid connected to the others

through orthogonal 4D links. The pathway layer uses a

Von Neumann neighborhood ((0,1,0,1).(21,0,0,1)). The

pathway is a route plan for the movement, which is built

by overlaying a Voronoi diagram of the route to an exit or

stair. The layout layer contains the building information,

which enables a building designer to use and extend this

layer during the design process.

As discussed earlier, the movement behavior is divided

into four phases (Intent, Grant, Wait, and Move), which

can be represented by the state diagram shown in

Figure 15.

When a cell is occupied, the individual will first choose

a direction at random at the first phase, known as the intent

phase, where we check and see if the target cell accepts

the individual. In that case, the occupied cell changes to

the get grant state, and then we wait a certain amount of

time according to the hot zone data for the cell where the

visitor is standing. After this period, which reflects the

visitor moving through the building, we empty the cell at

the move phase. If we get rejected, the visitor waits and

the cell keeps occupied. An empty cell chooses a neighbor

that is at the grant phase and changes to occupied during

the move phase.

At the beginning of the simulation, we add visitors at

the main entrances with certain probability, in order to

mimic different input flow rates with rush/slash hour dur-

ing the opening time. Each cycle takes 4 time units. We

first check to see if it is the beginning of the cycle (remain-

der(time, 4)=0), we check the second dimension cuboid

(where the building layout is store) in order to see if this

cell is an entrance ((0,0,0,2)=entrance), and then

generate a person at each entrance of Floor 1, as seen in

the following rule:

rule : {1} 4 { remainder(time,4)=0 and
(0,0,0,0)=0 and (0,0,0,2)=entrance }

Phase 1: Intent

During this phase, the intent direction is determined by

two factors: the pathway direction and its probability. We

Figure 14. Neighborhood.
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first check if we are in the intent phase (remainder(-
time,4)=0), and if the cell is a stair, it gets the intent

direction intentDown as seen in the following rule.

rule : {intentDown} 1 { remainder(time,4)=0
and (0,0,0,0)=occupied and
(0,0,0,2)=stair to floor 1}

If the cell is not a stair, we find the probability of mov-

ing in different directions according to the value stored in

the pathway cuboid. For example, if the pathway is N, we

would move according to the first chart of Figure 16.

Then, we check in which direction that random number is

located. For example, if the random number is 58, it is in

%F (0-69), so we get the intent direction to go N (or

‘‘Front’’).

The first step is to generate a random number between 0

and 100 on each cell, as follows:

rule : {uniform(0,1)} 1 {remainder(time,4)=0
and (0,0,0,0)=1 }

Finally, the cell state is changed to a value correspond-

ing to the intent direction, as defined in the following rules

(one rule for each direction). Note here that we do not care

whether the target cell is available; this will be checked in

the following phases.

rule : {E } 0 { (0,0,0,1)=5 and (0,0,0,0) . 0.0
and (0,0,0,0) \= #Macro(Front)

...
rule : {NW} 0 { (0,0,0,1)=6 and (0,0,0,0)

. #Macro(Front) and (0,0,0,0)
\= #Macro(Front)
+ #Macro(Left-Front) ...

...
rule : {SW} 0 { (0,0,0,1)=8 and (0,0,0,0) .

#Macro(Front) +...+#Macro(Right-Front) }

Phase 2: Grant

After we chose our intended direction, more than one indi-

vidual may want to enter into a same cell (which would

result in a collision). To handle this problem, each empty

Figure 16. Intent probability distribution with the pathway.

Figure 15. State diagram of movement.
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cell will choose only one neighbor between all the candi-

dates, and change its state accordingly. We first check if

the cell above cell above wants to come down ((0,0,-
1,0)=wantDown), and in that case, we grant it. We need

to check the phase (remainder(time, 4)=1).

rule : {GrantDown} 1 { remainder(time, 4)=1
and (0,0,0,0)=0 and (0,0,-1,0)=wantDown }

Otherwise, we choose an intent cell in the neighborhood

(in a predefined order), and we change to the Grant Target

state with the corresponding direction, whose value corre-

sponds with one of the reverse eight directions. For exam-

ple, in the rules below GTW means that the current cell

accepts the left neighbor to come in (Grant Target West).

