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Abstract— In this paper, we explore the integration of a 

reconfigurable intelligent surface (RIS) with a multi-antenna 

base station (BS) for downlink multi-user multiple-input-single-

output (MU-MISO) systems. We aim to enhance energy 

efficiency (EE) by jointly optimizing beamforming and phase 

shifts at the BS and RIS, respectively, while ensuring each 

mobile user meets their link budget requirements. The resulting 

optimization problem is inherently non-convex. To address this 

challenge, we employ proximal policy optimization (PPO), 

known for efficiently managing non-convex problems and 

reducing training overhead in continuous action spaces through 

a clip factor. Furthermore, by leveraging deep neural networks 

(DNN), the proposed PPO-based solution provides the optimum 

values for the beamforming at the BS and the phase shift at the 

RIS, respectively. Finally, we demonstrate the effectiveness and 

accuracy of the proposed PPO-based algorithm through an 

extensive simulation campaign, comparing its performance 

against baseline methods (i.e., fractional programming (FP) and 

deep deterministic policy gradient (DDPG)). The results show 

that our proposed PPO-based algorithm outperforms the 

considered baseline approaches (i.e., FP and DDPG) in terms of 

EE by 34.2% and 15.8%, respectively. 
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I. INTRODUCTION  

The world has witnessed a tremendous increase in mobile 
subscribers and data rates in the past two decades. These 
increasing demands have raised serious energy/power 
consumption issues for future wireless communication 
systems. The power consumption of wireless networks is 
projected to grow exponentially in the coming years. This 
seriously impacts the energy infrastructure and the need for 
renewable energy sources. Governments and industry must 
work together to address this issue. Over 10 billion devices 
per square kilometer are expected to be connected wirelessly 
by the end of 2029 [1]. Thus, energy efficiency (EE), defined 
in bits per joule, has become an essential performance 
indicator for ensuring green and sustainable wireless 
networks [2], [3], and [4].  

However, the evolution of wireless networks has been 

traditionally driven by performance improvements, which 
have led to many widely used technologies that are not energy 
efficient. One of these technologies is massive multiple input 
multiple output (mMIMO), where a large number of antenna 
arrays are deployed either at the base station (BS)/transmitter 
or legitimate users/receivers (for downlink) [5]. However, the 
costs and energy consumption of equipping an extensive 
radio frequency (RF) chain for each mMIMO antenna 
element pose a severe challenge. Therefore, developing a new 
physical layer communication paradigm is imperative to 
address and overcome such challenges [6]. 

In recent years, reconfigurable intelligent surfaces (RIS), 
also known as intelligent reflecting surfaces (IRS), have 
become a cutting-edge technology for the implementation of 
next-generation (i.e., 6G) wireless communication networks. 
RIS has the capability to alter propagation environments 
effectively while reducing power consumption and hardware 
costs at the same time. In particular, RIS consists of a multi-
layered array of low-cost reflective elements arranged in a 
two-dimensional (2D) planner array. Each RIS element can 
be considered a reconfigurable scatter tuned in phase shift to 
reflect the incident signal [7]. By utilizing all components of 
the RIS together, it is possible to increase the signal-to-noise 
(SNR) ratio or minimize interference in an energy-efficient 
manner. RIS can be easily deployed anywhere, providing 
communication services to desired locations and extending 
network coverage [8].  

In comparison to traditional (i.e., relay-based) 
approaches, RIS eliminates the need for RF chains and 
amplifiers, significantly reducing the energy consumption in 
communication systems [9]. For instance, the work in [10] 
proposes a RIS-based transmission architecture to maximize 
the sum rate. In [11], simultaneously transmitting and 
reflecting (STAR) schemes are studied for solving the sum 
rate and power allocation problem. The recent advancements 
in RIS technology offer a promising solution for reducing the 
energy consumption challenges in communication networks. 

