
Context, Composition, Automation, and Communication:

The C2AC Roadmap for Modeling and Simulation

ADELINDE M. UHRMACHER, University of Rostock, Rostock, Germany

PETER FRAZIER, Cornell University, Ithaca, United States

REINER HÄHNLE, TU Darmstadt, Darmstadt, Germany

FRANZISKA KLÜGL, Orebro universitet, Orebro, Sweden

FABIAN LORIG,Malmö universitet, Malmo, Sweden

BERTRAM LUDÄSCHER, University of Illinois Urbana–Champaign, Urbana, United States

LAURA NENZI, University of Trieste, Trieste, Italy

CRISTINA RUIZ-MARTIN, Carleton University, Ottawa, Canada

BERNHARD RUMPE, RWTH Aachen University, Aachen, Germany

CLAUDIA SZABO, The University of Adelaide, Adelaide, Australia

GABRIEL WAINER, Carleton University, Ottawa, Canada

PIA WILSDORF, Universitat Rostock, Rostock, Germany

Simulation has become, in many application areas, a sine qua non. Most recently, COVID-19 has underlined
the importance of simulation studies and limitations in current practices and methods. We identify four goals
of methodological work for addressing these limitations. The first is to provide better support for capturing,
representing, and evaluating the context of simulation studies, including research questions, assumptions,
requirements, and activities contributing to a simulation study. In addition, the composition of simulation
models and other simulation studies’ products must be supported beyond syntactical coherence, including
aspects of semantics and purpose, enabling their effective reuse. A higher degree of automating simulation
studies will contribute to more systematic, standardized simulation studies and their efficiency. Finally, it
is essential to invest increased effort into effectively communicating results and the processes involved in

A. M. Uhrmacher and P. Wilsdorf received funding from German Research Foundation (DFG) grant 320435134, “GrEASE—

Towards Generating and Executing Automatically Simulation Experiments.” C. Ruiz-Martin andG.Wainer received funding

from NSERC–Canada. F. Lorig received funding from the Wallenberg AI, Autonomous Systems and Software Program—

Humanities and Society (WASP-HS), which was funded by the Marianne and Marcus Wallenberg Foundation and the

Marcus and Amalia Wallenberg Foundation.
Authors’ Contact Information: Adelinde M. Uhrmacher, University of Rostock, Rostock, Mecklenburg-Vorpommern, Ger-

many; e-mail: adelinde.uhrmacher@uni-rostock.de; Peter Frazier, Cornell University, Ithaca, New York, United States;

e-mail: pf98@cornell.edu; Reiner Hähnle, TU Darmstadt, Darmstadt, Hessen, Germany; e-mail: haehnle@informatik.tu-

darmstadt.de; Franziska Klügl, Orebro universitet, Orebro, Örebro, Sweden; e-mail: franziska.klugl@oru.se; Fabian Lorig,

Malmö universitet, Malmo, Sweden; e-mail: fabian.lorig@mau.se; Bertram Ludäscher, University of Illinois Urbana–

Champaign, Urbana, Illinois, United States; e-mail: ludaesch@illinois.edu; Laura Nenzi, University of Trieste, Trieste, Friuli-

Venezia Giulia, Italy; e-mail: lnenzi@units.it; Cristina Ruiz-Martin, Carleton University, Ottawa, Ontario, Canada; e-mail:

cristinaruizmartin@sce.carleton.ca; Bernhard Rumpe, RWTHAachen University, Aachen, Nordrhein-Westfalen, Germany;

e-mail: rumpe@se-rwth.de; Claudia Szabo, The University of Adelaide, Adelaide, South Australia, Australia; e-mail: claudia.

szabo@adelaide.edu.au; Gabriel Wainer, Carleton University, Ottawa, Ontario, Canada; e-mail: gwainer@sce.carleton.ca;

Pia Wilsdorf, Universitat Rostock, Rostock, Mecklenburg-Vorpommern, Germany; e-mail: pia.wilsdorf@uni-rostock.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1558-1195/2024/08-ART23

https://doi.org/10.1145/3673226

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0001-5256-4682
HTTPS://ORCID.ORG/0000-0002-3501-3341
HTTPS://ORCID.ORG/0000-0001-8000-7613
HTTPS://ORCID.ORG/0000-0002-1470-6288
HTTPS://ORCID.ORG/0000-0002-8209-0921
HTTPS://ORCID.ORG/0000-0001-9140-936X
HTTPS://ORCID.ORG/0000-0003-2263-9342
HTTPS://ORCID.ORG/0000-0001-9525-2734
HTTPS://ORCID.ORG/0000-0002-2147-1966
HTTPS://ORCID.ORG/0000-0003-2501-1155
HTTPS://ORCID.ORG/0000-0003-3366-9184
HTTPS://ORCID.ORG/0000-0001-7447-6667
mailto:permissions@acm.org
https://doi.org/10.1145/3673226
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673226&domain=pdf&date_stamp=2024-08-13


23:2 A. M. Uhrmacher et al.

simulation studies to enable their use in research and decision making. These goals are not pursued indepen-
dently of each other, but they will benefit from and sometimes even rely on advances in other sub-fields. In
this article, we explore the basis and interdependencies evident in current research and practice and delineate
future research directions based on these considerations.

CCS Concepts: • Computing methodologies→Modeling and simulation;

Additional KeyWords and Phrases: Modeling, simulation, state of the art, open challenges, reuse, composition,
communication, reproducibility, automation, intelligent modeling and simulation lifecycle

ACM Reference Format:

Adelinde M. Uhrmacher, Peter Frazier, Reiner Hähnle, Franziska Klügl, Fabian Lorig, Bertram Ludäscher,
Laura Nenzi, Cristina Ruiz-Martin, Bernhard Rumpe, Claudia Szabo, Gabriel Wainer, and Pia Wilsdorf. 2024.
Context, Composition, Automation, and Communication: The C2AC Roadmap for Modeling and Simulation.
ACM Trans. Model. Comput. Simul. 34, 4, Article 23 (August 2024), 51 pages. https://doi.org/10.1145/3673226

1 Introduction

Simulation has become, in many areas, a sine qua non. Simulation, empirical evaluation, and analyt-
ical reasoning are regarded as the three pillars of science [318]. Simulation studies rely on soundly
conducting and effectively intertwining steps of analyzing the system of interest, developing and
refining the simulation model, executing diverse simulation experiments, and interpreting the (in-
termediate) results [19]. In this process, starting from the research question and the system of
interest, inputs are selected and modified, assumptions and simplifications are revised in choosing
a suitable abstraction for the model, requirements referring to outputs are specified and adapted,
and data sources identified that might be used as input or to calibrate or validate the simulation
model until a useful approximation has been achieved [170, 240] (Figure 1). Thus, each step is em-
powered and constrained by the methods used, as well as the knowledge and experiences of the
modeler. In addition to the modeler—possibly joined by data analysts, programmers, and visual-
ization experts—domain experts and decision makers might become involved at various points.
Recently, the COVID-19 pandemic has underlined the importance of simulation studies [183].

Simulations were widely used during the pandemic to make forecasts [263] and support decisions
made by governments [28, 102], hospitals [108], industry [141], and universities [105]. Simulations
revealed some current limitations in conducting such studies [90, 118], including how quickly
useful models can be developed, how the results can be interpreted, and how results and crucial
aspects of simulation studies can be communicated to domain experts, decision makers, and the
general public [319].
To address these limitations in conducting and communicating simulation studies, further

methodological research is needed in the following areas:

(1) To ensure that simulation studies come with context: Context is crucial for helping modelers
and domain experts interpret results and reuse simulation products. It is equally important
to explain simulation results to decision makers confidently.

(2) To improve model composition and reuse: Model composition and reuse avoid buildingmodels
from scratch. This saves time and, in addition, improves analysis quality because reuse is an
important incentive for designing high-quality models.

(3) To increase simulation automation: Central artifacts of a simulation study, such as simulation
models and experiments, may be generated automatically. In addition, conducting and docu-
menting the simulation studywill benefit from intelligent guidance and support. Automation
may save time for the modeler and contribute to the overall quality of simulation studies.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1145/3673226


Context, Composition, Automation, and Communication 23:3

Fig. 1. The roadmap proposes to support the entire lifecycle of modeling and simulation by (1) enriching con-
text information beyond the conceptual model that can be deployed for developing the simulation model,
executing simulation experiments, and interpreting results (Section 3); (2) providing means for composition
and reuse of the different artifacts of the simulation study, such as the simulation model, simulation experi-
ments, or behavioral requirements, as well as the needed software and methods (Section 4); (3) automating
large portions of the modeling and simulation cycle, also by exploiting recent developments in artificial in-
telligence (Section 5); and (4) fine-tuning the representation of results, models, and activities involved in the
simulation study to the mental models and needs of the different users and stakeholders.

(4) To facilitate communication: This refers to communications between the modeler and
domain expert and between the modeler and decision makers. Problems in communication
appear to be a central limiting factor in effectively using simulation for decisions. Better
communication would also reduce the time required to produce impact.

Any progress toward these goals relies largely on an unambiguous and accessible represen-
tation of the simulation study, its activities, sources, and products, and a goal-directed and

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:4 A. M. Uhrmacher et al.

Table 1. Approaches for Specifying Simulation Models, Simulation Experiments,
and Behavioral Requirements

Simulation Models Simulation Experiments Requirements

Formalisms DEVS [322–324], Stochastic
Petri Nets [18], Stochastic
process algebras [131]

(DEVS) [84], DAGs [83] (Spatio-)Temporal logic
[26, 204]

External DSLs SysML [143, 311],
BioNetGen [38]

SED-ML [306], MDE-based
approach [315], BPMN [66]

FITS [182], BPSL [199]

Internal DSLs, APIs Repast [209], ABS
[149, 154]

SESSL [310], NLRX [252] –

situation-specific processing of this knowledge. Therefore, in the following section, we will first
look at the current state of the art in terms of how simulation models (with a focus on discrete
and stochastic models), simulation experiments, and behavioral requirements are specified.
These considerations will be revisited when scrutinizing promising research avenues, including
identifying methodological steps and community efforts toward achieving the identified four
goals. Thereby, also interdependencies between the goals will be revealed and the role that
suitable representations as given in the background play to enable progress. This article builds
upon discussions during the Dagstuhl seminar “Computer Science Methods for Effective and
Sustainable Simulation Studies (Dagstuhl Seminar 22401)” [58, 288].

2 State of the Art in Formal Approaches to Modeling and Simulation

Modeling means structuring and capturing knowledge about a given system in a suitably abstract
manner. With the separation between the simulation model and executing the simulation model,
the simulation model becomes explicit, accessible, and interpretable (possibly by different simula-
tors) [325]. The value of this separation of concerns and an explicitly and formally specified sim-
ulation model is undisputed and reflected in the development of diverse formalisms [18, 131, 325],
by pragmatically augmented and extended general modeling languages, such as UML and SysML
[45, 104, 106, 143, 245, 311], and by the development of application-specific modeling languages
[38, 48, 127, 237, 245] (Table 1).

The credibility crisis in simulation [222] and the desire to promote the reproduction of compu-
tational results [196] strengthened the case for the accessibility of simulation models and code.
In addition, they moved the explicit specification of simulation experiments into the focus of in-
terest [97, 114, 252, 306], and motivated reporting and documentation guidelines for simulation
experiments [305] as well as for entire simulation studies [115, 201, 234]. Increasingly, behavioral
requirements, such as expectations referring to simulation model outputs, are expressed formally
in temporal logic or a domain-specific language (DSL) to be checkable by (statistical) model
checking [5, 172] or customized algorithms [182]. Many specification languages come with a for-
mal semantics. In Table 1, we list some approaches used for simulation models, simulation experi-
ments, and behavioral requirements, which will be discussed in greater detail in the following. It
should be noted that the distinction between formalism and DSL is not that crisp. However, with
DSLs, we refer to approaches and developments that consider the concrete syntax and questions
referring to the realization as a usable and comfortable language right from the beginning, whereas
formalisms concentrate more on puristic core concepts.

2.1 Formalisms and Theoretical Approaches

Formalisms allow an implementation-independent specification of simulation models and other
entities of relevance in the simulation lifecycle, such as simulation experiments or (behavioral)

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:5

requirements (see Table 1). Formalisms cater to broad applicability. Their classification happens
typically at the level of an entire system class such as discrete stepwise, discrete event based, con-
tinuous, or hybrid systems modeling [325]. We focus on modeling and simulating discrete event
(stochastic) systems in the following.

2.1.1 Formalisms for Simulation Models. Several formalisms were developed to describe simu-
lation models of discrete event systems, including DEVS (Discrete EVent Systems Specification)
[325], stochastic Petri nets [18], and processes [131].
DEVS is a formalism for discrete event modeling that allows the modeler to define hierarchical

modular models. The formalism has been inspired by systems theory [33], which emphasizes a
clear boundary between a system and its environment via inputs and outputs. A system decides
how to react to inputs in terms of its state changes and which events to produce, and a system
may be composed of interacting sub-systems. This perception results in DEVS’s modular modeling
approach of loosely coupled components that can be composed to form model hierarchies. Such a
design facilitates model reuse and reduces the effort required for development and testing.
In contrast to DEVS, Petri nets interpret a system as a network of dependent entities and causally

interrelated concurrent processes. Petri nets form directed, bipartite graphs, with places and tran-
sitions (forming the nodes) connected by directed edges. In contrast to DEVS, whose time model
is continuous so that events can occur at arbitrary times, in the original formulation of Petri nets,
the update of a state (due to the firing of a transition) occurs without an explicit notion of time.
However, extensions exist, such as stochastic Petri nets based on continuous time [18].
Likewise, process algebras, such as the π -calculus, targeting the modeling and analysis of con-

current processes [198], originally lacked a notion of time and later were extended to describe
dynamic systems as communicating, stochastic concurrent processes in continuous time [233]. In
contrast to DEVS or Petri nets, the interaction structure of the π -calculus is not fixed but dynamic:
new processes and new channels for letting processes interact are frequently generated.
Whereas the syntax in which a model is written is quite different in stochastic Petri nets and sto-

chastic π -calculus, the processes (i.e., the semantics) in either case are continuous-timeMarkov

chains (CTMCs). Thus, in contrast to DEVS, they are based on stochastic semantics. All three
formalisms clearly separate model syntax, semantics, and implementation; the same model can be
implemented on different platforms supporting reliability and correctness (see Section 2.2.1). An
explicitly defined semantics enables verifying simulation algorithms (e.g., [228]).

Specifications in the preceding formalisms may not be succinct or too limited for specific model
classes. This has resulted in further extensions of the formalisms, such as the introduction of col-
ored tokens in the case of (stochastic) Petri nets [145] and attributes in the (stochastic) π -calculus
[148]. Similarly, in DEVS, we find various extensions, for example, to capture variable model struc-
tures [24].

2.1.2 Formalisms for Simulation Experiments. A simulation can be interpreted as an experiment
performed with a model and an experiment as “the process of extracting data from a system by
exerting it through its inputs” [62, p.4]. Therefore, in principle, the preceding formalisms can also
be used to model this process and thus specify experiments. Already in the 1970s, Zeigler [323]
emphasized the role of explicitly defining experiments conducted with a model by introducing
the concept of experimental frame. An experimental frame is intended to specify the conditions
under which a system is observed or experimented with [325]. Experimental frames consist of
three model components: a generator that is responsible for generating input (traces), a transducer
that analyzes the simulation outputs (e.g., conducting summary statistics), and the acceptor that
decides whether the experimental conditions are met. DEVS has not been designed (nor have the
other formalisms mentioned previously) for specifying simulation experiments, such as sensitivity

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:6 A. M. Uhrmacher et al.

analysis or simulation-based optimization. The use of formalizing a simulation experiment as a
dynamic system might be limited, but with experimental frames, crucial ingredients of simulation
experiments, such as scanning the parameter space, monitoring the output, and properties that
need to be checked, have been identified, and later work could build upon it [132, 286, 293].
In the quest for formalisms used for specifying simulation experiments, applying workflows for

specifying and conducting simulation experiments requires further consideration [114, 218, 238].
Scientific workflows aim to accelerate scientific discovery in various ways, such as by providing
workflow automation, scaling, abstraction, and provenance support [74] (see also Section 3). The
most basic model treats a scientific workflow as a directed acyclic graph (DAG) of computational
tasks and their dependencies—that is, a subsequent task can only be executed once all upstream
tasks it depends on have been completed. More advanced computational models view workflows
as process networks [151], synchronized by the dataflow. Implementations of such process networks
employ FIFO queues on input ports, resulting in a stream-based execution model [184, 213].

2.1.3 Formalisms for Specifying Requirements. The calibration and validation of simulation
models imply the execution of various (types) of simulation experiments [174]. Thereby, behav-
ioral requirements play a central role. Often, they are defined in terms of data that are supposed to
be replicated by the simulation or in terms of formally specified properties that the simulation out-
put is expected to fulfill. The latter has received increasing attention during the past two decades
[29]. A relevant and frequently used formalism to describe requirements relating to expected sim-
ulation results is the class of temporal logics [70]such as LTL (Linear-Time Temporal Logic) orSTL
(Signal-Temporal Logic) [86]. Temporal logics are modal logics with specific temporal operators
that permit the specification of properties over time—for example, the always operator is a univer-
sal quantifier used to describe that a specification holds at all time instances, and the eventually
operator is used to describe that a specification holds at some point in the future. Describing sub-
sequent events using the until operator is also possible. There are many extensions to specify
more refined behavior. SSTL (Signal Spatio-Temporal Logic) [205] and STREL (Spatio-Temporal
Reach and Escape Logic) are extensions of STL with certain spatial operators and permit to de-
scribe complex emergent spatio-temporal behavior as the formation of patterns. STL-∗ [49] and
TFL (Time-Frequency Logic) [87] extend STL with means to express oscillatory behavior. TSTL
(Three-valued Spatio-Temporal Logic) enriches SSTL with a three-valued semantics. In this logic,
statements about spatio-temporal trajectories can be true, false, and unknown, accounting for the
simulations’ intrinsic uncertainty and statistical analysis [299]. It should be noted that these be-
havioral requirements are only one type of requirement that simulation studies face [19, 240].

2.2 Domain-Specific Languages

DSLs, in contrast to General-purpose Programming Languages (GPLs), are designed for a
specific application domain [103]. Similar to formalisms, they might be applied to simulation mod-
els and other artifacts of the modeling and simulation lifecycle (see Table 1). External and internal
DSLs are distinguished. An external DSL is parsed independently of the host general-purpose lan-
guage, so the model is explicitly accessible as a syntax tree. External DSLs have their own custom
syntax and parser to process them. In contrast, internal DSLs are embedded within a GPL—that is,
they are a kind of API designed to exhibit a natural reading flow: the host language is used in a
way that gives the feel of a specific language [103], are Turing-complete, and typically are more
difficult to analyze than an external DSL.

2.2.1 Domain-Specific Languages for Modeling. Modeling languages aim for reuse, better un-
derstanding, and communicative abilities of the underlying model, and thus better sustainabil-
ity of the model and simulation results. Furthermore, modeling languages can be equipped with

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:7

sophisticated static analysis techniques for specific properties, giving developers quick feedback
and thus considerably increasing efficiency during development and simulation. DSLs for mod-
eling map the formalisms discussed in Section 2.1 into specific languages, including a concrete
syntax, to be executed by simulation algorithms according to the formalism’s semantics. They fea-
ture various convenient domain- and problem-specific modeling constructs to simplify modeling
tasks.
DSL-based simulations have the advantage that the design of DSLs promotes a clear separation

of concern between themodel and execution engine. This allows themodeler to focus on themodel
and, since the syntax and semantics of the DSL are given explicitly, to analyze the model for certain
properties—for example, by model checking techniques [70] or a structural comparison of data
structures [190]. This is particularly the case for external domain-specific modeling languages.
The design of models based on DSLs stands in contrast to highly optimized general-purpose

simulation programs, in which a model and its execution are encoded together. Due to a lack of
separation of concern, the model is not easily accessible and reusable either by a human modeler
or by another inference program, for example, to analyze the model statically. In addition, the
approach results in other problems, as the simulation engine has not been verified independently
of the model. Both can threaten the credibility and validity of computational results [196].

The Unified Modeling Language (UML) [45, 104, 244, 245] has been designed as a standard-
ized modeling language consisting of 14 different explicit modeling sub-languages for different as-
pects of software systems. UML’s class diagrams and object diagrams focus on structure, whereas
statecharts and activity diagrams focus on behavior. Semantics has been defined (e.g., in the work
of Evans et al. [96]) to make UML precise [95], but due to the general use of UML, no generally
accepted semantics exists. Typically, specific profiles of UML are used if a model is to be developed
to improve the system understanding via simulation. These tools synthesize executable simulation
code from UML models, typically connected with a core simulation framework. Bocciarelli et al.
[44] discuss UML and, in a broader sense, MBSE approaches to simulation and their merits and
drawbacks.
The SystemsModeling Language (SysML) is based onUML for systems engineering, and thus

both languages share many common modeling concepts. SysML has received widespread use, for
example, in mechanical engineering [60, 106, 311]. SysML provides additional diagrams to model
distributed processes and components with a static structure. SysML also supports discrete event
simulation as well as continuous systems simulation. Today, SysML is mainly used for higher-level
systems definitions, including evaluating design alternatives, calculating what-if scenarios, and
conducting requirements compliance analysis, including necessary quality assurances and similar
engineering tasks. Many of these are related to simulation [206, 283]. Because of the increasing
necessity to simulate engineered systems virtually before the first physical prototypes emerge,
it can be assumed that simulation using DSLs (e.g., based on SysML [68]) will become a major
technique in engineering.
The syntax and semantics of a DSL reflect the primary modeling metaphor(s) and needs of the

application domain or community. This becomes particularly evident if a DSL for modeling focuses
on a particular application domain with a well-established modeling metaphor, such as studying
gene-regulatory or biochemical systems. Consequently, the syntax of various DSLs for biochemi-
cal systems that have been developed over the past two decades builds on the reaction (or rule-)
metaphor [98]. The semantics of these DSLs vary between continuous system semantics, trans-
forming a set of reactions to a set of ordinary differential equations (ODEs) to be solved by nu-
merical integration, or taking the stochasticity of the system into account by executing the model
by stochastic simulation algorithms (SSAs) [135] (and thus interpreting the model as a CTMC
[127]), or, even considering the spatial heterogeneity, interpreting reactions as collisions between

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:8 A. M. Uhrmacher et al.