We also need to ensure that the cell is empty, and this is

not a building wall (found on the layout plane). Finally, we

need to ensure that we are in the Grant phase (remain-
der(time,4)=1). The rules for doing this are summar-

ized below.

rule : {GTW} 1 { remainder(time,4)=1 and
(0,0,0,0)=0 and (0,-1,0,0)=IntentE and
(0,0,0,2)!=Wall}

...
rule : {GTSW} 1 { remainder(time,4)=1 and
(0,0,0,0)=0 and (-1,-1,0,0)=IntentNE and
(0,0,0,2)!=Wall }

Phase 3: Wait

We use this phase to mimic the behavior of random wait in

the building. If an individual has been granted to move by

the target cell (they have an intent direction and the target

cell choses them), we do not move until a given random

amount of time has passed, in order to better represent the

movement delays in the building. The visitors will stop in

different areas with different probability. These delays are

generated according to the hot zone value. We implement

this by using different delays for each cell. We first get a

random number between 0 to the hot zone value. As the

cycle is 4 time units long, plus 1 time unit for the fourth

Move phase; we need to wait 4*N+ 1 (if the random

result N is, for instance 2, then we wait 9 time units). After

that, a cell’s value will change. The stairs do not use this

delay, as seen in the following rule.

rule : {CanMoveStair} 1 { remainder(time,4)=2
and (0,0,0,0)=GrantStair }

The following rules summarize the rest of the move-

ment behavior. We check that we are in phase 3, and that

the movement we intent to do has been granted. Then, we

change the state to reflect that we can move in the chosen

direction. We inform this after the random delay based on

the information found on the hotspot cuboid.

rule : {CanMoveE} { 1+4*randInt
((0,0,0,3)+1) } {remainder(time,4)=2
and (0,0,0,0)=GrantE
and (0,1,0,0) = IntentW }

...
rule : {CanMoveSW} { 1+4*randInt

((0,0,0,3)+1) } {remainder(time,4)=2 and
(0,0,0,0)=GrantSW and (1,1,0,0)=IntentNE }

If not granted, the person cannot move, and they should

try again during the next moving cycle, and will only wait

a 1 time unit until the next Move phase.

rule : {Wait} 1 { remainder(time,4)=2 and
(0,0,0,0)=IntentNotGranted }

Phase 4: Move

Now, every cell that intended to change has been granted

the desired movement or it is waiting; therefore, the

granted individual can move to the target cell. To finish

the move, we empty the intended cells that are granted,

and the rejected ones keep the individuals that have not

been granted to move. As in the previous cases, we need

to check in which the phase we

(remainder(time,4)=3).

rule : {0} 1 { remainder(time,4)=3 and
(0,0,0,0)=CaMove } // Empty the cell

rule : {1} 1 { remainder(time,4)=3 and
(0,0,0,0)=CannotMove } // Wait

rule : {1} 1 { remainder(time,4)=3 and
(0,0,0,0)=GrantedTargetCell} // Receive

person

So far, we have discussed entrances, stairs and normal

cells. The last thing is to consider the exit; we need to

empty it if it is occupied, using the following the rule:

rule : {0} 1 { (0,0,0,2)=exit and (0,0,0,0)=1}

As we can see, using multiple 4D rules is useful but it

might be complex to read and debug. To reduce the com-

plexity of the model definition, we have used different

macros to make the rules more readable. Nevertheless,

having a single value per cell makes increases the rules

complexities. Using a 4D model with interconnected

cuboids also increases the memory footprint and the num-

ber of objects required to build the cell space, which can

slow down the simulation. Likewise, the size of the cell

space is higher, and the definition of the neighborhood is

more complex.