RIS has gained considerable attention for future wireless 
communication networks, recently focusing on implementing 
hardware testbeds, such as reflect arrays, metasurfaces, and 



point-to-point experiments. For instance, in [12], a point-to-
point communication system assisted by RIS is investigated 
for multi-user multiple-input single-output (MU-MISO) 
systems, employing fixed-point iteration methods to 
maximize spectral efficiency (SE). In [13], an alternating 
optimization (AO)  approach is employed, aiming to jointly 
optimize the beamforming vectors at the BS and the phase 
shifts at the RIS while considering imperfect channel state 
information (CSI). The work in [14] addresses a joint 
optimization problem involving active and passive 
beamforming at the BS and RIS. Furthermore, a fractional 
programming (FP) approach is utilized to maximize the 
weighted sum rate of all users. To maximize the EE, two 
computationally efficient algorithms (i.e., gradient descent 
and sequential FP approach) are presented in [15]. These 
algorithms efficiently adjust both BS transmit power 
allocation and RIS reflector values. In [16], the AO approach 
enhances the EE by simultaneously optimizing the active 
beamforming at the BS and the discrete phase shifts at the 
RIS. Albeit useful, most of the works described in [12]-[16] 
face significant challenges in real-world deployments. They 
particularly suffer from prohibitively long processing delays 
due to their high computational complexity. 

To cope with the increased level of complexity, artificial 

intelligence (AI) techniques have gained considerable 

attention for their effectiveness in solving complex, non-

convex problems associated with massive data. Deep 

reinforcement learning (DRL) is particularly notable as a 

powerful AI technique that effectively addresses dynamic 

adaptation problems in complicated environments. In DRL, 

agents continuously observe unknown environments without 

prior knowledge to seek optimal policies for maximizing 

long-term reward functions. As opposed to the traditional 

deep learning (DL) approach, DRL does not require 

substantial training data, which is particularly useful for 

systems exhibiting a high level of dynamism (e.g., due to user 

mobility patterns and time-varying CSI), such as real-time 

wireless communication systems. 

DRL-based approaches have indeed gained significant 

attention for solving complex design challenges in dynamic 

wireless communication environments [17]-[18]. For 

instance, a deep Q-learning (DQN) algorithm is proposed in 

[17], leveraging its greedy nature to jointly optimize power 

control, beamforming, and interference coordination to 

maximize EE. The agents take binary control action decisions 

regarding BS power and beamforming. In [18], the receiver's 

SNR requirement and the RIS power budget constraint are 

considered to maximize EE. To address the challenge of 

discrete action space, an off-policy deep deterministic policy 

gradient (DDPG) is employed to jointly optimize active and 

passive beamforming matrices at BS and RIS, respectively, 

aiming to maximize the sum rate [19]. A similar problem is 

addressed in [20], where a twin  DDPG approach is 

introduced to jointly optimize the active and passive 

beamforming matrices with a static RIS configuration. While 

these DRL methods are suitable for discrete actions, they are 

inefficient in optimizing large-scale continuous variables, 

with some relying on model-based convex approximation to 

generate part of the actions. 

Based on the above analysis, this paper makes the 

following contributions: 

• We leverage an on-policy DRL optimization method, 

known as proximal policy optimization (PPO), to 

maximize the EE of dynamic RIS-assisted MU-MISO 

systems. The EE maximisation is achieved by jointly 

optimizing beamforming and phase shifts at the BS and 

RIS, respectively.  

• The devised PPO methodology relies on a clipping 

surrogate method to explore stochastic policies in 

continuous action spaces while minimizing training 

overhead, resulting in better stability, shorter processing 

delay, and lower computation complexity. 

• Based on an extensive simulation campaign, the proposed 

PPO-based algorithm significantly outperforms 

traditional optimization (i.e., FP) and DRL (i.e., DDPG) 

techniques.  

II.  SYSTEM MODEL 

As shown in Fig. 1, we consider a RIS-based downlink 
MU-MISO system, where the BS is equipped with � antenna 
elements and � user equipment (UE), each equipped with a 
single antenna. The BS communicates with the UE using � 
reflecting RIS elements mounted on the facade of the 
building. Furthermore, we assume that the direct signal paths 
between the BS and the users are negligible due to significant 
signal blockages. Let the signal received by the u-th user 
under the frequency flat channel fading be expressed as 
follows:  

�� � ℎ�,�
 ��
�� � ��, (1) 

where �� denotes the received signal by the u-th user, ℎ�,�
 ∈
ℂ��
 represents the channel vector between the RIS and the 
u-th user, and � ≜ ������
, ��, ⋯ ��� is a diagonal matrix 

that contains the RIS phase shifts  �! � "#$%&
'!'� 

associated with each RIS-reflecting element. �
 ∈
ℂ��( denotes the channel matrix between BS and RIS. � ∈
ℂ(�) is the beamforming matrix applied at the BS.  � denotes 
the � � 1  dimensional column vector that represents the 
transmission of data streams to all users, with zero-mean and 
unit variance entries, ℇ�|�|�� � 1. ��  indicates the additive 
white Gaussian noise (AWGN) of the u-th user with zero 

mean and variance -�, i.e., ��~/010, -22. The maximum 
power constraint applies to the transmit power of the multi-
antenna BS can be represented as:  

