
Proceedings of the 2024 Winter Simulation Conference

H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

HANDLING ASYNCHRONOUS INPUTS IN DEVS BASED REAL-TIME KERNELS

Sasisekhar Govind1, Gabriel Wainer1

1Advanced Real-Time Simulation Laboratory, Dept. of Systems and Computer Eng., Carleton University,

Ottawa, ON, CANADA

ABSTRACT

Real-time systems are complex to design and implement. Various modelling and simulation techniques are
employed to make this task more structured and efficient. However, there is often a disconnect between

modeling for simulation and development for deployment. In this paper we discuss a technique to bridge
this gap between simulation and deployment, specifically dealing with a framework to handle asynchronous
inputs into a system developed using the Discrete Event System Specification. Further, this paper presents
a case study that demonstrates the effectiveness of the framework, and the congruence between simulation
and deployment of a real-time system is determined.

1 INTRODUCTION

Real-Time (RT) Systems are essential across various sectors such as aerospace, healthcare, and automotive
industries, where precise timing and quick to environmental stimuli are crucial. These systems ensure that
operations within critical infrastructures run seamlessly and efficiently, handling tasks from monitoring
heart rates in medical devices to controlling flight systems in aircraft (Kopetz et.al. 2022).

In this research we explore the complexities associated with RT Systems, which are defined by stringent
timing constraints and their need to promptly address external events. Developing these systems involves

significant challenges, as developers are required to efficiently manage limited resources while ensuring
the system operates stably and without errors. To mitigate these challenges, Modeling and Simulation
(M&S) techniques are employed as critical tools in formalizing and structuring the development process.
Simulation enables developers to attain a comprehensive understanding of the system’s behavior before
deployment, thereby significantly reducing the likelihood of operational failures. Also, it provides a means
to monitor and optimize resource consumption, which is vital for systems constrained by limited capacities.

One effective way to model RT Systems is by representing them within a finite set of states governed
by specific rules for transitioning between these states. A robust methodology that accurately captures these
states and transitions is essential for effectively modeling RT Systems. The Discrete Event System
Specification (DEVS) formalism is particularly well-suited for this task. DEVS offers a structured approach
to model the event-driven systems that characterize many RT Systems, enabling both the design and direct
deployment of models (Moallemi et.al. 2013).

Further, the application of DEVS goes beyond mere system design; one can also directly deploy models
written in DEVS. Various RT Kernels like RT-Cadmium have been developed specifically for executing
DEVS models. The kernel, based on the Abstract simulator, orchestrates the execution and simulation of
the DEVS models (Wainer et.al. 2019).

However, integrating RT Kernels creates significant overheads due to the additional abstraction layer
they employ. The extra kernel layer not only consumes a portion of expensive memory but can also lead to

timing penalties when external inputs traverse through these abstracted layers. While recent advancements
have led to more lightweight and robust kernels (Govind et.al. 2023), the efficient management of
asynchronous inputs remains a formidable challenge in RT Systems.

Govind and Wainer

The primary goal of this paper is to review existing methodologies in the domain and propose an
improved framework for handling interrupts in RT Systems. It aims to improve the integration of interrupts,
ensuring they do not disrupt the standard execution flow of the Abstract Simulator.

The paper introduces a novel Interrupt Component designed to seamlessly integrate real-world signals
into the DEVS modeling framework. This component acts as a plugin to the Abstract Simulator, enabling
the transformation of physical signals into a format compatible with the DEVS domain. This integration
bridges the gap between real-time system execution and simulation analysis, offering a novel approach to
manage the dynamic aspects of RT Systems more effectively.

This paper is divided into 5 sections excluding the Appendix, Biography and Referenced. The first

section introduced you to the goals of this paper. Section 2 provides insight on topics required to understand
the content of the paper. Section 2 also highlights the previous work in this field. Section 3 goes into the
methodology and implementation of the interrupt logic. Section 4 provides a case study and section 5
concludes the paper and provides possible future extensions of the work presented in this paper.

2 RELATED WORKS

2.1 Discrete Event Systems Specification

Discrete Event Systems Specification (DEVS) is a modelling formalism devised for analyzing the
performance of continuous time, discrete event, dynamic system (Ziegler et.al 2000). DEVS is composed
of two variants of models, Atomic and Coupled. The Atomic model presents the base behavior of a small
part of the entire system while a Coupled model composed of other Atomic and/or coupled models that
describe the system behavior at a higher level. A description of the classic DEVS models can be found in
the Appendix.