Wainer 481



Instead, building advanced Cell-DEVS models multi-

variable and multi-port Cell-DEVS models, such as those

in CD++ , allow us to save memory, execution time, and

make the models easier to read and debug. For instance,

by using different state variables in a model like this, we

simplify the neighborhood shape. For instance, we would

only need the shape defined in the Movement plane shown

in Figure 14. The 4D model can now be represented as a

3D model, and the rules can be simpler. For instance, the

rule we defined above:

rule : {CanMoveSE} {1+4*randInt
((0,0,0,3)+1)} {remainder(time,4)=2 and
(0,0,0,0)=GrantSE
and (0,1,0,0) = IntentNW }

is, in fact, encoded using real numbers as in the formal def-

inition of CA and Cell-DEVS as follows:

rule : {38} { 1 + 4*randInt((0,0,0,3)+1) }
{remainder(time, 4)=2 and (0,0,0,0) = 28
and (1,1,0,0)=48 }

As in CA the cells can have only one value, we need to

encode all the information in an integer value. In this case

particular case, CanMoveSE is encoded as 38, where the

code means that we are moving to the East (encoded as the

digit 8 in the units), and the fact that we are in the third

phase (represented by the tenth 3 in number 38). We need

to check if our cell in phase 2 has been granted to move to

the East (encoded as 28 and checked by the condition

(0,0,0,0) = 28) and we need to check that in the cell

to the NW has the intent to move in the SE direction

((1,1,0,0)=48). Likewise, we generate a random num-

ber and we need to remember that the hot zone information

is stored in cuboid 3, therefore we check cell (0,0,0,3)
and generate a random number based on the value found

there.

As we can see, using a single state value like in CA can

result in complex rules, in particular when we need to rep-

resent varied information on each of the cells. Instead,

using specific state variables and individual ports makes

the development of the applications easier, as we have

seen in the section before and we will see in the following

section. For instance, the rule above can be defined as:

rule : {~movement:=SE; ~phase:=4;}
{1+4*randInt($hotzone)} {
(0,0,0)~phase=3 and
(0,0,0)~movement=SE and (1,1,0)~movement =

SE }

Figure 17. Simulation results of basic properties at different simulation times.
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which is simpler to read and debug. As we can see, now

we only use a 3D model, in which each of the layers repre-

sent the individuals on each of the two floors. The hot zone

information, the movement information, and the phases for

conducting the movement without risk are represented

using state variables and input/output ports, making the

rules more readable and the model smaller.

The version of the model using extended variables and

simpler was originally presented elsewhere in detail.30,34,52

The simulation software generates exactly the same log

files for both versions of the model, as both models repre-

sent exactly the same phenomena but using 3D or 4D

models.

Here, in Figure 17, we show one of the tests we con-

ducted, which shows the basic behavior of visitors under

normal properties during rush hour. The simulation ani-

mation shows the two floors in the building, with differ-

ent individuals (in blue) arriving and leaving the building

through the doors (white cells, orange arrows) and mov-

ing downstairs (white cells, white arrows) from the top

floor (in the left part of the graph), where the entrance to

the building is. At rush hour, the house opens four

entrances, and each entrance cell generates one visitor

during each cycle as discussed earlier. As we explained,

the blue cells represent visitors (light blue cells are wait-

ing visitors, and green cells are destination cells). We

conducted various studies, presented by Wang and

Wainer,52 in which we analyzed the impact of door loca-

tion/stairs for occupancy. When we changed the entrance

positions, there was a small change in terms of building

occupancy, and no conflicts between individuals. We also

changed the number of stairs. In this case, the occupancy

levels changed meaningfully, except in the cases where

there was congestion at the stairs. We conducted numer-

ous tests, changing the values in hot zones, entrances

location, movement direction probabilities, coming rate,

etc. These changes are straightforward by doing simple

modifications in the rules above and in the initial condi-

tions of the model, and it allows a designer to do varied

analysis with ease.