ℰ4tr5��1��2ℋ78 9 :;<= , (2) 

where 1∙2ℋ indicates the conjugate transpose operator.  
From Eq. (1), it can be observed that the reflecting surface 

is designed as a scatterer that can be reconfigured using the 
RIS phase shift matrix �, thereby influencing the impinging 

Fig. 1. RIS-Assisted Multiuser MISO System Model 
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signal-bearing information vector � �. The expression in (1) 
can be further expanded as: 

�� � ℎ�,�
 ��
���� � B ℎ�,�
 ��
�C�C

)

CD
,CE�
��� (3) 

where �C denotes the i-th column vector of the matrix Z. 
According to Eq. (3), the signal-to-interference-plus-

noise ratio (I�) of the u-th user can be represented as follows: 

Based on Eq. (4), the system's achievable sum rate (ℜ ), 
expressed in 1bps Hz⁄ 2, can be expressed as: 

where L is the transmission bandwidth.  
In this paper, we focus on the joint design of the 

beamforming and phase shift matrices at the BS and RIS, 
respectively, aiming to maximize the EE within the RIS-
based system. We define the performance of EE as the ratio 
between the system's achievable sum rate (bps) and its total 
power consumption (W): 

MM � ℜ
:NON<P

, (6) 

where :NON<P � Q:N � :RS � :�TS  such that Q shows the 
efficiency of transmit power and is considered constant in this 
work, while :RS  and :�TS  indicates the total static power 
consumption at the BS and RIS, respectively. 

A. Problem Formulation 

This paper aims to jointly optimize the BS beamforming 
matrix and the RIS phase shifts to maximize the EE of the 
RIS-based system. The considered optimization problem can 
be formulated as: 

maxX,Y MM (7a) 

s.t. Llog�11 � I�2 ≥ ℜ;C^,� (7b) 

tr 5ZZℋ7 9 :;<=  (7c) 

|∅!| � 1, ∀!� 1,2, ⋯ , � (7d) 

The ℜ;C^,�  represents the user's individual bit rate. 

Furthermore, constraint (7c) ensures that the BS transmit 
power stays below the maximum threshold value :;<= . 
Constraint (7d) reflects that each RIS element can provide a 
phase shift without amplifying the incoming signal.  

Solving the optimization problem defined in (7) is 
particularly difficult due to its NP-hard complexity. 
Conventional optimization methods face challenges in 
solving it, especially due to the coupling between RIS phase 
shifts � and BS beamforming matrix �. Some classic DRL 
algorithms (e.g., DQN [22] and DDPG [23]) have been 
previously applied to overcome this issue but were able only 

to achieve suboptimal local solutions.  
To overcome this limitation, we devise a novel PPO-

based DRL methodology that leverages a clipped objective 
function to solve the considered problem efficiently. 

III.  PPO-BASED JOINT OPTIMIZATION 

In this section, we propose a PPO-based methodology to 
jointly optimize beamforming (�) and phase shifts (�). We 
first formulate the problem using the Markov decision 
process (MDP), which consists of state space, action space, 
transition probability, and reward function. After that, we 
present the proposed PPO mechanism and strategy. 

A. MDP Formulation 

We aim to develop an updated policy that enables 
beamforming at the BS and phase shifting at the RIS. The 
policy should execute optimal actions to maximize the long-
term reward function by efficiently updating parameters 
based on environmental observations. The agent acts as a 
central controller for the BS and RIS, with the capability to 
gather instantaneous channel information (i.e., �
 and ℎ�,�) 

at each time step b. The agent's action optimizes variables 
(i.e., beamforming � and phase shift �) while maximizing 
the objective function by identifying a long-term reward 
function. Thus, the essential elements of the MDP for this 
work are defined as: 
a) Action Space: At each time step b , the action space is 
constructed to find the transmit beamforming � and the phase 
shifts �. The aim is to find the optimal values that can direct 
the signal toward the legitimated users and avoid unnecessary 
interference. The action space can be represented as: 