Fig. 2. Model code snippet from a rule-based Repast implementation of an agent-based simple epidemic
(susceptible, infected, recovered) model. An adaptation layer enables a compact description of agent-based
CTMC models in a style that resembles rule-based languages and allows the execution of agents in Repast
Simphony [309]. The addRule method is provided by an abstract Agent class. It is called in the construc-
tor of a concrete agent class. For the definition of the condition, waiting-time distribution, and effect, the
anonymous functions of Java 8 are exploited.

particles in space [39]. Whereas switching between spatial and non-spatial semantics requires ad-
ditional information (e.g., about the diffusion constant or size of reactants), the switching between
ODE-based and SSA execution (or a combination thereof) is supported to occur transparently to
the simulation model by various simulation tools in the field. This includes established modeling
and simulation tools such as COPASI [135] and research tools such as BioPepa [67]. BioPepa is a
DSL derived from the process algebra Pepa [112] and has been equipped with different types of
semantics to be executed as a set of ODEs or by SSAs, depending on the biochemical system being
investigated.
The role of internal DSLs for modeling grows, particularly if the subject of modeling is a hardly

constrained class of models that can easily be mapped, for example, to an object-oriented GPL.
This is the case in agent-based [2] and DEVS-based modeling for simulation [303, 326]. Internal or
embedded DSLs allow us to use all of the features of the host language, including inheritance and
type systems, and to program, for example, agents, as the modeler likes [187, 210].
Selecting a suitable host language is a crucial first step in designing an internal DSL. The ease

of realizing a modeling language as an internal DSL depends on how the programming paradigm
of the host language and the offered features fit the requirements of the envisioned DSL and how
widely used the host language is; one advantage of an internal DSL is not to learn a new language.
For example, the spread of the Java language in the late 1990s, with its object-oriented program-
ming paradigm and its convenient features such as simplicity, platform independence, type system,
reflection, and support for distributed execution, has led to the development of various [137, 193],
particularly agent-based [187, 210], modeling and simulation tools. Based on these tools, special-
ized internal DSLs can be created tailored to specific models’ sub-classes, such as for modeling
continuous-time agent-based models with CTMC semantics (Figure 2). In these cases where an
object-oriented programming paradigm is adopted for modeling and simulation, the use of UML
diagrams, particularly the class, sequence, state, and activity diagrams, is advocated, for exam-
ple, during development and for the documentation of agent-based simulation models [32], or for
conceptual modeling of discrete event systems [302].
New programming languages or paradigms with compelling features (either for modeling or

simulation) always spur interest in the modeling and simulation community.Active objects (AO)
[80, 81] are such a programming paradigm. Its characteristic feature is that tasks are executed on
objects, each with exclusive resource access to the object’s memory and processor. Consequently,

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:9

no interleaving occurs at the statement level but only at the task level. Suspension and resump-
tion of tasks are governed by guards that watch for time- or data-driven events. AO languages are
designed to scale to thousands of objects [256]. They constitute a language paradigm that permits
event-driven simulation at scale while abstracting away from low-level concurrency. Language
features such as strong data encapsulation, modules, and type safety support modular rule design
similar to that shown in Figure 2. AOs have been used to simulate complex systems, such as the
safety mechanisms of railway operations [153], high-performance computing interconnection net-
works [93], or container frameworks [287]. The AO paradigm can be extended to the simulation
of real-time [150, 159, 267] and hybrid [154] systems. An interesting aspect of AO languages is
that their explicit synchronization enables advanced static analysis techniques, including deduc-
tive verification [85, 152], deadlock detection [111] or worst-case resource analysis [8]. Specifically,
the AO language ABS [149] was designed with the capability of analysis in mind [52]. Some AO
languages, such as ABS [149], are independently executable from any host language, whereas oth-
ers are conceived as libraries [129]. Nevertheless, AO languages can be classified as internal DSLs
in the present setting because they build upon an object-oriented or object-based core language.
The appeal of a GPL as a host language for designing an internal DSL for modeling (and simu-

lation) depends not only on features related to the ease of modeling and the execution efficiency
but also on features that are related to the execution and analysis of simulation experiments—that
is, how rich the ecosystem is that a potential host language offers for conducting and analyzing a
wide variety of simulation experiments. Thus, also due to Python’s widespread use, low threshold,
and particularly libraries offered for data sciences, several Python-based modeling and simulation
tools have been developed in the past decade [192], including implementations of Petri nets [295]
and DEVS-based simulation tools [294].

2.2.2 DSLs for Simulation Experiments. The increasing awareness about the role of simulation
experiments in developing simulation models and conducting simulation studies, on the one hand,
and about the credibility crisis of simulation, on the other hand, pushed the development of in-
ternal and external DSLs for specifying simulation experiments. An example of an internal DSL
is SESSL: the Simulation Experiment Specification via a Scala Layer [97]. It relies on bindings to
simulation tools and experiment libraries to offer a wide range of simulation experiments [310],
including parameter scans, sensitivity analysis, simulation-based optimization, bifurcation analy-
sis, and statistical model checking (SMC). Another example is NLRX, a package embedded in R
that supports the specification and execution of various experiments with NetLogo models [252].
In addition, GPLs aimed at data sciences, such as Python, or computational science, such as

Julia, increasingly support the specification of simulation experiments via libraries that offer ex-
periment design, sensitivity analysis, and optimizationmethods [88, 226]. These libraries also show
the fluent transition between internal DSLs and APIs [103]. The advantage of internal DSLs is their
flexibility and the range of tools that are available for GPL. If combined with a thorough design
of the DSL, internal DSLs enable an executable and, at the same time, highly succinct and read-
able specification of simulation experiments and help to establish those as first-class objects of
simulation studies.
One of the drawbacks of using an internal DSL for specifying simulation experiments is that

automatically interpreting, adapting, and reusing these scripts requires significant effort [223].
This is the virtue of external DSLs. During parsing, the crucial parts of the simulation experiment
specifications can be easily identified and accessed. SED-ML (Simulation Experiment Description
Markup Language) is an external DSL, an XML-based format in which simulation experiments
can be encoded [306]. SED-ML is a community standard introduced to facilitate the reuse of sim-
ulation experiments across simulation tools (Section 4). In RASE (Reuse and Adapt framework for

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:10 A. M. Uhrmacher et al.

Simulation Experiments [315]), the simulation experiments are also encoded in a tool-independent
format, namely, JSON [316]. In SED-ML and RASE, using ontologies referring to the methods used,
such as specific simulation algorithms or optimization methods, is crucial (see Section 4).
Whereas the preceding DSLs have been explicitly designed for specifying simulation experi-

ments, workflow languages are also applicable in principle. The business processmodeling commu-
nity has embraced BPMN [66] as a control flow oriented language suitable for business workflow
applications. The scientific workflow community, however, has different requirements due to the
data-intensive and compute-intensive nature of computational science applications and thus has
not embraced business workflow models and standards such as BPMN or BPEL [186]. Instead, spe-
cific dataflow-oriented languages and models have been developed, sometimes with specialized
features to aid workflow design and comprehension (e.g., COMAD [194] for collection-oriented
modeling and design, see also the work of Zinn et al. [329]). Subsequently, CWL (Common Work-
flow Language) for computational data analysis workflows was defined [73]. However, control
structures play a role in simulation, and consequently, adaptations of BPEL have been successfully
applied for specifying and conducting simulation experiments [114].

2.2.3 DSLs for Requirements. Another area where DSLs are important is in specifying require-
ments. Formally specified behavioral requirements (e.g., in a logic-based language) can be tested
automatically. This applies to deterministic models [216] as well as to stochastic models [5]. To
specify behavioral requirements, such as desirable properties of simulation output, variants of
temporal logics are used as a basis (see Section 2.1.3), as are custom-built languages for specifying
properties or hypotheses of the simulationmodel [182, 199, 317]. The latter efforts aim at providing
languages tailored to expressing requirements or hypotheses by a modeler in “a natural manner.”
Thus, the usability of the languages by users without a background in computer science propels
research on these languages, even though they may forestall analysis capabilities.
Using a logic-based language (with formal syntax and model-theoretic semantics) can decrease

the possibility of creating incompatible requirements and help to standardize their definition. In
addition, establishedmodel checking techniques permit one to automatically verify the satisfaction
of expressions in a logic language, avoiding ad hoc creation of property test code or even manual
inspection of simulations.
In a stochastic setting, probabilistic model checking is a well-established verification technique

that can compute the probability that a property expressed in temporal logic may be satisfied by
a given stochastic process. However, standard model checking techniques [167] are not feasible
for large-scale stochastic systems. In this case, the standard procedure is to use SMC [5, 172]. The
underlying idea is to approximate the probability of satisfaction of a given formula statistically uti-
lizing simulation, checking only a subset of the whole trajectory space, with usually a guarantee of
asymptotic correctness. There are several approaches: qualitative SMC (based on hypothesis test-
ing), quantitative SMC (based on confidence intervals), Bayesian SMC, and SMC for rare events.
See other works [5, 172] for surveys on the topic. SMC is an efficient technique when the model is
fully specified. Still, it is computationally too expensive to analyze a model with uncertain param-
eters if we want to study some parameters or input space of the model. A method to overcome this
situation is smMC (smoothed model checking) [46]. Another consideration when using a logic-
based approach in modeling and simulation is that formal methods can be fashioned to infer the
requirements directly and automatically for trajectories. Mining logic specifications from data is
a promising and challenging new line of research [27], which also circumvents the need for the
modeler to specify the logic formulas.
Behavioral requirements are only one type of requirement, although likely the most obvious

one relating to modeling and simulation. Several UML sub-languages support abstractly captur-
ing structural, behavioral, and interaction requirements. With its Object Constraint Language

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:11

(OCL), UML provides this textual logic language OCL, which is roughly an executable subset of
first-order logic with operations for container structures and associations that can be used to de-
fine properties such as requirements, invariants, and pre- or post-conditions. It is useful to provide
mechanisms for underspecification [217] in the language in various forms to be able to capture
known behavior but abstract away from unknown or irrelevant details. This allows iterative re-
finement during a development process [227] and non-deterministic and probabilistic simulations.
In the context of software product lines (SPLs), where variability management is considered a
key aspect, requirements modeling is of central importance. It has motivated the development of a
larger number of requirement modeling languages [261]. The potential of this perception and the
developed languages still wait to be exploited for simulation studies, particularly in the context of
model composition and reuse (see Section 4).

2.2.4 The Role of Metamodeling in DSLs. When developing an external DSL for simulation pur-
poses, defining the language in its constituents is necessary [72]. There are three main approaches
to developing a DSL: from scratch; through reuse and variant building of a previously given DSL
[63]; and via customization and adaptation of a more general modeling language, such as SysML.
For textual languages, one often uses grammar to describe concrete and abstract syntax [134]. For
diagrammatic languages, metamodeling [15, 69, 162, 330] is the best option to define abstract syn-
tax as an essential core of a modeling language. Metamodeling became prominent with the MOF
(Meta Object Facility) [212] and was first used as the syntactic foundation for the UML.

Metamodeling can be used to define a language’s structure and various additional ingredients,
such as internal data types, default values, pre-defined functions, and simulation schedulers. These
forms of language definitions support a compact and human-readable specification of simulation
models, simulation experiments, or requirements, whereas if an appropriate code generator is
available, the specifications can be directly mapped to executable simulation models, simulation
experiments, or algorithms that analyze the results. For instance, a metamodel specification may
be used to map models in SysML to models for a specific DEVS simulator [155], or models may be
mapped from BPNM to DEVS, then from DEVS to executable Java code [64]. For that purpose, it
helps if the source language, here SysML, was extended by DEVS-specific constructs to simplify
the mapping [68].

In multi-formalism or multi-paradigm modeling, a complex system’s components are expressed
through different formalisms, such as Petri nets, statecharts, and ODEs [82, 253]. The various for-
malisms are represented using an abstract syntax graph—that is, a “model of formalism.” Via graph
grammars, their metamodels can be transformed into a common formalism, and code can be gen-
erated for simulation execution and further analysis. With respect to simulation experiments, the
model-driven architecture (including metamodels) [195] has been applied to the generation of
experiment designs [281] and, more generally, for specifying and generating different types of
simulation experiments in a back end independent format, such as JSON [315].

More widespread use of model-driven engineering of simulation studies as a whole would in-
crease the reusability and self-explainability of models, their requirements and assumptions, simu-
lation experiments, and input and output data and allow further analysis techniques. For example,
Zschaler and Polack [331] propose amodel-driven approach based on a family of DSLs. As a central
feature, they include a language for fitness-for-purpose argumentation, adapted from GSN (Goal
Structuring Notation) [158]. They argue that this combination of languages allows for building
trustworthy and scientifically robust simulation models.

3 Supporting Context within Simulation Studies

Context relates to any important information to conduct and interpret a simulation study. Col-
lecting, revising, and representing suitable context information is also at the heart of conceptual

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:12 A. M. Uhrmacher et al.

modeling as defined in the work of Robinson [239]. It should be noted that in contrast to other
areas of computer science, such as software engineering, no agreed-upon definition exists for the
conceptual model. However, its importance is undisputed in the modeling and simulation field
[107, 241]. Definitions range from defining the conceptual model as an abstract description of
the simulation model, for example, exploiting qualitative modeling methods such as UML (see
Section 2), to forming a conglomerate of all information possibly helpful in conducting and con-
sequently, interpreting the results of a simulation study [314]. The conceptual model in the work
of Robinson [239] subsumes research questions; requirements and general project objectives re-
garding, for example, visualization or simulation speed; model inputs, outputs, as well as the data
used; scope, level of detail, assumptions, and simplifications; entities, equations (or rules) referring
to the system and its dynamics to be modeled, and which modeling approach to use; and, finally,
justifications for each design choice. In addition to the conceptual model, simulation experiments
that have been performed with the model for calibration, validation, or analysis hold important
information to interpret and reuse the results of a simulation study and consequently belong to
its context as well. Similarly, previous versions of a simulation model and how they have been
refined form valuable information about a simulation study [122]. Both emphasize a more process-
oriented view of the context—that is, how the different sources and (sub-)products are interrelated
and have been used to generate the (final) results.

3.1 State of the Art

To identify what is typically considered information important to interpret a simulation study,
we will take a closer look at documentation standards to move from there to a process-oriented
view of context and supporting methods that can be exploited for representing and processing this
information, such as provenance standards and workflows.

3.1.1 Reporting Guidelines for Simulation Studies. The wish to document information about
a simulation study that helps to reproduce, interpret, and reuse its results has led to various re-
porting guidelines. These take the particular demands of the type of simulation model and experi-
ments being executed into account, such as systems dynamics [234], agent-basedmodels [116, 117],
or finite element methods [94]. In addition, they may build on sources and conventions of the
application field, such as ontologies [165, 305]. Independently of the type of simulation model,
specific context information about a simulation study, such as research questions, assumptions,
data used, and simulation experiments, is an intrinsic part of its documentation. Documentation
guidelines—examples are TRACE (TRAnsparent and Comprehensive model Evaluation) [115] and
STRESS (Strengthening the Reporting of Empirical Simulation Studies) [201]—aim at documenting
all of the essential steps, sources, and products of a modeling and simulation lifecycle [19]. The
checklist of TRACE, for example, comprises problem formulation, model description, data evalua-
tion, conceptual model evaluation, implementation, verification, model output verification, model
analysis, and model corroboration.

3.1.2 Provenance and Provenance Standards. Reporting guidelines concern provenance—that is,
providing “information about entities, activities, and people involved in producing a piece of data
or thing” [202]. However, reporting guidelines typically refer to the final results of simulation
studies, not the processes by which those have been generated, including variations of the dif-
ferent artifacts or unsuccessful attempts. Provenance opens up a specific view on context—that
is, focusing on the production process of entities in which activities put sources and (interme-
diate) products of the simulation study into relation to each other by being used and generated
by activities. Adopting provenance standards [202] allows modeling these processes qualitatively
[246]. Thereby, entities, such as the research question, simulation model, simulation experiment

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:13

(specification), simulation data, parameter, requirement (referring to output behavior), qualitative
model, and assumption, are related by activities such as creating a simulation model, refining a
simulation model, re-implementing a simulation model, calibrating, analyzing, and validating a
simulation model [316].
Variations of simulation models are of interest not only to document how a valid simulation

model is finally developed based on a successive refinement [122] but also in relating simulation
models across simulation studies and thereby forming families of simulation models [53]. Thus,
the provenance of simulation models might be partly cast as a variability management problem
(see Section 4.2.4) and therefore open challenges approached by adopting methods from this area
of software engineering.

3.1.3 Workflows for Knowledge-Intensive Processes. Workflows are an approach closely related
to capturing provenance. Workflows and workflow systems have a long history, for example, in
databases and business process modeling. Already in the 1980s and increasingly in the 1990s and
2000s, the specific requirements of scientific data management led to the development of scientific
workflow systems [176, 185]. Since workflow systems provide a controlled execution environment,
they often support capturing provenance information at various levels of granularity [130]. Often,
the very fine-grained capturing of provenance requires post-processing of the collected prove-
nance information (e.g., user-specific filtering) to provide abstractions on demand, as shown for
simulation studies in the work of Ruscheinski [248].
A downside of workflow systems is that they often treat tasks as black boxes whose seman-

tics are opaque to users. As a result, user-oriented workflow design and meaningful provenance
capture are often challenging, as the required information is unavailable. Workflows have been
applied to specify (see Section 2) and execute individual simulation experiments since workflows
enable flexible reuse of repetitive processes. However, applying traditional workflows to entire
simulation studies is challenging, as model refinement phases are intertwined with model analy-
sis, calibration, and validation activities. To support these knowledge-intensive processes, which
are driven by the user’s expertise, declarative workflows may offer the required flexibility [290].
In one study [247], an artifact-based workflow approach is applied, specifying declaratively the
lifecycle of central artifacts, such as the conceptual model (with a focus on formally defined re-
quirements), the simulation model, and the simulation experiment and their interdependencies,
and exploiting inference mechanisms based on the defined constraints to guide and support the
user in conducting the simulation study.

3.2 Future Research Directions

Challenges to be faced when equipping simulation studies with context include agreeing on what
is needed as context and settling on accessible representations; providing support for storing and
collecting context information; managing and maintaining the evolution of context information;
and, finally, developing methods for exploiting context for (automatically) conducting and inter-
preting simulation studies.

3.2.1 Standardization of the Nature of Context and How to Represent It. As stated, various doc-
umentation guidelines exist in different areas of modeling and simulation. Identifying shared and
distinctive features would further communication between application domains and insights into
the respective simulation practices. It is crucial that more research outlets, such as journals, encour-
age policies that ensure that each simulation model or study comes with suitable context documen-
tation. This would facilitate a simulation model’s reuse (Section 4) and increase the impact of the
published research [136]. Therefore, suitable computational methods supporting documentation
are required to make the effort manageable. This is directly linked to how to represent the context

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:14 A. M. Uhrmacher et al.

Fig. 3. To move forward, the context of simulation studies needs to be explicitly and unambiguously repre-
sented. Therefore, the various artifacts play a role (here depicted with their individual lifecycle), including
the conceptual model (research questions, assumptions, requirements, data, etc.), simulation experiments,
and simulation models inspired by Ruscheinski et al. [247]. Methods are needed to interrelate those with
provenance retrospectively as well as to exploit them prospectively, guiding (based on a workflow-based
view) or even automatically generating the next steps (see Section 5).

information. Textual documentation of simulation studies is notoriously lengthy. For example, de-
scribing an agent-based model following the ODD protocol as encouraged by the JASSS journal
results easily in producing 30 pages [160]. Therefore, it is argued [117] that although such docu-
mentation is useful as a supplement, means for succinct documentation are needed to be included
in the main body of a publication. Adopting provenance standards such as PROV-DM provides a
bird’s eye view of how sources and (intermediate) products contributed via specific activities to
the overall results and might be a first step in this direction [122].
In addition, to support exploiting context information, the more unambiguous and computa-

tionally accessible the representation is, the better. Therefore, whenever possible, DSLs (Section 2)
should be applied to specify the simulation model, the simulation experiment, and the require-
ments formally [260, 331]. However, further ingredients of the documentation might withstand
a formal representation. Here, developing domain-specific ontologies will play an important role.
For example, to specify assumptions about biochemical models, the systems biology ontology

(SBO) could be applied to match a statement about some proteins being “degraded very slowly,
we assume that their concentrations remain constant throughout the time course” to the concept
Concentration Conservation Law (ID 362) of the SBO [53]. The methods developed in the con-
text of ontology learning offer new opportunities [7] that need to be explored to lend ontology
developments new momentum (see also Section 4).

3.2.2 Storing and Collecting Context Information. Variousmethods are available for storing con-
text information. Archives may bundle relevant information about the simulation model, data, and
experiments in one place [31]. In addition, web interfaces and graph databases as a back end can fa-
cilitate the documentation and particularly the retrieval of relevant information about simulation

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:15

studies [53]. For providing a set of suitable and maintained tools, community efforts are required
not only to push the standardizations of what does and what does not belong to the context of a
simulation study (see the preceding discussion) but also to maintain the required tools and model
repositories, and allow them to evolve (see also Section 4).
This does not yet address the crucial question: how can we facilitate the collection of context in-

formation? For the textual documentation of context, applying tools, such as Jupyter Notebook, can
ease the burden of documenting simulation studies and enrich the documentation with interactive,
computational elements [17]. However, this documentation still relies on manual efforts. Ideally,
context information would be automatically collected transparent to the user (see Section 5). If
workflow systems are used, those will automatically generate a corresponding documentation of
what has been done, including activities and (sub-)products [130]. Automatically collected informa-
tion grows typically rapidly, preventing easy access and communication. This requires somemeans
of automatic (user-specific) filtering, interpretation, and abstraction, for which (semi-)formal ap-
proaches and encoding heuristics about simulation studies have proved crucial ingredients [248].
Alternatively, instead of workflows, approaches that collect provenance information from scripts,
such as that of Pimentel et al. [230], could be combined with means for effectively monitoring the
modeler and methods that infer implicit context information—for example, whether in-between
variations of simulation models simulation experiments are being executed. These methods must
be made broadly available for the modeling and simulation community, supporting an automatic
and systematic collection of crucial context during the simulation study.

3.2.3 ContextMaintenance and Evolution. With provenance, we focus on how sources and prod-
ucts of the simulation study are related by activities and emphasize a process-oriented view of
context. Adopting provenance standards helps to query provenance information beyond individ-
ual simulation studies [246]. However, the question remains about how the different artifacts and
their evolution can be described. DSLs are an established approach, particularly in keeping track
of the different artifacts. However, they are not tuned to factor out commonality among different
versions, which can result in redundancy and pose challenges to maintainability.

Feature description languages [13, 257] were developed to capture commonality and variability
in software artifacts. They also have a formal semantics [257]. Moreover, model transformation
characterized and driven by features is available in the form of the delta-oriented programming
paradigm (see thework of Schaefer et al. [254] and Section 4.2.4). These deltas can be equippedwith
formal assertions describing their requirements and effects, so it is possible to specify and verify
properties of delta application formally [282]. This capability could be useful for making implicit
assumptions about artifact variations explicit. This would support reasoning about variations of
simulation models within an explorative simulation study [79].