 There are multiple extensions of the DEVS specification. This research is concerned with the Parallel-
DEVS (P-DEVS) formalism. The P-DEVS formalism (Chow et.al. 1994) aims to parallelize the execution
of DEVS models. The P-DEVS formalism was developed to ensure that parallelism is achieved, while
ensuring that collisions are handled, and that closure and hierarchical consistency is maintained. The P-
DEVS formalism forgoes the Select function of a Coupled model and allows the modeler to describe
behavior upon collision by introducing the Confluent Transition (con). con allows the modeler to define the

model‘s execution behavior when the internal transition function and the external transition function occur
at the same time. The complete formal specification of the P-DEVS formalism can be found in the
Appendix.

2.2 Abstract Simulator

The Abstract simulator (Chow, Ziegler, and Kim 1994) simulation engine was developed to demonstrate
the soundness of the P-DEVS formalism. The abstract simulator is specialized into two different simulation

engines, the simulator, and the coordinator. The simulator handles the simulation of atomic models, and
the coordinator handles the simulation of coupled models. There is always a root coordinator that acts as
the ‘master’, orchestrating the entire simulation.
 The simulation engines execute the appropriate transition function in the appropriate models by means
of message passing. The simulation engines use five messages, (@, t), (*, t) and (done, t) for
synchronization and (y, t) and (q, t) for data transmission. In the interest of brevity, this is a grossly

simplified overview of the abstract simulator. The simulator simulation engine processes the (s) function
of the associated atomic model when it receives the (@, t) message. Once the output is generated, the
simulator transmits the output through (y, t) and synchronizes using the (done, t) message. Upon receiving
the (q, t) message, the simulator adds the input data to the input bag of the atomic model, and returns the
(done, t) message for synchronization. Upon receiving the transition message (*, t), the simulator executes
the int(s) if the atomic model bag contains no inputs or executes the associated ext(s, e, bag) if the bag is

not empty. If the int(s) and ext(s, e, bag) collide, con(s, bag) of the associated atomic model is executed to

Govind and Wainer

resolve the conflict. Once the transition is complete, the (done, tN) message is returned where tN is the time
advance (sometimes referred to as ) of the atomic model.
 The coordinator simulation engine is associated with the coupled model and uses the same five

messages for synchronization and message passing. The coordinator is responsible for ensuring
synchronization between the parent coordinator (which could be the root coordinator) and all its child
simulators and coordinators. Upon receiving a (y, t) from a child simulator, converts it into an (q, t) message
and transmits it to the receivers (could be one of its children or the parent coordinator). Upon receiving the
(@, t) and (*, t) from the parent, the coordinator distributes it to the appropriate children. And, when the
coordinator receives the (done, tN) messages from its children, the coordinator chooses the smallest tN

amongst all the tNs it receives and transmits a (done, tN) to its parent.

2.3 Cadmium Modelling Framework

Cadmium is a tool for DEVS modeling and simulation. It is a header only C++ library that implements the
Abstract Simulator. Developed in the Advanced Real-time Simulations Laboratory, Cadmium supports the
simulation of classic DEVS, P-DEVS, Cell-DEVS, Asymmetric Cell-DEVS (Cardenas et.al. 2022) and the
support to implement DEVS models on an embedded platform.

Efforts of students in the Lab (Earle et.al. 2020) have helped improve Cadmium as a real time kernel.
Further advancements allowed Cadmium to be implemented on a wide range of embedded platforms
(Govind et.al. 2023) making it a suitable simulator for demonstrating the implementation of the interrupt
handling framework.

Recent developments in this field, aligning with our current work, are demonstrated in the paper
(Sebastian et.al. 2024). The authors have implemented a similar framework within their simulation

environment, highlighting the relevance of the approach presented in this paper.

3 METHODOLOGY

As discussed earlier, the PDEVS abstract simulator offers a rigorous framework for event scheduling and
inter-model message passing. The algorithm ensures that the appropriate (imminent) events are scheduled
according to the time advance parameter of each model and passes the appropriate messages to trigger the
δext of the corresponding models within the simulation environment. This behavior is pivotal in the

development of an RT execution engine capable of executing DEVS model on an embedded system.
The authors in (Earle et.al. 2020) provide a detailed analysis of the implementation of a DEVS-RT

kernel that adheres to the DEVS formalism based on the Abstract Simulation algorithm. The authors
provide an implementation methodology for integrating the RT execution kernel into the Cadmium
simulator. The paper provides meticulous details on the design requirements of the RT kernel and the
reasoning behind each of the design choices. Among the various critical elements of the implementation,

the RT Clock is deemed one of the most fundamental blocks as it facilitates the synchronization of
simulation and real time.