�N �  ��N , �N�, (8) 

b) State Space: The state includes the channel information 

between the BS and RIS at time b − 1 (i.e., �
1Nd
2 ), the 

channel information between RIS and each u-th user at the 
time (i.e., ℎ�,�1efg2), and the action at time b − 1 1i.e., �1Nd
22, 

which can be expressed mathematically as:   

iN �  j�
1efg2 , ℎ�,
1efg2 ⋯ , ℎ�,�1efg2 , �1Nd
2k, (9) 

Notably, (8) and (9) involve real and imaginary components. 
However, we solely focus on the real values of these 
components since neural networks (NNs) can only process 
real numbers as input during construction. 
c) Reward: The objective of this work is to maximize the EE 
as per the formulated problem in (7). As such, we define the 
reward function as: 

lN � MM (10) 

B. Proximal Policy Optimization 

In this subsection, we analyze the appropriateness of PPO 
to solve the problem formulated in (7). PPO stands as a 
classical policy gradient (PG) algorithm in DRL that is 
known for its ability to make agents more stable in dynamic 
environments. The agent can handle new challenges by 
limiting the policy updates during each training step. 
Selecting the appropriate PG algorithm can be challenging 
due to its sensitivity to step size. PPO addresses this by 
allowing the objective function to adapt during training. 

I� � :�Nmℎ�,�
 ��
��m�

∑ :CNmℎ�,�
 ��
�Cm� � -�)CD
,CE�
 (4) 

ℜ � L ∑ log�11 � I�2)�D1 , (5) 



Generally, the policy op  of PPO takes into account the 

parameters of the state iN  and action �N , and operates 
independently of the value function op1iN , �N2. The policy 

parameter q is updated to increase the probability of the given 
action to optimize the objective function and improve the 
reward values. An NN takes the current state as input and 
outputs probabilities for each possible action.  

Furthermore, stochastic gradient ascent is employed to 
update the weights after optimizing a clipped surrogate 
objective (CSO) function to stabilize training. By utilizing the 
clipping operation, training time can be reduced by 
discarding unnecessary samples. Moreover, a policy's 
advantage function is employed to compare the future 
discounted rewards of a state and action with its value 
function r5i, �7N , where b � 1, ⋯ s  denotes each iteration 
time step.  

The mathematical representation of the objective function 
can be expressed as follows: 

t1q2 � uv~wp�ℛ1r2�, (11) 

where ℛ1r2 denotes the aggregate reward at each iteration, 

which can be calculated as ℛ1r2 � ∑ yN ∗ lN
ND{ , where yN 
and lN indicate the discount factor and instantaneous reward 
in step b, respectively. Furthermore, the policy parameter q is 
updated as: 

q ← q � }!∇pt1q2, (12) 

where }!  represents the learning rate.  
Based on the gradient ascent method, the gradient of (12) 

is calculated to determine the optimal parameters as follows: 

∇pt1q2 � uw� �∇p logw�1iN , �N2�w�1iN , �N2�, (13) 

where uw��⋯ �  represents the empirical estimate across a 

finite batch of data that switches between optimization and 
sampling. �w�  is the advantage function that can be used to 

reduce the variance and prevent the model from overfitting at 
each time step b, and can be represented as: 

�w�1iN , �N2 � �w�1iN , �N2 − �w�1iN2, (14) 

�w�1iN2 represents the value function that is obtained at the 

state iN  after executing the action �N . One disadvantage of 
conventional methods, such as DDPG, is the need to adjust 
step sizes constantly. If step sizes are not correctly set, the 
performance of the reward function can be highly impacted. 
As a result, these conventional methods are very sensitive to 
hyperparameters, which can lead to high policy gradient 
variances. As opposed to that, the PPO algorithm uses a CSO, 
which simplifies the algorithm's complexity by restricting 
policy updates to specific ranges over time. Our proposed 
PPO methodology is designed to avoid extensive weight 
updates by implementing the CSO as follows: 

where �N1q2 and � indicates the probability ratio and clip 

factor value, respectively, and  �N1qOP�2 � �w���� � 1iN , �N2. 