Of course, there are substantial differences between variability within simulation studies and
variability encountered in software products. For example, the context of simulation studies en-
compasses a wide variety of artifacts, some of which are informal, such as assumptions or research
questions (see Section 2). In addition, the provenance of simulation studies records “successful”
product variants and, equally, failed attempts [122]. Perhaps most importantly, provenance en-
compasses unplanned variability as artifacts in simulation studies are open to frequent, often on
the fly, revisions. This is in stark contrast to variability as encountered in software design (see
Section 4.2.4), where variability engineering is factored out as much as possible into an early pro-
cess phase [231]. These differences create research problems that need to be addressed, but there
are potential advantages from a feature-oriented view on provenance management. For example,
features aggregate multiple model changes, which yields a flexible notion of abstraction that is of
interest to facilitate communication with different stakeholders (see also Section 6). Due to their

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:16 A. M. Uhrmacher et al.

formal semantics, features open up further possibilities for exploiting provenance information—for
example, for consistency checks within a simulation study or across different ones.

3.2.4 Exploiting Context Information. Provenance can be exploited prospectively as well as ret-
rospectively during simulation studies. Prospectively, context information can guide the modeler
to conduct simulation studies that comply with specific standards and thus increase the quality
of simulation studies. Traditionally, this interpretation of context is closely related to workflow
research. As stated previously, workflow support for entire simulation studies is still rare. Devel-
oping workflow systems for knowledge-intensive problems, such as simulation studies, requires
significant efforts, which exploiting process discovery methods might help reduce [268].
Context information is also invaluable for enlarging the portion of simulation studies that can

be automated (a more detailed discussion is in Section 5). In the work of Ruscheinski et al. [247],
context information about requirements is used to generate validation experiments automatically,
whereas in another work by Ruscheinski et al. [249], convergence tests for a finite element analysis
are automatically generated based on a given threshold for the discretization error. In both cases, an
artifact-based workflow approach is utilized. In other work [316], provenance information enables
automatically reusing simulation experiments and adapting them for newly revised and extended
models. However, many open challenges remain, particularly when informal context information
needs to be mapped into formal (i.e., computationally accessible) specifications, independent of
whether those are assumptions, requirements, simulation experiments, or simulation models.

Even the fundamental purpose of context in simulation studies (i.e., facilitating the interpreta-
tion of its products) holdsmajor open research questions. To facilitate interpretation, context needs
to be presented at the appropriate level of abstraction and fine-tuned to the subject of inquiry (see
also Section 6). The non-formality of many aspects of context and its heterogeneity aggravate
the induced challenges. In summary, the interplay between the conceptual model employed in
the “third layer” (scientific assumptions, requirements, etc.), the trace-based view (retrospective
provenance), and the workflow-based view (prospective provenance) all need to be considered
simultaneously to communicate (see Section 6) and exploit context effectively (Figure 3).

4 Composition and Reuse

Simulation models are often composed of separate sub-models to cope with the complexity of a
system to be modeled. Consequently, a simulation model consists of a set of interacting compo-
nents, each of which ideally has been designed for reuse. Similarly, other artifacts, such as simula-
tion experiments, can be composed and reused. Generally, a composition-based design facilitates
and, in some cases, enables reuse. Reuse in the context of modeling and simulation can include
everything from “code scavenging” to the reuse of model components, up to the reuse of an en-
tire model [225, 229, 242]. Reusing existing simulation artifacts promises to reduce development
time and cost [221, 242, 279] and helps proliferate knowledge across a wider user community. Sim-
ulation model reuse requires methodologies for abstraction, retrieval, selection, integration, and
execution [144, 242].

4.1 State of the Art

During the COVID-19 crisis, when simulation models needed to be developed quickly to inform
policymaking, the lack of respectively the benefits of reusing model components and compos-
ing models became apparent. Popper et al. [232] describe how they reused a generic agent-based
model of the Austrian population developed before the pandemic [36] and that large parts of their
COVID-19 model could build on independently validated components which the final model bene-
fitted from. As also proposed in [328], they exploited the layered architecture of their agent-based

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:17

modeling and simulation framework. The challenge remains in understanding what is needed
to achieve this on larger scales, including methodological approaches and initiatives that can be
advanced.

4.1.1 Model Composition and Reuse at Different Levels. The COVID-19 example mentioned pre-
viously highlights the need for fast model development times, which can be best achieved through
the composition and reuse of existing models or components appropriately within the given con-
text. The benefits of composition (and reuse) of software are well known and have also been ex-
ploited for the design of modeling and simulation frameworks [25, 75, 133, 326] and the reuse,
automatic generation, and execution of various simulation experiments [316]. The composition
and reuse of simulation models have a different quality, as a simulation model encapsulates a spe-
cific relation to the system to be studied, partly reflected in its context that needs consideration
if the composed model shall work as intended—that is, reliably answering the current questions
about the system of interest. This is the reason model composition and reuse have been identified
as a central challenge of modeling and simulation [107, 229].
The LCIM (Level of Conceptual Interoperability Model) [284] describes seven levels of model

interoperability to characterize which level of interoperability has been ensured in the current
reuse (or composition) of models. Interoperability can refer to letting simulators interact (thus,
the simulation algorithm and model are treated as a non-separable unit) or composing simulation
models. In the latter case, the composed model is executed by a simulation engine. Level 1 refers to
technical interoperability. Most formalisms or languages for modeling support some form of com-
position [131, 233, 325]. The first interesting level is the level of syntactic interoperability [279]. At
this level, a more elaborate definition of interfaces and the integration of type systems becomes
crucial. Interfaces kept separately from concrete model implementations guarantee that the cou-
pling of components is syntactically correct and supports successive refinement and compatibility
analysis [75, 243].
If the ontologies of the application domain are accessed to specify the components’ interfaces,

we move to the next: the semantic level. According to Wang et al. [308], exchanging content is
what the semantic level is about. Further up, the pragmatic, dynamic, and conceptual levels are
distinguished, requiring increasing levels of information that the components have about each
other’s context to correctly interpret the meaning (Section 3). However, most efforts that support
composition do so at lower levels. This usually implies ensuring that input and output ports are
correctly connected and that data flows in the correct format without an in-depth understand-
ing of the assumptions and constraints of each of the connected components. In addition, as the
composition may involve different modeling paradigms (multi-formalism modeling) and even in-
tegrate discrete or continuous components, suitable means for model transformations [169] or
synchronization schemes for simulation are required [179]. Semantic and higher-level compos-
ability is significantly more difficult to achieve, demanding knowledge and alignment of model
assumptions, constraints, and a common understanding of the simulation context (see Section 3).

4.1.2 Reporting Guidelines and Formats for Reuse and Composition. Besides access to the source
code of a model, which often requires the use of a specific simulation framework, the successful
reuse of a model or some of its components within a given context requires a comprehensive and
explicit description of the model’s structure, underlying assumptions, configuration, and other
information that might be relevant for potential future users. Likewise, reproducing experiments
necessitates information on the data and model that have been used, how the experiments were
conducted, and how the outputs were conducted. Common guidelines and formats facilitate the
sharing of this information.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:18 A. M. Uhrmacher et al.

Examples of guidelines for describingmodels and simulation experiments includeMIRIAM (Min-
imal Information Requested In the Annotation of biochemical Models) [211] andMIASE (Minimum
Information About a Simulation Experiment) [305]. What characterizes many of these guidelines
(also those that aim to capture entire simulation studies, see Section 3.1.1) is that they were pro-
posed by a community, meaning that a larger group of researchers developed them and signaled
their commitment. There is no direct link between verbal description and the model’s components
and code. Still, when applied consistently, documentation guidelines enable a high level of inter-
operability (and reuse) as they make assumptions, constraints, and simplifications of the model
explicit. However, this heavily relies on the author’s rigor when describing the model.
The preceding reporting guidelines result in documents in the form of structured text with little

to no formalization. The following formats are aimed at automatic reuse by different simulation
tools. CellML is an XML-based model description language that originated in biology but which
can be used for different types of mathematical models [180]. Its goal is to facilitate the storing
and exchange of models and the reuse of model components independent of the software that has
been used for model building. The language can be used for describing both the structure of the
model (i.e., its components and how they are connected), as well as metadata for the annotation
of the model (i.e., purpose, authorship, and references), but also for the reproduction of simula-
tions and the visualization of outputs. A closely related language with a similar purpose is SBML
(Systems Biology Markup Language) [138]. It is possible to translate SBML to CellML, and vice
versa [271]. Both formats enforce or at least encourage using annotations and ontologies (e.g., to
uniquely identify variables and parameters), which supports semantically meaningful reuse and
composition of simulation models [165]. Thereby, they also address computational challenges of
model composition [219]. Standardization efforts, such as SBML and CellML, have been facilitated
by the momentum in systems biology in the early 2000s; existing ontologies in the application
domain; and, last but not least, the structural similarity of simulation models being developed (i.e.,
species reaction systems often expressed as ODEs). To support other types of models, the standard
core of SBML is extended by specialized packages, for example, to support spatial models [255].
Likewise, facilitating the exchangeability and reproducibility of simulation experiments requires

the specification and description of the experiments using a common interchange format or lan-
guage. This might include the data and the model that have been used, potential modifications that
need to be applied to the model before experimentation, and how the output data are analyzed.
SED-ML (see also Section 2.2.2) is an example of a format that can be used to specify simulation
setups [270, 306]. In practice, it is typically not used by modelers but to export and import simula-
tion experiments between different tools or frameworks. SED-ML offers a semantic annotation of
elements using ontologies of the application domain and simulation methods.
Even though markup and exchange formats and documentation guidelines pursue different ap-

proaches, they can be connected. SED-ML, for instance, enables encoding information required
by the MIASE guidelines. Yet, little work exists on the automatic conversion between exchange
formats and documentation guidelines, nor on assessing the consistency between both.

4.1.3 Model Repositories. Janssen et al. [144] discuss different types of model sharing that exist
for making model code available—that is, archives (e.g., open science model libraries), web-based
version control repositories (e.g., GitHub and SourceForge), journals, personal or organizational
storages (e.g., Dropbox or institutional websites), and distinct framework repositories. General
code repositories such as GitHub1 or SourceForge2 host a large number of models. A simple search

1https://github.com/
2https://sourceforge.net/

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://github.com/
https://sourceforge.net/


Context, Composition, Automation, and Communication 23:19

of the term simulation model on GitHub returned nearly 2,000 hits. Several challenges exist with
general-purpose code repositories. The discovery and selection of existing models are nearly im-
possible without prior knowledge of a specific model. The discovery relies heavily on appropriate
keywords being used within the model metadata, which benefits from ontologies of the applica-
tion domain and ontologies specific to the methods being used [266]. For the selection, additional
information becomes crucial.
To address this, purpose-built model repositories exist. The NetLogo Model Library3 contains

hundreds of NetLogo models that contain code, instructions on how to run and modify them. In-
clusionwithin the library requires the submission to a central database where themodel is checked
and released for wider community use. CoMSES.Net, the Network for Computational Modeling in
Social and Ecological Sciences, is an open community of researchers, educators, and professionals
focused on improving the development and reuse of agent-based and computational models to
study social and ecological systems. The community develops and maintains the CoMSES Model
Library. Upon submission, authors can request their model to be peer reviewed for structural com-
pleteness and to fulfill the CoMSES community standards. The library contains more than 7,500
publications of models, their metadata, and citations. Around 2,500 models are currently stored
in the BioModels repository [175], most of which are specified in SBML with metadata that in-
clude references to established ontologies. More than 1,000 of these models have been curated.
This implies in BioModels that a model has been independently tested and checked, whether the
simulation results stated in the publication could be reproduced based on simulation experiments.
Publishing artifacts, such as simulation models, in repositories is increasingly accompanied by
some assessment of quality, which requires a separate review. This development aligns with an
ACM initiative that introduces separate reviewing processes for the artifacts associated with ACM
publications [3]. Five badges can be assigned to the publication after the artifact is reviewed, in-
cluding Results Reproduced, Artifacts Available, and Artifacts Reusable.

4.2 Future Research Directions

Model composition and reuse have the potential to enable efficient model development. However,
thorough documentation, proper revalidation, sharing platforms, and incentive structures are only
some community efforts required to enable reuse. Here, we discuss different existing approaches
and methods that facilitate specific aspects of composition and reuse. To systematically address
existing shortcomings in model reuse, further advances in community engagement and documen-
tation formats are required, as well as new mechanisms for composing models.

4.2.1 Community and User Engagement. To be able to reuse simulation models or their com-
ponents and simulation experiments, they must be made available in the first place. A study on
the availability of agent-based models indicates an upward trend regarding the share of publica-
tions that make their models available. However, model availability is still generally low (under
20% in 2018 [144]). Nevertheless, the availability of simulation artifacts alone does not promote
reuse. There is a need for empirical studies focused on practitioners and researchers to understand
the process of model reuse better and identify requirements. Numerous empirical studies exist
on reusing software components [197, 200]. Similar empirical studies in the realm of simulation
models would allow a more in-depth understanding of the barriers to model reuse. It could guide
the design and implementation of solutions. These could include specific DSLs to capture research
questions or model assumptions or to motivate the development of application-specific ontologies.

3https://ccl.northwestern.edu/netlogo/models/

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://ccl.northwestern.edu/netlogo/models/


23:20 A. M. Uhrmacher et al.

Fig. 4. Community efforts are required to maintain repositories, to develop standards and ontologies—not
only for simulation models (SM) but also for other artifacts of simulation studies (Assumptions (A), Simula-
tion experiments (SE), and Requirements (R))—to enhance composition and reuse. These efforts need to be
accompanied bymethodological advances that support unambiguous and succinct annotations with suitable
meta-information (e.g., a simulation model’s context, see Section 3), and flexible (e.g., white box) and pow-
erful (e.g., pragmatic-level) composition and analysis methods (e.g., comparing and interpreting variations
and automatically testing assumptions and requirements, see Section 5).

New methodological developments to further composition or reuse without well-functioning
tools broadly supported within the community will not advance model reuse. Therefore, in addi-
tion to methodological research, there is a need for community support in contributing to, test-
ing, and trialing various supporting tools. Drawing again from the software engineering commu-
nity, tool demonstration and competitions at major conferences would contribute to the impact of
methodological research and likely inspire new research questions.

4.2.2 Standards and Formalizations. As discussed earlier, there is a need for standardized lan-
guages or formats to specify models and means to specify their context unambiguously to under-
stand various aspects of a model and how to reuse it. However, for any new language to be suc-
cessful in its facilitation of reuse requires broad community buy-in. This can be achieved through
joint development of new languages across the community, ensuring that everyone contributes to
their continuous development.
For example, in the area of agent-based modeling and simulation, one might build on the ex-

isting momentum of ODD, perhaps through extending ODD to various specialized domains, such
as building templates for specifying models of agents with decision capabilities based on ODD+D
[203]. As stated in thework of Grimm et al. [117], there is a need to complement the ODD documen-
tation guidelines with more formal (and succinct) approaches. Transformation methods must be

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:21

designed, allowing for easy translation from existing specifications to new, more formal languages
or protocols.
These considerations apply to the documentation or specification of the simulation model and

aspects of a simulation model’s context (Section 3). For requirements, different formal approaches
mostly based on temporal logic exist (see Section 2); what is missing are means to facilitate their
adoption by a community, be this in terms of languages with a suitable expressiveness, or even a
repository of domain-specific requirements, such as in the form of stylized facts [30], that can be
reused to check a simulation model’s validity automatically within a particular domain.

4.2.3 New Mechanisms for Composing Simulation Models. Existing composition mechanisms,
such as import/export, inheritance, refinement, and delegation, appear insufficient to compose
simulation models from given constituents in a semantically valid manner. One reason is that
the composition of simulation models is an intrinsically parallel way of composition: two sub-
models do not execute independently of each other, but they interfere. For example, one model
might rely on the constant concentration of a certain species (and accordingly, the parameters
have been calibrated); this model is then extended by being composed with another sub-model
that produces this species. This leads to challenges in capturing these relationships in a way that
the effects of interferences can be understood and mitigated if needed. One necessary ingredient
for the composition of sub-systems is a suitable notion of scope that lets one define the boundary
of a sub-system, including the quantities it may depend on and the ones that it might possibly
change.
Exchanging information via output and input events might prove cumbersome or insufficient to

model certain situations. For example, to capture upward and downward causation of multi-level
systems, the upper levels might directly access the states of models at the lower levels and vice
versa, to change their states accordingly [274]. These interactions form a kind of value coupling
(i.e., different variables in different sub-components have the same value during simulation [92]),
so interfaces must be enriched by other interaction means between simulation models. In many
areas, the composition does not happen as a black box composition (via traditional interfaces) but
can occur as a fusion [236] or merging [259] of simulation models, in which also the internals of
simulation models are accessed (Figure 4). Invariants describe what does not change during the
execution of a sub-model or a composition of sub-models. They are a way to define constraints
that contribute to a valid composition and fusion of models. If we interpret invariants as properties
expressed on simulation results (e.g., in terms of temporal logic), behavioral requirements could be
rechecked whether they hold for the composed model as they did for each component (e.g., [223]).

4.2.4 Representation and Evaluation of Variability. Hussain et al. [140] distinguish model reuse,
whether individual components are reused, if the model is developed as a composition of existing
ones, or if an entire simulation model is reused, and how many adaptations (variations) are intro-
duced. These variations of simulation models can also be observed if various models have been
generated over time, reflecting increasing knowledge about a system of interest, its mechanisms
and behavior, and different research questions [53]. In software engineering, systematic manage-
ment of variability (and commonality) is well established as a design approach known the SPL
[71, 231]. Differences between related model variants are represented abstractly as features, which
may be parameterized. A set of features and parameter values then characterizes one concrete
model, called a product in SPL terminology. Variability modeling techniques are fairly agnostic
with respect to the underlying implementation paradigm [262] and thus might be used in connec-
tion with various simulation models. Variability modeling also seems to be a promising approach
to represent and reason about model variants that are stored in model repositories: to keep track
of different versions that evolve over time, to interpret similarities and differences within models

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:22 A. M. Uhrmacher et al.

[128], to record incompatibility between model features, or to state specific features as being re-
quired (see also Section 3.2.3). In any case, domain knowledge is needed to define and interpret
commonalities and differences.

5 Automation

Automation of the modeling and simulation lifecycle promises to increase complex simulation
studies’ efficiency, quality, and reproducibility. To this end, automation also bears the potential to
“close the loop” such that model adaptations and new experiments can be iteratively derived from
previous results and studies [307]. The problem of automating feedback loops is also a central
challenge in digital twins. A digital twin needs to mirror the state of its physical counterpart
reliably. Hence, based on data obtained by monitoring the physical system, the model is updated,
and new simulation experiments are executed automatically.
A variety of approaches for automation have been explored in the field of modeling and sim-

ulation or may be transferred from related research fields. However, automation is challenging
because most knowledge rests as implicit assumptions in the modeler’s or domain expert’s mind,
and the cognitive processes behind modeling and simulation are poorly understood.

5.1 State of the Art

When discussing automation of modeling and simulation studies, the various tasks of a simulation
study have to be considered. These include conceptual modeling, building the simulation model,
specifying and executing simulation experiments, data analysis, and visualization. Alongside these
tasks, automation can improve a simulation study’s reproducibility, reusability, and credibility.

5.1.1 Conceptual Modeling and Model Building. Machine learning approaches can automati-
cally construct conceptual models from verbal descriptions. Named entity recognition, association
rule learning, link prediction, ontology mapping, and process discovery are just some of the many
techniques for rule, text, and graph mining discussed in the context of conceptual modeling [188].
So far, for instance, a semi-automatic approach has been developed for generating conceptual
model diagrams from verbal narratives about agent-based models based on pattern-based rules
and grammar about the concepts and relationships [264]. The automatic extraction may be sup-
ported by knowledge graphs that connect knowledge of an entire domain from diverse sources and
allow for semantic querying [16]. The CovidGraph, for instance, interrelates publications, patents,
and clinical trials with biomedical ontologies [121].
For the automatic construction of simulation models, formal transformations between domain-

independent, concept-level models (also known as metamodels) and executable models in domain-
specific modeling languages were developed [155]. In between the high-level conceptual model
and the implementation-level simulation model, various additional layers of abstraction may need
to be generated to cater to the needs of the different stakeholders. Here, techniques from process
mining may come into play to produce models with differing complexity [189]. In addition to
accommodating different views of the simulated problem, there has been an interest in learning
model abstractions to speed up simulations [59].
To take a “shortcut” from verbal narratives to executable code of simulation models [142], there

have been first attempts to use Generative Pre-trained Transformer (GPT) language models
for model building (see the GPT family of models [50]). These types of natural language models
have the capability to generate and organize semantic concepts [124].
Another major class of approaches aims to generate simulation models that can accurately cap-

ture some (measured) time series data [89, 208]. This includes discovering the underlying nonlin-
ear differential equations and their parameterizations using symbolic regression, which is based

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:23

on genetic programming principles [278]. However, symbolic regression is computationally ex-
pensive and prone to overfitting. To overcome these challenges, sparse regression has been used
for identifying non-linear dynamics (SINDy) [51]. This approach is based on the assumption that
only a few terms define the dynamics of a system. Sparse identification has also been tailored for
biochemical reaction networks by introducing a library of candidate components that may be in-
volved in a reaction system [55]. In contrast to SINDy, this approach considers system components
not only individually but also as couplings between them. In addition, the formulated regression
problem can be solved by a non-negative least squares algorithm. Methods for sparse Bayesian
inference can additionally provide uncertainty estimates [147]. To effectively recommend models
that achieve the desired behavior, the automatic retrieval and incorporation of context information
from literature was investigated [6].

5.1.2 Simulation Experiments and Model Execution. With respect to simulation experiments,
various approaches have focused on their unambiguous design, generation, and reuse. Conse-
quently, languages for specifying efficient experiment designs based on hypotheses [181], logics
for checking temporal and spatial properties [26, 204, 205], and metamodels for making the ingre-
dients of different types of simulation experiments explicit [315] were developed and applied in
generating simulation experiments automatically [316] (see Section 2). In addition, frameworks
exist that provide general guidance for the experimentation process—for example, the SAFE simu-
lation automation framework for experiments guides its users through the initialization of model
parameters, the configuration of parallel simulation execution, the processing of output data, and
the visualization of the results [224].

To lend further support, assistance for simulation experiments has been tailored to the spe-
cific type of simulation experiment at hand. In particular, which methods and parameterization
to use, such as variance-based analysis versus partial rank correlation coefficients [313] in sensi-
tivity analysis or batch mean versus moving window in steady-state estimation [173], has been
addressed. With such specialized guidance for setting up these analyses and means for executing
the experiments automatically, problems regarding the validity and reproducibility of a model can
be identified or even avoided. In one study [90], for example, the importance of sensitivity and un-
certainty analysis was demonstrated for applying and interpreting a COVID-19 model. The model
of the pandemic was shown to be highly sensitive with respect to several of the intervention, dis-
ease, and geographic parameters: uncertainty in these input parameters amplified the uncertainty
in the model output by 300%. Providing such information automatically, in addition to the simula-
tion result itself, is crucial for the decision makers to interpret adequately, for example, the number
of available ICU beds predicted by the model.
Furthermore, generating and executing simulation experiments automatically may support

model-building decisions and drive the progress of an entire simulation study. In the approach of
sensitivity-driven simulation development, for example, the model is refined or reduced depend-
ing on the outcome of sensitivity analysis [277]. However, clear guidelines for when to conduct
which analysis may not exist. In addition, the question of which specific method to select can-
not easily be answered. For example, in the context of optimization, choosing the right method
proved difficult as the response surface of the objective function would have to be known a pri-
ori [298]. Gradient-based optimization methods, for example, assume smoothness of the response
surface. However, this is not the case for many simulation optimization problems. To deal with
non-smooth response surfaces, novel approaches for automatic differentiation over discontinuous
functions with smooth interpretation can be employed [166].
There is a growing pool ofmachine learning approacheswith the goal of choosingwhichmethod

to apply to solve a problem in an automatedway.Work in this area includes an automated selection

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:24 A. M. Uhrmacher et al.

of methods and hyperparameters in integer programming solvers, for example, via optimized algo-
rithm portfolios [164], synthetic problem solvers for composing algorithms for various subtasks of
simulation experiments [173], premise and strategy selection in automated theorem proving [9],
and automated selection of the architectures and hyperparameters in deep neural networks [327].