Govind and Wainer

Figure 1: RT Clock

Figure 1 shows the fundamental RT Clock algorithm. The algorithm collects outputs and advances the
simulation. Once the simulation has been advanced and the simulator is aware of the minimum time to the
next event, the RT Clock puts the device to sleep till the time of the next event. If the simulation has ended,

the simulator exits.
This basic implementation of the RT Clock provides the foundation for the work showed by our work.

In our work, we move to the newer Cadmium version, Cadmium V2 (Cardenas et.al. 2022) which uses the
same abstract simulation algorithm to simulate and execute models. Further, the ESP32 embedded platform
(mentioned in previous section) was chosen as the basis of implementation due to its wide support and use
in the industry.

In CadmiumV2, the implementation of the RT Clock leverages the C++ standard library std::chrono
for its time-related functions. However, it has been observed that the use of std::chrono::steady_clock
introduces anomalies, resulting in delays during execution that are deemed inadequate. To address these
shortcomings, we proposed a solution within the context of RT-Cadmium, involving the adaptation of the
RT Clock method to the native platform's capabilities (Govind et.al. 2023). In line with this approach, and
to attain enhanced performance, we integrated the RT Clock using a clock library specific to the ESP32.

The precise details of the RT Clock's implementation on the ESP32 are documented, available in the
Appendix. At its core, the RT Clock class is designed around a wait_until(timeNext) method. This method
enables the microcontroller to enter an idle/sleep state until the scheduled time for the next event arrives.
This method serves as a critical component in the framework of the CadmiumV2 execution engine,
particularly in facilitating the management of asynchronous inputs and interrupts. This implementation
strategy advances the simulation engine's capability to achieve real-time performance.

One challenge is ensuring that the implementation adheres to the DEVS modelling paradigm (Earle
et.al. 2020). The integrity of the models should be preserved in such a manner that the same model
employed for simulation purposes functions identically when deployed on the microcontroller. This
approach highlights the principle that modelers should not be compelled to adapt or 'hack' their models to
bridge the gap between simulation and real-time execution, thereby facilitating a straightforward and
efficient transition from conceptual modeling to practical application.

To do so, we designed an Asynchronous Event Observer to monitor system interrupts. Upon detecting
an interrupt, the observer triggers an external transition within the system. While effective, this method
necessitates modifications to the Abstract Simulation Algorithm. Our objective is to develop a strategy that
accommodates interrupts without necessitating alterations to the abstract simulator, thereby preserving its
integrity.

To achieve this, we have defined an Interrupt Component (IC). The IC is defined as follows:

IC = <Xb, Yb, {Ti,j}>
Where,
Xb : Input bag.

Govind and Wainer

Yb : Output Bag.
Ti, j : i-to-j output transformation function.

When an interrupt input arrives at an input Xi, that has to be routed to output Yj; the Ti, j function is
called to transform the input data (not a DEVS message) into an output format (is a DEVS message). Once
Yj has been populated, the IC transmits the (y, t) and (done, t) messages to the root coordinator of the model
being executed. Essentially, one could think of the IC as a domain transformation function that transforms
data/ signals from the real-world ‘domain’ to the DEVS ‘domain’, much like how the Fourier transform
converts signals from the time domain into the frequency domain. Further, extending on the analogy, Ti, j

acts like the transformation kernel 𝑒−𝑗ω𝑡 that contains components of both domains and helps in the actual
transformation of the domains. An overview of a practical implementation is given below.

