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• Modeling spread of disease in workplaces accounting for human behavior
• University campus case study tests disease spread mitigation policy

Abstract

The COVID-19 pandemic has highlighted the importance of defining sound policies to make attending 
workplaces safely. Sometimes, deciding on different policies is challenging as this highly depends on the 
behavior of the individuals. This research introduces a Discrete Event-based methodology and a prototype 
implementation to study such policies, including human behavior along with information about the 
workplace layout and building characteristics such as ventilation rate or room capacity. The method is 
based on a combination of agent-based models, diffusion processes and discrete-event simulation. We 
exemplify how to use this method using a case study based on Carleton University’s Campus, in which 
we use the methodology and tools to study the effect of ventilation, as well as the application of a policy 
where sick students are denied entry to the campus on the number of disease cases on campus.
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1 Introduction

The COVID pandemic has revealed that crowded events or locations are hot spots for the spread of 
airborne viruses. When functioning at normal capacity, workplaces, including university campuses, can 
be considered crowded places where people congregate for an extended period of time, usually for eight 
hours or more. For example, Carleton has over 30 000 students attending lectures and traveling the halls. 
Some lectures have over 300 students sitting in a closed space for at least 180 minutes. 

On top of complying with the regulations, workplaces and university campuses cannot afford to 
get the disease spread among their employees or students because that will highly impact the daily 
activities of the organization. Therefore, a safe environment should be provided. 

To provide a safer environment, Universities need to define different policies to ensure the 
quality of health on campus. This is also valid for most workplaces, and, as we could see during the 
COVID-19 pandemic, achieving these goals is complex. One way to help with the decision-making 
process is by using real world data on how different policies affect the spread of the disease. 
Nevertheless, collecting this information using real-life experiments is not viable as we may risk the 
health of the employees/students, seeing the effect of policies takes time, and many variables may affect 
the result in unpredictable ways. Instead, we may conduct a variety of experiments safely by using 
modeling and simulation studies. Using these models, we can run experiments to study the effect of 
different parameters on the spread of the disease. For example, we could consider the ventilation rates in 
rooms or offices, the number of infected people attending work, or different room capacity limits. The 
data obtained from these experiments can be used to inform new strategies, policies, and identify 
hotspots.

Although there are already many models to study the spread of COVID19, there is limited work 
focusing on workplaces, including human behavior, workplace layout, and building characteristics in the 
study. For example, there are many agent-based models that take an individual’s social networks into 
account when considering who they might transmit the disease to [1]. But they do so on the scale of a city 
which is great for testing government policies, but not especially helpful for a workplace that is trying to 
test their own disease prevention policies. 

In this research, we address this limitation by building a model that includes all those aspects.  
More specifically, we developed a method to study the spread of diseases in workplaces considering 
human behavior and workplace characteristics, such as the probability of a person wearing a mask around 
a person who is a stranger to them, or the ventilation quality of a frequently visited room in the workplace 
(in the rest of the paper, we use the word stranger to refer to a person that someone does not know or is 
not familiar with). We base our method on the Architecture to study Diffusion Processes in Multiplex 
dynamic networks (ADPM) presented in [2]. We adapted the architecture to study the spread of diseases 
in a workplace such that it could be adapted to any workplace. This was accomplished by abstracting a 
workplace into a series of rooms and creating generic models of the people who occupy those rooms. We 
then are able to instantiate those models to match the characteristics of specific rooms within a workplace, 
like its dimensions and ventilation rate or a specific person's behavior. We exemplify the use with the 
case studies of the Carleton University Campus. These case studies use information about Carleton 
University’s campus and student schedules to conduct experiments. We show how the risk of becoming 
exposed to COVID-19 may be correlated with the ventilation quality of the rooms on campus and the use 
of the architecture to tests a policy where sick students are not allowed on campus by comparing the 
probability of exposure to COVID-19 when the policy is and is not implemented. 



The rest of the paper is organized as follows. In section 2, this paper will examine similar studies 
where COVID-19 transmissions were modeled. In section 3, we explain the method devised to model the 
spread of a disease at the workplace. In section 4, we show focus on the definition as an extension of the 
ADPM model. Section 5 introduces a discussion on model implementation. In section 6, we discuss how 
to use the methodology and the model focusing on the spread of COVID-19 at Carleton University. The 
section presents an evaluation of the effects of ventilation and a stay-home-when-sick policy on the 
spread of the disease. Finally, section 7 presents the conclusions and plans for future work. 

2 Related Works

In this section, we present how the spread of COVID-19 has been studied in the literature, remarking on 
the gaps that our research covers.

Different models have been built to study the spread of disease during the COVID-19 pandemic. 
Such simulations were useful for determining the impact of COVID-19 depending upon many factors, 
which include control policies, the area's physical layout, citizens' mobility, etc. Many of these models are 
based on the well-known Susceptible-Infected-Recovered (SIR) models [3, 4]. These SIR-type models 
(where S means susceptible, I infected, and R recovered) have evolved, and now they include other states 
(e.g., exposed, deceased) as well as geographical level transmission dynamics [5,6,7,8,9]. 

For example, [5] examines a mathematical model of the spread of infectious diseases, through 
threshold theorems for the reproduction number. It uses a basic SIR model and two advanced MSEIR and 
SEIR models. The M in MSEIR represents the portion of the population that is passively immune from 
maternal antibodies, and the E in both models (and moving forward) represents the portion of the 
population that has been exposed to the virus. In [6], the authors examine different strategies for limiting 
the spread of COVID-19 in India by using a SEIR model with a social contact matrix. The social contact 
matrix represents how people from different age groups interact in India specifically. The paper [7] uses 
SQIARD and SIARD models to forecast the spread of COVID-19 in US, Brazil, South Korea, India, 
Russia, and Italy. The Q represents the quarantined population undergoing regular screening. The A 
represents those who are asymptomatic, and D represents the deceased. In [8], a SIRD model is used to 
analyze the time series data for five countries. Their method allows them to simultaneously analyze the 
temporal progression of the model for each country. Lastly, in [9], they delve into the spatial dynamics of 
spreading disease by using a geography-based Cell-DEVS model. This considers how a disease spreads 
when a population’s movement is restricted, or when a population disobeys movement restrictions. 

Other studies include the use of a novel Monte Carlo simulation procedure for modeling the 
spread of COVID-19 over time [10]. These studies focus on simulating the rate at which cases will appear 
in a country (in [10], Australia and the UK) based on knowledge of the virus and the initial number of 
cases over a series of arbitrarily created scenarios. They calculated the day when the number of new cases 
per day would peak for both countries. Their results of this study were found to be accurate, indicating 
that their model could be applied to other nations and pandemics. 

Using a finer grain, [11] focused on the impact of urban structure on the spread of COVID-19. 
Instead of focusing on how the number of cases would rise across an entire nation, they focused on 
individual cities and how their physical layout affects the ability of citizens to respond quickly to 
mobility-related policies. Such policies include stay-at-home orders, social distancing, etc. They used an 
SIR-type compartmental model where simulated individuals flow between compartments that may be 
labeled as susceptible, infectious, or recovered. They found that while densely packed cities experience a 
greater initial infection rate, they are also easier to enforce and transmit mobility policies to citizens. Their 



results proved that investing resources in early monitoring and prompt ad-hoc interventions in more 
vulnerable cities could make future pandemics easier to contain.

Many other works, such as [12], consider human behavior and social relations, such as 
workplace, profession, or household, among others. To be specific, [13] uses an agent-based model that 
divides the population into age groups and then considers inter and intra-group contact patterns to 
simulate disease transmissions. Their results show that school closures may have a limited impact on 
reducing the spread of COVID-19. The authors of [14] developed a heterogeneous-agents network-based 
model where agents represent people with different social networks, occupations, and health statuses, all 
living in areas with different population densities, to model how effective alternative social-distancing 
policies are at limiting the spread of COVID-19. The authors of [15] created a distributed simulation 
system to improve their effectiveness and usability for studying disease mitigation policies. They 
combined an agent-based discrete event model that measures the physical contacts between patients and 
staff in a COVID-19 intensive care unit (ICU) with a virtual reality model that depicts a COVID-19 ICU 
ward. They found that combining these two models allows end-users to easily examine different disease 
mitigation policies for managerial operations and staff training. 

There are also numerous studies on how COVID-19 is transmitted indoors. Many use the Wells-
Riley model for the transmission of infectious diseases [16]. Research in [17, 18] both use modified 
versions of the Wells-Riley model. The work presented in [17] changed the model to estimate the impact 
of relative humidity on the removal of respiratory droplets containing COVID-19. Then, their 
experiments compared the effects of a room’s ventilation quality and relative humidity on how well they 
reduce airborne levels of SARS-Cov-2. Their results showed that the ventilation quality of a room 
decreases the airborne levels of SARS-Cov-2 far more than a room’s relative humidity. The work 
presented in [18] makes a different modification to the Wells-Riley model by including how pathogens 
move over time through an indoor space. This is done with Computational Fluid Dynamics (CFD) 
simulations of airflow and aerosol transport.

They use the model to judge the effectiveness of different prevention methods on different 
COVID-19 variants and their results show that a combination of optimal ventilation and respiratory PPE 
are necessary in indoor settings. Other models forego the Wells-Riley model for a different method that 
entirely focuses on the transport of aerosols indoors. The work presented in [19] develops their own 
indoor aerosol model combined with a regional inhaled deposited dose model to examine the indoor 
transport of aerosols from a person infected with COVID-19 to a susceptible person and assess the 
potential inhaled dose rate of particles. Their results found that with even marginally improved ventilation 
the dose rate declines significantly. And [20] develops a simulation using CFD for indoor airflows and 
associated aerosol transport in a restaurant setting to pinpoint the environmental factors that influence the 
risk of infection of COVID-19. Their results show the necessity of preventive measures in indoor settings 
and the capability of high-fidelity CFD tools for airborne infection risk assessment.

Other methods include the use of discrete-event models using Discrete-Event systems 
Specification (DEVS) [21] and Cell-DEVS [22]. These methods provide some advantages such as 
separation of concerns between the model and the simulation, as well as ease of modeling and improved 
verification. For example, Cell-DEVS has been used to define an SIR model of the spatial spread of 
COVID-19 across South Korea [23]. In [24], the authors used an extended SIR model with Cell-DEVS to 
simulate the effects that an asymptomatic, yet infectious, portion of the population will have on the spread 
of COVID-19 at a provincial and city level. In [25], human behaviour is integrated with a Cell-DEVS 
model to study its impact on the spread of COVID-19 across the provinces of Canada. They considered 
behaviours as mask-wearing and lockdown fatigue. Finally, in [26], the spread of COVID-19 is examined 
on a much smaller scale with a Cell-DEVS model for studying the infection risks of COVID-19 within 
enclosed spaces. The results were then integrated with Building Information Modelling software [27]. 