Similarly, approaches for adaptively selecting the most efficient simulation algorithm [126],
adaptive methods for an evenly distributed Pareto set in multi-objective optimization [139], or
adaptive parallelization of simulations in heterogeneous hardware environments [321] have been
investigated. When dealing with limited resources, approaches for test prioritization could filter
out the experiments or simulation runs that are most critical, for example, in testing the validity of
a simulation model [207]. In addition, a metamodel-based approach has been applied to automate
the implementation and deployment of distributed simulations in HLA (High-Level Architecture)-
compliant cloud services [43].

5.1.3 Data Analysis and Visualization. Another research target is the automatic analysis, inter-
pretation, and visualization of simulation data and data used as input for calibration or validation.
Various supervised and unsupervised machine learning methods can be combined in a knowledge
discovery process for simulation data [99]. These, in addition to advances in clustering and clas-
sification of time series data [10], as well as detection of oscillations [76] or outliers [37], will
be crucial for providing automatic support in the data analysis, visualization, and interpretation
phase, and to go beyond manual validation. With the increasing push for sustainability and effi-
ciency of computing, specifically in simulation studies (“green simulations”), parts of simulation
outputs may be stored and reused for answering new questions [101].

5.1.4 Reproducibility, Reusability, and Credibility. Ensuring the reproducibility, reusability, and
credibility of models and associated artifacts are ongoing challenges (see Sections 3 and 4). Accord-
ingly, approaches for recording provenance traces of entire simulation studies in a non-intrusive
manner and presenting aggregated views on provenance are of high relevance [41, 248]. To cap-
ture provenance, and therefore to document a simulation study automatically, approaches such
as system wrappers, application reporting, operating system observation, or log file parsing [11]
have been explored. They allow observing modelers in their usual working space, such as specific
IDEs (integrated development environments), consoles, or libraries.
To correctly capture the provenance traces and to understand their meaning, methods for de-

tecting, interpreting, and visualizing the differences between model versions are required [109].
The variability in model versions may, for example, refer to different parameter settings, level of
detail, the goals and hypotheses addressed, and the choice of modeling formalism. Approaches to
managing the variability of models (particularly over time) are discussed in Section 4.2.4.

Provenance traces of previous simulation studies may be used to construct workflow models
that can be applied in future simulation studies to execute suitable next actions automatically. Here,
process mining techniques may automatically generate data science workflows from code [34] and
provide case-based support [171].

5.2 Future Research Directions

Open challenges in the automation of simulation studies include the necessity for semantically
annotated knowledge as a prerequisite for automation, the effective application of diverse machine
learning methods, the imposition of constraints on automation (particularly human involvement),
and the demonstration of the benefits of newly developed automation methods for modelers and
other stakeholders in simulation studies.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:25

5.2.1 Semantically Annotated Knowledge. Automating simulation studies requires explicit and
formally specified or annotated knowledge about all modeling and simulation lifecycle phases.
This includes knowledge about the goals and intentions behind the activities of the modeler (e.g.,
calibration, validation, or prediction), specific hypotheses regarding the model behavior under
certain circumstances, and knowledge of established methodologies of a domain.
When applying machine learning approaches for automation, knowledge is required, for exam-

ple, for annotating the training, test, and validation data, for selecting relevant features, and for
interpreting the results. In addition, when applying rule-based inference systems, explicit and se-
mantically unambiguous knowledge is the foundation for automatic reasoning about simulation
studies.
The approaches presented in Section 2, including model-based approaches, ontologies, DSLs,

and temporal logics, will be essential for unambiguously and machine accessibly representing the
various knowledge. In addition, provenance graphs and other documentation standards discussed
in Section 3 will be crucial, as they contain valuable information about how the different artifacts
of a simulation study are related. Moreover, open source software and open repositories need to
be facilitated to enable automatic retrieval and exploitation of the explicitly specified knowledge.
The overall body of knowledge about modeling and simulation studies will be growing by lever-

aging the various formal and open methods. This knowledge and the methods for automation may
be shared and exploitedwithin but also across application domains and simulation approaches (e.g.,
finite element analysis), as simulation studies often share important characteristics [315].
When reusing information within and across domains and approaches, beyond formally speci-

fying the information needed, there is the additional challenge of dealing with the different termi-
nologies used. Without controlled, structured vocabularies (ontologies) that provide clear seman-
tics to the expressions, more general support will remain elusive.
Efforts toward collecting and consolidating that knowledge need to be truly community driven.

This includes regular opportunities for consultation and exchange via simulation working groups
and the collaborative development of tools via hackathons. To facilitate these processes, they may
be integrated with existing (domain-specific) organizations, such as COMBINE (COmputational
Modeling in BIology NEtwork) or the OMF (Open Modeling Foundation).

5.2.2 Intelligent Modeling and Simulation Lifecycle. So far, automation has merely targeted indi-
vidual steps of the modeling and simulation lifecycle, such as conceptual modeling, model building,
experiment specification, experiment execution, and output analysis. Future research can be di-
rected toward improving the automation of these steps but also toward combining and integrating
existing and newly developed approaches to support modeling and simulation studies as a whole.
Figure 5 shows the tasks of the modeling and simulation lifecycle and lists methodologies used
for enhancing the degree of automation in these tasks. In addition, the various sources that pro-
vide context information for automation are depicted. We expect suitable combinations of these
approaches to be able to make (semi-)automatic, intelligent decisions during the modeling and
simulation lifecycle.
Various questions can be asked, such as “How can the emerging hardware be efficiently utilized

for modeling and simulation?” and “Can modeling and simulation also ride on the AI/ML wave
to make it more efficient and sustainable?” [57]. Specific questions regarding the modeling and
simulation lifecycle still not answered automatically include, for example, when and how to re-
fine a model further or reuse and compose existing model components (see Section 4) or how to
generate a model from scratch when no data is available for model fitting. Not only simulation
models but also simulation experiments, requirements, and even assumptions may be automati-
cally generated depending on the context provided. In addition, automation may assist in deciding

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:26 A. M. Uhrmacher et al.

Fig. 5. Enriching the different tasks of the modeling and simulation lifecycle (adapted from Balci [19]) with
intelligent methods to enhance the automation in generating the conceptual model, the simulation model,
and simulation experiments, as well as in interpreting and communicating the simulation results.

which type of simulation experiment to conduct using what method and parameterization or when
to collect more data and what kind. These decisions might be based on state-of-the-art machine
learning methods. A considerable challenge in this regard is acquiring data for training, testing,
and validating the learning models. To be suitable input data for machine learning, existing simula-
tion studies need to be semantically annotated with context. Ontologies may, for example, provide
context information about the type and role of simulation experiments, as well as the methods
applied.
However, this manual annotation and data collection entails a substantial workload overhead

for the modelers, and the potential payoff in terms of development timemay not sufficiently justify
these efforts. One solution to circumvent the manual effort could be the generation of synthetic
data (i.e., synthetic simulation studies) to train machine learning models. Either way, the challenge
of dealing with incorrect, inconsistent, or incomplete knowledge when building learning models
needs to be addressed.

5.2.3 Large Language Models for Simulation. Following the release of ChatGPT on November
30, 2022, new developments in natural language generation have changed how we think and work,
including in science and engineering. ChatGPT and other large language models (LLMs) are
based on transformer architectures and pre-trained on massive datasets, which may further be
fine-tuned to specific applications [177].
The use of LLMs to support simulation development and to automate the entire modeling and

simulation lifecycle is becoming a topic of growing interest. For instance, Giabbanelli [110] identi-
fied four main modeling and simulation tasks where text generation via LLMs may be effectively
applied. The first one is explaining the simulation models’ narrative to be understandable for all

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:27

stakeholders, which will also facilitate participatory modeling (see Section 6). The second one is
focused on summarizing simulation outputs and conveying the main differences between what-if
scenarios. The third task is generating textual reports to aid the interpretation of simulation visu-
alizations. Last, LLMs may assist in finding and explaining simulation errors and offering guidance
to resolve them, thereby assisting in verifying and validating simulation models.
Recently, LLMs have also been trained to generate code in various programming languages [291].

For simulation models, the automatic generation of fully functional and executable simulation
models has been discussed [142]. However, generating simulation experiments, requirements, or
assumptions in DSLs also needs to be investigated. In software engineering, there has been a trend
toward no-code and low-code development for several years, intending to minimize the amount
of manual coding required [320]. Certainly, LLM-powered tools will soon also drastically change
how we develop and analyze simulation models and implement modeling and simulation tools.

5.2.4 Human in the Loop. Most simulations are designed to be interpreted by humans. Keeping
humans in the loop during the modeling and simulation lifecycle via approaches like visual model-
ing or interactive, exploratory analysis of results is therefore one of the primary goals of providing
automatic support for simulation studies. Different levels of information need to be conveyed to
the decision makers, domain experts, and modelers (see also Section 6). Even if substantial parts
of a simulation study are conducted automatically, humans may want to retain control over the
intelligent modeling and simulation process. This includes establishing trust in the automation, for
example, based on methods for explainable AI. Furthermore, parts or sequences of the modeling
and simulation lifecycle may require user-specific or project-specific workflows instead of a one-
fits-all approach. Thus, approaches for tailoring the modeling and simulation workflow (e.g., via
preference learning) will be more than welcome as long as some ground rules, such as “do not use
the same data for calibration and validation of the model,” are kept in mind. These approaches ide-
ally learn “as you go,” with as few customizations by the user as possible. However, a compromise
will have to be made that trades off the user overhead of manually entering additional information
against increased support when conducting a simulation study.

5.2.5 Evaluation. In modeling and simulation research, new software is typically evaluated
with respect to its runtime performance and the number of steps required using benchmark mod-
els [146]. Moreover, illustrative case studies from diverse application areas can be used for demon-
strating new methods and tools, such as in the work of Kleijnen [161]. Nevertheless, there is still
a need for suitable benchmarks and measures for assessing the gain in productivity and the re-
duction of error in simulation studies by automatic, intelligent support. In particular, there is a
need for both quantitative and qualitative metrics for how efficient (with respect to time and other
resources), effective (in terms of results and information gain), and how accurate (without tech-
nical or methodological errors) the automation is. Realistic case studies with representative user
groups are required to evaluate the superiority of automatic support compared to the fully man-
ual or randomized case. Depending on what task is evaluated (e.g., automatic model generation,
algorithm selection, or output interpretation), different measures and different study designs may
be required.
For users, including modelers and stakeholders, well-designed studies are crucial in providing

the necessary argument for the widespread adoption of the developed automation methods and
tools in their daily practice. For researchers, however, a thorough—and if possible quantitative—
evaluation will improve understanding of the developed method and their impact and guide future
research directions. In the field of visual computing, quantitativemethods, and user studies became
a separate research field, which is reflected in the numerous projects and research centers, as
well as recommendations on the topic (e.g., [1, 56]). There, publishers increasingly demanding

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:28 A. M. Uhrmacher et al.

explicit reporting of user studies (e.g., the journal Visual Computing for Industry, Biomedicine, and
Art expects documentation via the STROBE guidelines for observational studies [301]). Similar
initiatives will have to be pursued in modeling and simulation.

6 Communication and Stakeholder Understanding

Effective communication with stakeholders (decision makers and others with a stake in the out-
come of the simulation study) is a prerequisite for successfully influencing decisions with simu-
lation [61, 250]. Effective communication includes working with stakeholders to understand their
beliefs and preconceptions, the underlying goals of the simulation study, and the broader organi-
zational context in which decisions based on simulation will be made [250, 276]. Effective commu-
nication also includes explaining simulation study conclusions in clear language tailored toward
stakeholders’ viewpoints. Although the simulation analyst may be confident in the simulation’s
accuracy because of deep knowledge of the simulation implementation, stakeholders often lack
this basis for confidence. The simulation analyst may try to convey this knowledge by explaining
how the simulation works, but this faces obstacles. First, many decision makers (e.g., public offi-
cials and leaders in industry) lack training in computer-based simulation and other quantitative
prediction methods, which makes it difficult for them to judge the accuracy of a simulation based
on detailed technical explanations. Second, decision makers tend to be busy, which makes even the
technically trained among them unwilling to invest the time needed to parse detailed explanations.
Third, simulation models are unable to represent every detail of the real world and often have in-
put parameters that are hard to estimate accurately. Thus, even a complete understanding of how
a simulator works may be insufficient to give high confidence in the accuracy of its predictions.
Other forms of communication and analysis, better tailored to the stakeholders and their situ-

ation, may be required to build a basis for confidence in a simulation’s accuracy and to inform a
decision properly. For example, imagine an agent-based simulation model that predicts the effect
of public health interventions (e.g., COVID-19 vaccinations) on health outcomes. The simulation
might predict that allocating fewer vaccines to older individuals and more toward younger ones
decreasesmortality. Stakeholders may find this counterintuitive because they think (correctly) that
older individuals have a higher mortality risk when infected with SARS-CoV-2. A simple, clear ex-
planation would be, “Young people are more social, and vaccinating them prevents the fast spread
of the virus, which indirectly reduces infections in older people.”

6.1 State of the Art

Successful simulation analysts must communicate directly and extensively with stakeholders to
understand their viewpoints and explain simulation outputs. While partial automated support ex-
ists for these tasks (described in the following, including visualization, utility, and prior elicitation
methods for learning stakeholder goals and beliefs), many communication tasks are not sufficiently
supported by current computer science methods.

6.1.1 Best Practices from Simulation Practitioners. Experienced simulation practitioners have
written about their experience using simulations to inform stakeholders. Two studies [250, 275]
argue for the importance of understanding stakeholders: how they will potentially use simulation
results, how they define success, their background, and the broader power structure and organi-
zational context in which they operate. Both also point to the danger of being asked to perform a
simulation study that “justifies” the correctness of a decision in hindsight. This phenomenon also
arises using evidence in public health policy [20]. Sadowski and Grabau [250] argue for the impor-
tance of delivering results in a timely manner that aligns with deadlines when decisions must be
made. Sturrock [275] points out that stakeholders, who often have substantial domain expertise,

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:29

can be valuable partners in validating a simulation model. He also advises simulation analysts pre-
senting results to avoid excessive detail, to avoid overemphasizing the accuracy of their output
data, and to contextualize information from the simulation by explaining how it relates to stake-
holders’ needs. In the context of healthcare, Baldwin et al. [20] argue for the value of an iterative
approach where simulation analysts closely collaborate with stakeholders to build a simulation
model, reminiscent of co-design approaches to public policy [40]. This helps create a shared un-
derstanding among stakeholders of how the simulation works and the reasoning behind its design.
This is highly related to the concept of participatory modeling (see Section 6.1.5).

6.1.2 Communicating about Scientific Evidence with Policymakers. A line of research reviewed
in otherworks [214, 215, 269] studies how scientific evidence andmodels influence policy decisions,
with much of the literature focusing on public health. They find a significant gap between policy
decisions and scientific evidence that could support these decisions. Indeed, Smith and Stewart
[269] go as far as to argue that the primary value of evidence tools to public health policymakers
is actually not that it often leads to better decisions but that its use can signal to others that the
policymaker is making “good” decisions.
Factors that support the use of evidence for influencing policy decisions include decision mak-

ers’ perceptions of evidence quality [215], a culture of using evidence to make decisions [215],
timeliness and relevance of the evidence [214], the need to account for the practical context in
which policy decisions are made [215], and the strength of the relationship and level of collabo-
ration between policymakers and researchers [214]. While much of this literature focuses on the
influence of evidence reviews, some work [280] specifically considers the influence of quantitative
models. This work points again to the importance of decision makers’ perceptions of evidence
quality, which can be supported by peer review, transparency, and the value of user support for
models.
Science communication [54, 156] is a related endeavor that includes methods for creating sci-

entific awareness, understanding, literacy, and culture among stakeholders, decision makers, and
the general public. For more than 50 years, science communication has been seen as a research
field with tools and techniques mostly drawn from social and behavioral sciences [119]. As many
challenges are shared, relevant principles and techniques can be borrowed to communicate simu-
lation studies to decision makers and stakeholders. A good example is research toward tools that
summarize scientific articles in understandable language (e.g., see the work of Guo et al. [120] for
biomedical research articles).

6.1.3 Learning Stakeholder Preferences and Beliefs. As argued previously, the successful use of
simulation to support decisions requires the simulation analyst to know how the simulation re-
sults will be used to support decision making [250, 276]. The most common approach for learning
about decision criteria is to talk with a decision maker. However, with the increasing size and
complexity of models, detailed walk-throughs become infeasible with respect to timeliness with
which decisions need to be taken, as, for example, argued by Davis [78] for defense applications.
Similar experiences are stated by the Defense Science Board [42] even for cost-effective and in-
novative ways to test new ideas or prototypes. Their report discusses how decision makers need
information from quick-term analyses while experts are not equipped to provide that.
Different approaches have been suggested to systematically determine the relevant decision

criteria to be taken into account when developing simulators to support decision makers: multi-
attribute utility theory models how humans make decisions when multiple outcomes matter. Util-
ity elicitation and preference learning methods [65] estimate such utility functions from stake-
holder feedback. Closely related to utility elicitation methods, prior elicitation methods [35] esti-
mate these probability distributions from decision maker feedback.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:30 A. M. Uhrmacher et al.

There is a large and closely related literature on multi-criteria decision making and multi-
attribute utility theory [304]. This literature focuses on supporting one or a group of decision
makers in coming to a decision. In the context of a simulation study, this includes lowering the
cognitive effort required to identify the most preferred option among those that have been sim-
ulated. Much of this literature can be understood as helping decision makers explore a Pareto
frontier—the set of non-dominated outcome vectors—with high-dimensional outcome vectors.
In conjunction with multi-criteria decision making, there is literature on multi-objective opti-

mization combining simulation and multi-objective Bayesian optimization. Here, there are two
lines of literature: one estimates the Pareto frontier without modeling the human decision maker
[77, 163], and another models the decision makers’ utility function to help focus simulation effort
on the parts of the Pareto frontier that are most important to a final decision [14, 178]. There is also
a line of literature on preferential Bayesian optimization [113] which works directly with pairwise
comparison feedback from a decision maker over potential decisions. Algorithms developed seek
to minimize the number of pairwise comparisons needed to help the decision maker find a good
decision.
Existing automated methods for understanding stakeholder preferences and beliefs have sev-

eral shortcomings that could be improved via future work in the context of simulation studies.
First, they assume access to stakeholders is sufficient to support collecting time-intensive pairwise
comparisons. This may be unrealistic for some stakeholders, especially prominent politicians or
business leaders. Second, they assume that decision makers believe the simulation results; this
may not be the case also, due to a lack of trust [125]. Third, they assume that the presented pre-
dicted outputs fully capture the criteria used to make a decision. Stakeholder consideration over
non-included criteria may be missed.

6.1.4 Visualization. Model visualization provides access to the actual model with visual repre-
sentations and presentations of the (static) model itself (i.e., its structure and logic). These are often
based on conceptual diagrams [297], such as causal loop diagrams and stock/flow diagrams in sys-
tem dynamics [168], and UML diagrams in agent-based simulation [265]. When using formalisms
and DSLs for modeling (see Section 2.2), a higher abstraction level can be automatically derived
and, possibly, graphically represented—for example, focusing on the network structure as in Petri
nets or reaction-based models, or on the model hierarchy as in DEVS. Hierarchical, modular, com-
posite modeling approaches (see Section 4) inherently provide abstraction levels that allow one
to zoom in and out on demand. Various methods of graph [285] or tree visualizations [258] are
available for visually exploring these models.
Simulation-run visualization is essential in revealing insights into the model’s dynamics. There

are basically two ways: model state and simulation output can be animated during a simulation
run, and output data can be aggregated, analyzed, and presented after (first) simulation runs are
finished. St-Aubin et al. [273] survey visualization support of 50 simulation platforms—mostly for
discrete event and agent-based simulation. Hereby, they not only distinguish between visualization
of graphs, 2D, 3D, but also survey logging methods and integration of analytics. Motivated by the
large amount of data generated by simulation, increasingly advanced methods for accessing and
visualizing these data have been developed and successfully applied (e.g., [91, 100, 289]). This
interactive visualization, integrated with data mining algorithms, happens under the umbrella of
exploratory data analysis and visual analytics.
Visualization of simulation data has often been restricted to analyzing the generated data. How-

ever, this perspective forgoes the particular chances that the combination of visualization and
simulation offers—that is, to integrate visualization more deeply into the data-generating process
of simulation experiments. In the work of Matković et al. [191], important concepts for effective

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:31

integration of visual analytics and conducting simulation experiments are presented, for example,
for optimization and simulation experiment automation [123]. By more deeply integrating visual-
ization into modeling and simulation studies, visualization becomes an additional tool, not merely
in conducting simulation experiments with models but also in the model development cycle, as in
the work of Andrienko et al. [12].

The conceptualization and implementation of these visual methods imply significant effort and
knowledge in visualization. Therefore, although important for the acceptance and use of a simula-
tion tool, more elaborate visualizations and GUIs are mostly found in commercial rather than aca-
demic research simulation tools [273]. To make matters worse, problem- and stakeholder-specific
visualization solutions are required to communicate simulation results effectively. Even when sim-
ilar systems are simulated, different visual analytics solutions are needed for different purposes—
for example, to inspect the spreading of COVID-19 infections due to contacts between individuals
along with associated metadata [272] or to support public health officials in planning and ensuring
the availability of resources (e.g., hospital beds) under different spreading scenarios [4].

6.1.5 Participatory Modeling. Directly involving stakeholders and decision makers not merely
in formulating requirements and using the results but in developing and testing the simulation
model facilitates communication and increases trust in simulation results. This type of collabo-
ration can already be found in early system dynamics models, also under the term group model
building (e.g., [296]). Using principles and techniques from participatory research, stakeholders
take over an active role—for example, by contributing to Joint Application Design Workshops,
by exploring prototypes, or through participating in user panels (for a more technical view, see
the work of Ramanath and Gilbert [235], and a survey of methods in the work of Voinov et al.
[300]). Participatory approaches (Barreteau et al. [22] give an overview) were successfully applied
in decision-making contexts where communication with diverse stakeholders is essential, such
as environmental management [21, 251, 292]. This was systematized in the so-called companion
modeling approach [23].Will et al. [312] view the exchange frequency betweenmodelers and stake-
holders as the most critical aspect for models supporting decision making in socio-environmental
scenarios.