Figure 2: Interrupt Component

Figure 2 describes an overview of this idea. The figure shows the IC connected to the Top coupled
model. The top coupled model has n Sub models, either atomic or coupled. The IC receives interrupts from
the external environment and propagates the data to the Top coupled model (through (y, t) messages). The

execution of the Top coupled model is handled by the root coordinator. And because of the hierarchical
nature of DEVS, the root coordinator (and all coordinators) is not concerned with the execution and
scheduling of its parents; it only schedules the execution of its children. However, the coordinator responds
to (@, t), (*, t), (y, t), (q, t) and (done, t) messages from its parents. This behavior of the abstract simulator
is used to implement the IC as shown in Figure 2. As far as the root coordinator is concerned, it receives
the (y, t) messages from a ‘parent’ coordinator and handles it per the Abstract Simulation algorithm. Hence,

the soundness of the P-DEVS formalism as we follow the original algorithm.
Since the IC has to detect interrupts and send (y, t) messages at any time (maybe non-deterministic), it

was decided, that the RT Clock class (specifically the wait_until() method) is the optimal location for its
implementation. When an interrupt arrives, the IC injects the input (y, t) into the root coordinator. In the
definition of the Top coupled model, an ‘in’ port is defined as an input port (in ∈ 𝑋) and the appropriate
influencees are defined in the set EIC. The root coordinator receives the (y, t) messages and routes it

according to the definitions in EIC.
This generic approach allows any modeler to implement interrupts in any simulator that follows the

abstract simulation algorithm. In our work, we have implemented the interrupt handler in the Cadmium V2
simulator (Figure 3).

Govind and Wainer

Figure 3: UML class diagram of the Cadmium V2 simulator (Cardenas et.al. 2022)

 The figure shows the classes architectures to be followed to create atomic and coupled models to be
simulated in Cadmium V2. The figure shows seven classes, PortInterface, Port, BigPort, Component,
AtomicInterface, Atomic and Coupled. The classes with Interface in their names are the classes the simulator
uses to interact with the atomic, coupled and ports defined by the user.

As can be observed, the atomic and coupled classes inherit traits from the Component class. Hence, the

IC can be made from the Component class of the simulator. Hence, the wait_until() method of the RT Clock
class is implemented to create an IC with an output port. A pseudo code for the implementation of the
wait_until() method is show below:

function wait_until(timeNext) {

while(time.now() < timeNext){

 if(Handler.interrupt_recvd()){ //Handler is an instance of IC in RT Clock

top->propagate(Handler.T());

 break;

 }

 }

 return minimum(timeNext, time.now());

}

In the wait_unti() method, while waiting for the time specified by the timeNext input parameter, the

Handler.interrupt_recvd() function returns a Boolean ‘true’. The transformation function of Handler

(which is an instance of IC) is called, and the returned data is propagated to the input port of the Top coupled

model. The wait_until() method returns the current time to set the virtual time last of the simulator. If the

system has not been interrupted, current time is the same as timeNext and hence that is returned, if however,

wait_until() returns early due to an interrupt, the current time is to be set as the virtual time last of the

simulator. The detailed implementation of the interrupt mechanism and the IC class can be found in the

Appendix.
 When modelling, the modeler ties the input port of the top coupled model to the input port of the model
that expects input from the external environment. When simulating, this port can be connected to a generator
to simulate interrupt inputs and when executing, the IC comes into play. An example scenario with a generic
Top coupled model is shown in Figure 4.

Govind and Wainer

Figure 4: Simulation and Execution of the Top model

 Figure 4 shows the simulation and execution of the top coupled model. On the left-hand side, the
simulation environment is shown with the Generator, acting as a stub, generating test inputs for the Top
coupled model. On the right-hand side, the execution environment is shown with the Generator being
replaced by the IC. The Generator can be modeled with a Random Variable that mimics the arrival rate of
the modeler’s actual input.

Assuming that f(t, ) is the Probability Distribution Function with inter-arrival time t and arrival rate ,
and F(t, ) is the Cumulative Distribution Function of f(t, ), you can model the Generator as follows:

Generator = <X, Y, S, int, ext, , ta>
Where,

• X  {}
• Y  Xin(Top)
• S = {data, R}
• int(s) = { data = sample data of type Xin(Top), R = uniform random value }
• ext(s, e, x) = 
• (s) = {send data}

• ta = F-1(R)
If we assume that the input is modelled with a Poisson Distribution, the inter arrival rate would be

Exponentially Distributed. In this scenario, F(𝑡, λ)  =  1  −   e−tλ and,

 𝑡𝑎 = −𝜆−1 𝑙𝑛(𝑅) (1)
Where R is a uniformly distributed random number.

4 CASE STUDY: VIDEO SURVEILLANCE SYSTEM

This section discusses how to use the methods presented above with a simple case study of a surveillance
system. The system comprises two separate computing units: an ESP32 microcontroller dedicated to motion
detection and alert, and a Raspberry Pi single-board computer responsible for video capture and
transmission.