As discussed earlier, we are interested in specific evaluations for studying the spread of COVID 
in the workplace (with a focus on University campuses). A number of articles have been published on 
COVID-19 mitigation strategies implemented on university campuses. Some of them [28, 29, 30, 31, 32] 
use agent-based modeling techniques, while others adapt the SEIR epidemiological model [33, 34, 28, 30, 
35]. In [31, 36], the R reproductive number metric is used. Whereas in [37], a well-mixed indoor air virus 
transmission model is presented. Other research has assessed this risk using high-level probabilistic 
models [38]. Table 1 summarizes these articles in terms of their objectives, the simulation methodology 
used, and specific applications.

Table 1: Synthesis of Research Papers on Simulating Disease Transmission

Paper Objectives Simulation 
Methodology

Specific Applications

Simulation-based what-
if analysis for 
controlling the spread 
of COVID-19 in 
universities [33]

To develop a 
simulation model to 
analyze the spread of 
COVID-19 in 
universities

Markov chain Monte 
Carlo simulation 
method with an 
adaptation of the 
SEIR model

Applied to fictional 
American university with 
average attributes

A model of COVID-19 
transmission and 
control on university 
campuses [34]

To provide a 
framework for testing 
different disease 
mitigation strategies in 
universities

SEIR deterministic 
compartmental 
transmission model

Applied to Emory 
university while using 
screening and testing 
strategies for disease 
mitigation

Modeling COVID-19 
spread in small 
colleges [28]

To study disease 
mitigation strategies of 
SARS-CoV-2 
outbreaks in small 
residential colleges

Agents representing 
people follow an 
adaptation of the 
SEIR model while 
traversing a star 
graph representing 
spaces in a college

Applied to a small fictional 
college campus with 
various disease mitigation 
strategies

An agent-based model 
for simulating COVID-
19 transmissions on 
university campus and 
its implications on 
mitigation 
interventions: a case 
study [29]

To study disease 
mitigation strategies 
for university 
campuses

Agent-based disease 
transmission with a 
contact network and 
transmission 
mechanism

Applied to a fictional 
average American 
university campus where 
course modality shifts, 
social distancing, mask 
wearing, and vaccination 
effectiveness are tested



Simulating COVID-19 
classroom transmission 
on a university campus 
[37]

Study the risk of 
holding in-person 
classes by simulating 
airborne transmission 
of SARS-CoV-2 in an 
enclosed classroom

Well-mixed indoor 
air room model for 
airborne virus 
emission and 
exposure adapted to a 
classroom

Applied to the University 
of Southern California 
with various disease 
mitigation strategies

Simulating COVID-19 
in a university 
environment [30]

To study the 
effectiveness of 
disease mitigation 
strategies given a 
COVID-19 outbreak 
on a university campus

Full-scale stochastic 
agent-based model 
that uses an 
adaptation of the SIR 
model

Applied to a fictional 
university with various 
disease mitigation 
strategies

Controlling the spread 
of COVID-19 on 
college campuses [31]

To determine how 
students can return to 
classes safely amidst 
the COVID-19 
pandemic

Uses a household 
model and a 
stochastic agent-
based model that uses 
the R reproductive 
number metric

Applies the household 
model to Duke 
University’s dorms to test 
the effectiveness of giving 
every student a single 
room And the stochastic 
agent-based model is used 
to find the class size 
threshold beyond which 
classes should be moved 
online 

Simulation-Based 
Analysis of COVID-19 
Spread Through 
Classroom 
Transmission on a 
University Campus 
[36]

To study the airborne 
COVID-19 
transmission risk of 
holding in-person 
classes at a university 
campus given different 
disease mitigation 
policies

Uses the R 
reproductive number 
metric with an 
airborne transmission 
risk model in an 
enclosed room

Applies the model to a 
dataset obtained from a 
large US university and 
tests various disease 
mitigation strategies

Mathematical 
modelling of the spread 
of COVID-19 on a 
university campus [35]

To study various 
disease mitigation 
strategies for 
preventing an outbreak 
on a college campus

Adapts a SEIR model 
for a deterministic 
transmission dynamic 
compartmental

Applies the model to the 
estimated data from the 
Villanova University 
COVID Dashboard for the 
2020 fall semester and 
tests various disease 
mitigation strategies

A probabilistic model 
to evaluate the 
effectiveness of main 

To study various 
disease mitigation 
strategies for COVID-

Uses agent-based 
modelling techniques 
with consolidated 

Applies the model to a 
case study for the faculty 
of engineering campus at 



solutions to COVID-19 
spreading in university 
buildings according to 
proximity and time-
based consolidated 
criteria [32]

19 for university 
campuses

proximity and 
exposure-time-based 
rules

università Politecnica delle 
Marche of Ancona Italy

An Agent-Based 
Modeling and Virtual 
Reality Application 
Using Distributed 
Simulation: Case of a 
COVID-19 Intensive 
Care Unit

To improve the 
effectiveness and 
usability of COVID-
19 transmission 
simulations by 
developing a 
distributed simulation 
system that can 
combine different 
COVID-19 
simulations 

The distributed 
simulation system 
combines an agent-
based discrete-event 
contact tracing model 
with a virtual reality 
model

The model is used to 
depict physical contacts 
between patients and staff 
in an intensive care unit 
with the purpose of 
studying disease mitigation 
policies

In this paper, we address some of the problems in previous research introducing a new method to 
study the spread of diseases in workplaces, considering human behavior and workplace characteristics. 
We use DEVS to create discrete-event models that can be used to simulate how COVID-19 (or other 
airborne diseases) would spread in such environment. To do so, we use the ADPM architecture, which 
combines a network model and an agent-based model used to study how an element may spread within a 
medium formalized through a transformation to DEVS. In this paper, we assume that the reader is 
familiar with the fundamentals of DEVS and agent-based modeling. Thus, just a brief introduction is 
presented. A detailed explanation of DEVS can be found in [21]. A detailed explanation of agent-based 
modeling can be found in [39]. 

2.2. The DEVS Formalism 

A real system modeled with DEVS [21], is described as a composite of submodels, each of them 
being behavioral (atomic) or structural (coupled). Each basic model consists of a time base, inputs, states, 
outputs, and functions to compute the next states and outputs. As the formalism is closed under closure, 
coupled models can be integrated into a model hierarchy. A DEVS atomic model is formally described 
by:

M=<X, S, Y, δint, δext, δconf, λ, D>

X: input events set;

S: state set;

Y: output events set;

δint: S →S, internal transition function;



δext: QxX→S, external transition function;

where Q = {(s, e) / s ∈ S, and

e ∈ [0, D(s)]};

δcon: QxX→S, confluence transition function;

where Q = {(s, e) / s ∈ S, and

e = D(s)};

λ: S→Y, output function; and

D: S→R0
+ ∪ ∞, elapsed time function.

Each model is seen as having input and output ports to communicate with other models. The 
input and output events will determine the values to appear in those ports. The input external events are 
received in an input port, and the model specification should define the behavior under such inputs. The 
internal events produce state changes, whose results are spread through the output ports. The ports 
influences will determine if these values should be sent to other models.

A basic model can be integrated with other DEVS basic models to build a structural model. These 
models are called coupled, and are formally defined as:

CM=<X,Y,D,{Mi},{Ii},{Zij}>

X is the set of input events;

Y is the set of output events;

D is an index for the components of the coupled model, and ∀i ∈ D, 

Mi is a basic DEVS model, where Mi =<Xi, Si, Yi, δinti, δexti, δconi, tai > or CM

Ii is the set of influences of model I, and ∀j ∈ Ii, and

Zij Zij: Yi → Xj is the i to j transition function.

3 A Method to Model the Spread of COVID-19 at the workplace 

As discussed earlier, our objective is to study new methods based on discrete event modeling 
simulation to model how COVID-19 spreads in workplace environments (with a focus on University 
Campuses). The proposed method is based on an Architecture to study Diffusion Processes in Multiplex 
dynamic networks (ADPM), introduced in [2]. ADPM was designed to study diffusion processes, which 
are used to model how an element may spread within a given medium. For example, one could consider 
the diffusion of traffic across a network of roads, or how gossip travels between people in social media. 
The medium through which the element travels and how it travels is determined by a multiplex dynamic 
network [40]. Multiplex dynamic networks are those in which the connections among nodes change over 



time, and different connections have different properties. In ADPM, these connections are divided in two 
types: direct links and indirect links. The first one represent the direct transfer of the element from one 
node to the other (agent to agent), and for indirect links a device or medium is used to establish the link 
between agents. For instance, a direct link could represent two people talking face to face whereas an 
indirect link can represent two people talking over the phone. The multiplex part of the network is 
modeled by using different devices or mediums. 

Figure 1 shows the workflow to create a model and a simulator using ADPM. Starting with data 
collection for a diffusion experiment, it leads into creating a document including model requirements and 
assumptions. This document is further used to create a network model (specifying the structure of the 
system of interest) and an agent-based model (that defines the behavior of different entities). Once model 
cross-verification is completed, they are used in tandem to create a diffusion abstract model in which 
agents connected in networks spread an element. This model is then computerized to create a simulator 
that produces logs for the different simulation scenarios understudy. This entire process can then feedback 
to the start where analysis reports of the simulation logs can be used to validate the results with domain 
experts and technical staff. This process can loop as many times as necessary to validate the results.

Figure 1: ADPM Workflow [2]

When we combine the network model and the agent-based model to get the diffusion abstract 
model, a model with the structure presented in figure 2 is built (this process is automated and takes as 
input the network model and the ABM). Each part of the architecture presented in figure 2 has a unique 
purpose. The Node model represents the agents that transfer an element, like people spreading gossip or 
computers sharing a virus. The Node Updater may be used to provide dynamic information to the nodes, 
like a change in weather or power outages. The Diffusion Element Generator creates instances of the 
element to be spread between nodes, like the virus in a computer. 