6.2 Future Research Directions

Understanding the audience is critical for simulation success in advice from simulation practition-
ers [250, 275]. Therefore, more efforts need to be invested into better understanding stakeholders,
using the toolbox of social and psychological empirical research, including quantitative models
that build on game theory and Bayesian decision theories. The insights gained about the back-
ground, preferences, and expectations of stakeholders will allow for improving communication
with stakeholders (and other users) by revealing and exploiting differences in perspectives, au-
tomatically generating stakeholder-specific explanations of the results, and offering interaction
possibilities with the simulation study and (ideally) with the modeler in a participatory approach,
tuned to the constraints of the stakeholder, all of which will increase understanding of simulation
studies and results (Figure 6).

6.2.1 Revealing and Exploiting Differences in Perspectives. Generally, we cannot expect stake-
holders’ backgrounds, preferences, and expectations to align with the context of the simulation
study and its results. In addition, temporal constraints will aggravate the problem. Consider, for
instance, informing a busy stakeholder about a simulator’s prediction f (x) for an outcome across
a range of inputs x . The stakeholder has their own estimate of д(x) for this outcome based on
their domain expertise. They are also interested in the outcome that varies with x and depends
on how they plan to use the simulator’s predictions. The number of inputs x is large, making it

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:32 A. M. Uhrmacher et al.

Fig. 6. Taking the stakeholder into the loop and the stakeholder’s specific view into account: generating
stakeholder-specific abstractions and explanations about both model and simulation results automatically.
Different stakeholders have different needs, so tuning interactions and participatory opportunities is
essential.

prohibitively time consuming to tell the stakeholder f (x) for every x . Instead, we would like to pri-
oritize communicating about those xs with a large difference between the simulator’s prediction
f (x) and the stakeholder’s estimate д(x), and where the stakeholder has a high level of interest.
A major challenge in doing this is that the simulation analyst may not know the stakeholder’s
estimate д(x) or their level of interest. Moreover, methods that learn about the stakeholder’s д(x)
by directly asking them to provide estimates for some collection of x are limited in the number
of x .
When human simulation analysts take on this task, they leverage a mechanistic model of how

the stakeholder thinks to learn the “simulation model inside their head.” They then show simu-
lation results where they differ from the estimated mechanistic model and explain the difference.
This is a lot of work for the simulation analyst. Within this context, we see several opportunities
for future work:

— Automated methods for processing stakeholder speech or conducting and analyzing short
interviews to derive the stakeholder’s mental model and д(x).

— Methods for designing simulation experiments to identify x where f (x) and д(x) are very
different, given an estimate of д(x).

— Interactive visualization methods for helping stakeholders explore f (x), and for helping the
stakeholder understand how f (x) and д(x) are different.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:33

These new approaches must use stakeholder’s and decision maker’s time as efficiently as pos-
sible. Here, automation has the advantage of formalizing elicitation results and may support au-
tomation in later stages. In addition, assumptions directing the elicitation process can be made
explicit and used in communication.

6.2.2 Generating Explanations Automatically. To help build stakeholder confidence in simula-
tion results, successful simulation analysts must sometimes explain why a simulator outputs a
particular value. A challenge is that many simulators are complex, take high-dimensional inputs,
produce high-dimensional outputs, and encode complex processes. This can make literal explana-
tions, or in-detail walk-throughs, for why a simulator’s prediction is reasonable, too complex to
be useful, especially for non-technical stakeholders. In such situations, it can be useful to provide
a largely qualitative explanation that is only approximately correct, such as “The simulated num-
ber of infections decreases when masking is mandated because masks reduce the chance that an
infected person infects others.” As another example: “Simulated hospitalizations decrease by 30%
when masking is mandated, while simulated infections decrease by only 10%. Simulated infections
are largely driven by younger people who are infected at social gatherings and have low com-
pliance with masking. Because younger people are less likely to develop severe symptoms, these
infections do not contribute significantly to hospitalizations. Simulated hospitalizations are largely
driven by older and more vulnerable individuals, who are more likely to comply with mask man-
dates.” Automated generation of explanations makes the stakeholders more independent from the
simulation analyst, taking potentially preconceived expectations out of the analysis. We would
expect that automatically creating explanations increases the trust of stakeholders in the simu-
lation output [125]; the ability of the simulation analyst to generate explanations is augmented,
not replaced. In this context, the potential of LLMs, such as ChatGPT, could also be explored to
generate natural language explanations for certain aspects of a simulation study and to improve
understandability.
One productive avenue toward generating explanations is first to observe that each of the pre-

ceding explanations is essentially a causal graph approximating the simulation model. Causal loop
diagrams, one form of causal graphs, are an established qualitative abstraction of simulation mod-
els used for conceptualization [47]. Alternative causal representations might represent not only
variables as vertices but, for example, may correspond to an aggregation of microscopic entities
within the simulation [220].

Causal abstractions might be derived automatically from formal representations of the simu-
lation model (see Section 2), for example, by exploiting model-driven reverse engineering from
software engineering, or they might be learned by observing the input-output behavior of the sim-
ulation. In the ideal case, they would use information about the simulation model, the context (see
Section 3), and information gained from (automatically) executing various simulation experiments
(see Section 5). Simulation is a data-generating process. Therefore, in addition to filtering or further
processing of generated data according to stakeholders’ expectations to support explanations, data
can be generated for the purpose of explanations. As well, the generation of explanations will also
imply the selection and representation of context information to facilitate interpreting simulation
results. For example, are in the given situation of the stakeholder the assumptions more important,
or should the stakeholder be made aware based on which data the model has been validated, again
constraining possibly its application (see also Section 4 on model reuse)?

6.2.3 Interactions for Understanding. A more engaging approach to building stakeholder un-
derstanding is providing methods to help the stakeholder explore the model’s behavior and, if
time allows, to do so jointly with other stakeholders and the modelers, even in a participatory
manner during model building. Being more engaged in a simulation study by interaction will

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:34 A. M. Uhrmacher et al.

increase trust in the stakeholder-model relation and, if participatory approaches are used, for ex-
ample, during model development strengthen the stakeholder-modeler relation [125]. However,
the temporal constraints of stakeholders will limit the practicability of the approach. Efficient vi-
sualization, interaction, and automatic analysis methods fine-tuned to the stakeholder’s questions
will be essential in realizing this.

Animation is an established tool for showing stakeholders what entities are modeled in a sim-
ulation and how they interact to produce outcomes. However, a single, one-size-fits-all anima-
tion cannot give a stakeholder a comprehensive view of a simulation model’s behavior. Adopting
state-of-the-art visual analytics methods and the corresponding established techniques, such as
linked views, and offering individualization of pipelines, such as “analyze first, show the impor-
tant, zoom, filter and analyze further, details on demand” [157], will help to communicate simu-
lation results more effectively to the individual stakeholder. New methodological developments
are needed, given that effective visualizations need to be tuned to the application or even to a
stakeholder’s question of interest. Thus, they need to be highly adaptable. Exploiting the full po-
tential of visual analytics for modeling and simulation requires expertise in visualization methods,
their development, and application, and thus demands close cooperation with the visual analytics
community. For computationally intensive simulations, providing a responsive real-time experi-
ence, efficient simulation algorithms are needed that may trade accuracy for speed. Anticipating
the stakeholders’ interest—supported by automated elicitation approaches, as given previously—
would also allow for generating simulation runs in advance to have the results when stakeholders
want to examine them interactively.

7 Discussion and Conclusion

In the following, we will briefly summarize our discussions on how the four goals are interrelated
and which foundation, challenges, and strategies they share to move ahead.

7.1 Four Interrelated Goals

The C2AC Roadmap for Modeling and Simulation proposes four goals to move methods and prac-
tice of modeling and simulation studies forward: to provide computational support for represent-
ing and evaluating context, to support composition and reuse in simulation studies, to extend the
degree of automating simulation studies, and to enhance the communication with different stake-
holders. We showed that the four goals are tightly coupled and exhibit many interdependencies
(Figure 7).

With context, we extend the conceptual model (i.e., everything useful in building a simulation
model or conducting the simulation study) with information about every constituent’s actual us-
age. A provenance-based approach makes the different artifacts’ role in the knowledge-intensive
process of conducting a simulation study explicit. This is a prerequisite for knowledge about ar-
tifacts as well as the involved processes to be exploited retrospectively for more comprehensive
documentation, analysis, and assessment of simulation studies, and, in addition, prospectively, to
guide the modeler through simulation studies or even to automate these studies.
Composition and reuse have been shown to be central to mastering the complexity of building a

simulation model. Still, too little support exists to ensure semantically valid composition or reuse,
and the same applies to reasoning about similarities and differences. Other modeling and simula-
tion study artifacts, such as simulation experiments, requirements, or assumptions, hold valuable
information that future work needs to build on. At the same time, developing those artifacts (and
thus the entire simulation study) will benefit from methods and efforts aimed at facilitating com-
position and reuse, such as introducing standards and formalization.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



Context, Composition, Automation, and Communication 23:35

Fig. 7. Interrelations between the four goals of context, composition and reuse, automation, and communication

in which the different goals enable or facilitate each other by specific means.

Increasing the fraction of simulation studies that can be executed automatically boosts the ef-
ficiency of conducting simulation studies. It holds the promise of more systematically conducted
simulation studies than at present. Automation relies onmaking knowledge in a modeling and sim-
ulation study accessible and interpretable. This refers to knowledge about the application domain
of the simulation study as well as modeling and simulation methods and their application. There-
fore, in addition to an unambiguous representation of the various artifacts, suitable annotations
and ontologies will play a central role, as does the exploitation of machine learning methods.
Communication of simulation results relies on understanding the different users, whether these

are domain experts or decision makers. Their view on the system of interest, expectations, and
questions must be considered when communicating and explaining simulation results to users.
This applies to automatically generated (visual) abstractions, simulation experiments, explanations,
and interactions that allow users to gain insights into the system and explore possible answers to
their questions. Accordances and discrepancies between the perceptions of stakeholders and the
“reality” of the simulation need to be built upon respectively revealed and actively exploited to en-
hance understanding of the simulation. Supporting communication more effectively will increase
the impact of simulation studies. It will enrich the canon of simulation methods to generate ex-
planations, provide interactive visualization, and exploit participatory approaches tuned to stake-
holders’ demands and temporal constraints.

7.2 Common Foundations and Challenges

All goals rely on a clear separation of concerns and the unambiguous representation of central ar-
tifacts of the modeling and simulation study. Whereas in the past attention was focused on simula-
tion models and their formal representation, more recent efforts have looked more closely at how

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.



23:36 A. M. Uhrmacher et al.

to succinctly and unambiguously specify simulation experiments and behavioral requirements.
These efforts to provide a user-friendly representation with clear semantics must be intensified
and expanded to other artifacts, such as assumptions and research questions, and the processes
of the simulation studies to achieve any of the four goals. In this pursuit, DSL design, accessible
annotations, ontologies, and the integration of machine learning will play a central role.
The methodological developments induced by pursuing the suggested roadmap must be evalu-

ated suitably. Evaluation might refer to efficiency (concerning time and other resources), effective-
ness (in terms of the intended purpose), and accuracy (without technical or methodological errors).
This will propose new research challenges. For example, in addition to increasing the reliability
of simulation results, increasing understanding and trust in modeling and simulation studies is a
major concern of the roadmap, but how can the level of understanding or trust be reliably assessed,
and how can methods and protocols be designed to evaluate a change in those? Clear evaluation
procedures are a prerequisite to measure the impact of the developed methods on modeling and
simulation, and thus crucial for any advance in research.
Developing suitable evaluation methods will open up an entire area of new modeling and simu-

lation research, which can build on metrics, evaluation methods, and best practices in other areas
of computer science, such as software engineering and human-computer interaction. In fact, the
proposed roadmap will require close interaction with other areas of computer science, such as
with visual analytics, which plays a crucial role in communication, but also, more generally, in
keeping the modeler or user within the loop, particularly if substantial parts of the modeling and
simulation lifecycle become automated. Similarly, adopting state-of-the-art methods developed in
software engineering is key for making progress in modeling and simulation as envisioned in our
roadmap. This includes methods that support the design of DSLs and formats for the diverse ar-
tifacts of a simulation study, as well as for reverse engineering to generate abstractions to cater
to the needs of different users. Reasoning about variations or components of artifacts may benefit
from developments such as feature languages and other annotations. The latter leads us to artificial
intelligence. Knowledge-based annotations and suitable inference strategies will be crucial for any
meaningful composition and reuse beyond the syntactical level and for realizing a more significant
degree of automation. Therefore, combining knowledge-based deductive methods with machine
learning methods is a promising avenue to automate various tasks within the modeling and simu-
lation lifecycle. Our roadmap requires also propels reaching out to other computer science areas
to engulf the state of the art in diverse areas, with an expected win-win for all involved.
As cooperation with other computer science disciplines is needed to move forward, so are addi-

tional efforts of the modeling and simulation communities. For example, the maintenance of tools
and repositories requires further attention. Efforts need to be directed toward defining and utilizing
languages with clear semantics, introducing standards and best practices, developing ontologies
of the application domain and modeling and simulation methods, and making those accessible.
These research efforts may not be restricted to simulation models but need to be expanded to
other modeling and simulation artifacts, such as research questions, assumptions, requirements,
simulation experiments, and diverse processes and activities, to treat those as first-class citizens
of the simulation study.

Acknowledgements

We would like to thank Schloss Dagstuhl (www.dagstuhl.de). The article summarizes and extends
the discussions of one of the three working groups of the Dagstuhl Seminar 22401: Computer
Science Methods for Effective and Sustainable Simulation Studies (October 3–7, 2022). In addition,
we sincerely thank the reviewers for their detailed and valuable comments and feedback, which
greatly contributed to improving the quality of this work.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

www.dagstuhl.de


Context, Composition, Automation, and Communication 23:37

References

[1] Collaborative Research Center SFB-TRR 161. 2019. Quantitative Methods for Visual Computing. Retrieved January

27, 2023 from https://www.sfbtrr161.de/

[2] Sameera Abar, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M. P. O’Hare. 2017. Agent based

modelling and simulation tools: A review of the state-of-art software. Computer Science Review 24 (2017), 13–33.

https://doi.org/10.1016/j.cosrev.2017.03.001

[3] ACM. 2020. Artifact Reviewing and Badging—Current. Retrieved June 21, 2024 from https://www.acm.org/

publications/policies/artifact-review-and-badging-current

[4] Shehzad Afzal, Sohaib Ghani, Hank C. Jenkins-Smith, David S. Ebert, Markus Hadwiger, and Ibrahim Hoteit. 2020.

A visual analytics based decision making environment for COVID-19 modeling and visualization. In Proceedings of

the 2020 IEEE Visualization Conference (VIS’20). IEEE, 86–90.

[5] Gul Agha and Karl Palmskog. 2018. A survey of statistical model checking. ACM Transactions on Modeling and

Computer Simulation 28, 1 (2018), 1–39.

[6] Yasmine Ahmed, Cheryl A. Telmer, Gaoxiang Zhou, and Natasa Miskov-Zivanov. 2023. Context-aware knowledge

selection and reliable model recommendation with ACCORDION. bioRxiv (2023). https://doi.org/10.1101/2022.01.22.

477231

[7] Fatima N. Al-Aswadi, Huah Yong Chan, and Keng Hoon Gan. 2020. Automatic ontology construction from text: A

review from shallow to deep learning trend. Artificial Intelligence Review 53, 6 (2020), 3901–3928.

[8] Elvira Albert, Jesús Correas Fernández, Germán Puebla, and Guillermo Román-Díez. 2015. Quantified abstract con-

figurations of distributed systems. Formal Aspects of Computing 27, 4 (2015), 665–699. https://doi.org/10.1007/s00165-

014-0321-z

[9] Alexander A. Alemi, François Chollet, Niklas Een, Geoffrey Irving, Christian Szegedy, and Josef Urban. 2016.

DeepMath—Deep sequencemodels for premise selection. In Proceedings of the 30th International Conference on Neural

Information Processing Systems (NIPS’16). 2243–2251.

[10] Mohammed Ali, Ali Alqahtani, Mark W. Jones, and Xianghua Xie. 2019. Clustering and classification for time series

data in visual analytics: A survey. IEEE Access 7 (2019), 181314–181338. https://doi.org/10.1109/ACCESS.2019.2958551

[11] M. David Allen, Len Seligman, Barbara Blaustein, and Adriane Chapman. 2010. Provenance Capture and Use: A Prac-

tical Guide. Technical Report. Mitre Corporation, McLean VA.

[12] Natalia Andrienko, Tim Lammarsch, Gennady Andrienko, Georg Fuchs, Daniel Keim, Silvia Miksch, and Andrea

Rind. 2018. Viewing visual analytics as model building. In Computer Graphics Forum 37, 6 (2018), 275–299.

[13] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. 2013. Feature-Oriented Software Product Lines: Con-

cepts and Implementation. Springer. I–XVI.

[14] Raul Astudillo and Peter Frazier. 2020. Multi-attribute Bayesian optimization with interactive preference learning.

In Proceedings of the International Conference on Artificial Intelligence and Statistics. 4496–4507.

[15] Colin Atkinson and Thomas Kuhne. 2003. Model-driven development: A metamodeling foundation. IEEE Software

20, 5 (2003), 36–41.

[16] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. 2007. DBpedia:

A nucleus for a web of open data. In The Semantic Web, Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang,

Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and

Philippe Cudré-Mauroux (Eds.). Springer, Berlin, Germany, 722–735.

[17] Daniel Ayllón, Steven F. Railsback, Cara Gallagher, Jacqueline Augusiak, Hans Baveco, Uta Berger, Sandrine Charles,

Romina Martin, Andreas Focks, Nika Galic, Chun Liu, Emiel van Loon, Jacob Nabe-Nielsen, Cyril Piou, J. Gareth

Polhill, Thomas G. Preuss, Viktoria Radchuk, Amelie Schmolke, Julita Stanicka-Michalak, Pernille Thorbeck, and

Volker Grimm. 2021. Keeping modelling notebooks with TRACE: Good for you and good for environmental research

and management support. Environmental Modelling & Software 136 (2021), 104932.

[18] Gianfranco Balbo. 2001. Introduction to stochastic Petri nets. In Lectures on Formal Methods and Performance Analysis.

Springer, 84–155.

[19] Osman Balci. 2012. A life cycle for modeling and simulation. Simulation 88, 7 (2012), 870–883.

[20] Lynne P. Baldwin, Tillal Eldabi, and Ray J. Paul. 2004. Simulation in healthcare management: A soft approach

(MAPIU). Simulation, Modelling, Practice and Theory 12, 7-8 (2004), 541–557.

[21] Cécile Barnaud, François Bousquet, and Guy Trebuil. 2008. Multi-agent simulations to explore rules for rural credit

in a highland farming community of northern Thailand. Ecological Economics 66, 4 (2008), 615–627. https://doi.org/

10.1016/j.ecolecon.2007.10.022

[22] Olivier Barreteau, Pieter Bots, Katherine Daniell, Michel Etienne, Pascal Perez, Cécile Barnaud, Didier Bazile, Nicolas

Becu, Jean-Christophe Castella,William’s Daré, andGuy Trebuil. 2017. Participatory approaches. In Simulating Social

Complexity: A Handbook. Springer International Publishing, 253–292. https://doi.org/10.1007/978-3-319-66948-9_12

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://www.sfbtrr161.de/
https://doi.org/10.1016/j.cosrev.2017.03.001
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1101/2022.01.22.477231
https://doi.org/10.1007/s00165-014-0321-z
https://doi.org/10.1109/ACCESS.2019.2958551
https://doi.org/10.1016/j.ecolecon.2007.10.022
https://doi.org/10.1007/978-3-319-66948-9_12


23:38 A. M. Uhrmacher et al.

[23] Oliver Barreteau. 2003. Our companion modelling approach. Journal of Artificial Societies and Social Simulation 6, 2

(2003), 1. https://jasss.soc.surrey.ac.uk/6/2/1.html

[24] Fernando J. Barros. 1997. Modeling formalisms for dynamic structure systems. ACM Transactions on Modeling and

Computer Simulation 7, 4 (Oct. 1997), 501–515. https://doi.org/10.1145/268403.268423

[25] Robert G. Bartholet, David C. Brogan, Paul F. Reynolds, and Joseph C. Carnahan. 2004. In search of the philosopher’s

stone: Simulation composability versus component-based software design. In Proceedings of the Fall Simulation In-

teroperability Workshop.

[26] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler, Dejan Ničković, and Sriram

Sankaranarayanan. 2018. Specification-based monitoring of cyber-physical systems: A survey on theory, tools and

applications. In Lectures on Runtime Verification. Springer, Cham, 135–175. https://doi.org/10.1007/978-3-319-75632-

5_5

[27] Ezio Bartocci, Cristinel Mateis, Eleonora Nesterini, and Dejan Nickovic. 2022. Survey on mining signal temporal

logic specifications. Information and Computation 289, Part A (2022), 104957. https://doi.org/10.1016/j.ic.2022.104957

[28] Leonardo J. Basso,Marcel Goic, Marcelo Olivares, Denis Sauré, Charles Thraves, Aldo Carranza, Gabriel Y.Weintraub,

Julio Covarrubias, Cristian Escobedo, Natalia Jara, Antonio Morena, Demian Arancibia, Manuel Fuenzalida, Juan

Pablo Uribe, Felipe Zuniga, Marcela Zuniga, Miguel O’Ryan, Emilio Santelices, Juan Pablo Torres, Magdalena Badal,

Mirko Bozanic, Sebastian Cancino-Espinoza, Eduardo Lara, and Ignasi Neira. 2023. Analytics saves lives during the

covid crisis in chile. INFORMS Journal on Applied Analytics 53, 1 (2023), 9–31.

[29] Gregory Batt, Jeremy T. Bradley, Roland Ewald, François Fages, Holger Hermans, Jane Hillston, Peter Kemper, Alke

Martens, Pieter Mosterman, Flemming Nielson, Oleg Sokolsky, and Adelinde M. Uhrmacher. 2006. Working groups’

report: The challenge of combining simulation and verification. In Dagstuhl Seminar Proc. 06161: Simulation and

Verification of Dynamic Systems.

[30] Maximilian Beikirch, Simon Cramer, Martin Frank, Philipp Otte, Emma Pabich, and Torsten Trimborn. 2018. Sim-

ulation of stylized facts in agent-based computational economic market models. arXiv:1812.02726 (2018). https:

//ideas.repec.org/p/arx/papers/1812.02726.html

[31] Frank T. Bergmann, Richard Adams, Stuart Moodie, Jonathan Cooper, Mihai Glont, Martin Golebiewski, Michael

Hucka, Camille Laibe, Andrew K. Miller, David P. Nickerson, Brett G. Olivier, Nicolas Rodriguez, Herbert M. Sauro,

Martin Scharm, Stian Soiland-Reyes, Dagmar Waltemath, Florent Yvon, and Nicolas Le Novère. 2014. COMBINE

archive and OMEX format: One file to share all information to reproduce a modeling project. BMC Bioinformatics

15, 1 (2014), 1–9.