Figure 5: Surveillance System

Figure 5 shows a block diagram of the surveillance system. The box labelled Motion Detector contains
a Top Coupled Model that encompasses a Passive Infrared (PIR) Motion Sensor atomic and a Motion

Govind and Wainer

Detection atomic. On the right, the box labelled Video Capture contains the IC and a Top Coupled Model
which encompasses the Camera Capture atomic, Image Processing atomic, and the Transmitter atomic. In
the ESP32, the Passive Infrared (PIR) Motion Sensor atomic model and the Motion Detection atomic model

detect motion and generates a Boolean signal, which is then transmitted (and in this case is connected to
the Video Capture model). Subsequently, the Video Capture model, through the IC model, processes the
incoming signal to activate or deactivate video capture, processing, and transmission via its Camera
Capture atomic, Image Processing atomic, and Transmitter atomic models, respectively. Not shown in the
block diagram is a receiver that receives the frames and displays a video output.

Figure 6: Simulation of asynchronous inputs

Figure 6 shows the simulation of setup of the Video Capture Model. The IC model is replaced by the
Generator model, but all other models remain the same. No change is to be made to the model for execution
and simulation was modeled using the exponential distribution per Equation 𝑡𝑎 = −𝜆−1 𝑙𝑛(𝑅) (1.

Table 1: Simulation Logs of the Video Capture model

Time Model ID Model Name Port Name Data

10.099 3 cam_capture out [640 x 480]

10.099 2 im_proc out 40564

10.099 1 udp_send Sent: 40564

10.75 3 cam_capture Active: 0

10.75 4 generator out false

17.78 3 cam_capture Active: 1

17.78 4 generator out true

17.78 3 cam_capture out [640 x 480]

17.78 2 im_proc out 41412

17.78 1 udp_send Sent: 41412

Table 1 shows a section of the simulation logs generated by the Video Capture model. The logs have

five columns, Time, Model ID, Model Name, Port Name, Data. In the interest of brevity, only the logs of
(s) and some ext(s, e, x) events are shown. The logs show the Time of event, Model ID and Model Name
of the model that created the event, the Port where the output was generated and the Data at the port.

Observing the table, we see that the 10.099th time point a frame is captured, processed and transmitted.
When the time point moves towards 10.75s, the Generator produces an output ‘false’ which stops the
transmission. The transmission restarts when the Generator produces an output true at the 17.78th time point.

This is the expected behavior of the system. Once the model was verified, the system was implemented
in the embedded platform.

Govind and Wainer

Table 2: Execution Logs of the Video Capture unit

Time Model ID Model Name Port Name Data

1010.033 3 cam_capture out [640 x 480]

1010.033 2 im_proc out 40537

1010.033 1 udp_send Sent: 40537

1010.066 3 cam_capture out [640 x 480]

1010.066 2 im_proc out 40504

1010.066 1 udp_send Sent: 40504

1010.066 3 cam_capture Active: 0

1020.07 3 cam_capture Active: 1

1020.07 3 cam_capture out [640 x 480]

1020.07 2 im_proc out 40512

1020.07 1 udp_send Sent: 40512

 Table 1 shows a section of the simulation logs generated by the Video Capture model. The logs

have five columns, Time, Model ID, Model Name, Port Name, Data. In the interest of brevity, only the logs
of (s) and some ext(s, e, x) events are shown. The logs show the Time of event, Model ID and Model Name
of the model that created the event, the Port where the output was generated and the Data at the port.

Observing the table, we see that the 10.099th time point a frame is captured, processed and transmitted.
When the time point moves towards 10.75s, the Generator produces an output ‘false’ which stops the
transmission. The transmission restarts when the Generator produces an output true at the 17.78th time point.

This is the expected behavior of the system. Once the model was verified, the system was implemented
in the embedded platform.
Table 2 shows a small section of the execution logs generated by the Video Capture model. Like Table 1,

in the interest of brevity, only the logs of (s) and some ext(s, e, x) events are shown.
From the table, we can observe that the 1010.033s time point, the cam_capture (corresponding to the

Camera Capture atomic in Figure 5) captures an image of resolution 640x480. This image goes into the
im_proc (corresponding to the Image Processing atomic in Figure 5) processes the image and produces an
output of 40537 bytes. These bytes are sent to the udp_send (corresponding to the Transmitter in Figure 5)
that transmits the processed frame to the server. These steps are followed every time a frame is transmitted

and can be seen in the table at the 1010.066s and 1020.07s time points. Further, the 33ms difference between
1010.033s time point and 1010.066s time point shows that the frame rate of transmission is 1/33ms ~ 30fps.