Figure 2: The ADPM model architecture [2]

The Direct Link model represents direct interactions between agents where nothing was used to 
facilitate the interaction (i.e., two people talking face-to-face). The Direct Link Updater is used to change 
parts of the direct links at runtime (for instance, environmental noise when talking in person). The 
Indirect Link model represents connections between agents that are facilitated with a device, like a phone 
call. The Indirect Link Updater then provides changes to the indirect link communications, like changing 
the rules of a social media network. Link Connectors are used to provide a higher level of granularity in 
the model. They specify how the different devices are connected to each other. For example, phone calls 
can happen through voice-over IP or a cellular network. Lastly, the Link Connectors Updater provides 
runtime changes to the link connectors, such as an internet outage.

The workflow in Figure 1 is directly applicable to the problem of COVID-19 (or other airborne 
disease) in workplaces. We study this problem as a diffusion process where the element being diffused is 
an airborne disease, and the agents are the people infected (using different links for friends, co-workers, 
strangers, etc.). We adapt ADPM (which is generic) to satisfy the problem’s specific characteristics. We 
decide what parts of the ADPM are relevant to the problem and we define those components for our 
application, which will be detailed in section 4. The architecture adapted from the ADPM model 
architecture can be seen in Figure 3.

Figure 3: ADPM model architecture adapted for COVID spread models in workplaces.

The Node component represents a Person (i.e., individual’s behaviors) as all nodes in our model 
are people. The NodeUpdater is used to modify how people's behavior changes due to external 
circumstances. In our case, we are only interested in modeling the change of behavior due to changes in 
the weather. Therefore, we label Node Updater as Weather. If we were to include other external factors 
that would modify the person’s behavior (e.g., news on the TV or social media) we would have to update 



and rename this component. The Direct Link component is mapped to a Room component that represents 
the direct connections between the nodes (i.e., people). The Direct Link Updated is not needed as the 
Room component will not change due to external factors (e.g., the size of the room will not change). In 
our model, all the components related to indirect links are not needed. In the case of a virus being spread 
across a population, a direct link could represent sneezing near another person, while an indirect link 
could represent an infected person handling an item and then that item being handled by another person. 
For the spread of COVID, we will not be considering indirect links because it has been found that the 
odds of a person becoming sick through indirect contact with a sick person is very low [41].

4. Applying ADPM in the Workplace

This section focuses on the ADPM model specification and its definition for modeling the diffusion 
behavior of COVID-19 (or another airborne transmissible disease) in the workplace. We model a number 
of people moving around several rooms (or going home) during a certain period of time. Each person will 
have a general relationship established with each other person to realistically model how they choose 
whether to engage in COVID-safe behavior. The behavior under examination can include whether people 
would wear masks, socially distance, and obey maximum occupancy policies in different scenarios. 

The rooms will accurately resemble the workplace being studied, and each person's schedule will 
accurately resemble the schedules of people with different workplace roles. It will consider general 
weather patterns, such as rain and snow, that influence each person's travel decisions. For example, if it is 
raining, it is more likely a person will travel indoors to reach their destination instead of going outside. 

The model includes the CO2 concentration in rooms, the probability of each person being exposed to 
COVID-19 once they leave a room, each person’s location at any given timestamp, and the travel routes 
that each person chooses when moving between rooms.

4.1. Person Agent-Based and Network Models

We define a variety of human behaviors within the model exhibit, including wearing masks, social 
distancing, entering a room at maximum occupancy, or traveling on a route that is more or less likely to 
expose them to the virus. The first three behaviors are determined by each Person’s relationship status 
with every other Person in the model (as individuals will act differently around a close friend than around 
a stranger). The Person’s agent-based behavior is defined using an XML file shown in Figure 4. This 
model also includes the person's connections. 

<DecisionMakerBehaviour>

      <ID>3</ID>

      <location>home</location>

      <currStartTime>1280</currStartTime>

      <timeInFirstLocation>760</timeInFirstLocation>

      <isSick>False</isSick>

      <exposed>False</exposed>



      <vaccinated>False</vaccinated>

      <wearingMaskCorrectly>True</wearingMaskCorrectly>

      <socialDistance>True</socialDistance>

      <weatherThreshold>6</weatherThreshold>

      <relationship>

            <relationship ID=”1” type=”friends” />

            <relationship ID=”2” type=”friends” />

            <relationship ID=”4” type=”acquaintances” />

            <relationship ID=”5” type=”acquaintances” />

      </relationship>

      <behaviourRulesPerson>

            <personRelations status=”acquaintance” safeDistanceProb=”50” maskWearingProb=”50” 

enterMaxOccRoomProb=”50” />

            <personRelations status=”friends” safeDistanceProb=”20” maskWearingProb=”20” 

enterMaxOccRoomProb=”80” />

            <personRelations status=”strangers” safeDistanceProb=”80” maskWearingProb=”80” 

enterMaxOccRoomProb=”20” />

      </behaviourRulesPerson>

      <locationPlan>

            <locationPlan room=”38-VS - 2285” timeinroom=”90” startTime=”610 />

            <locationPlan room=”Outdoors” timeinroom=”10” startTime=”700” />

            <locationPlan room=”home” timeinroom=”490” startTime=”710” />

...

      </locationPlan>

 </DecisionMakerBehaviour>

Figure 4: ABM model of a person stored in an XML file [42]

DecisionMakerBehavior is an object with many fields. ID uniquely identifies a person, after which we 
define the person’s location. The currStartTime and timeInFirstLocation are used to define how much 
time the person has left in their first location (time 0 which represents midnight and we add them modulus 
of 1440; the number of minutes in a day. For example, in figure 4, currStartTime is 1280 and 
timeInFirstLocation is 760, therefore their sum mod 1440 equals 600. This means there are 600 minutes 
until their next scheduled event). Then, isSick defines if the individual is sick; exposed is used to define if 



they have been exposed to COVID-19 and then if they have been vaccinated. The wearingMaskCorrectly 
is used to define if they are wearing a mask over their mouth and nose, and socialDistance is used to 
define if they practice social distancing. The weatherThreshold indicates how bad the weather must be for 
this person to avoid travelling outdoors. This could take many forms depending on the workplace being 
examined. For example, if a large workplace has open air walkways between locations, then poor weather 
might incline a Person towards taking a different route indoors where they are more likely to be exposed 
to the virus. The relationship object stores a list of the IDs of the other people in the model and this 
person’s relationship with them (friends, acquaintances, or strangers). These categories determine how 
likely the person is to adhere to safety policies around them. The behaviourRulesPerson object stores the 
probabilities of a person performing each action around people of each relationship category. Lastly, the 
locationPlan object stores the name of each room the person will visit in their daily schedule, what time 
they will enter each room, and how long they will be in each room. The home tag is used to indicate they 
have left campus. Outdoors defines whether people travel along a safer path to reach their destination or 
take an enclosed route that may expose them to the virus.

While most of the attributes are static (i.e., instantiated when the model is defined), the variables sick, 
exposed, location, and currStartTime will evolve over time based on the person's behavior. The XML file 
is used to initialize those variables.



4.2. Agent-Based Model of a Room

Each room is also defined using an XML file that contains seven unique characteristics. Most of this data 
can be gathered from BIM models of the rooms where available, or through floor plans. If some of this 
information is not available, they can be defined as parameters of the model.

<RoomParameters>
      <ID>5,RH - 1100</ID>

      <ventilationRating>3</ventilationRating>

      <socialDistanceThreshold>35</socialDistanceThreshold>

      <maxOccupancy>26</maxOccupancy>

      <wearsMaskFactor>1</wearsMaskFactor>

      <socialDistanceFactor>1</socialDistanceFactor>

      <vaccinatedFactor>-2</vaccinatedFactor>

      <sickPeopleCO2Factor>2</sickPeopleCO2Factor>

      <highCO2FactorThresholds>1001,1840,1857,1904</highCO2FactorThresholds>

      <highCO2Factors>1,2,3,4</highCO2Factors>

      <respIncreasePerMin>340000</respIncreasePerMin>

      <squareMetres>71.019997</squareMetres>

      <height>2.438000</height>

 </RoomParameters>

Figure 5: Room XML file [43]

Figure 5 shows a Room’s XML file. First, we have an ID that indicates a unique name of the 
room. A ventilationRating represents the air changes per hour (ACH), and the socialDistanceThreshold 
includes the maximum number of people that can be in a room and still maintain social distancing. Then, 
maxOccupancy is the maximum number of people that can be in the room according to policy. The 
wearsMaskFactor, socialDistanceFactor, vaccinatedFactor, and sickPeopleCO2Factor affect how likely 
it is a person will become exposed to COVID-19. The highCO2FactorThresholds are the levels of CO2 
concentration in a room that indicate when a person’s exposure to COVID-19 is becoming more likely. 
The highCO2Factors are used to influence the probability of exposure if its associated 
highCO2FactorThreshold is reached by the CO2 concentration within the room. The respIncreasePerMin 
is a calculated average amount of CO2 a person breathes out every minute. Lastly, the squareMetres and 
height fields indicate the dimensions of the room used for calculating the CO2 concentration.



4.3 DEVS Representation: ADPM definition for COVID spread

Figure 6 shows the structure of a DEVS coupled model derived from ADPM presented in Figure 3. The 
model consists of three main components: (1) the Weather atomic model, (2) the Person Coupled Model, 
and (3) the Room and Outdoors Coupled Models. Note that the Outdoors coupled model is just an 
instance of a room model where the probability of getting COVID-19 is neglectable. 

Figure 6: DEVS Top Model

The Weather atomic model generates values that represent the quality of the weather every 24 hours of 
simulation time. In our case, the model is connected to every instance of the Person Coupled model. The 
Person Coupled model is composed of two atomic models: Person and FilterProbGetSick. The number 
of instances of the Person Coupled Model is the number of people in the model. The Person atomic model 
represents each person node within the model. It models their behavior with daily schedules and 
interpersonal relationships using the ABM model attributes defined in the XML in section 4.1. It also 
tracks their chances of being infected or sick, and how that affects their routine. It receives inputs with the 
probability of exposure to the virus and the current weather conditions. The model transmits personal 
information (Id, relationship types, probabilities of acting with different behaviours, and information 
about sick, vaccinated, practicing social distancing, and wearing a mask states). The model follows the 
schedule loaded from the XML and determines the room the person needs to enter. The travel path (i.e., 
the safer or riskier route), is chosen by checking if the current weather value is less than the person’s 
weather threshold. 