We built a plugin for the 3dsMax tool in order to be

able to include the simulation results into a 3D scene, as

presented in Figure 18. As we can see, the floor plan

includes the simulation results obtained from the model

above, in which we show the two floors and the direction

of each of the individuals visiting the building at different

times of the simulation. All the results presented are based

on the results provided by CD++ .

7. Modeling computer malware

Nowadays, computer networks are ubiquitous, and these

new services bring security issues, as the vulnerability of

these distributed systems is high. In this section, we show

how to model one kind of such attacks, namely computer

malware, using a 2D Cell-DEVS model. We follow the

recent research by various authors who recently proposed

modeling malware using CA,82–85 and here we show how

to extend those concepts in a Cell-DEVS model, which

provides as a better and simpler way to model those kinds

of applications. Among the different kinds of malware and

viruses, we will show how to model worms, self-

replicating computer viruses that can propagate through

the network without any human intervention.

Mathematical epidemiology has existed for over a hun-

dred years. Epidemic modeling has been used to imitate

the spreading of infectious diseases for a given population,

such as H1N1, SARS, and influenza.84 Infected individu-

als spread the virus to healthy individuals that they con-

tact. Because worms are very similar to biological viruses

in replication and spread behaviors, existing epidemiologi-

cal models have been used to study how the computer

viruses spread. In particular, we are interested in cellular

models to study epidemics as well as worm propagation in

networks. For instance, Martı́n del Rey presented a CA

model in which each cell represents a computer in the net-

work.82,84 Each computer can be in one of three possible

states: S (susceptible – not infected by the virus); E

(exposed – infected by the virus but not activated); or I

(infected – the virus is activated and it is able to propa-

gate). Similar results have been presented to study worm

propagation in smartphones.83,85

Instead of using a uniform model with identical cells,

we assigned different roles to different cells. We introduce

an attacker, whose objective is to deploy malware that will

spread to the computers that do not have anti-virus soft-

ware (or have obsolete versions). The attacker can control

these infected computers.

Figure 18. 3D visualization of the simulation of the occupancy model.
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The following rules show the basic behavior for spread-

ing the virus. We use a timer that is used to decide when

we attack computers; we also keep and update the version

number of the current malware (virusvers).

rule : { ~virusvers := $virusvers; } { $timer
:= $timer + uniform(4,6); } 100

{ $identity = 100 and $timer \ 60 }
rule : { ~virusvers := $virusvers;} { $timer
:= 0; $virusvers := $virusvers + 2;} 100
{ $identity = 100 and $timer . 60 }

The attacker is on a cell with identity 100. The attacker

cell uses the timer to implement a random interval between

issuing malwares (timer). Every update will make the ver-

sion number increase to a new value. The goal of the

attacker is to spread it as widely as possible. Then, it can

intrude and even control these infected computers. This

process can be divided to two stages. In the first stage, an

unprotected cell is infected. Then, its state changes from

‘‘unprotected’’ to ‘‘infected.’’ In the second stage, a new

version of the malware (which is represented as one with a

higher value of the variable virusvers) will replace the cur-

rent version of malware in the cell. The state of cell is still

‘‘infected,’’ but at this time by more advanced malware.

Each cell checks to see if its version of malware is higher

than their neighbors’ current versions. If so, the neighbors

are also infected or they update their version of malware.

The rules for doing this are as follows:

rule : { ~virusvers :=
#Macro(virusspreading); ~state := -1; }
{ $virusvers := #Macro (virusspreading); }
100 { #Macro(virusspreading) . $virusvers
and #Macro

(virusspreading) . $myAntiVirusVers and
$identity = 0 and random \
( #Macro(PossibilityOfSpreading)) }

Here, we use the macro virusspreading to find out the

highest version number among a cell’s 8 neighbors. We

use a random function to take into account the probability

of spreading (i.e., the cells are infected conditionally). The

following figure shows the simulation results for one

attacker. As we can see from Figure 19, the initial attacker

infects a few cells, which in turn will end up infecting the

whole network quickly.