The two bold entries in the table at the 1010.066th and the 1020.07th time point corresponds to the arrival
of a signal from the ESP32. At the 1010.066th second mark, a deactivate signal was sent that deactivated
the camera until the 1020.07th second mark when an activate signal was sent. This would mean that the
ESP32 stopped detecting motion at the 1010.066th time mark and detected motion about 10 seconds later.

Capturing frames from a camera at 30fps is an extremely CPU intensive task especially on the
Raspberry Pi 4 with relatively constrained computing resources. For comparison, when polling was
implemented to test against the IC, it failed to detect the pulses from the ESP32. This portrays the
effectiveness of the IC at accepting asynchronous inputs.

Govind and Wainer

Figure 7: (left to right) a) Side (left) view of the surveillance system b) Side (right) view of the surveillance
system c) Front view of the surveillance system

The three pictures in Figure 7 show the real-world model of the surveillance system. Figure 7 a) and b)
show the two sides of the model. In Figure 7 a), two parts labelled ‘A’ and ‘B’ can be seen. ‘A’ is the
Raspberry Pi Compute Module (CM4) on a custom Printed Circuit Board (PCB) and ‘B’ is a device (USB

hub) that allows one to split a single USB port into multiple USB ports. As can be seen, there are two
devices connected to ‘B’. Figure 7 b) shows a PCB with a component labelled ‘C’. ‘C’ is the ESP32-
WROOM32S3 microcontroller with appropriate circuitry to support a motion sensor and other components.
A cable can be seen protruding from that board, that cable connects to ‘B’. Figure 7 c) shows the front view
of the Surveillance system, where the Camera can be seen. This camera also connects to ‘B’.

The Video Capture model runs on ‘A’. The Camera Capture atomic receives interrupts from ‘C’ through

the hub ‘B’. The Transmitter atomic transmits each video frame to a User Datagram Protocol (UDP) server,
where the stream can then be fetched from.

Figure 8: (from left to right) a) Activated Camera b) Deactivated Camera

Figure 8 shows snapshots of the surveillance footage. Figure 8 a) shows a snapshot of the video stram
from the camera when active, as can be observed, a courier package delivery person holding a package can
be seen in the picture. Figure 8 b) shows a snapshot of the stream and the message logs from the Camera

Capture atomic model.

Govind and Wainer

As can be observed, Figure 8 a) shows that the camera has been activated at the detection of motion.
The frame rate can be observed to be approximately 30 frames per second (fps). Figure 8 b) shows the
screen capture along with the message logs from the Camera Capture atomic. It can be seen that the toggle

message was sent 6 times which implies that the surveillance system captured 3 instances of motion (each
pair is activation and deactivation of the camera)

We can observe that, even when the camera is being polled at 30fps (i.e.  = 0.033s), the interrupts are
being captured every time the motion detector detects motion. This portrays the performance improvement
asynchronous input capture brings over polling, in that, even when the CPU is at a high utilization
percentage, interrupts enable the scheduler to react to inputs without having to spend CPU clock cycles

checking for the state of the input port.

5 CONCLUSION

This paper has presented a detailed exploration and implementation of a framework designed to enhance
the handling of asynchronous inputs in RT Systems, utilizing the DEVS and a novel Interrupt Component
(IC). Through the development and integration of the IC within the DEVS framework, this study has

successfully demonstrated a method to bridge the gap between simulation and real-time execution, thereby
improving the operational efficiency and reliability of RT Systems.

The proposed framework was rigorously tested through a case study involving a video surveillance
system, which highlighted the practical benefits of integrating the IC to handle real-time inputs effectively.
The implementation on an ESP32 platform showcased the framework's ability to process inputs
dynamically and respond to environmental changes without the need for constant polling, thus reducing

CPU load and enhancing system responsiveness. The results from the case study clearly indicate that the
asynchronous event handling mechanism can significantly improve the performance of RT Systems,
particularly in scenarios requiring high-frequency input monitoring and processing.