Once the scheduled time spent traveling has concluded, an internal transition determines what 
room the person has arrived. The model will then receive a message through its input port (the one 
connected to the FilterProbGetSick model) containing the probability of the person being exposed to the 
virus while traveling. When the scheduled time in the room is over, another internal transition occurs. If 
the person is considered exposed, a random value is generated, and if it is greater than a threshold 
representing the probability of becoming sick after exposure, the person will become sick. Another 
randomly generated value is used to determine how many days before the person is considered sick; this 
represents the incubation period of the disease being studied. This process is repeated every time the 
scheduled time in a room or traveling between rooms is over. Once a person is exposed, at each internal 



transition, it checks if enough time has passed for the incubation period to end. Once this happens the 
person will be considered sick. Once the person becomes sick, the person will abandon their schedule at 
random and go to “home”. This is to represent people, who, for different reasons (like being 
asymptomatic) choose to go to their workplace.

Every time the weather changes, the model receives a message through its input port (the one 
connected to the weather atomic model). Through an external transition, the person model updates the 
Person model’s current weather threshold value.

Figure 6 shows the Room Coupled model, which is composed of three atomic models: Room, 
FilterIn, and FilterOut. The number of instances of the Room Coupled Model is the number of rooms in 
the model. Room represents each room component within the model. This includes the enclosed riskier 
path a person might travel and the room destination of the person. It models their characteristics, such as 
CO2 concentration, and calculates the probability of exposure for people spending time in the room using 
the ABM model attributes defined in the XML in section 4.2. The model also records which people are 
within the room. Room receives messages that contain the travel and personal information of people 
within the model. Each room model is initialized with the ABM model attributes stored in its unique 
XML. At first, each room is idle and waiting for a message to arrive at an input port. An external event 
indicates a person is entering the room, and the external transition is triggered. At the start of every 
external transition the elapsed time is used to calculate the current CO2 concentration of the room. Then, 
the person’s id, along with the rest of their information, is stored in a list that includes everyone who is 
currently in the room. The model uses their information to determine and store the person’s relationship 
status with everyone else who is in the room. If there are many messages from people indicating they are 
entering the room, then there is a chance that the room will be at or above its maximum occupancy. The 
maximum occupancy of a room is a parameter that is adjusted beforehand. If a message is received that 
indicates a person is entering the room, but the room is at maximum occupancy, then the room model uses 
information about the person entering the room to determine if they enter the room. 

When an external event indicates that a person is leaving the room, the probability of that person 
having been exposed to the virus is calculated through an external transition. The person is matched to a 
rank based on their behavior. Each rank is associated with a range of probabilities of infection, and it is 
calculated based on CO2 concentration in the room and behavioral factors (mask wearing, social 
distancing, vaccination status). We are using CO2 concentration as proxy for the virus’s airborne particles 
[44], so the greater the concentration of CO2 in a room, the greater the risk of becoming exposed to the 
virus. Then, a probability of exposure is generated within the bounds specified by the rank. The record of 
people currently in the room and their relationships with each other is updated to account for the persons 
who left. If there are people waiting outside, then the first person is added. Internal transitions clear the 
list of people leaving the room next.

The FilterIn and FilterOut atomic models are similar to the FilterProbGetSick model, and they only 
forwards the message to/from the Room if the id of the room matches.  

Every instance of the Room atomic model calculates the new concentration of CO2 in the room 
whenever a person enters or leaves the room. This calculation is completed with the formulas we discuss 
next. First of all, we use two constants: (1) average CO2 concentration and (2) average amount of CO2 
respirated by a person (respIncPerMin). We use an average CO2 concentration outdoors of 400 ppm, as 
according to Environmental Health Perspectives, “although typical outdoor CO2 concentrations are 
approximately 380 ppm, outdoor levels in urban areas as high as 500 ppm have been reported” [45]. The 
average amount of CO2 respirated by a person is 340,000 mg CO2 per minute. This is calculated as per 
(1) by multiplying the tidal volume of a breath 500 mL per breath [46] by the average CO2 concentration 
of a breath: “An average adult exhale contains 35,000 to 50,000 parts per million (ppm) of CO 2 on each 



breath” [47] and multiplying that result by the average number of breaths per minute while at rest, “They 
differ from those found in periodic breathing, which have a period length of 12-20 breaths” [48].

𝑟𝑒𝑠𝑝𝐼𝑛𝑐𝑃𝑒𝑟𝑀𝑖𝑛 𝑚𝑔
𝑚𝑖𝑛

= 500 𝑚𝐿
𝐵𝑟𝑒𝑎𝑡ℎ

⋅ 35000𝑝𝑝𝑚 50000𝑝𝑝𝑚
2

⋅ 1𝑚𝑔/𝐿
1𝑝𝑝𝑚

⋅ 12 𝑏𝑟𝑒𝑎𝑡ℎ𝑠
𝑚𝑖𝑛

20 𝑏𝑟𝑒𝑎𝑡ℎ𝑠
𝑚𝑖𝑛

2
= 340000

𝑚𝑔
𝑚𝑖𝑛 (1)

The air changes per hour (ACH) can be anywhere between 1 and 8 depending upon the room. For 
example, in the room XML example in section 4, the ACH is equal to 3. Next the ventilation rate per 
minute is calculated using (2).

𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑀𝑖𝑛 𝐿
𝑚𝑖𝑛

= 𝐴𝐶𝐻∗𝑣𝑜𝑙𝑢𝑚𝑒𝑂𝑓𝑅𝑜𝑜𝑚(𝑚3)
60𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ∗ 1000𝐿

𝑚3 (2)

Then the CO2 concentration is calculated using (3). 

𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑔
𝐿

= 𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑙𝑜𝑤 𝑚𝑔
𝐿

+𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑔
𝐿

 (3)

Here, CO2ConcentrationFlow represents the change in the CO2 concentration since the previous 
CO2 concentration was calculated. To calculate the CO2ConcentrationFlow several equations are needed. 
The equations (4), (5), and (6) are the CO2 entering the room from its ventilation per minute, the CO2 
being breathed out by everyone in the room per minute, and the CO2 leaving the room per minute.

𝐶𝑂2𝐼𝑛𝑃𝑒𝑟𝑀𝑖𝑛 𝑚𝑔
𝑚𝑖𝑛

= 𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑀𝑖𝑛 𝐿
𝑚𝑖𝑛

∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑂2 𝑚𝑔
𝐿

(4)

𝐶𝑂2𝑃𝑒𝑜𝑝𝑙𝑒𝑃𝑒𝑟𝑀𝑖𝑛 𝑚𝑔
𝑚𝑖𝑛

= 𝑟𝑒𝑠𝑝𝐼𝑛𝑐𝑃𝑒𝑟𝑀𝑖𝑛 𝑚𝑔
𝑚𝑖𝑛

∗ 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑒𝑜𝑝𝑙𝑒 (5)

𝐶𝑂2𝑂𝑢𝑡𝑃𝑒𝑟𝑀𝑖𝑛 𝑚𝑔
𝑚𝑖𝑛

= 𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑀𝑖𝑛 𝐿
𝑚𝑖𝑛

∗ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑔
𝐿

   (6)

The CO2ConcentrationFlow then uses all three of these formulas, the time elapsed, and the 
volume of the room, to determine the change in the CO2 concentration in that time.

𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑙𝑜𝑤
𝑚𝑔

𝐿 =

(𝐶𝑂2𝐼𝑛𝑃𝑒𝑟𝑀𝑖𝑛 𝑚𝑔
𝑚𝑖𝑛

𝐶𝑂2𝑃𝑒𝑜𝑝𝑙𝑒𝑃𝑒𝑟𝑀𝑖𝑛 𝑚𝑔
𝑚𝑖𝑛

𝐶𝑂2𝑂𝑢𝑡𝑃𝑒𝑟𝑀𝑖𝑛 𝑚𝑔
𝑚𝑖𝑛

∗𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒(min)

𝑣𝑜𝑙𝑢𝑚𝑒𝑂𝑓𝑅𝑜𝑜𝑚(𝑚3)∗1000 𝐿

𝑚3
(7)

Using (7), the longer the elapsed time variable is, the less accurate it becomes. This is overcome 
by only calculating the new CO2 concentration at intervals of 10 minutes or less.

The CO2 concentration equations were validated in the following way. We obtained historical 
data with which we can validate the current model. This information consists of the CO2 concentration 
values at half-hour intervals over 24 hours, starting from 0:23 to 23:53 of a room on Carleton University  
campus. The room has a volume of 439.96875 metres cubed, at most 39 people were in the room, and the 
ACH value is unknown. The model calculates the concentration of CO2 in a room given an amount of 
people, and the number of people in the room at each half-hour interval is unknown. Therefore, we must 
first determine what the most likely distribution of people in the room across all the time slots could be. 



Then we must find the ACH value through trial and error. Once we achieve CO2 concentration values for 
each timestamp that are as close to the obtained data as possible by changing the people distribution, 
ACH value, and average CO2 value, we can conduct a t-test to judge if there are any inconsistencies 
between the historical data set and the data set the model produced.

We obtain the distribution of people across all the 48 time slots by mapping the maximum and 
minimum values of the CO2 concentration and amount of people onto a linear function. It would take the 
form of (8).

MaxCO2Conc = 980; MinCO2Conc = 572; MaxNumbPeople = 39; MinNumbPeople = 0

𝑎 = 𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑃𝑒𝑜𝑝𝑙𝑒 𝑀𝑖𝑛𝑁𝑢𝑚𝑏𝑃𝑒𝑜𝑝𝑙𝑒
𝑀𝑎𝑥𝐶𝑂2𝐶𝑜𝑛𝑐 𝑀𝑖𝑛𝐶𝑂2𝐶𝑜𝑛𝑐

    a = 39408

𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑒𝑜𝑝𝑙𝑒 = 𝑎 ∗ (𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ― 𝑀𝑖𝑛𝐶𝑜2𝐶𝑜𝑛𝑐) (8)

Using the CO2 concentration values recorded in the room at each time slot, we calculate a 
distribution of people at each timeslot that can be seen in Table 2

Table 2: Distribution of people in the room per time slot

Time Stamps (2019-
09-10)

Number of 
People

Time Stamps (2019-
09-10)

Number of 
People

Time Stamps (2019-
09-10)

Number of 
People

0:23 0 8:23 6 16:23 5

0:53 0 8:53 11 16:53 34

1:23 0 9:23 15 17:23 32

1:53 0 9:53 15 17:53 19

2:23 1 10:23 23 18:23 4

2:53 1 10:53 34 18:53 4

3:23 1 11:23 29 19:23 4

3:53 1 11:53 4 19:53 3

4:23 1 12:23 6 20:23 3

4:53 1 12:53 9 20:53 2



5:23 1 13:23 21 21:23 2

5:53 2 13:53 39 21:53 3

6:23 2 14:23 33 22:23 3

6:53 2 14:53 25 22:53 2

7:23 2 15:23 23 23:23 2

7:53 2 15:53 18 23:53 3

The distribution has small numbers of people inside the room after hours. This could be 
represented by people cleaning or working late. We then conducted 12 tests where in each we changed the 
ACH value, people distribution, and average CO2 value. The resulting CO2 concentration values 
calculated by the test, the differences between the historical data and the data the model produced, and the 
squared differences between the regular difference and the difference average. This data is then used to 
calculate the average difference and the standard deviation of the differences.