Our model includes the modeling of antivirus software

(or technical support that can clean the malware). These

‘‘clean’’ cells are exempt from being infected. Clean cells

monitor their eight neighbors and check out if they are

infected. An infected neighbor will request the clean cell

to transfer anti-malware software (which also has a version

number). If a clean cell finds malware whose version num-

ber is lower when compared with the newest anti-malware

software’s, then the clean cell will ignore the request

(because anti-malware software has been deployed to

eliminate this malware version in the network).

The rule for producing and updating a new version of

anti-malware software is shown below:

rule : { ~anvirusvers :=
#Macro(virusspreading) + 1; ~virusvers :=
0; ~state := 2; }

{ $virusvers := 0; $myAntiVirusVers :=
#Macro(virusspreading) + 1; } 100

{ ( #Macro(virusspreading) .

$myAntiVirusVers or
#Macro(anvirusspreading) .

$myAntiVirusVers ) and $identity = 200 }

Every time the clean cell encounters a new version mal-

ware, it updates the anti-malware software (the version

number of malware plus 1). This ensures that the malware

can be wiped out by the anti-malware software. The clean

cell outputs the current version number of anti-malware to

its neighbor, using a port called ~anvirusvers. The state

variable $myAntiVirusVers records the current version of

anti-malware software. The following graphs in Figure 20

show two clean cells producing anti-malware and updating

it to a new version.

Figure 19. Simulation: one attacker.
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In the left graph, we can see that the malware has begun

to spread. Several cells have been infected. In the next fig-

ure, we can see that the clean cells (white cells) have not

responded to the malware, which has updated its version

number to 6 (light blue cells), and the clean cells have

detected the malware and have updated its version of anti-

malware to 7 to fight the malware. As we can see in the

following figures, the anti-malware is transmitted to the

neighboring cells, the malware is cleaned (black cells),

and eventually most of the cells are clean.

A clean cell needs to spread its anti-malware software

to its neighbors and eventually the whole network in order

to fight against the malware made by attacker. Typical

anti-malware software cannot spread in the network auto-

matically. Therefore, compared with the spread of mal-

ware, the spread of anti-malware software is more passive,

which leads to a poor efficiency to fight against the mal-

ware in the network. In order to consider this feature, we

decide to design a pattern of anti-malware, which can also

spread from one computer to others automatically using a

similar process to the one used for malware.

In this case, the attacker in the network updates mal-

ware frequently. Thus, the clean cells have to update their

anti-malware frequently as well and they have little chance

to wipe out the attacker finally. In order to satisfy this

setting, we changed the timer frequency. The simulation

results can be seen in Figure 21.

In the first graph, the clean cell has detected the mal-

ware in their neighboring cells, and it produces anti-mal-

ware. In the second graph, we can see the malware spread

fast, and the anti-malware has only secured a small part of

computers in the upper-left corner of this scene. Finally,

every cell in the network has been involved but the mal-

ware still controls most of the cells. The clean cell has no

chance to eliminate the attacker because of the frequent

update of malware.

Instead, we now assume that every cell in the network

has a better anti-malware strategy, which will make the

spread of malware more difficult and the spread of anti-

malware easier. To do so, we just adjust some basic set-

tings in the model. We lower the possibility of spread of

malware whereas we increase the possibility of anti-mal-

ware, while keeping all other settings unchanged. The

simulation results are shown in Figure 22.

Initially, the malware has infected a few cells and the

anti-malware is defending many others. The malware

expands slowly, therefore giving enough time to update

the anti-malware software. In the second graph, we can

see that the anti-malware has spread out quickly and the

malware is advancing. Nevertheless, at the end, the anti-

Figure 20. Simulation results of malware and antimalware interacting.

Figure 21. Simulation of malware with automated network updates for the anti-malware software.