Using the probability ratio clipping technique ensures that 
two consecutive policies (i.e., the current policy if �N1q2 � 1 
or the previous policy, if 0 � �N1q2 � 1) have at least the 
minimum degree of similarity. Thus, by combining the value 
function error and the policy, the final objective of the 
proposed PPO-based approach can be formulated as follows: 

t���N 1q2 � uN jt�PC�N 1q2 − �
�N1q2 � ��uw�1iN2k (16) 

where �
, �� represents the controlling coefficients and �N1q2 
shows the square error loss between the value and target 
functions, respectively.  

To maintain the stability of (16), an advantage function is 
required, which is defined as: 

�N � lN � y�w�1iN�
2 − �w�1iN2, (17) 

where �w�1iN2 is the state value function following a policy 

o . In order to train the network policy, the four tuples 
��, �, ℛ, �� are stored in a mini-batch memory ℱ, which is 
then updated via gradient descent to maximize the reward 
value. 

C. Proposed PPO Framework 

This work aims to construct a PPO framework for 
optimizing the beamforming and phase shift matrices, which 
provides an effective means to compensate for the effects of 
large-scale path loss and shadowing. Once the target 
framework is constructed, it becomes feasible to 
systematically investigate the impact of path loss, shadowing, 
and user distribution.  

The target PPO agent, comprised of the BS and the RIS, 
should  gather information (i.e., �
 , and ℎ�,�2  from the 

environment. At each time step b, it observes the state iN and 
selects an action �N according to a policy o. During training, 
the PPO agent initializes all network parameters and then 
observes the current environment state.  

The proposed PPO-based approach, consisting of two 
(i.e., actor and critic) networks, is depicted in Fig. 2. On the 
one hand, the actor network is responsible for selecting 
actions based on the current policy. It takes the current state 
as input and generates a probability distribution over possible 
actions. This distribution guides the agent's decision-making 
process to maximize future rewards. On the other hand, the 
critic network incorporates the DQN concept to construct the 
NN. Moreover, the critic network generates discrete actions 
based on the Q-function, effectively designing the beamform- 

t�PC�N 1q2 � u�min��N1q2, �}����N1q2�, 1 − �,1 �
���N1qOP�2�, 

(15) 

Environment 

t�PC�N  

Replay Memory 

Critic NN 

Actor NN 

T tuples ��, �, ℛ, �� 

Fig. 2. Proposed PPO Framework 



 
ing at the BS and the phase shifting at the RIS. These 
networks are then trained, and rewards are obtained through 
environmental interactions.  

 Additionally, the policy undergoes iterative updates to 
maximize the agent's reward. By adjusting the estimation of 
the value function, an optimal policy o∗ that maximizes the 
expected reward can be derived from the objective function. 
This is achieved by dividing the current policy's probability 
ratio by the old policy's probability ratio. Furthermore, 
clipping surrogates ensures the current policy does not 
deviate excessively to prevent significant divergence from 
the obtained policy. The proposed PPO-based methodology 
to solve (7) is summarized in Algorithm 1. 

IV. PERFORMANCE EVALUATION 

 In this section, we present the simulation results of our 
proposed PPO-based algorithm for the RIS-assisted MU-

MISO system. The channel information (i.e., �
and  ℎ�,�&) 

are randomly generated following the Rayleigh distribution. 
The DNN parameters are updated using the Adam optimizer, 
and 3 hidden layers with 128, 128, and 64 neurons are 
considered for the proposed PPO framework. Furthermore, 
we use ReLU as an activation function. The considered 
system parameters and configuration parameters are listed in 
Table I.  

A. Benchmarking Schemes 

To benchmark the performance of our proposed PPO 
methodology, the following baseline schemes are considered: 

Table 1. System Parameters 

• DDPG: This scheme uses an off-policy approach, in 
which the policy remains independent of the agent's actions 
in a particular state.  

• Fractional Programming (FP): This is an iterative 
algorithm based on acquiring the full knowledge of the BS 
beamforming and the RIS phase-shift in advance. 

B. Convergence Analysis 

In order to demonstrate the effect of the proposed 
framework, we first examine the impact of the learning rate, 
which plays a crucial role in determining the stability and 
convergence of the learning process.  

 Fig. 3 plots the reward function  against the number of 
elapsed episodes at different learning rates, i.e., }! �
50.1, 0.01, 0.0017 . As shown in Fig. 3, on the one hand, 
higher learning rate values provide worse performance to the 
reward function. Lower learning rates achieve better 
performance but require a longer time to converge or do not 
converge within the considered episodes. In our case, }! �
0.001  strikes a good balance between improving reward 
performance and converging within the designated 
timeframe, and as such, it will be used in the next sections.  