On each test we conducted a t-test to judge whether there are any inconsistencies with the 
historical data and the data the model produced. We treated the CO2 concentration values as independent 
from one another, because the model calculates the CO2 concentration multiple times to get the actual 
value, it would be the same regardless of the previous CO2 concentration value. We also treated the 
differences as having a normal distribution, which for the purposes of the t-test is sufficient. A 
significance value of 0.05 was also used. Each test was done to see if the null hypothesis where the mean 
of the differences µ is equal to 0 can be rejected. This is done by calculating the t statistic using(9).

𝑡0 = 𝑑 𝜇𝑑
𝑆𝑑/𝐾 (9)

As there are 48 data points a K value of 48 is used. Next, because a significance value of 0.05 is 
used, and K-1 equals 47, a critical value of 2.01 is used. If the t statistic is less than the critical value, then 
no inconsistencies between the historical data and the data produced by the model could be found as the 
null hypothesis cannot be rejected. 

Out of all twelve of the different tests conducted, only 3 of them passed the t-test and did not 
show any inconsistencies. The first of these three tests was test 3 with an ACH value of 4.5, average CO2 
value of 575, and a people distribution that set positions 6-11 as 0, and the last four positions as 0. It 
passed with a t statistic of 1.54. The second test was test 4 with an ACH value of 4.5, average CO2 value 
of 575, and a people distribution that set positions 6-11 as 0, and the last four positions matched the 
mapping such that it was 3, 2, 2, 3. It passed with a t statistic of 0.662. The third test to pass was test 12, 
with an ACH value of 4.475, average CO2 value of 575, and a people distribution that set positions 6-11 
as 0, and the last four positions were 3, 2, 2, 3. It passed with a t statistic of 1.45. The people distributions 
positions of 6-11 and the last four were changed in different ways, because it seems unlikely that a person 
would be in the room from 2:30 to 5:30, and after 10:30. The passed t-tests show that given the unknown 



variables are correct, and that the average CO2 value is correct, we can calculate CO2 concentration 
values that are not inconsistent with actual values.

The Outdoors Coupled model includes three atomic models: Outdoors, FilterIn, and FilterOut. It 
represents a space for people to travel through where they a very low probability of becoming infected. It 
is similar to the room model, the only different is that the probability of exposure to the virus is always 
very close to zero. 

5. ADPM for COVID spread in the DEVS Cadmium tool

The model in section 4 was defined as a parameterized DEVS model in C++ using the Cadmium library. 
The model is instantiated through XML files. The atomic models were written as C++ classes that follow 
Cadmium’s specifications [49]. They communicate by passing three custom data structures: 

- ProbGetSick contains a person’s probability of being exposed to the disease. 
- WeatherInfo represents the severity of the weather on a scale from 0 (bad weather) to 10 

(ideal weather).
- PersonInfo contains information the person traveling from one room to another: (1) the ID of 

a Person, (2) if the person is sick, has been exposed to the virus, has a tendency to wear a 
mask, has a tendency to practice social distance, (3) ID of the room being entered, (4) the 
time that a person enters the new room, (5) the ID of the room the person is leaving, (6) the 
time that a person will leave the room they are entering, (7) a person’s tolerance for inclement 
weather, (8) how many minutes until the person leaves the room they are entering, (9) 
Relationship objects that contain the person’s relationship type with every other person, and 
(10) a map that contains a relationship type, and their BehaviourRulesPerson objects (a 
person’s probability of performing a behaviour given they are around only people they have 
one relationship type with). 

All atomic models are implemented as C++ classes in the Cadmium DEVS simulator. The 
implementation is a direct translation of the models explained in section 4 into C++ code following the 
Cadmium API. The whole implementation is available in the [name removed for double-blind review] 
GitHub repository [50]. We will use the Person model as an example, as the remaining models presented 
in Section 4 are implemented similarly to this one. 

We must first define the model’s constructor function (figure 7) and how it is used to create 
instances of the Person atomic model. The Person constructor is used to create instances of the person 
atomic model. It loads the person data from the Person XML files as DecisionMakerBehaviour objects 
(person.load(personFileName)). The DecisionMakerBehaviour class keeps track of a Person 
instance’s schedule, current location, and the traits that determine how likely it is that they become 
exposed to the virus. The class setNextLocation method is used to acquire the next location in the 
Person’s schedule by using the start time of their current activity and the time they spend doing that 
activity. It also includes methods for loading the object from a Person XML file and another for saving 
the object to an XML file. Within the Person class constructor, all state variables of the atomic model are 
initialized using initial values or the information from the XML file. 



Person (const char * personFileName) noexcept{

person.load(personFileName);

//Initialize all state attributes of the person atomic model

timeR = 0;

currentWeather = 0;

...

}

Figure 7: Constructor of the Person class

We then define the external transition function, as seen in figure 8. This is executed whenever an 
input is received along either or both of the Person class’s input ports. The function receives the messages 
from the input ports as well as a variable e that is the amount of time in minutes that has elapsed since the 
last state transition. The function processes all the messages received from both input ports. We first 
check ProbGetSick objects from the infectionProb. Within this section a random integer from 0 to 100 is 
generated, and if it is less than the probability of becoming exposed received from the ProbGetSick object 
then if the Person is not already sick, they are considered exposed to the virus. Random values are used 
here as calculating the exact chance of becoming exposed to the virus is outside the scope of this research. 
We then process WeatherInfo objects from the weatherUpdates input port. First currentWeather is 
updated with the new value, and if this is not the first update then the time remaining is set to the time 
until the first location change after midnight at time 0. If it was determined in the last internal transition 
that a message from the weatherUpdates input port would be received before the next internal transition 
occurs, then the state’s timeR variable is set to equal to remainingTimeUntilNextInternalTransition.

void external_transition(TIME e,  make_message_bags<input_ports>::type mbs){

  vector<ProbGetSick> msgBagSick = get_messages<Person_ports::infectionProb>(mbs);

vector<WeatherInfo> msgBagWeather = get_messages<Person_ports::weatherUpdates>(mbs);

     for (int i=0 ; i < get_messages<Person_ports::infectionProb>(mbs).size(); i++ ){

int r = rand()%100; //when ProbGetSick received, random number generated

      if (r <= (msgBagSick[i].probSick)){ //if r less than the probability of sick 

      if (!person.isSick){ //then, then the person is now sick

person.exposed = true; travelInfo.exposed = true;  }

}

    }

    for (int i=0; i < get_messages< Person_ports::weatherUpdates>(mbs).size(); i++) {

currentWeather = msgBagWeather[i].newState;

if (firstWeatherUpdate == true)



   firstWeatherUpdate = false;

else

   timeR=(person.nextLocation.timeInRoomMin + person.currStartTime)%1440;

       if (remainingTimeUntilNextInternalTransition > 0) 

             timeR = remainingTimeUntilNextInternalTransition;

}

Figure 8: External transition function of the Person class

The output function sends the PersonInfo object known as travelInfo to the output port 
nextDestination, as seen in Figure 9. 

 make_message_bags<output_ports>::type output() const {

make_message_bags<output_ports>::type bags;

get_messages<Person_ports::nextDestination>(bags).push_back(travelInfo);

     return bags;

}

Figure 9: Output function of the Person class

After executing the output function, the internal transition function, seen in figure 10, is triggered 
to reflect that the Person instance has finished spending time in a Room and are heading to their next 
location. 

void internal_transition(){

  //sets up the person to output the correct PersonInfo object at the next time interval

  if (person.exposed){

uniform_int_distribution<int> probSickDistribution(0,100);

int r = probSickDistribution(generator);

if (r > 70){

uniform_int_distribution<int> timeUntilSickDistribution(0, 10080);

timeUntilSick = timeUntilSickDistribution(generator);

becomingSick = true;



}

person.exposed = false;

  }

  if (stayingHome == false){

if ((person.isSick)&&(severityDecided == false)){

uniform_int_distribution<int> probSickDistribution(0,100);

int r = probSickDistribution(generator);

if (r < 0) goingHome = true;

severityDecided = true;

}

  if (firstTravel){  ...

     // we use person.setNextLocation() with the current start and remaining times to find the 

     // next location. The first remaining time is loaded from the person xml file and 

     // initialized 

  }

  timeUntilNextWeatherUpdate -= timeR;

  if (timeUntilNextWeatherUpdate <= 0) {

remainingTimeUntilNextInternalTransition= -1 * timeUntilNextWeatherUpdate;

timeUntilNextWeatherUpdate = 1440 - remainingTimeUntilNextInternalTransition;

   }

   else remainingTimeUntilNextInternalTransition = 0;

   if (person.nextLocation.roomID == "Outdoors" || person.nextLocation.roomID == "Tunnels") {

if (currentWeather >= travelInfo.weatherThreshold) 

person.nextLocation.roomID = "Outdoors";

else 

person.nextLocation.roomID = "Tunnels";

   }

   travelInfo.roomIDEntering = person.nextLocation.roomID;

   person.location = person.nextLocation.roomID;

   if ((travelInfo.roomIDLeaving.compare("home") == 0)&&(goingHome))

stayingHome = true;



    }

}

Figure 10: Internal transition function of the Person class

First, if the person has been exposed to the virus, a random number between zero and one 
hundred is generated. If the value is greater than a threshold that represents the probability of becoming 
sick, then they are considered to be sick. A random number between zero and the maximum incubation 
time for the virus is generated and stored as the time until the person will start showing symptoms. If the 
person has not abandoned their schedule, we set their next location. We first check if the person is sick 
but it has not been decided whether they will abandon their schedule. In that we decide at random to see if 
a person abandons their schedule by going home. Next we check if the person is travelling for the first 
time. This is a special case as the simulations start at midnight when the person should have already been 
at the home location, so the timeR state variable is initialized to a smaller value than what would be 
needed by the setNextLocation function to acquire the LocationPlan object of their next destination from 
the schedule stored in their DecisionMakerBehaviour object. Next the travelInfo object is updated with 
their next destination. If the person is becoming sick, we deduct the current time remaining variable from 
the time until they are sick. If the time until they become sick is less than or equal to zero, then they are 
now considered to be sick and are no longer becoming sick. Then, if the person’s next destination is a 
travel path then we select which one they will take by comparing the current weather value with the 
person’s weather threshold. If the weather value is greater than or equal to their weather threshold then 
they will take the safer path, otherwise they will take the riskier path.