Wainer 485



malware has been distributed to all the cells, getting rid of

the malware, which has successfully secured or protected

all the cells in the network.

8. Conclusion

We introduced different modeling applications of

advanced Cell-DEVS models, a modeling formalism

Norbert Giambiasi and I defined in the late 1990s. This

work, which started in 1995, focused on new methods for

studying complex systems with emergent dynamic beha-

vior. Our focus was on formal models, which can improve

the definition of the model and making easier their execu-

tion, as we could see in the different examples presented

here. As shown in the paper, the executable models can be

verified against a formal specification. The same models

can be run in centralized, distributed or parallel simulators

without change.

We extended the original definition of cellular models

and defined Cell-DEVS, a timed cellular model specifica-

tion based on DEVS with explicit timing delays, using

Norbert’s ideas on circuit design. Norbert’s previous expe-

rience in digital circuits was fundamental for this new for-

mal specification. These ideas have resulted in numerous

research projects and interesting results in different

domains. We discussed improved versions of these models

built using the CD++ toolkit, which was built in order to

study, model and simulate such cellular models. The mod-

els have removed some limitations that standard cellular

models have, which allow each cell to use multiple state

variables multiple ports for inter-cell communications. We

showed the application of the formalism in social models,

pedestrian analysis, and computer networks.

Cell-DEVS was extended and combined with different

methods to improve the modeling further. One of the first

contributions in the year 2000 was the definition of

activity-based models based on the dynamic quantization

of the cell’s value. We also combined Cell-DEVS with

G-DEVS, another contribution of Dr. Giambiasi, and we

combined Cell-DEVS and quantized DEVS with hyster-

esis, as well as computational fluid dynamics and finite

elements and finite differences methods.

Several types of models can be integrated in an effi-

cient fashion, allowing multiple points of view to be ana-

lyzed using the same model. The tools are public domain

and can be obtained at http://cell-devs.sce.-
carleton.ca. The new implementation of CD++
runs on the Cloud, allowing users around the world to run

distributed experiments with ease. The simulator’s features

add power to the specification language, simplifying the

modeling task at a cost of increased overhead required for

the management of these features. In order to reduce this

overhead, the modelers must pay more attention to model

optimization. Cell-DEVS simplifies the construction of the

models, allowing intuitive specification. The CD++
logic rules facilitated the debugging phase and reduced

development time, and the modeler does not need to focus

on the simulation algorithms, which are handled internally

by the CD++ engine. Complex model modifications can

be integrated easily and quickly. The numerous results

provided by Cell-DEVS models are a testimony to the

mentorship and legacy of Dr. Giambiasi and his contribu-

tion to different areas of knowledge.
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Appendix

CD++ rules grammar

RuleList = Rule | Rule RuleList
Rule = AssignResult Result{BoolExp}

| AssignResult{AssignSet}Result{BoolExp}
AssignResult = Result |{PortSendSet}
Result = Constant | UNDEF |{RealExp}
BoolExp = BOOL |(BoolExp)| RealRelExp | NOT BoolExp

| BoolExp BOOL_OP
RealRelExp = RealExp REL_OP RealExp

| COND_REAL_FUNC(RealExp)
RealExp = IdRef |(RealExp)| RealExp OPER RealExp
IdRef = CellRef OptPortName | Constant | Function

| UNDEF | PORTREF(PORTNAME)| STVAR_NAME
| CELLPOS(RealExp)| SEND(PORTNAME,RealExp)

OptPortName = /* Empty */ |~PORTNAME
AssignSet = /* Empty */ | Assign AssignSet
Assign = STVAR_NAME ASSIGN_OP RealExp;
PortSendSet = /* Empty */ | PortSend PortSendSet
PortSend = SEND(PORTNAME,RealExp) ;

|~PORTNAME ASSIGN_OP RealExp;
Constant = INT | REAL | CONSTFUNC
Function = COUNT

| STATECOUNT(RealExp OptParamPort)
| UNARY_FUNC(RealExp)
| BINARY_FUNC(RealExp,RealExp)
| WITHOUT_PARAM_FUNC_TIME
| WITHOUT_PARAM_FUNC_RANDOM
| UNARY_FUNC_RANDOM(RealExp)
| BINARY_FUNC_RANDOM(RealExp,RealExp)
| COND3_FUNC(BoolExp,RealExp,RealExp)
| COND4_FUNC(BoolExp,RealExp,RealExp,RealExp)