Moreover, the adoption of the IC in the DEVS modeling environment has ensured that the models
remain true to their theoretical specifications when deployed. This congruence between simulation and
deployment underscores the robustness of the DEVS formalism and the effectiveness of the enhanced

modeling techniques presented in this paper.
In the future, we plan on employing the IC and integrating it with the DEVS-Inter Atomic

Communication (DEVS-IAC) protocol (Govind et.al. 2024) to develop truly hard real-time distributed
system, thus enabling the protocol to achieve optimal bandwidth. The integration of the IC and DEVS-IAC
into existing and future RT Systems could lead to significant improvements in various industrial
applications, ensuring that such systems are more adaptable, reliable, and efficient in their operation.

A APPENDICES

The appendix of this paper can be found here. The link takes you to a GitHub Repository (Repo) where a
ReadMe file contains all the formal definitions and implementation explanations pointed to in this paper.
The Repo also contains the C++ code that implements the IC in Cadmium V2.

REFERENCES

Kopetz, H, W. Steiner, Authors. 2022. Real-time systems: design principles for distributed embedded applications. [13 ed.].

Springer Nature

Moallemi, M., G. A. Wainer. 2013. “’Modelling and Simulation-Driven Development of Embedded Real-Time Systems”.

Simulation Modelling Practice and Theory 38:115-131

Wainer, G. A., J. Boi-Ukeme, 2019, “Applying Modelling and Simulation for Development of Embedded Systems.” In SummerSim

-SCSC. July 22nd-24th, Berlin, Germany.

Gianni, D., A. D’Ambrogio, A. Tolk, Editors. 2014. Modeling and simulation-based systems engineering handbook. New York:

CRC

https://github.com/Sasisekhar/Interrupt-Component

Govind and Wainer

Gon, K. T., B. P. Zeigler, and H. Praehofer. 2000. Theory of modeling and simulation: integrating discrete event and continuous

complex dynamic systems. [2 ed.]. Academic Press

Chow, A.C., B. P. Ziegler. “Parallel DEVS: A Parallel, Hierarchical, Modular Modelling Formalism”. In 1994 Winter Simulation

Conference (WSC), 716-722, https://doi.org/10.1109/WSC.1994.717419

Chow, A.C., B. P. Ziegler, D. H. Kim. 1994. “Abstract Simulator for the Parallel DEVS Formalism”. In Fifth Annual Conference

on AI, and Planning in High Autonomy Systems. December 7th-9th, Gainesville, Florida, USA, 157-163

Cardenas, R., G. Wainer. 2022. “Asymmetric Cell-DEVS Models with the Cadmium Simulator”. Simulation Modelling Practice

and Theory 121:102649

Earle, B., K. Bjornson, C. Ruiz-Martin, G. Wainer. 2020. “Development of a Real-Time DEVS Kernel: RT-Cadmium”. In Spring

Simulation Conference (SpringSim). May 19th -21st, Fairfax, VA, USA, 1-12

Govind, S., J.S.R. Alex, G. Wainer. 2023. “Adopting the DEVS Kernel ‘RT-Cadmium’ to the ESP32 Embedded Platform”. B.

Tech Thesis, VIT University. Last accessed 9th April: arXiv:2304.07961

Sebastian, F. O., R. Cardenas, P. Arroba, J. L. Risco Martin. 2024 “A Novel Real Time DEVS Simulation Architecture with

Hardware-in-the-Loop Capabilities”. Proceedings of Annual Simulation Conference (ANNSIM). May 20th-23rd, Washington

DC, USA

Govind, S. , G. Wainer. 2024 “DEVS Based Robust Communication Protocol for Inter-Simulation Communication in Cadmium”.

Accepted in Annual Simulation Conference (ANNSIM). May 20th -23rd , Washington DC, USA

AUTHOR BIOGRAPHIES

SASISEKHAR GOVIND is a Ph.D. student at Carleton University, under the supervision of Dr. Gabriel Wainer. He holds a

bachelor’s degree in Electronics and Communications Engineering from VIT, India. His research interests lie in embedded systems

and distributed simulations. His email address is sasisekharmangalamgo@cmail.carleton.ca

GABRIEL WAINER is a Professor at the Department of Systems and Computer Engineering at Carleton University. He received

his M.Sc. (1993) from the University of Buenos Aires, Argentina, and his Ph.D. (1998, highest honors) from UBA/ Université Aix-

Marseille-III, France. He is a fellow of SCS. His email address is gwainer@sce.carleton.ca

https://doi.org/10.1109/WSC.1994.717419
https://doi.org/10.48550/arXiv.2304.07961
mailto:sasisekharmangalamgo@cmail.carleton.ca
mailto:gwainer@sce.carleton.ca