[32] Hugues Bersini. 2012. UML for ABM. Journal of Artificial Societies and Social Simulation 15, 1 (2012), 9.

[33] Ludwig von Bertalanffy. 1968. General System Theory: Foundations, Development, Applications. G. Braziller.

[34] Alessandro Berti, Sebastiaan J Van Zelst, and Wil van der Aalst. 2019. Process mining for Python (PM4Py): Bridging

the gap between process and data science. arXiv preprint arXiv:1905.06169 (2019).

[35] Nicky Best, Nigel Dallow, and Timothy Montague. 2020. Prior elicitation. In Bayesian Methods in Pharmaceutical

Research. Chapman & Hall/CRC, 87–109.

[36] Martin Bicher, Christoph Urach, and Niki Popper. 2018. GEPOC ABM: A generic agent-based population model for

Austria. In Proceedings of the 2018 Winter Simulation Conference (WSC’18). IEEE, 2656–2667.

[37] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A. Lozano. 2021. A review on outlier/anomaly detection in

time series data. ACM Computing Surveys 54, 3 (April 2021), Article 56, 33 pages. https://doi.org/10.1145/3444690

[38] Michael L. Blinov, James R. Faeder, Byron Goldstein, and William S. Hlavacek. 2004. BioNetGen: Software for rule-

based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 17 (2004),

3289–3291.

[39] Michael L. Blinov, James C. Schaff, Dan Vasilescu, Ion I. Moraru, Judy E. Bloom, and Leslie M. Loew. 2017. Compart-

mental and spatial rule-based modeling with virtual cell. Biophysical Journal 113, 7 (2017), 1365–1372.

[40] Emma Blomkamp. 2018. The promise of co-design for public policy. Australian Journal of Public Administration 77,

4 (2018), 729–743.

[41] Tom Blount, Adriane Chapman, Michael Johnson, and Bertram Ludascher. 2021. Observed vs. possible provenance

(research track). In Proceedings of the 13th International Workshop on Theory and Practice of Provenance (TaPP’21).

https://www.usenix.org/conference/tapp2021/presentation/blount

[42] Defense Science Board. 2020. AD1155605—Task Force on Gaming, Exercising, Modeling, and Simulation (GEMS). U.S.

Department of Defense, Washington, DC.

[43] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, and Daniele Gianni. 2013. A SaaS-based automated frame-

work to build and execute distributed simulations from SysML models. In Proceedings of the 2013 Winter Simulations

Conference (WSC’13). 1371–1382. https://doi.org/10.1109/WSC.2013.6721523

[44] Paolo Bocciarelli, Andrea D’Ambrogio, Alberto Falcone, Alfredo Garro, and Andrea Giglio. 2019. A model-driven

approach to enable the simulation of complex systems on distributed architectures. SIMULATION 95, 12 (2019), 1185–

1211. https://doi.org/10.1177/0037549719829828

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://jasss.soc.surrey.ac.uk/6/2/1.html
https://doi.org/10.1145/268403.268423
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1016/j.ic.2022.104957
https://ideas.repec.org/p/arx/papers/1812.02726.html
https://doi.org/10.1145/3444690
https://www.usenix.org/conference/tapp2021/presentation/blount
https://doi.org/10.1109/WSC.2013.6721523
https://doi.org/10.1177/0037549719829828


Context, Composition, Automation, and Communication 23:39

[45] Grady Booch, James Rumbaugh, and Ivar Jacobson. 1998. The UnifiedModeling Language User Guide. Addison-Wesley.

[46] Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. 2016. Smoothed model checking for uncertain continuous-

time Markov chains. Information and Computation 247 (2016), 235–253. https://doi.org/10.1016/j.ic.2016.01.004

[47] Louis Bouchet, Martin C. Thoms, and Melissa Parsons. 2022. Using causal loop diagrams to conceptualize ground-

water as a social-ecological system. Frontiers in Environmental Science 10 (2022), 836206.

[48] Pierre Boutillier, Mutaamba Maasha, Xing Li, Héctor F. Medina-Abarca, Jean Krivine, Jérôme Feret, Ioana Cristescu,

Angus G. Forbes, andWalter Fontana. 2018. The Kappa platform for rule-basedmodeling. Bioinformatics 34, 13 (2018),

i583–i592.

[49] Lubos Brim, Petr Dluhos, David Safránek, and Tomas Vejpustek. 2014. STL∗: Extending signal temporal logic with

signal-value freezing operator. Information and Computation 236 (2014), 52–67. https://doi.org/10.1016/j.ic.2014.01.

012

[50] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom

Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural Information

Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.). Vol. 33. Curran Associates,

1877–1901. https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[51] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. 2016. Discovering governing equations from data by sparse

identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences 113, 15 (2016), 3932–

3937. https://doi.org/10.1073/pnas.1517384113

[52] Richard Bubel, Antonio Flores-Montoya, and Reiner Hähnle. 2014. Analysis of executable software models. In Formal

Methods for Executable Software Models. Lecture Notes in Computer Science, Vol. 8483. Springer, 1–25. https://doi.

org/10.1007/978-3-319-07317-0_1

[53] Kai Budde, Jacob Smith, Pia Wilsdorf, Fiete Haack, and Adelinde M. Uhrmacher. 2021. Relating simulation studies

by provenance—developing a family of WNT signaling models. PLoS Computational Biology 17, 8 (2021), e1009227.

[54] Terry W. Burns, D. John O’Connor, and Susan M. Stocklmayer. 2003. Science communication: A contemporary defi-

nition. Public Understanding of Science 12, 2 (2003), 183–202.

[55] Pamela M. Burrage, Hasitha N.Weerasinghe, and Kevin Burrage. 2024. Using a library of chemical reactions to fit sys-

tems of ordinary differential equations to agent-based models: A machine learning approach. Numerical Algorithms

96 (2024), 1063–1077. https://doi.org/10.1007/s11075-023-01737-0

[56] Zoya Bylinskii, Laura Herman, Aaron Hertzmann, Stefanie Hutka, and Yile Zhang. 2022. Towards better user studies

in computer graphics and vision. arXiv:2206.11461 (2022). https://doi.org/10.48550/ARXIV.2206.11461

[57] Wentong Cai, Philipp Andelfinger, Luca Bortolussi, Christopher Carothers, Dong (Kevin) Jin, Till Köster, Michael

Lees, Jason Liu, Margaret Loper, Alessandro Pellegrini,Wen Jun Tan, and VerenaWolf. 2023. Intelligent modeling and

simulation lifecycle. In Computer Science Methods for Effective and Sustainable Simulation Studies (Dagstuhl Seminar

22401). DOI:https://doi.org/10.4230/DagRep.12.10.1
[58] Wentong Cai, Christopher Carothers, David M. Nicol, and Adelinde M. Uhrmacher. 2023. Computer science meth-

ods for effective and sustainable simulation studies (Dagstuhl Seminar 22401). Dagstuhl Reports 12, 10 (2023), 1–60.

DOI:https://doi.org/10.4230/DagRep.12.10.1
[59] Francesca Cairoli, Fabio Anselmi, Alberto d’Onofrio, and Luca Bortolussi. 2023. Generative abstraction of Markov

population processes. Theoretical Computer Science 977 (2023), 114169. https://doi.org/10.1016/j.tcs.2023.114169

[60] Olivier Casse. 2017. SysML in Action with Cameo Systems Modeler. Elsevier.

[61] Rodrigo Castro, Joachim Denil, Jérôme Feret, Kresimir Matkovic, Niki Popper, Susan Sanchez, and Peter Sloot. 2023.

Policy by simulation: Seeing is believing for interactive model co-creation and effective intervention. In Computer

Science Methods for Effective and Sustainable Simulation Studies (Dagstuhl Seminar 22401). DOI:https://doi.org/10.
4230/DagRep.12.10.1

[62] François E. Cellier and Jurgen Greifeneder. 2013. Continuous System Modeling. Springer Science & Business Media.

[63] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. 2009. Variability within modeling language defini-

tions. In Model Driven Engineering Languages and Systems. Lecture Notes in Computer Science, Vol. 5795. Springer,

670–684. http://www.se-rwth.de/publications/Variability-within-Modeling-Language-Definitions.pdf

[64] Deniz Cetinkaya, Alexander Verbraeck, and Mamadou D. Seck. 2012. Model transformation from BPMN to DEVS

in the MDD4MS framework. In Proceedings of the 2012 Symposium on Theory of Modeling and Simulation—DEVS

Integrative M&S Symposium (TMS/DEVS’12). Article 28, 6 pages.

[65] Li Chen and Pearl Pu. 2004. Survey of Preference ElicitationMethods. Technical Report IC/2004/67. Ecole Politechnique

Federale de Lausanne (EPFL).

[66] Michele Chinosi and Alberto Trombetta. 2012. BPMN: An introduction to the standard. Computer Standards & Inter-

faces 34, 1 (2012), 124–134.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1016/j.ic.2016.01.004
https://doi.org/10.1016/j.ic.2014.01.012
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1007/978-3-319-07317-0_1
https://doi.org/10.1007/s11075-023-01737-0
https://doi.org/10.48550/ARXIV.2206.11461
https://doi.org/10.4230/DagRep.12.10.1
https://doi.org/10.4230/DagRep.12.10.1
https://doi.org/10.1016/j.tcs.2023.114169
https://doi.org/10.4230/DagRep.12.10.1
http://www.se-rwth.de/publications/Variability-within-Modeling-Language-Definitions.pdf


23:40 A. M. Uhrmacher et al.

[67] Federica Ciocchetta and Jane Hillston. 2009. Bio-PEPA: A framework for the modelling and analysis of biological

systems. Theoretical Computer Science 410, 33-34 (2009), 3065–3084.

[68] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe. 2015. Conceptual model of the global-

ization for domain-specific languages. In Globalizing Domain-Specific Languages. Lecture Notes in Computer Sci-

ence, Vol. 9400. Springer, 7–20. http://www.se-rwth.de/publications/Conceptual-Model-of-the-Globalization-for-

Domain-Specific-Languages.pdf

[69] Tony Clark, Andy Evans, Paul Sammut, and James Willans. 2004. An executable metamodelling facility for domain

specific language design. In Proceedings of the 4th OOPSLA Workshop on Domain-Specific Modeling.

[70] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press, Cambridge, MA.

[71] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices & Patterns. Addison Wesley Longman.

[72] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe, James Steel, and Didier Vojtisek. 2016. En-

gineering Modeling Languages: Turning Domain Knowledge into Tools. Chapman & Hall/CRC Innovations in Software

Engineering and Software Development Series. Chapman & Hall/CRC.

[73] Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, Nebojša Tijanić, Hervé Ménager,

Stian Soiland-Reyes, Bogdan Gavrilović, Carole Goble, and the CWL Community. 2022. Methods included: Standard-

izing computational reuse and portability with the common workflow language. Communications of the ACM 65, 6

(May 2022), 54–63. https://doi.org/10.1145/3486897

[74] Víctor Cuevas-Vicenttín, Saumen C. Dey, Sven Köhler, Sean Riddle, and Bertram Ludäscher. 2012. Scientific work-

flows and provenance: Introduction and research opportunities. Datenbank-Spektrum 12, 3 (2012), 193–203. https:

//doi.org/10.1007/s13222-012-0100-z

[75] Olivier Dalle. 2006. OSA: An open component-based architecture for discrete-event simulation. In Proceedings of the

20th European Conference on Modeling and Simulation.

[76] Jônathan W. V. Dambros, Jorge O. Trierweiler, and Marcelo Farenzena. 2019. Oscillation detection in process

industries—Part I: Review of the detection methods. Journal of Process Control 78 (2019), 108–123. https://doi.org/

10.1016/j.jprocont.2019.04.002

[77] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2021. Parallel Bayesian optimization of multiple noisy

objectives with expected hypervolume improvement. Advances in Neural Information Processing Systems 34 (2021),

2187–2200.

[78] Paul K. Davis. 2016. Capabilities for Joint Analysis in the Department of Defense: Rethinking Support for Strategic

Analysis. RAND Corporation, Santa Monica, CA. https://doi.org/10.7249/RR1469

[79] Paul K. Davis, James Bigelow, and Jimmie McEver. 2000. Exploratory Analysis and a Case History of Multiresolution,

Multiperspective Modeling. Report No. RP-925. Rand Corporation.

[80] Frank De Boer, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, and Eduard Kamburjan (Eds.). 2024. Active

Object Languages: Current Research Trends. Lecture Notes in Computer Science, Vol. 14360. Springer, Cham.

[81] Frank de Boer, Crystal Chang Din, Kiko Fernandez-Reyes, Reiner Hähnle, Ludovic Henrio, Einar Broch Johnsen,

Ehsan Khamespanah, Justine Rochas, Vlad Serbanescu, Marjan Sirjani, and Albert Mingkun Yang. 2017. A survey of

active object languages. ACM Computing Surveys 50, 5 (Oct. 2017), Article 76, 39 pages.

[82] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. 2004. Meta-modelling and graph grammars for multi-

paradigm modelling in AToM3. Software & Systems Modeling 3, 3 (Aug. 2004), 194–209. https://doi.org/10.1007/

s10270-003-0047-5

[83] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J. Maechling, Rajiv Mayani, Weiwei

Chen, Rafael Ferreira da Silva, Miron Livny, and Kent Wenger. 2015. Pegasus, a workflow management system for

science automation. Future Generation Computer Systems 46 (2015), 17–35. https://doi.org/10.1016/j.future.2014.10.

008

[84] JoachimDenil, Stefan Klikovits, Pieter J.Mosterman, Antonio Vallecillo, andHans Vangheluwe. 2017. The experiment

model and validity frame in M&S. In Proceedings of the Symposium on Theory of Modeling and Simulation. 1–12.

[85] Crystal Chang Din, Richard Bubel, and Reiner Hähnle. 2015. KeY-ABS: A deductive verification tool for the con-

current modelling language ABS. In Automated Deduction. Lecture Notes in Computer Science, Vol. 9195. Springer,

517–526. https://doi.org/10.1007/978-3-319-21401-6_35

[86] Alexandre Donzé, Thomas Ferrere, and Oded Maler. 2013. Efficient robust monitoring for STL. In Proceedings of the

International Conference on Computer Aided Verification. 264–279.

[87] Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu, and Scott A. Smolka. 2012. On tempo-

ral logic and signal processing. In Automated Technology for Verification and Analysis. Lecture Notes in Computer

Science, Vol. 7561. Springer, 92–106. https://doi.org/10.1007/978-3-642-33386-6_9

[88] Dominique Douglas-Smith, Takuya Iwanaga, Barry F. W. Croke, and Anthony J. Jakeman. 2020. Certain trends in un-

certainty and sensitivity analysis: An overview of software tools and techniques. Environmental Modelling & Software

124 (2020), 104588.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

http://www.se-rwth.de/publications/Conceptual-Model-of-the-Globalization-for-Domain-Specific-Languages.pdf
https://doi.org/10.1145/3486897
https://doi.org/10.1007/s13222-012-0100-z
https://doi.org/10.1016/j.jprocont.2019.04.002
https://doi.org/10.7249/RR1469
https://doi.org/10.1007/s10270-003-0047-5
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-642-33386-6_9


Context, Composition, Automation, and Communication 23:41

[89] Sašo Džeroski and Ljupčo Todorovski. 2008. Equation discovery for systems biology: Finding the structure and

dynamics of biological networks from time course data. Current Opinion in Biotechnology 19, 4 (2008), 360–368.

https://doi.org/10.1016/j.copbio.2008.07.002

[90] Wouter Edeling, Hamid Arabnejad, Robbie Sinclair, Diana Suleimenova, Krishnakumar Gopalakrishnan, Bartosz

Bosak, Derek Groen, Imran Mahmood, Daan Crommelin, and Peter V. Coveney. 2021. The impact of uncertainty

on predictions of the CovidSim epidemiological code. Nature Computational Science 1 (Feb. 2021), 128–135. https:

//doi.org/10.1038/s43588-021-00028-9

[91] Christian Eichner, Arne Bittig, Heidrun Schumann, and Christian Tominski. 2014. Analyzing simulations of biochem-

ical systems with feature-based visual analytics. Computers & Graphics 38 (2014), 18–26. https://doi.org/10.1016/j.cag.

2013.09.001

[92] Hilding Elmqvist and Sven-Erik Mattsson. 1997. MODELICA—The next generation modeling language: An interna-

tional design effort. In Proceedings of 1st World Congress of System Simulation. 1–3.

[93] Julien Emmanuel, Matthieu Moy, Ludovic Henrio, and Grégoire Pichon. 2021. S4BXI: The MPI-ready portals 4 sim-

ulator. In Proceedings of the 29th International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS’21). IEEE, 1–8. https://doi.org/10.1109/MASCOTS53633.2021.9614285

[94] Ahmet Erdemir, Trent M. Guess, Jason Halloran, Srinivas C. Tadepalli, and Tina M. Morrison. 2012. Considerations

for reporting finite element analysis studies in biomechanics. Journal of Biomechanics 45, 4 (2012), 625–633.

[95] Andy Evans, Jean-Michel Bruel, Robert France, Kevin Lano, and Bernhard Rumpe. 1998. Making UML precise. In

Proceedings of the OOPSLA’98 Workshop on “Formalizing UML: Why and How?”

[96] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. 1999.Meta-modelling semantics of UML. In Behavioral

Specifications of Businesses and Systems, H. Kilov, B. Rumpe, and I. Simmonds (Eds.). Kluver Academic Publishers, 45–

60.

[97] Roland Ewald and Adelinde M. Uhrmacher. 2014. SESSL: A domain-specific language for simulation experiments.

ACM Transactions on Modeling and Computer Simulation 24, 2 (2014), 1–25.

[98] James R. Faeder, Michael L. Blinov, andWilliam S. Hlavacek. 2009. Rule-based modeling of biochemical systems with

BioNetGen. In Systems Biology. Springer, 113–167.

[99] Niclas Feldkamp, Soeren Bergmann, and Steffen Strassburger. 2020. Knowledge discovery in simulation data. ACM

Transactions on Modeling and Computer Simulation 30, 4 (Nov. 2020), Article 24, 25 pages. https://doi.org/10.1145/

3391299

[100] Niclas Feldkamp, Soeren Bergmann, and Steffen Strassburger. 2020. Knowledge discovery in simulation data. ACM

Transactions on Modeling and Computer Simulation 30, 4 (Nov. 2020), Article 24, 25 pages. https://doi.org/10.1145/

3391299

[101] Mingbin Feng and Jeremy Staum. 2017. Green simulation: Reusing the output of repeated experiments. ACM Trans-

actions on Modeling and Computer Simulation 27, 4 (Oct. 2017), Article 23, 28 pages. https://doi.org/10.1145/3129130

[102] Neil M. Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bha-

tia, Adhiratha Boonyasiri, Zulma Cucunubá, Gina Cuomo-Dannenburg, Amy Dighe, Ilaria Dorigatti, Han Fu, Katy

Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C. Okell, Sabine van Elsland, Hayley Thompson, Robert

Verity, Erik Volz, Haowei Wang, Yuanrong Wang, Patrick G. T. Walker, Caroline Walters, Peter Winskill, Charles

Whittaker, Christl A. Donnelly, Steven Riley, and Azra C. Ghani. 2020. Impact of Non-Pharmaceutical Interventions

(NPIs) to Reduce COVID-19 Mortality and Healthcare Demand. Imperial College COVID-19 Response Team London.

[103] Martin Fowler. 2010. Domain-Specific Languages. Pearson Education.

[104] Martin Fowler and Kendall Scott. 1997. UML Distilled: Applying the Standard Object Modeling Language. Addison-

Wesley Longman Ltd., Essex, UK.

[105] Peter I. Frazier, J. Massey Cashore, Ning Duan, Shane G. Henderson, Alyf Janmohamed, Brian Liu, David B. Shmoys,

Jiayue Wan, and Yujia Zhang. 2022. Modeling for COVID-19 college reopening decisions: Cornell, a case study. Pro-

ceedings of the National Academy of Sciences 119, 2 (2022), e2112532119.

[106] Sanford. Friedenthal, AlanMoore, and Rick Steiner. 2011.A Practical Guide to SysML: The SystemsModeling Language.

Elsevier Science. http://books.google.de/books?id=4xz6Fx50zwcC

[107] Richard Fujimoto, Conrad Bock, Wei Chen, Ernest Page, and Jitesh H. Panchal. 2017. Research Challenges in Modeling

and Simulation for Engineering Complex Systems. Springer.

[108] Daniel Garcia-Vicuña, Laida Esparza, and Fermin Mallor. 2022. Hospital preparedness during epidemics using simu-

lation: The case of COVID-19. Central European Journal of Operations Research 30, 1 (2022), 213–249.

[109] Tom Gebhardt, Vasundra Touré, Dagmar Waltemath, Olaf Wolkenhauer, and Martin Scharm. 2022. Exploring the

evolution of biochemical models at the network level. PLoS One 17, 3 (March 2022), e0265735. https://doi.org/10.

1371/journal.pone.0265735

[110] Philippe J. Giabbanelli. 2023. GPT-based models meet simulation: How to efficiently use large-scale pre-trained lan-

guage models across simulation tasks. arXiv:2306.13679 [cs.HC] (2023).

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1016/j.copbio.2008.07.002
https://doi.org/10.1038/s43588-021-00028-9
https://doi.org/10.1016/j.cag.2013.09.001
https://doi.org/10.1109/MASCOTS53633.2021.9614285
https://doi.org/10.1145/3391299
https://doi.org/10.1145/3391299
https://doi.org/10.1145/3129130
http://books.google.de/books?id=4xz6Fx50zwcC
https://doi.org/10.1371/journal.pone.0265735


23:42 A. M. Uhrmacher et al.

[111] Elena Giachino, Cosimo Laneve, and Michael Lienhardt. 2016. A framework for deadlock detection in core ABS.

Software and Systems Modeling 15, 4 (2016), 1013–1048. https://doi.org/10.1007/s10270-014-0444-y

[112] Stephen Gilmore and Jane Hillston. 1994. The PEPA workbench: A tool to support a process algebra-based approach

to performance modelling. Computer Performance Evaluation 794 (1994), 353–368.

[113] Javier González, Zhenwen Dai, Andreas Damianou, and Neil D. Lawrence. 2017. Preferential Bayesian optimization.

In Proceedings of the International Conference on Machine Learning. 1282–1291.

[114] Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and Michael Reiter. 2011. Conventional

workflow technology for scientific simulation. Guide to e-Science: Next Generation Scientific Research and Discovery.

Computer Communications and Networks. Springer, 323–352.

[115] Volker Grimm, Jacqueline Augusiak, Andreas Focks, Béatrice M. Frank, Faten Gabsi, Alice S. A. Johnston, Chun Liu,

Benjamin T. Martin, Mattia Meli, Viktoriia Radchuk, Pernille Thorbek, and Steven F. Railsback. 2014. Towards better

modelling and decision support: documenting model development, testing, and analysis using TRACE. Ecological

Modelling 280 (2014), 129–139.