The time advance function (figure 11) uses an object of the class TIME, which stores the 
simulation time in minutes in an hours::minutes::seconds format. The amount of time returned by this 
function is then the amount of time until the next internal transition fires. So, if the person is currently 
staying home, they will not be traveling anymore, so the function returns infinity. Otherwise, the time 
until the next internal transition is updated with the current value of the timeR state variable.

TIME time_advance() const{

      TIME next_internal;

if (stayingHome)

    next_internal = numeric_limits<TIME>::infinity();

else {

    int hours = floor(timeR/60);

           next_internal = TIME({hours, timeR - (hours*60)});

}

return next_internal;

}

Figure 11: Time advance function of the Person class



The confluence transition function (figure 12) triggers when an external transition and an internal 
transition are triggered at the same time. In the case of this model, the internal transition is set to a default 
behavior that always fire before the external transition function.

void confluence_transition(TIME e,  make_message_bags<input_ports>::type mbs){

        internal_transition();

        external_transition(TIME(), std::move(mbs));

}

Figure 12: Confluence transition function of the Person class

As discussed earlier, the remaining models are constructed similarly using Cadmium. In the rest 
of the section, we will discuss some interesting aspects of some of the models. To begin, the Room class 
is mostly passive: it only executes when it receives input from the instances of the Person class. As a 
result, most of its features are found in the external transition function, including all the calculations that 
determine the behavior of individuals. The external transition function calculates the CO2 concentration 
using the equations explained in section 4.3. in 10-minute intervals. A maximum occupancy feature 
determines if the incoming Person will enter the Room based upon their probability of performing this 
behavior given their relationships with the people in the room (Figure 13). First, it checks if the number 
of people in the Room is below the maximum occupancy limit. The sums of each Person’s relationship 
type with the incoming person are taken, and the percentage of strangers, acquaintances, and friends to 
the incoming Person in the Room is calculated by dividing the sums by the number of people currently in 
the Room. Next, the probability of the incoming Person entering a room if they are all strangers is 
multiplied by the percentage of strangers in the Room. This is repeated with each relationship type in the 
following code snippet. 

for(int i = 0 ; i < msgBagInToRoom.size(); i++ ){

     ... 

if (numberPeople < maxOccupancy)

   peopleInRoom.push_back(msgInToRoom);

else 

   strangers = acquaintances = friends = 0;

   for (int j = 0; j < numberPeople; j++){

    for (int l = 0; l < msgInToRoom.relationships.size(); l++){

if (msgInToRoom.relationships[l].PersonID.compare(ID) == 0){

  found = true;

  relationshipType = msgInToRoom.relationships[l].Relationship_type;

  break;  }



    }

    assert(found == true);

    if (relationshipType.compare("stranger") == 0) strangers++;

else if (relationshipType.compare("acquaintance") == 0)acquaintances++;

else friends++;

    assert(strangers+friends+acquaintances == numberPeople);

    strangersProb = 

         relationshipBehaviour.at("stranger").EnterMaxOccRoomProbability*strangers%);

    ...

    uniform_int_distribution<int> probEnterDistribution(0,100);

    r = probEnterDistribution(generator);

    if ((r <= strangersProb)||(r <= friendsProb)||(r <= acquaintancesProb))

peopleInRoom.push_back(msgInToRoom);

    else 

peopleWaitingOutsideRoom.push_back(msgInToRoom);

}

Figure 13: Pseudocode to determine if a person will enter a room

The external transition function then iterates through all the messages from the outFromRoom 
input port. The probability of exposure calculation is done by first sorting all the people that the Person 
leaving interacted with while they were in the room. They are stored in the leaving Person’s current 
relationships map found in the state variable’s relationshipsInRoom map. This map is then iterated 
through and each PersonRelationInfo struct is stored in a vector according to their relationship type. We 
then calculate the average probability of the Person leaving having worn a mask or socially distanced 
themselves, depending on the percentage of their time spent in the Room with strangers, acquaintances, 
and friends. 

To calculate the probability of the Person leaving having been exposed to the virus we first 
determine what factors to use based on the probabilities of their behaviour and the Room’s current 
circumstances. These factors are integers that range from negative five to positive five, where a positive 
value increases the odds of exposure, and a negative value decreases the chance of exposure. The values 
of the factors are chosen based on whether an action should increase or decrease their odds of exposure 
relative to a rank from one to five. For example, the vaccination factor indicates that the odds of being 
exposed decrease if the Person is vaccinated, so the value would be negative. 

5.1. Defining coupled models 



To create the coupled models and connect them to form the top model seen in figure 6, a C++ script with 
a “main” function is compiled and executed. The script is available in our repository [50]. The script 
begins by instantiating every instance of the atomic models. The Room atomic models are instantiated by 
first loading their unique XML files and extracting their attributes using the TinyXML library [51]. The 
Person atomic models are instantiated from the attributes stored in their XML files in the same way. As 
all of their attributes are loaded from XML files upon execution, it means that the model does not need to 
be recompiled with each experiment. Instead, all a person needs to do is change the XML files to suit the 
parameters of their experiment and run the executable. After the atomic models have been instantiated, 
their ports are connected in the manner shown in figure 6. The model will then request that the user enter 
how many hours the simulation will run for in simulated time. The simulation will finish executing and 
generate logs that show the state of the model at every timestep.

6 Studying the Spread of COVID-19 at Carleton University

We conducted multiple experiments on the model with COVID-19 and information from Carleton 
University’s campus as a case study. With COVID-19 as our disease being studied, we used an incubation 
period of two weeks [52]. To generate XML files for rooms that have the same characteristics as those 
found on Carleton’s campus, we needed their dimensions and ventilation ratings. The dimensions of 434 
rooms from various buildings on Carleton’s campus were extracted from a Building Information 
Modeling (BIM) file. Unfortunately, no ventilation data was obtainable. For simulations where the 
ventilation rating was not a part of the experiment a ventilation rating of three air changes per hour was 
used. This value was chosen because it is the recommended ventilation rating for classrooms by the 
Harvard Schools for Health group [53]. These dimensions and ventilation ratings are stored in a csv file 
that the room generator program reads from when creating room XML files. The remaining parameters 
are generated in different ways. The social distance threshold is set to one half of the Room’s floor space. 
The maximum occupancy is currently set to three quarters of the social distancing threshold. The mask 
and social distance factors are random integers from one to two. The vaccinated factor is a randomly 
generated integer from negative one to negative four. These can be changed easily by the user by editing 
the relevant part of the randomGenerator.cpp file.

To create the XML files for the Person models we chose to replicate the typical schedules of 
students as they are the largest population on campus. Unfortunately, due to privacy concerns, we could 
not obtain any examples of real student schedules on which to base our generated schedules. We used 
typical Carleton University schedules, in which students arrive and depart from classrooms at the same 
time, each class has a standard duration based upon one of three types (lectures: 1.5 hours, labs: 3 hours 
and tutorials: 1 hour), and classes only take place between 8:30 am and 9:00 pm. Lectures take place in 
the largest rooms, labs take place in the second largest rooms and tutorials take place in the smallest 
rooms. To create the student schedules every room being generated was labeled as a lecture, lab, or 
tutorial room based on its dimensions. Then, given the hours of operation, each room was assigned as 
many events that matched their type as could fit into one school day. The generated student schedules 
were then assigned events at random. In between events, 10 minutes was given to travel between 
destinations as per the typical Carleton class schedule. To model the riskier travel path that a student may 
take, we created an instance of the Room model that is based off the tunnel system that connects every 
building on Carleton’s campus. These tunnels are the paths that students take when they do not want to 
travel outside to their destination. The XML for the large network of tunnels was arbitrarily assigned 
large values of 1000 square metres and 4 metres for height. A ventilation rating of 3 air changes per hour 
was also applied to the tunnels. 



We conducted preliminary experiments on the effects ventilation quality has on the spread of 
disease as preliminary reported in [54]. In this case study, we present further details on ventilation 
experiments and experiments on the effects of a policy that mitigates the contact between sick and healthy 
students. 

6.1. Analyzing the Effect of Ventilation Policies

This section presents a scenario where we use the simulator to determine whether the quality of 
ventilation in rooms has an effect on the probability of exposure to COVID-19. The probability of 
exposure is the chance of a person being exposed to COVID-19 particles. This means that if they are 
exposed, there is a chance for them to become sick, but the actual odds of them becoming sick are closely 
tied to a person’s medical history and, therefore, cannot be influenced by any COVID-19 safety protocols. 
Therefore, we only care about a person’s probability of being exposed to the virus. In these experiments, 
we will simulate 30 rooms where 10 are large enough to be lecture halls, 10 are the size for student’s labs, 
and 10 rooms are the smallest type for tutorials. 1200 people will be generated along with the rooms, as 
this is the maximum number of people that can be generated with the chosen rooms. We will run the 
simulations for two weeks of simulated time as this is the maximum time required for a person to become 
sick from COVID-19. As a starting point, we will replicate the simulations 5 times to calculate a 
preliminary confidence interval and decide if more replications are needed, as explained in the analysis of 
the results. We first use an ACH (Air Changes per Hour) value of 1 for every room, and then an ACH 
value of 8 for every room to simulate extremely different ventilation rates in the rooms. Only the room 
representing the tunnels will remain the same as it is constant, and no parts of it are randomly generated. 
Based on the results from the literature [55], we expect that the simulations with an ACH value of 1 will 
have higher probabilities of exposure and more people becoming sick, while the simulations with an ACH 
value of 8 will have lower probabilities of exposure and fewer people becoming sick.

Table 3 shows the room size. The rooms shown are divided into an equal number of rooms used for 
lectures, laboratories, and tutorials to avoid biassing the CO2 concentrations towards larger or smaller 
rooms.