OptParamPort = /* Empty */ |, ~PORTNAME
CellRef =(Tuple
Tuple = INT,INT Rest_nTuple
Rest_nTuple =,INT Rest_nTuple |)
BOOL =t|f|?
REL_OP =!=|=|.|\|.=|\=
BOOL_OP =and|or|xor|imp|eqv
ASSIGN_OP =:=
OPER =+|-|*|/
INT = [SIGN] DIGIT {DIGIT}
REAL = INT | [SIGN] {DIGIT}.DIGIT {DIGIT}
SIGN =+|-
DIGIT =0|1|2|3|4|5|6|7|8|9
PORTNAME =thisPort| STRING
STVAR_NAME =$STRING
STRING = LETTER {LETTER}
LETTER =a|b|c|...|z|A|B|C|...|Z
CONSTFUNC = pi | e | inf | grav | accel | light

| planck | avogadro | faraday | rydberg | golden
| euler_gamma | bohr_radius | boltzmann | amu
| bohr_magneton | catalan | electron_charge | pem
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| ideal_gas | stefan_boltzmann | proton_mass
| electron_mass | neutron_mass

WITHOUT_PARAM_FUNC = truecount | falsecount
| undefcount | time | random | randomSign

UNARY_FUNC= abs | acos | acosh | asin | asinh | atan
| atanh | cos | sec | sech | exp | cosh | fact | ln
| fractional | log | round | cotan | cosech | cosec
| sign | sin | sinh | statecount | sqrt | tan | tanh
| trunc | truncUpper | poisson | chi | exponential
| randInt | acotan | acosech | acotanh | asech
| asec | nextPrime | radToDeg | degToRad | nth_prime
| CtoF | CtoK | KtoC | KtoF | FtoC | FtoK

BINARY_FUNC = comb | logn | max | min | power | root
| remainder | beta | gamma | lcm | gcd | uniform
| normal | f | binomial | rectToPolar_r | hip
| rectToPolar_angle | polarToRect_x | polarToRect_y

COND_REAL_FUNC = even | odd | isInt | isPrime | isUndefined
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work for multi-paradigm modeling and holistic simulation of

healthcare systems. Simulation 2018; 94: 235–257.

80. Gu F. Localized recursive spatial-temporal state quantifica-

tion method for data assimilation of wildfire spread simula-

tion. Simulation 2017; 93: 343–360.

81. Oda S, Iyori K, Ken M, et al. The application of cellular

automata to the consumer’s theory: simulating a duopolistic

market. In: Asia-Pacific conference on simulated evolution

and learning, 1999. Berlin: Springer-Verlag.

82. Martı́n del Rey A. A computer virus spread model based on

cellular automata of graphs. Lect Notes Comput Sci 2009;

5518: 503–506.

83. Peng S, Wang G and Yu S. Modeling the dynamics of worm

propagation using two-dimensional cellular automata in

smartphones. J Comput Syst Sci 2013; 79: 586–595.

84. Martı́n del Rey A. A SIR e-Epidemic model for computer

worms based on cellular automata. Lect Notes Artif Intell

2013; 8109: 228–238.

85. Huang G and Liu X. Simulation of worm viruses spread in

network based on cellular automata. Comput Eng 2009; 35;

168–169.

Author biography

Gabriel A Wainer, FSCS, SMIEEE, received the M.Sc.

(1993) at the University of Buenos Aires, Argentina, and

the Ph.D. (1998, with highest honors) at the Université
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