[116] Volker Grimm, Gary Polhill, and Julia Touza. 2017. Documenting social simulation models: The ODD protocol as a

standard. In Simulating Social Complexity. Springer, 349–365.

[117] Volker Grimm, Steven F. Railsback, Christian E. Vincenot, Uta Berger, Cara Gallagher, Donald L. DeAngelis, Bruce

Edmonds, Jiaqi Ge, Jarl Giske, Juergen Groeneveld, Alice S. A. Johnston, Alexander Milles, Jacob Nabe-Nielsen, J.

Gareth Polhill, Viktoriia Radchuk, Marie-Sophie Rohwäder, Richard A. Stillman, Jan C. Thiele, and Daniel Ayllón.

2020. The ODD protocol for describing Agent-Based and other simulation Models: A second update to improve

clarity, Replication, and Structural Realism. Journal of Artificial Societies and Social Simulation 23, 2 (2020).

[118] Gerrit Großmann, Michael Backenköhler, and Verena Wolf. 2020. Importance of interaction structure and stochastic-

ity for epidemic spreading: A COVID-19 case study. InQuantitative Evaluation of Systems. Lecture Notes in Computer

Science, Vol. 12289. Springer, 211–229. https://doi.org/10.1007/978-3-030-59854-9_16

[119] Lars Guenther andMarina Joubert. 2017. Science communication as a field of research: Identifying trends, challenges

and gaps by analysing research papers. Journal of Science Communication 16, 2 (2017), A02. https://doi.org/10.22323/

2.16020202

[120] Yue Guo, Wei Qiu, Yizhong Wang, and Trevor Cohen. 2021. Automated lay language summarization of biomedical

scientific reviews. In Proceedings of the AAAI Conference on Artificial Intelligence. 160–168. https://doi.org/10.1609/

aaai.v35i1.16089

[121] Lea Gütebier, Tim Bleimehl, Ron Henkel, Jamie Munro, Sebastian Müller, Axel Morgner, Jakob Laenge, Anke

Pachauer, Alexander Erdl, Jens Weimar, Kirsten Walther Langendorf, Vincent Vialard, Thorsten Liebig, Martin

Preusse, Dagmar Waltemath, and Alexander Jarasch. 2022. CovidGraph: A graph to fight COVID-19. Bioinformatics

38, 20 (2022), 4843–4845. https://doi.org/10.1093/bioinformatics/btac592

[122] Fiete Haack, Kai Budde, and Adelinde M. Uhrmacher. 2020. Exploring mechanistic and temporal regulation of LRP6

endocytosis in canonical WNT signaling. Journal of Cell Science 133, 15 (Aug. 2020), jcs243675.

[123] Jussi Hakanen, Sanjin Radoš, Giovanni Misitano, Bhupinder S. Saini, Kaisa Miettinen, and Krešimir Matković. 2022.

Interactivized: Visual interaction for better decisions with interactive multiobjective optimization. IEEE Access 10

(2022), 33661–33678. https://doi.org/10.1109/ACCESS.2022.3161465

[124] Hannes Hansen and Martin N. Hebart. 2022. Semantic features of object concepts generated with GPT-3.

arXiv:2202.03753 (2022). https://doi.org/10.48550/ARXIV.2202.03753

[125] Alison Harper, Navonil Mustafee, and Mike Yearworth. 2021. Facets of trust in simulation studies. European Journal

of Operational Research 289, 1 (2021), 197–213. https://doi.org/10.1016/j.ejor.2020.06.043

[126] Tobias Helms, Roland Ewald, Stefan Rybacki, and Adelinde M. Uhrmacher. 2015. Automatic runtime adaptation for

component-based simulation algorithms. ACM Transactions on Modeling and Computer Simulation 26, 1 (2015), 1–24.

[127] Tobias Helms, Tom Warnke, Carsten Maus, and Adelinde M. Uhrmacher. 2017. Semantics and efficient simulation

algorithms of an expressive multilevel modeling language. ACM Transactions on Modeling and Computer Simulation

27, 2 (2017), 1–25.

[128] RonHenkel, Robert Hoehndorf, TimKacprowski, Christian Knüpfer,Wolfram Liebermeister, andDagmarWaltemath.

2018. Notions of similarity for systems biology models. Briefings in Bioinformatics 19, 1 (2018), 77–88.

[129] Ludovic Henrio and Justine Rochas. 2017. Multiactive objects and their applications. Logical Methods in Computer

Science 13, 4 (2017), 12. https://doi.org/10.23638/LMCS-13(4:12)2017

[130] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. A survey on provenance: What for? What

form? What from? VLDB Journal 26, 6 (Dec. 2017), 881–906. https://doi.org/10.1007/s00778-017-0486-1

[131] Jane Hillston. 2005. Process algebras for quantitative analysis. In Proceedings of the 20th Annual IEEE Symposium on

Logic in Computer Science (LICS’05). IEEE, 239–248.

[132] Jane Hillston, Andreas L. Opdahl, and Rob Pooley. 1991. A case study using the IMSE experimentation tool. In Ad-

vanced Information Systems Engineering. Lecture Notes in Computer Science, Vol. 498. Springer, 284–306.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1007/s10270-014-0444-y
https://doi.org/10.1007/978-3-030-59854-9_16
https://doi.org/10.22323/2.16020202
https://doi.org/10.1609/aaai.v35i1.16089
https://doi.org/10.1093/bioinformatics/btac592
https://doi.org/10.1109/ACCESS.2022.3161465
https://doi.org/10.48550/ARXIV.2202.03753
https://doi.org/10.1016/j.ejor.2020.06.043
https://doi.org/10.23638/LMCS-13(4:12)2017
https://doi.org/10.1007/s00778-017-0486-1


Context, Composition, Automation, and Communication 23:43

[133] Jan Himmelspach and Adelinde M. Uhrmacher. 2007. Plug’n simulate. In Proceedings of the 40th Annual Simulation

Symposium (ANSS’07). IEEE, 137–143. https://doi.org/10.1109/ANSS.2007.34

[134] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. 2021.MontiCore Language Workbench and Library Handbook:

Edition 2021. Shaker Verlag. http://www.monticore.de/handbook.pdf

[135] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia Simus, Mudita Singhal, Liang Xu, Pedro

Mendes, and Ursula Kummer. 2006. COPASI—A complex pathway simulator. Bioinformatics 22, 24 (2006), 3067–3074.

[136] Sebastian Höpfl, Jürgen Pleiss, and Nicole E. Radde. 2023. Bayesian estimation reveals that reproducible models in

systems biology get more citations. Scientific Reports 13, 1 (2023), 2695.

[137] Fred Howell and Ross McNab. 1998. SimJava: A discrete event simulation library for Java. Simulation Series 30 (1998),

51–56.

[138] Michael Hucka, Andrew Finney, Herbert M. Sauro, Hamid Bolouri, John C. Doyle, Hiroaki Kitano, Adam P. Arkin,

Benjamin J. Bornstein, Dennis Bray, Athel Cornish-Bowden, Andrés A. Cuellar, S. Dronov, Ernst D. Gilles, Martin

Ginkel, Vishal Gor, I. Goryanin, Warren J. Hedley, Charlie Hodgman, Jan H. Hofmeyr, Peter J. Hunter, Navtej S.

Juty, Jay L. Kasberger, Andreas Kremling, Ursula Kummer, Nicolas Le Novère, Leslie M. Loew, Daniel Lucio, Pedro

Mendes, Eric Minch, Eric D. Mjolsness, Yuko Nakayama, Melanie R. Nelson, Poul F. Nielsen, Sakurada Tsukasa, James

C. Schaff, Bruce E. Shapiro, Thomas S. Shimizu, Hugh D. Spence, Joerg Stelling, Kouichi Takahashi, Masaru Tomita,

John Wagner, James Wang, and the rest of the SBML Forum. 2003. The systems biology markup language (SBML): A

medium for representation and exchange of biochemical network models. Bioinformatics 19, 4 (2003), 524–531.

[139] Susan R. Hunter, Eric A. Applegate, Viplove Arora, Bryan Chong, Kyle Cooper, Oscar Rincón-Guevara, and Carolina

Vivas-Valencia. 2019. An introduction to multiobjective simulation optimization. ACM Transactions on Modeling and

Computer Simulation 29, 1 (2019), Article 7, 36 pages. https://doi.org/10.1145/3299872

[140] Mohammad Hussain, Nafiseh Masoudi, Gregory Mocko, and Chris Paredis. 2022. Approaches for Simulation Model

Reuse in Systems Design—A Review. SAE Technical Paper 2022-01-0355. SAE International.

[141] Dmitry Ivanov. 2020. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based

analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transportation Research Part E: Logistics and

Transportation Review 136 (2020), 101922.

[142] Ilya Jackson and Maria Jesus Saenz. 2023. From natural language to simulations: Applying GPT-3 codex to automate

simulation modeling of logistics systems. arXiv:2202.12107 [cs.AI] (2023).

[143] Nico Jansen, Jerome Pfeiffer, Bernhard Rumpe, David Schmalzing, and Andreas Wortmann. 2022. The language of

SysML v2 under the magnifying glass. Journal of Object Technology 21, 3 (July 2022), 1–15.

[144] Marco A. Janssen, Calvin Pritchard, and Allen Lee. 2020. On code sharing and model documentation of published

individual and agent-based models. Environmental Modelling & Software 134 (2020), 104873.

[145] Kurt Jensen. 1996. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 1. Springer Science &

Business Media.

[146] Matthias Jeschke, Roland Ewald, and Adelinde M. Uhrmacher. 2011. Exploring the performance of spatial stochastic

simulation algorithms. Journal of Computational Physics 230, 7 (2011), 2562–2574. https://doi.org/10.1016/j.jcp.2010.

12.030

[147] Richard Jiang, Prashant Singh, Fredrik Wrede, Andreas Hellander, and Linda Petzold. 2022. Identification of dynamic

mass-action biochemical reaction networks using sparse Bayesian methods. PLoS Computational Biology 18, 1 (2022),

1–21. https://doi.org/10.1371/journal.pcbi.1009830

[148] Mathias John, Cédric Lhoussaine, Joachim Niehren, and Adelinde M. Uhrmacher. 2010. The Attributed Pi-Calculus

with Priorities. Springer, Berlin, Germany, 13–76. https://doi.org/10.1007/978-3-642-11712-1_2

[149] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. 2011. ABS: A core language for

abstract behavioral specification. In Formal Methods for Components and Objects. Lecture Notes in Computer Science,

Vol. 6957. Springer, 142–164.

[150] Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa. 2012. Modeling resource-aware virtualized

applications for the cloud in real-time ABS. In Formal Methods and Software Engineering. Lecture Notes in Computer

Science, Vol. 7635. Springer, 71–86. https://doi.org/10.1007/978-3-642-34281-3_8

[151] Gilles Kahn and David MacQueen. 1976. Coroutines and Networks of Parallel Processes. Research Report. Hal-Inria.

[152] Eduard Kamburjan, Crystal Chang Din, Reiner Hähnle, and Einar Broch Johnsen. 2020. Behavioral contracts for

cooperative scheduling. In Deductive Software Verification: Future Perspectives. Lecture Notes in Computer Science,

Vol. 12345. Springer, 85–121.

[153] Eduard Kamburjan, Reiner Hähnle, and Sebastian Schön. 2018. Formal modeling and analysis of railway operations

with active objects. Science of Computer Programming 166 (2018), 167–193. https://doi.org/10.1016/j.scico.2018.07.001

[154] Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. 2022. A hybrid programming language for formal modeling

and verification of hybrid systems. Leibniz Transactions on Embedded Systems 8, 2 (2022), Article 4, 34 pages.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1109/ANSS.2007.34
http://www.monticore.de/handbook.pdf
https://doi.org/10.1145/3299872
https://doi.org/10.1016/j.jcp.2010.12.030
https://doi.org/10.1371/journal.pcbi.1009830
https://doi.org/10.1007/978-3-642-11712-1_2
https://doi.org/10.1007/978-3-642-34281-3_8
https://doi.org/10.1016/j.scico.2018.07.001


23:44 A. M. Uhrmacher et al.

[155] George-Dimitrios Kapos, Anargyros Tsadimas, Christos Kotronis, Vassilis Dalakas, Mara Nikolaidou, and Dimosthe-

nis Anagnostopoulos. 2021. A declarative approach for transforming SysMLmodels to executable simulation models.

IEEE Transactions on Systems, Man, and Cybernetics: Systems 51, 6 (2021), 3330–3345. https://doi.org/10.1109/TSMC.

2019.2922153

[156] Klemens Kappel and Sebastian Jon Holmen. 2019. Why science communication, and does it work? A taxonomy of

science communication aims and a survey of the empirical evidence. Frontiers in Communication 4 (2019), 55.

[157] Daniel A. Keim, Gennady L. Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn Kohlhammer, and Guy Melançon.

2008. Visual analytics: Definition, process, and challenges. In Information Visualization: Human-Centered Issues and

Perspectives. Lecture Notes in Computer Science, Vol. 4590. Springer, 154–175. https://doi.org/10.1007/978-3-540-

70956-5_7

[158] Tim Kelly and Rob Weaver. 2004. The goal structuring notation—A safety argument notation. In Proceedings of the

Dependable Systems and Networks 2004 Workshop on Assurance Cases, Vol. 6.

[159] Ehsan Khamespanah, Ramtin Khosravi, and Marjan Sirjani. 2018. An efficient TCTL model checking algorithm and

a reduction technique for verification of timed actor models. Science of Computer Programming 153 (2018), 1–29.

https://doi.org/10.1016/j.scico.2017.11.004

[160] Anna Klabunde, Sabine Zinn, Matthias Leuchter, and Frans Willekens. 2015. An Agent-Based Decision Model of Mi-

gration, Embedded in the Life Course-Model Description in ODD+ D Format. MPIDRWorking Paper VP 2015-002. Max

Planck Institute for Demographic Research.

[161] Jack P. C. Kleijnen. 1995. Sensitivity analysis and optimization in simulation: Design of experiments and case studies.

In Proceedings of the 27th Conference on Winter Simulation (WSC’95). IEEE, 133–140. https://doi.org/10.1145/224401.

224454

[162] Anneke Kleppe. 2008. Software Language Engineering: Creating Domain-Specific Languages Using Metamodels. Pear-

son Education.

[163] Joshua Knowles. 2006. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjec-

tive optimization problems. IEEE Transactions on Evolutionary Computation 10, 1 (2006), 50–66.

[164] Matthias König, Holger H. Hoos, and Jan N. van Rijn. 2022. Speeding up neural network robustness verification via

algorithm configuration and an optimised mixed integer linear programming solver portfolio.Machine Learning 111

(2022), 4565–4584.

[165] Falko Krause, Jannis Uhlendorf, Timo Lubitz, Marvin Schulz, Edda Klipp, and Wolfram Liebermeister. 2010. Annota-

tion and merging of SBML models with semantic SBML. Bioinformatics 26, 3 (2010), 421–422.

[166] Justin N. Kreikemeyer and Philipp Andelfinger. 2023. Smoothing methods for automatic differentiation across con-

ditional branches. IEEE Access 11 (2023), 143190–143211. https://doi.org/10.1109/ACCESS.2023.3342136

[167] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2005. Probabilistic model checking in practice: Case

studies with PRISM. SIGMETRICS Performance Evaluation Review 32, 4 (2005), 16–21. https://doi.org/10.1145/1059816.

1059820

[168] David C. Lane. 2008. The emergence and use of diagramming in system dynamics: A critical account. Systems Research

and Behavioral Science 25, 1 (2008), 3–23. https://doi.org/10.1002/sres.826

[169] Juan de Lara and Hans Vangheluwe. 2002. AToM 3: A tool for multi-formalism and meta-modelling. In Proceedings

of the International Conference on Fundamental Approaches to Software Engineering. 174–188.

[170] Averill M. Law. 2019. How to build valid and credible simulation models. In Proceedings of the 2019 Winter Simulation

Conference (WSC’19). IEEE, 1402–1414.

[171] David Leake and Joseph Kendall-Morwick. 2008. Towards case-based support for e-science workflow generation by

mining provenance. In Proceedings of the European Conference on Case-Based Reasoning. 269–283.

[172] Axel Legay, Anna Lukina, Louis Marie Traonouez, Junxing Yang, Scott A. Smolka, and Radu Grosu. 2019. Statistical

model checking. In Computing and System Science. Lecture Notes in Computer Science, Vol. 10000. Springer, 478–504.

https://doi.org/10.1007/978-3-319-91908-9_23

[173] Stefan Leye, Roland Ewald, and Adelinde M. Uhrmacher. 2014. Composing problem solvers for simulation experi-

mentation: A case study on steady state estimation. PLos One 9, 4 (2014), 1–13. https://doi.org/10.1371/journal.pone.

0091948

[174] Stefan Leye, Jan Himmelspach, and Adelinde M. Uhrmacher. 2009. A discussion on experimental model validation.

In Proceedings of the 2009 11th International Conference on Computer Modelling and Simulation. IEEE, 161–167.

[175] Chen Li, Marco Donizelli, Nicolas Rodriguez, Harish Dharuri, Lukas Endler, Vijayalakshmi Chelliah, Lu Li, Enuo

He, Arnaud Henry, Melanie I. Stefan, Jacky L. Snoep, Michael Hucka, Nicolas Le Novère, and Camille Laibe. 2010.

BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC

Systems Biology 4, 1 (2010), 1–14.

[176] Chee Sun Liew, Malcolm P. Atkinson, Michelle Galea, Tan Fong Ang, Paul Martin, and Jano I. Van Hemert. 2016.

Scientific workflows: Moving across paradigms. ACM Computing Surveys 49, 4 (Dec. 2016), Article 66, 39 pages.

https://doi.org/10.1145/3012429

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1109/TSMC.2019.2922153
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1016/j.scico.2017.11.004
https://doi.org/10.1145/224401.224454
https://doi.org/10.1109/ACCESS.2023.3342136
https://doi.org/10.1145/1059816.1059820
https://doi.org/10.1002/sres.826
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1371/journal.pone.0091948
https://doi.org/10.1145/3012429


Context, Composition, Automation, and Communication 23:45

[177] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2022. A survey of transformers. AI Open 3 (2022), 111–

132. https://doi.org/10.1016/j.aiopen.2022.10.001

[178] Zhiyuan Jerry Lin, Raul Astudillo, Peter Frazier, and Eytan Bakshy. 2022. Preference exploration for efficient Bayesian

optimization with multiple outcomes. In Proceedings of the International Conference on Artificial Intelligence and

Statistics. 4235–4258.

[179] Jie Liu and Edward A. Lee. 2002. A component-based approach to modeling and simulating mixed-signal and hy-

brid systems. ACM Transactions on Modeling and Computer Simulation 12, 4 (2002), 343–368. https://doi.org/10.1145/

643120.643125

[180] Catherine M. Lloyd, Matt D. B. Halstead, and Poul F. Nielsen. 2004. CellML: Its future, present and past. Progress in

Biophysics and Molecular Biology 85, 2-3 (2004), 433–450.

[181] Fabian Lorig. 2019. Hypothesis-Driven Simulation Studies: Assistance for the Systematic Design and Conducting of

Computer Simulation Experiments. Springer Vieweg, Wiesbaden.

[182] Fabian Lorig, Colja A. Becker, and Ingo J. Timm. 2017. Formal specification of hypotheses for assisting computer

simulation studies. In Proceedings of the Symposium on Theory of Modeling & Simulation. 1–12.

[183] Fabian Lorig, Emil Johansson, and Paul Davidsson. 2021. Agent-based social simulation of the COVID-19 pandemic:

A systematic review. Journal of Artificial Societies and Social Simulation 24, 3 (2021), 5.

[184] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones, Edward A. Lee, Jing

Tao, and Yang Zhao. 2006. Scientific workflow management and the Kepler system. Concurrency and Computation:

Practice and Experience 18, 10 (2006), 1039–1065.

[185] Bertram Ludäscher, Shawn Bowers, and Timothy McPhillips. 2009. Scientific workflows. In Encyclopedia of Database

Systems, Ling Liu and M. Tamer Özsu (Eds.). Springer US, Boston, MA, 2507–2511. https://doi.org/10.1007/978-0-387-

39940-9_1471

[186] Bertram Ludäscher, MathiasWeske, TimothyM.McPhillips, and Shawn Bowers. 2009. Scientific workflows: Business

as usual? In Business Process Management. Lecture Notes in Computer Science, Vol. 5701. Springer, 31–47. https:

//doi.org/10.1007/978-3-642-03848-8_4

[187] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. MASON: A multiagent sim-

ulation environment. SIMULATION 81, 7 (2005), 517–527.

[188] Wolfgang Maass and Veda C. Storey. 2021. Pairing conceptual modeling with machine learning. Data & Knowledge

Engineering 134 (July 2021), 101909. https://doi.org/10.1016/j.datak.2021.101909

[189] Dennis G. J. C. Maneschijn, Rob H. Bemthuis, Faiza Allah Bukhsh, andMaria-Eugenia Iacob. 2022. Amethodology for

aligning process model abstraction levels and stakeholder needs. In Proceedings of the 24th International Conference

on Enterprise Information Systems (ICEIS’22). 137–147.

[190] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CDDiff: Semantic differencing for class diagrams. In

ECOOP 2011—Object-Oriented Programming, Mira Mezini (Ed.). Springer, Berlin, Germany, 230–254. https://se-rwth.

de/publications/CDDiff-Semantic-Differencing-for-Class-Diagrams.pdf

[191] Krešimir Matković, Denis Gračanin, and Helwig Hauser. 2018. Visual analytics for simulation ensembles. In Proceed-

ings of the 2018 Winter Simulation Conference (WSC’18). 321–335. https://doi.org/10.1109/WSC.2018.8632312

[192] Norm Matloff. 2008. Introduction to Discrete-Event Simulation and the Simpy Language. Department of Computer

Science, University of California at Davis, Davis, CA.

[193] Ross McNab and Fred Howell. 1996. Using Java for discrete event simulation. In Proceedings of the 12th UK Computer

and Telecommunications Performance Engineering Workshop. 219–228.

[194] Timothy M. McPhillips, Shawn Bowers, Daniel Zinn, and Bertram Ludäscher. 2009. Scientific workflow design for

mere mortals. Future Generation Computer Systems 25, 5 (2009), 541–551. https://doi.org/10.1016/j.future.2008.06.013

[195] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. 2002. Model-driven architecture. In Proceedings of the

International Conference on Object-Oriented Information Systems. 290–297.

[196] Zeeya Merali. 2010. Computational science: ...Error. Nature 467, 7317 (2010), 775–777.

[197] Hafedh Mili, Fatma Mili, and Ali Mili. 1995. Reusing software: Issues and research directions. IEEE Transactions on

Software Engineering 21, 6 (1995), 528–562.

[198] Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of mobile processes, I. Information and Computa-

tion 100, 1 (1992), 1–40.