Table 3: Data of Rooms used in Experiments

Lecture Halls Laboratories Tutorials

Name Area

(m2)

Height

(m)

Name Area

(m2)

Height

(m)

Name Area

(m2)

Height

(m)

38-VS - 3226 313.463.048 38-VS - 5112 121.983.200 38-VS - 3219 54.773.048



38-VS - 2285 185.273.200 23-SP - 303 143.652.438 38-VS - 3220 45.913.048

38-VS - 4217 198.313.200 23-SP - 349 122.462.438 38-VS - 3221 53.673.048

38-VS - 1217 238.533.200 23-SP - 280 134.332.438 38-VS - 3202 72.913.048

12-SC - 246A286.382.438 23-SP - 180 150.282.438 38-VS - 3228A52.483.048

12-SC - 214 568.022.438 23-SP - 100 120.252.438 38-VS - 3228C 65.273.048

12-SC - 329 208.142.438 23-SP - 128A112.862.438 38-VS - 2104 52.363.200

12-SC - 305 323.872.438 5-RH - 251 132.822.438 38-VS - 2286 54.923.200

12-SC - 350A339.392.438 5-RH - 351 132.822.438 38-VS - 2202 55.483.200

23-SP - 460 209.482.438 5-RH - 451 132.842.438 38-VS - 2203 53.683.200

The remaining simulation parameters are as follows:

• Max Occupancy: ¾ of social distance threshold
• Social Distance Threshold: ½ of room’s area
• Wears Mask Factor: Uniform distribution that is either 1 or 2
• Social Distance Factor: Uniform distribution that it is either 1 or 2
• Vaccinated Factor: Uniform distribution from -1 to -4
• Sick People CO2 Factor : Uniform distribution from 1 to 3
• CO2 Factor Thresholds: 3 values with a uniform distribution between 1000 and 2000 in order 

from lowest to highest
• CO2 Factors: 1, 2, and 3 assigned to thresholds from lowest to highest
• Respiratory CO2 Increase Per Minute: 340 000
• Room can be Over Capacity: 30% chance that room can be assigned more students than its max 

occupancy allows
• Relationships: 20% are Friends, 30% are Acquaintances, and 50% are Strangers
• Sick at Start: 0% of people are sick at the start
• Vaccinated: 50% of people are vaccinated
• Wears mask when alone: 50% 
• Weather Threshold: Uniform distribution from 0 to 10
• Probabilities of wearing a mask, social distancing, and entering a room at max occupancy with 

Friends: 20%, 20%, and 80% respectively



• Probabilities of wearing a mask, social distancing, and entering a room at max occupancy with 
Acquaintances: 50% for all three

• Probabilities of wearing a mask, social distancing, and entering a room at max occupancy with 
Strangers: 80%, 80%, and 20% respectively

• Probability of becoming sick after exposure: 30%
• Time to become sick: Uniform distribution from 0 minutes to 10080 minutes (two weeks)

• Abandons Schedule and Stays Home: 50% chance

The parameters’ values were arbitrarily chosen as we could not validate the model, except for the 
respiratory CO2 increase per minute parameter, which was calculated to be 340000 mg/min as explained 
in section 4.

The data obtained from each simulation was the CO2 concentration at each half-hour for every 
room and the probabilities of exposure at each half-hour for every person. 10 people were chosen at 
random to record their graphs. Their identification numbers are 25, 1, 53, 889, 543, 1099, 765, 999, 812, 
and 1111.

Table 4 summarizes the statistics from the data obtained in the experiment when ACH is 1. The 
sample mean, sample variance, and half-width confidence intervals with 95% confidence were calculated 
for the probability of exposure values for all 1200 people that were simulated.

Five replications were chosen as a starting point from which the number of replications necessary 
to have a confidence interval of 1% for the probability of exposure, and an interval of 10 mg/L for the 
CO2 values would be determined. Five replications were chosen because the simulations take around 1 
hour and 30 minutes to complete, so around 8 replications can be run in a single day, meaning it takes less 
than two days to complete both experiments.

Table 4: Data obtained for Experiment ACH = 1: Exposure probability and CO2 concentration. 

ACH=1 Exposure Probability (%) CO2 Concentration (mg/L)

Replications
Mean Variance Conf. Int. Mean Variance Conf. Int.

E1R1
29.9771 259.0067 0.9115 889.2212 88433.4321 111.0426

E1R2
29.1751 250.9616 0.8972 879.8302 83292.0315 107.7664

E1R3
28.868 237.5691 0.8730 880.686 88638.6487 111.1714

E1R4
30.1844 266.403 0.9244 894.845 87977.8172 110.7562

E1R5
28.5901 229.0607 0.8572 880.77 92257.5773 113.4181

Overall
29.3589 0.48236 0.8624 885.0705 44.4870 8.2817



After running the five replications, the confidence intervals were already within the target 
accuracy. 

The following graphs were generated from the data obtained in the ACH=1 experiments. They 
give some insight into how the simulation progressed when the ventilation rate was set to such a low 
value. 

 

Figure 14: Probability of Exposure for Person 889. Left: Over two weeks. Right: Over one day

Figure 14 (left) shows the probability of exposure for one person throughout the two weeks of 
replication 5. The reason for changes is unclear. One reason might be off-campus in safer locations or 
more relaxed schedules on some days of the week. Figure 14 (right) shows the probability of exposure for 
the same person over the course of their first day. As the probability of exposure is only calculated when a 
person leaves a room, there could be very few actual data points if the person visits few rooms. Therefore, 
we performed linear interpolation between data points. 

 

Figure 15: CO2 Concentration for Room 38-VS – 3221. Left: Over two weeks. Right: Over one day

Figure 15 (Left) represents the CO2 concentration values recorded for room 38-VS - 3221 at 
every half hour for two weeks. We can see large erratic spikes followed by linear dips; these represent the 



day when people are using the room and breathing CO2 into the air, but with poor ventilation, it only 
keeps increasing throughout the day. Then, once the room is empty for the night, the ventilation can bring 
it back down to normal levels. The rise appears to be erratic, but it is not. This is because the CO2 
concentration is calculated whenever a person enters or leaves the room using the amount of time that has 
passed since either of those events occurred. This means that the CO2 concentration appears to suddenly 
jump at times because a class is over, and the new CO2 concentration has been calculated considering the 
90-minute lecture or 180-minute lab that has just finished. 

Figure 15 (Right) shows the CO2 concentration values taken for room 38-VS - 3221 over the 
course of one day. Here, it can be seen how the CO2 concentration quickly rises throughout the day 
because of the poor ventilation. Some data had to be linearly interpolated, but far fewer than the values 
required for the probability of exposure.

Table 5 summarizes the statistics from the experiment when ACH is 8. We obtained the same 
data and statistics as in the previous experiment and found that the number of replications was enough for 
a 95% confidence interval. As we can see from the data, the variance of the CO2 values is smaller than in 
the previous case, as the ACH value is much higher. This means that the CO2 values will fluctuate far 
less than they did when an ACH value of 1 was used, as the CO2 peak will be lower. 

Table 5: Data obtained for Experiment ACH = 8: Exposure probability and CO2 concentration. 

ACH=8 Exposure Probability (%) CO2 Concentration (mg/L)

Replications
Mean Variance Conf. Int. Mean Variance Conf. Int.

E2R1
23.4795 154.3914 0.7037 445.8642 1179.5802 12.8246

E2R2
23.7178 161.6669 0.7201 444.9765 1070.3994 12.2167

E2R3
24.2372 171.1704 0.7410 445.4648 1052.7961 12.1158

E2R4
23.6137 153.7463 0.7023 445.7014 1131.4423 12.5602

E2R5
24.561 178.8042 0.7573 444.4135 1101.6124 12.3936

Overall
23.9218 0.2100562 0.5691 445.2841 0.34897 0.7335

The following graphs were generated from the data obtained with an ACH value of 8. They give 
some insight into how the simulation progressed when the ventilation rate was high. 



 

Figure 16: Probability of exposure for Person 1111. Left: Over 2 weeks. Right: Over one day

Figure 16 (left) shows the probability of exposure for one person when ACH was set to 8 over the 
entire two weeks of the simulation. The graph flattens at 0% around halfway through the simulation. This 
is because the person became sick, and at that point, we are no longer interested in recording their 
probability of becoming exposed as they are already sick. Figure 16 (right) shows the probability of 
exposure for one person when ACH is set to 8 over the course of one day. We can see that it increases 
steadily and then drops off as they leave the campus to go home.

 

Figure 17: CO2 Concentration for room 23-SP - 180 Left: Over 2 weeks. Right: Over one day

Figure 17 (left) shows the CO2 concentration for room 23-SP - 180 with ACH = 8 over the entire 
two weeks of the simulation. The highest points of CO2 concentration decrease as the week progresses. 
This is because more people are becoming sick and staying home, so there are fewer people contributing 
to the CO2 concentration of the room as the days progress. Figure 17 (right) shows the CO2 concentration 
for room 23-SP -180 with ACH = 8 over the course of one day. While the CO2 concentration keeps 
dropping suddenly, as it is calculated only when people leave the room and not periodically, it is changing 
far less than the CO2 concentration of rooms when ACH = 1 because it has a much larger ventilation 
rate. 



Figure 18 (On Left): Average Probability of exposure generated in each room versus ventilation rate per 
room. Left: ACH value = 8 Right: ACH value = 1 

Figure 18 shows every room’s ventilation rate compared to its average probability of exposure 
values generated. The graph on the left is for the rooms where the ACH value equaled 8, and the graph on 
the right is for the rooms where the ACH value equaled 1. The dot in the bottom right is the same for both 
graphs, and it represents the tunnels on Carleton’s campus, which are very large and well-ventilated, so 
the odds of becoming exposed to COVID-19 remain low. It can be seen, however, that when more points 
have a lower ventilation rate, they tend to have a higher average probability of exposure. The rooms in the 
safest group are below 10 (dark green), rooms in the somewhat safe group are less than 20 but greater 
than 10 (yellow), and the rooms in the dangerous group are greater than 20 (red).

The results of the experiment where ACH =1 show an overall average probability of exposure 
equal to 29.3589 ± 0.8624% and an overall average CO2 concentration of 885.0705 ± 8.2817 mg/L. The 
results of the experiment where ACH = 8 show an overall average probability of exposure equal to 
23.9218 ± 0.5691% and an overall average CO2 concentration of 445.2841 ± 0.7335 mg/L. 

These averages show that when the ventilation of all rooms on campus are improved by 7 air 
changes per hour, we would see the average probability of becoming exposed to COVID reduce by 
5.4371 ± 1.0346%. The results, therefore, prove that implementing a policy where the ventilation rates of 
rooms on Carleton’s campus are standardized at a high ACH value would improve safety and limit the 
spread of the virus.