C. Performance evaluation 

Fig. 4 plots the EE performance against different power 
levels for each of the considered approaches. Without loss of 
generality, we assume that � � � � �. As shown in Fig. 4, 
the EE performance monotonically increases for higher 
power values for all three schemes. As the power level 
increases, the proposed PPO-based approach outperforms the 
other two approaches by 15.8% and 34.2%, respectively. The 
improvement brought by PPO is due to the usage of the clip 
factor, which disregards irrelevant training samples and helps 

Algorithm 1 Proposed PPO-based Methodology for RIS-assisted MU- 

MISO systems. 

Input: Channel matrix �
 and channel vector ℎ�,2  

Output: Optimal action �∗ � 5�∗, �∗7  to maximize the objective 

function of (7) 

1: Initialize: Policy for PPO, o�, �w� and optimizer (ADAM) 

2: Initialize: Experience replay buffer ⅅ 

3: for episode ℮ � 1, … ¢, do 

4:    Obtain the initial state, i
 from the environment at the ℮N£ episode 

5:      for b � 1, … s, do 

6:        Following the old policy o����, take an action �N 

7:        Observe the next state iN�
 based on �N 

8:        Observe the obtained reward lN  

9:          Collect the value of � iN, �N, iN�
, lN � and store it in the experiece  

replay buffer 

10:       Update the policy parameter q using Eq. (12) 

11:       Calculate the gradient ∇pt1q2 using Eq. (13) 

12:       Calculate advantage function �N using Eq. (17) 

13:       return optimal action �∗ � 5�∗, �∗7 

14:    end for 

15:  end for 

Parameters Descriptions values 

- Noise power -104 dBm 

L Bandwidth 28 GHz 

:N Transmit power 30 dBm 

� Clip factor 0.2 

ℰ Total number of episodes 1000 

s Number of time steps 10000 

ⅅ Experience replay buffer 100000 

}! Learning rate 0.001 

:RS Dissipated power at BS 35dBm 

:�TS Dissipated power at RIS 10dBm 

¤ Updated rate  50,17 
ℱ Batch size 64 

Fig. 3. Impact of learning rate of the proposed PPO 

Fig. 4. EE performance vs power budget 



achieve higher EE. Moreover, the performance of EE starts 
to stabilize for all three approaches after the maximum power 
level crosses the threshold power level. This is because, once 
each algorithm reaches its optimal operational efficiency, 
there is no room for further optimization of resource 
allocation and power utilization. At that point, any further 
increase in power levels does not bring  much performance 
gain, causing the EE curves to become flat.   

Finally, we evaluate the sensitivity of the observed 
performance to the number of RIS elements in Fig. 5. We 
observe that the EE performance consistently improves with 
increasing RIS elements for all considered schemes. The 
proposed PPO-based methodology performs better than the 
considered benchmarks (i.e., FP and DDPG). On the one 
hand, as the number of RIS elements increases, FP requires 
more actions to explore to identify optimal policies. On the 
other hand, DDPG struggles with stability and convergence 
issues in high-dimensional action spaces. The proposed PPO 
approach overcomes these limits due to its ability to maintain 
a stable learning process and effectively handle large action 
spaces through its clipped objective function and adaptive 
step sizes. 

V. CONCLUSION 

In this paper, we formulate an energy efficiency (EE) 
maximization problem for RIS-assisted MU-MISO system. 
To efficiently solve the formulated problem, we leverage an 
advanced DRL framework, known as the proximal policy 
optimization (PPO), to jointly optimize the beamforming 
matrix and phase shifts at the BS and RIS, respectively. Based 
on an extensive simulation campaign, we evaluate the 
performance of the proposed PPO methodology against 
commonly used baselines (i.e., deep deterministic policy 
gradient (DDPG) and fractional programming (FP)). During 
training, the proposed PPO algorithm relies on a clipping 
surrogate method to limit policy updates, which achieves 
superior performance compared to the considered baseline 
algorithms. Thanks to its excellent generalization abilities, 
the PPO algorithm is shown to achieve up to 34.2% and 
15.8% higher EE compared to DDPG and FP, respectively. 
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