6.2. Studying the Stay at Home Policy 

In this section we simulate a COVID-19 safety policy that does not allow sick people on Carleton’s 
campus. We use the same rooms, the same simulation parameters, and the same simulated students. The 
only difference is that the ACH value will be set to a middle value of 4. In the first experiment, we set 
change the probability of a person abandoning their schedule and staying home to 0% and in the second 
one, to 100%. In both cases, the probability of exposure will be examined. 



Table 6 summarizes the statistics from the experiment when a 0% probability of abandoning the 
schedule is used. We obtained the probability of exposure and calculated the mean, variance, and 95% 
confidence interval. As in the previous scenario, we found that our starting 5 replications were enough for 
a 95% confidence interval below 1%.

Table 6: Data and statistics of the probability of exposure with a 0% probability of abandoning the 
schedule when sick.

Replications Mean Sample Variance Conf. Int. @ 95%

E3R1 23.8803 164.4753 0.726350829

E3R2 25.9279 203.2739 0.807489535

E3R3 24.4434 176.0343 0.751440748

E3R4 24.9802 186.1616 0.772753791

E3R5 25.3637 193.2622 0.787353119

Overall 24.9191 0.6311189 0.98641506

The following graphs were generated from the data obtained in the experiments where the stay-
home-when-sick policy was not active. They give some insight into how the simulation progressed if the 
sick students were allowed onto the campus. 

Figure 19: Probability of Exposure for Person 765. Left: Over 2 weeks. Right: Over one day



Figure 19 (left) represents the probability of exposure of one person when the stay-home-when-
sick policy is not in effect for the entire two weeks of the simulation. It peaks after the halfway point and 
then drops significantly, though the cause is unclear. Figure 19 (right) represents the probability of 
exposure of one person when the stay-home-when-sick policy is not in effect over the course of one day. 
It starts high as that is the last exposure value they received from visiting a room and then drops as they 
receive a lower value during their travels.

Table 7: Data and statistics of the probability of exposure with a 100% probability of abandoning the 
schedule when sick.

Experiments Mean Sample Variance Conf. Int. @ 95%

E4R1 20.8052 109.084 0.591529789

E4R2 20.108 97.3766 0.558886213

E4R3 21.3385 113.3007 0.602854336

E4R4 21.4731 124.4235 0.631752981

Overall 20.9312 0.384361 0.986508367

Table 7 summarizes the statistics from the experiment when a 100% probability of abandoning 
the schedule is used. We obtained the probability of exposure and calculated the mean, variance, and the 
95% confidence interval below 1%. We first used 3 replications, and we found that they were not enough 
for a 95% confidence interval below 1%. Thus, we increased the value to 4, and we found that they 
satisfied the 95% Confidence Interval requirement.

The following graphs were generated from the data obtained in the experiments where the stay-
home-when-sick policy was active. They give some insight into how the simulation progressed when the 
sick students are not allowed onto the campus. 



 

Figure 20: Probability of exposure for Person 25. Left: Over 2 weeks. Right: Over one day

Figure 20 (left) represents the probability of exposure of a person over the entire two weeks of the 
simulation. We can see that it never goes far above 20% which is consistent with the overall average 
found for the experiment. Figure 20 (right) represents the probability of exposure for replication of a 
person over the course of one day. In this case, they only had one or two events in their schedule as it 
shows little variation, and most values have been linearly interpolated. 

The results of not applying the stay-home-when-sick policy show an overall average probability 
of exposure equal to 24.9191 ± 0.9864%, while the results of applying the policy show an overall average 
probability of exposure equal to 20.9312 ± 0.9865%.

This means that when a policy of not allowing sick people on Carleton’s campus is applied, there 
is, on average, a reduction of 3.9879 ± 1.3108%. This result shows the benefits of applying the policy. 
However, the simulation results show that it may be less beneficial than what one can a priory expect. 

6.3 Discussion

The simulation results obtained by following the proposed models and methods can have many 
implications for policymakers of workplaces, depending on the workplace characteristics being studied. 

For example, in our case study, students followed a stay-at-home policy if they became sick with 
COVID-19. The simulation results from these experiments showed that the overall average probability of 
exposure to COVID-19 decreases when this policy is in effect. This implies that fewer students could 
become sick with COVID-19 if this policy is enforced. A policymaker for Carleton University could 
enact this policy based on those positive results, or they may decide that the benefits of this policy do not 
outweigh the cost of enforcing it properly (not only in terms of costs but in terms of social aspects such as 
student isolation or missed classes that could affect the student's performance). In those situations, where 
the simulation results show that the application of a policy results in the desired outcome but has 
associated costs, further analysis is needed. For example, the policymaker may conduct more experiments 
with the same policy, but different percentages of sick students are allowed to go to campus and evaluate 
the trade-offs in those situations. Additionally, the policymaker may also raise other concerns, such as 
compliance fatigue. Thus, we would need to conduct simulations where the percentage of students who 
follow the policy varies over time. These additional experiments could assist policymakers by allowing 



them to assess various levels of compliance and fatigue, thereby informing more effective decision-
making.

Let us assume a scenario where the compliance fatigue experiments prove that the policy is not 
worth the cost and implementation effort. In that case, the policymaker could consider different policies 
to help reduce the average probability of exposure to COVID-19, and those can be evaluated through our 
simulation model. For example, in our case study, we conducted experiments that compare the average 
probability of exposure when each room has the same low- or high- quality ventilation rating. These 
simulation results showed that a high-quality ventilation rating in each room would reduce the average 
probability of exposure to COVID-19. This implies that policymakers could reduce the number of 
students who become sick with COVID-19 by enacting a policy that sets a standard high-quality 
ventilation rating for every room. The policymaker could consider renovation costs by determining the 
optimal cost-to-benefit ratio by conducting further experiments with different ventilation ratings. In this 
way, the policymaker could use the implications of the simulation results to enact policies that benefit the 
health of the employees in a workplace without straining the business’s funds or increasing the 
employees’ compliance fatigue. 

We acknowledge that policymakers will always have a trade-off analysis situation scenario, and 
iterations over the results to test further policies may be needed. Some of the interactions may even 
include upgrades to the model.

7 Conclusions

Carleton University’s campus was underused during the middle of the COVID-19 pandemic because it 
was too dangerous for students and faculty to attend it safely. However, it can be made a safer place for 
people to use the campus facilities. This can be done by implementing COVID-19 safety policies that 
improve the safety of those who visit the campus. Though, how do we decide which safety policy to use 
over another? We can not test them with real people on the real campus. Therefore, our solution is to 
create a simulator that can determine the probability of people becoming exposed to COVID-19 given 
many possible factors. To do so, we built a model using discrete-event systems specifications and an 
architecture to model diffusion processes in multiplex dynamic networks. We use agents to describe the 
behavior of individuals following or not following safety policies whose interactions are dynamically 
created direct links across a network of rooms that represent real rooms on Carleton’s campus to model 
how COVID-19 might spread across those links and expose people to the virus. The proposed model has 
over 30 ABM that generate over 200 DEVS atomic models (one of such models has been included as an 
example to demonstrate the functionality of the proposed architecture). All the models and their 
implementation are available in [50].

The simulated results showed how ventilation quality impacts the probability of a person 
becoming exposed to COVID-19. This was done by running simulations where every room had an ACH 
value of 1, so they have very poor ventilation and running simulations where every room had excellent 
ventilation with an ACH value of 8. The results showed that poor ventilation can lead to an increased 
average probability of exposure of over 5%. We also used a policy where people who are sick with 
COVID-19 are not allowed to be on Carleton’s campus. This was done by running experiments where 
everyone who became sick would not stay home, and by running other simulations where everyone who 
became sick would stay home. The results showed that denying sick people access to Carleton’s campus 
reduced the average probability of being exposed to COVID-19 by around 4%. 

The case study’s accuracy is limited by many assumptions. These include, among others, how 
students follow the same schedule every day, how the ventilation rating is the same for every room, and 



how the ventilation rating does not change over time. These limit the accuracy of the case study’s results 
by oversimplifying the real-world phenomena we are simulating but allow us to exemplify better the use 
of the methodology to analyze and study disease spread scenarios in a workplace considering human 
behavior and building characteristics. In real life, a student’s schedule changes every day and the 
ventilation rating of one room is likely different from the ventilation ratings of neighboring rooms. 
However, these assumptions (made due to limited available data) can be revisited to reflect real-world 
phenomena more accurately. For example, to make a student’s behaviour vary over the course of a week, 
we just change their associated XML file. To make many students follow different behavioural patterns, 
then the script that randomly generates student XML files can be edited in such a way that different 
number of students follow one pattern or more. To change any room’s ventilation rate to a different value 
or to a distribution of values, we just need to change its associated XML file. Using this method, the 
assumptions can be easily modified or eliminated as more information is obtained about the workplace 
being modeled.

Adapting this discrete-event methodology to a different workplace would follow a process of 
information gathering and XML file generation. All the models developed stay the same. The most 
essential information would be the dimensions and ventilation rating of each room being included, as well 
as an average employee’s daily schedule. The amount of data collected will determine whether some 
XML files need to be randomly generated with fixed percentages based on average attributes or XML 
files can be generated with real information from a database. These XML files contain every unique 
characteristic of the workplace being adapted. For example, in the case study with Carleton University’s 
campus, we included the unique tunnel system by treating it as a very large room. The same could be 
done with the hallways on each floor of an office building represented as an XML file, where an 
employee’s schedule in their XML file may represent them regularly traversing crowded hallways as they 
leave their office to attend a meeting elsewhere. A conventional office building where employees travel 
through crowded hallways could have each floor’s network of hallways represented by one large room’s 
XML file. Then each hallway network would be a room that an employee spends a period of time in 
before transitioning to a different room in the building.

To scale the simulations down to a small section of a workplace or scale it up to a large 
workplace, a user only needs to create the minimum necessary room and behavioural XML files. 
However, a workplace could easily have thousands of rooms and employees, which increases the 
computational load of the simulations being executed. To reduce this problem, you can make reasonable 
assumptions, such as not including rooms where people do not congregate, like storage rooms or 
bathrooms. The ADMP methodology proposed in [2] has, therefore, been successfully adapted to study 
the spread of airborne diseases in workplaces. We have also included all the models needed in our GitHub 
repository [50]. Thus, when all the necessary XML files are generated with the unique characteristics of a 
workplace, other settings and institutions can be studied. Additionally, the models and the XML files 
generated are easy to adapt to include other features that policymakers may be interested in analyzing, 
such as the odds of employees having passive immunity, the use of plastic barriers to separate people, or 
if some neighboring rooms have more airflow between them.
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