[199] Eshan D. Mitra, Ryan Suderman, Joshua Colvin, Alexander Ionkov, Andrew Hu, Herbert M Sauro, Richard G. Posner,

and William S. Hlavacek. 2019. PyBioNetFit and the biological property specification language. iScience 19 (2019),

1012–1036.

[200] Parastoo Mohagheghi and Reidar Conradi. 2007. Quality, productivity and economic benefits of software reuse: A

review of industrial studies. Empirical Software Engineering 12 (2007), 471–516.

[201] Thomas Monks, Christine S. M. Currie, Bhakti Stephan Onggo, Stewart Robinson, Martin Kunc, and Simon J. E.

Taylor. 2019. Strengthening the reporting of empirical simulation studies: Introducing the STRESS guidelines. Journal

of Simulation 13, 1 (2019), 55–67.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/10.1145/643120.643125
https://doi.org/10.1007/978-0-387-39940-9_1471
https://doi.org/10.1007/978-3-642-03848-8_4
https://doi.org/10.1016/j.datak.2021.101909
https://se-rwth.de/publications/CDDiff-Semantic-Differencing-for-Class-Diagrams.pdf
https://doi.org/10.1109/WSC.2018.8632312
https://doi.org/10.1016/j.future.2008.06.013


23:46 A. M. Uhrmacher et al.

[202] Luc Moreau and Paul Groth. 2013. Provenance: An Introduction to PROV. Synthesis Lectures on the Semantic Web:

Theory and Technology. Morgan & Claypool.

[203] Birgit Müller, Friedrich Bohn, Gunnar Dreßler, Jürgen Groeneveld, Christian Klassert, Romina Martin, Maja Schlüter,

Jule Schulze, Hanna Weise, and Nina Schwarz. 2013. Describing human decisions in agent-based models—ODD+ D,

an extension of the ODD protocol. Environmental Modelling & Software 48 (2013), 37–48.

[204] Laura Nenzi, Ezio Bartocci, Luca Bortolussi, and Michele Loreti. 2022. A logic for monitoring dynamic networks of

spatially-distributed cyber-physical systems. Logical Methods in Computer Science 18, 1 (2022), 4. https://doi.org/10.

46298/lmcs-18(1:4)2022

[205] Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti, and Mieke Massink. 2018. Qualitative and quan-

titative monitoring of spatio-temporal properties with SSTL. Logical Methods in Computer Science 14, 4 (2018), 2.

https://doi.org/10.23638/LMCS-14(4:2)2018

[206] Mara Nikolaidou, George-Dimitrios Kapos, Anargyros Tsadimas, Vassilis Dalakas, and Dimosthenis Anagnostopou-

los. 2015. Simulating SysML models: Overview and challenges. In Proceedings of the 2015 10th System of Systems

Engineering Conference (SoSE’15). https://doi.org/10.1109/SYSOSE.2015.7151961

[207] Tanzeem Bin Noor and Hadi Hemmati. 2015. A similarity-based approach for test case prioritization using histor-

ical failure data. In Proceedings of the 2015 IEEE 26th International Symposium on Software Reliability Engineering

(ISSRE’15). 58–68. https://doi.org/10.1109/ISSRE.2015.7381799

[208] Joshua S. North, Christopher K. Wikle, and Erin M. Schliep. 2022. A review of data-driven discovery for dynamic

systems. arXiv:2210.10663 [stat.ME] (2022).

[209] Michael J. North, Nicholson T. Collier, Jonathan Ozik, Eric R. Tatara, Charles M. Macal, Mark Bragen, and Pam

Sydelko. 2013. Complex adaptive systems modeling with Repast Simphony. Complex Adaptive Systems Modeling 1, 1

(March 2013), 3. https://doi.org/10.1186/2194-3206-1-3

[210] Michael J. North, Nicholson T. Collier, and Jerry R. Vos. 2006. Experiences creating three implementations of the

repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation 16, 1 (2006), 1–25.

[211] Nicolas Le Novère, Andrew Finney, Michael Hucka, Upinder S. Bhalla, Fabien Campagne, Julio Collado-Vides, Ed-

mund J. Crampin, Matt Halstead, Edda Klipp, Pedro Mendes, Poul Nielsen, Herbert Sauro, Bruce Shapiro, Jacky L.

Snoep, Hugh D. Spence, and Barry L. Wanner. 2005. Minimum information requested in the annotation of biochem-

ical models (MIRIAM). Nature Biotechnology 23, 12 (2005), 1509–1515.

[212] Object Management Group. 2008. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Re-

trieved September 30, 2023 from https://www.omg.org/spec/QVT/1.3/PDF

[213] TomOinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin Ferris, Kevin Glover, Carole Goble, Antoon

Goderis, Duncan Hull, DarrenMarvin, Peter Li, Phillip Lord, Matthew R. Pocock, Martin Senger, Robert Stevens, Anil

Wipat, and ChrisWroe. 2006. Taverna: Lessons in creating a workflow environment for the life sciences. Concurrency

and Computation: Practice and Experience 18, 10 (2006), 1067–1100.

[214] Kathryn Oliver, Simon Innvar, Theo Lorenc, Jenny Woodman, and James Thomas. 2014. A systematic review of

barriers to and facilitators of the use of evidence by policymakers. BMC Health Services Research 14 (2014), 1–12.

[215] Lois Orton, Ffion Lloyd-Williams, David Taylor-Robinson, Martin O’Flaherty, and Simon Capewell. 2011. The use of

research evidence in public health decision making processes: Systematic review. PLoS One 6, 7 (2011), e21704.

[216] Martin Otter, Nguyen Thuy, Daniel Bouskela, Lena Buffoni, Hilding Elmqvist, Peter Fritzson, Alfredo Garro, Audrey

Jardin, Hans Olsson, Maxime Payelleville, Wladimir Schamai, Eric Thomas, and Andrea Tundis. 2015. Formal require-

ments modeling for simulation-based verification. In Proceedings of the 11th International Modelica Conference.

[217] Barbara Paech and Bernhard Rumpe. 1994. A new concept of refinement used for behaviourmodellingwith automata.

In FME’94: Industrial Benefit of Formal Methods. Lecture Notes in Computer Science, Vol. 873. Springer, 154–174.

[218] Ernest H. Page, Laurie Litwin, Matthew T. McMahon, Brian Wickham, Mike Shadid, and Elizabeth Chang. 2012.

Goal-directed grid-enabled computing for legacy simulations. In Proceedings of the 2012 12th IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing (CCGRID’12). IEEE, 873–879.

[219] Ernest H. Page and Jeffrey M. Opper. 1999. Observations on the complexity of composable simulation. In Proceedings

of the 31st Winter Simulation Conference. IEEE, 553–560.

[220] Hazel R. Parry and Andrew J. Evans. 2008. A comparative analysis of parallel processing and super-individual meth-

ods for improving the computational performance of a large individual-based model. Ecological Modelling 214, 2-4

(2008), 141–152.

[221] Ray J. Paul and Simon J. E. Taylor. 2002. What use is model reuse: Is there a crook at the end of the rainbow? In

Proceedings of the Winter Simulation Conference, Vol. 1. IEEE, 648–652.

[222] Krzysztof Pawlikowski, H.-D. J. Jeong, and J.-S. R. Lee. 2002. On credibility of simulation studies of telecommunica-

tion networks. IEEE Communications Magazine 40, 1 (2002), 132–139.

[223] Danhua Peng, Tom Warnke, Fiete Haack, and Adelinde M. Uhrmacher. 2016. Reusing simulation experiment speci-

fications to support developing models by successive extension. Simulation Modelling Practice and Theory 68 (2016),

33–53. https://doi.org/10.1016/j.simpat.2016.07.006

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.46298/lmcs-18(1:4)2022
https://doi.org/10.23638/LMCS-14(4:2)2018
https://doi.org/10.1109/SYSOSE.2015.7151961
https://doi.org/10.1109/ISSRE.2015.7381799
https://doi.org/10.1186/2194-3206-1-3
https://www.omg.org/spec/QVT/1.3/PDF
https://doi.org/10.1016/j.simpat.2016.07.006


Context, Composition, Automation, and Communication 23:47

[224] L. Felipe Perrone, Christopher S. Main, and Bryan C. Ward. 2012. SAFE: Simulation automation framework for ex-

periments. In Proceedings of the 2012 Winter Simulation Conference (WSC’12). IEEE, 1–12.

[225] Mikel D. Petty and Eric W. Weisel. 2019. Model composition and reuse. InModel Engineering for Simulation. Elsevier,

57–85.

[226] Mohammad Peyman, Pedro Copado, Javier Panadero, Angel A. Juan, and Mohammad Dehghanimohammadabadi.

2021. A tutorial on how to connect Python with different simulation software to develop rich simheuristics. In Pro-

ceedings of the 2021 Winter Simulation Conference (WSC’21). 1–12. https://doi.org/10.1109/WSC52266.2021.9715511

[227] Jan Philipps and Bernhard Rumpe. 1997. Refinement of information flow architectures. In Proceedings of the 1st IEEE

International Conference on Formal Engineering Methods (ICFEM’97).

[228] Andrew Phillips and Luca Cardelli. 2007. Efficient, correct simulation of biological processes in the stochastic pi-

calculus. In Proceedings of the 2007 International Conference on Computational Methods in Systems Biology (CMSB’07).

184–199.

[229] Michael Pidd. 2002. Simulation software and model reuse: A polemic. In Proceedings of the Winter Simulation Con-

ference, Vol. 1. IEEE, 772–775.

[230] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire. 2017. noWorkflow: A tool for collect-

ing, analyzing, and managing provenance from Python scripts. Proceedings of the VLDB Endowment 10, 12 (2017),

1841–1844.

[231] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product Line Engineering: Foundations, Prin-

ciples and Techniques. Springer-Verlag.

[232] Nikolas Popper, Melanie Zechmeister, Dominik Brunmeir, Claire Rippinger, Nadine Weibrecht, Christoph Urach,

Martin Bicher, Günter Schneckenreither, and Andreas Rauber. 2020. Synthetic reproduction and augmentation of

COVID-19 case reporting data by agent-based simulation. Data Science Journal 20 (2021), Article 16.

[233] Corrado Priami. 1995. Stochastic π -calculus. Computer Journal 38, 7 (1995), 578–589. https://doi.org/10.1093/comjnl/

38.7.578

[234] Hazhir Rahmandad and John D. Sterman. 2012. Reporting guidelines for simulation-based research in social sciences.

Systems Dynamics Review 28, 4 (2012), 396–411.

[235] Ana Maria Ramanath and Nigel Gilbert. 2004. The design of participatory agent-based social simulations. Journal of

Artificial Societies and Social Simulation 7, 4 (2004), 1. https://www.jasss.org/7/4/1.html

[236] Ranjit Randhawa, Cliff Shaffer, and John Tyson. 2010. Model composition for macromolecular regulatory networks.

IEEE/ACM Transactions on Computational Biology and Bioinformatics 7, 2 (2010), 278–287. https://doi.org/10.1109/

TCBB.2008.64

[237] Oliver Reinhardt, Tom Warnke, and Adelinde M. Uhrmacher. 2022. A language for agent-based discrete-event mod-

eling and simulation of linked lives. ACM Transactions on Modeling and Computer Simulation 32, 1 (2022), 1–26.

[238] Judicaël Ribault and Gabriel Wainer. 2012. Using workflows and web services to manage simulation studies (WIP). In

Proceedings of the 2012 Symposium on Theory of Modeling and Simulation—DEVS Integrative M&S Symposium. Article

50, 6 pages.

[239] Stewart Robinson. 2008. Conceptual modelling for simulation part I: Definition and requirements. Journal of the

Operational Research Society 59, 3 (2008), 278–290.

[240] Stewart Robinson. 2014. Simulation: The Practice of Model Development and Use. Bloomsbury Publishing.

[241] Stewart Robinson, Gilbert Arbez, Louis G. Birta, Andreas Tolk, and Gerd Wagner. 2015. Conceptual modeling:

Definition, purpose and benefits. In Proceedings of the 2015 Winter Simulation Conference (WSC’15). 2812–2826.

https://doi.org/10.1109/WSC.2015.7408386

[242] Stewart Robinson, Richard E. Nance, Ray J. Paul, Michael Pidd, and Simon J. E. Taylor. 2004. Simulation model reuse:

Definitions, benefits and obstacles. Simulation Modelling Practice and Theory 12, 7-8 (2004), 479–494.

[243] Mathias Rohl and Adelinde M. Uhrmacher. 2008. Definition and analysis of composition structures for discrete-event

models. In Proceedings of the 2008 Winter Simulation Conference. 942–950. https://doi.org/10.1109/WSC.2008.4736160

[244] Bernhard Rumpe. 2016. Modeling with UML: Language, Concepts, Methods. Springer International. https://mbse.se-

rwth.de/

[245] Bernhard Rumpe. 2017. Agile Modeling with UML: Code Generation, Testing, Refactoring. Springer International.

[246] Andreas Ruscheinski and Adelinde Uhrmacher. 2017. Provenance in modeling and simulation studies-bridging gaps.

In Proceedings of the 2017 Winter Simulation Conference (WSC’17). IEEE, 872–883.

[247] Andreas Ruscheinski, Tom Warnke, and Adelinde M. Uhrmacher. 2019. Artifact-based workflows for supporting

simulation studies. IEEE Transactions on Knowledge and Data Engineering 32, 6 (2019), 1064–1078.

[248] Andreas Ruscheinski, Pia Wilsdorf, Marcus Dombrowsky, and Adelinde M. Uhrmacher. 2019. Capturing and report-

ing provenance information of simulation studies based on an artifact-based workflow approach. In Proceedings of

the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’19). ACM, New York,

NY, 185–196.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1109/WSC52266.2021.9715511
https://doi.org/10.1093/comjnl/38.7.578
https://www.jasss.org/7/4/1.html
https://doi.org/10.1109/TCBB.2008.64
https://doi.org/10.1109/WSC.2015.7408386
https://doi.org/10.1109/WSC.2008.4736160
https://mbse.se-rwth.de/


23:48 A. M. Uhrmacher et al.

[249] Andreas Ruscheinski, Pia Wilsdorf, Julius Zimmermann, Ursula van Rienen, and Adelinde M. Uhrmacher. 2022. An

artefact-based workflow for finite element simulation studies. Simulation Modelling Practice and Theory 116 (2022),

102464.

[250] Deborah A. Sadowski and Mark R. Grabau. 1999. Tips for successful practice of simulation. In Proceedings of the 1999

Winter Simulation Conference (WSC’99), Vol. 1. IEEE, 60–66.

[251] Yohan Sahraoui, Charles De Godoy Leski, Marie-Lise Benot, Frédéric Revers, Denis Salles, Inge van Halder, Marie

Barneix, and Laure Carassou. 2021. Integrating ecological networks modelling in a participatory approach for as-

sessing impacts of planning scenarios on landscape connectivity. Landscape and Urban Planning 209 (2021), 104039.

https://doi.org/10.1016/j.landurbplan.2021.104039

[252] Jan Salecker, Marco Sciaini, Katrin M. Meyer, and Kerstin Wiegand. 2019. The NLRX R package: A next-generation

framework for reproducible NetLogo model analyses. Methods in Ecology and Evolution 10, 11 (2019), 1854–1863.

[253] William H. Sanders, Tod Courtney, Daniel Deavours, David Daly, Salem Derisavi, and Vinh Lam. 2003. Multi-

formalism andmulti-solution-method modeling frameworks: TheMöbius approach. In Proceedings of the Symposium

on Performance Evaluation—Stories and Perspectives. 241–256.

[254] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. 2010. Delta-oriented program-

ming of software product lines. In Software Product Lines: Going Beyond. Lecture Notes in Computer Science, Vol.

6287. Springer, 77–91. https://doi.org/10.1007/978-3-642-15579-6_6

[255] James C. Schaff, Anuradha Lakshminarayana, Robert F. Murphy, Frank T. Bergmann, Akira Funahashi, Devin P.

Sullivan, and Lucian P. Smith. 2023. SBML level 3 package: Spatial processes, version 1, release 1. Journal of Integrative

Bioinformatics 20, 1 (2023), 20220054.

[256] Rudolf Schlatte, Einar Broch Johnsen, Eduard Kamburjan, and Silvia Lizeth Tapia Tarifa. 2022. The ABS simulator

toolchain. Science of Computer Programming 223 (2022), 102861. https://doi.org/10.1016/j.scico.2022.102861

[257] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006. Feature diagrams: A survey and a

formal semantics. In Proceedings of the 14th IEEE International Conference on Requirements Engineering (RE’06). IEEE,

136–145. https://doi.org/10.1109/RE.2006.23

[258] Hans-Jorg Schulz. 2011. Treevis.net: A tree visualization reference. IEEE Computer Graphics and Applications 31, 6

(2011), 11–15.

[259] Marvin Schulz, Edda Klipp, Jannis Uhlendorf, andWolfram Liebermeister. 2006. SBMLmerge, a system for combining

biochemical network models. Genome Informatics 17, 1 (2006), 62–71.

[260] Johannes Schützel, Danhua Peng, Adelinde M. Uhrmacher, and L. Felipe Perrone. 2014. Perspectives on languages for

specifying simulation experiments. In Proceedings of the Winter Simulation Conference (WSC’14). IEEE, 2836–2847.

http://eprints.mosi.informatik.uni-rostock.de/32/

[261] Samuel Sepúlveda, Ania Cravero, andCristina Cachero. 2016. Requirementsmodeling languages for software product

lines: A systematic literature review. Information and Software Technology 69 (2016), 16–36. https://doi.org/10.1016/

j.infsof.2015.08.007

[262] Maya Retno Ayu Setyautami and Reiner Hähnle. 2021. An architectural pattern to realize multi software product

lines in Java. In Proceedings of the 15th International Working Conference on Variability of Software-Intensive Systems

(VaMoS’21). ACM, Article 9, 9 pages. https://doi.org/10.1145/3442391

[263] Gitanjali R. Shinde, Asmita B. Kalamkar, Parikshit N. Mahalle, Nilanjan Dey, Jyotismita Chaki, and Aboul Ella Has-

sanien. 2020. Forecasting models for coronavirus disease (COVID-19): A survey of the state-of-the-art. SN Computer

Science 1, 4 (2020), 1–15.

[264] David Shuttleworth and Jose Padilla. 2022. From narratives to conceptual models via natural language processing. In

Proceedings of the 2022 Winter Simulation Conference (WSC’22). 2222–2233. https://doi.org/10.1109/WSC57314.2022.

10015274

[265] Peer-Olaf Siebers and Franziska Klügl. 2017. What software engineering has to offer to agent-based social simulation.

In Simulating Social Complexity. Understanding Complex Systems Series. Springer, 81–117. https://doi.org/10.1007/

978-3-319-66948-9_6

[266] Gregory A. Silver, John A. Miller, Maria Hybinette, Gregory Baramidze, and William S. York. 2011. An ontology for

discrete-event modeling and simulation. SIMULATION 87, 9 (2011), 747–773.

[267] Marjan Sirjani. 2019. Analysing real-time distributed systems using timed actors. In Proceedings of the 23rd IEEE/ACM

International Symposium on Distributed Simulation and Real Time Applications (DS-RT’19). IEEE, 1. https://doi.org/10.

1109/DS-RT47707.2019.8958670

[268] Tijs Slaats. 2020. Declarative and hybrid process discovery: Recent advances and open challenges. Journal on Data

Semantics 9, 1 (2020), 3–20.

[269] Katherine E. Smith and Ellen Stewart. 2015. ‘Blackmagic’ and ‘gold dust’: The epistemic and political uses of evidence

tools in public health policy making. Evidence & Policy 11, 3 (2015), 415–437.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1016/j.landurbplan.2021.104039
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1016/j.scico.2022.102861
https://doi.org/10.1109/RE.2006.23
http://eprints.mosi.informatik.uni-rostock.de/32/
https://doi.org/10.1016/j.infsof.2015.08.007
https://doi.org/10.1145/3442391
https://doi.org/10.1109/WSC57314.2022.10015274
https://doi.org/10.1007/978-3-319-66948-9_6
https://doi.org/10.1109/DS-RT47707.2019.8958670


Context, Composition, Automation, and Communication 23:49

[270] Lucian P. Smith, Frank T. Bergmann, Alan Garny, Tomáš Helikar, Jonathan Karr, David Nickerson, Herbert Sauro,

Dagmar Waltemath, and Matthias König. 2021. The simulation experiment description markup language (SED-ML):

Language specification for level 1 version 4. Journal of Integrative Bioinformatics 18, 3 (2021), 20210021.

[271] Lucian P. Smith, Erik Butterworth, James B. Bassingthwaighte, and Herbert M. Sauro. 2014. SBML and CellML trans-

lation in antimony and JSim. Bioinformatics 30, 7 (2014), 903–907.

[272] Max Sondag, Cagatay Turkay, Kai Xu, LouiseMatthews, SibylleMohr, andDaniel Archambault. 2022. Visual analytics

of contact tracing policy simulations during an emergency response. Computer Graphics Forum 41 (2022), 29–41.

[273] Bruno St-Aubin, Gabriel Wainer, and Fernando Loor. 2023. A survey of visualization capabilities for simulation en-

vironments. In Proceedings of the 2023 Annual Modeling and Simulation Conference (ANNSIM’23). 13–24.

[274] Alexander Steiniger and Adelinde M. Uhrmacher. 2016. Intensional couplings in variable-structure models: An ex-

ploration based on multilevel-DEVS. ACM Transactions on Modeling and Computer Simulation 26, 2 (2016), Article 9,

27 pages. https://doi.org/10.1145/2818641

[275] David T. Sturrock. 2015. Tutorial: Tips for successful practice of simulation. In Proceedings of the 2015 Winter Simu-

lation Conference (WSC’15). IEEE, 1756–1764.

[276] David T. Sturrock. 2020. Tested success tips for simulation project excellence. In Proceedings of the 2020 Winter

Simulation Conference (WSC’20). IEEE, 1143–1151.

[277] Diana Suleimenova, Hamid Arabnejad, Wouter Edeling, and Derek Groen. 2021. Sensitivity-driven simulation devel-

opment: A case study in forced migration. Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences 379, 2197 (May 2021), 20200077. https://doi.org/10.1098/rsta.2020.0077

[278] Sheng Sun, Runhai Ouyang, Bochao Zhang, and Tong-Yi Zhang. 2019. Data-driven discovery of formulas by symbolic

regression. MRS Bulletin 44, 7 (2019), 559–564.

[279] Claudia Szabo and Yong Meng Teo. 2007. On syntactic composability and model reuse. In Proceedings of the 1st Asia

International Conference on Modelling & Simulation (AMS’07). IEEE, 230–237.

[280] David Taylor-Robinson, Beth Milton, Efion Lloyd-Williams, Martin O’Flaherty, and Simon Capewell. 2008. Policy-

makers’ attitudes to decision supportmodels for coronary heart disease: A qualitative study. Journal of Health Services

Research & Policy 13, 4 (2008), 209–2014.

[281] Alejandro Teran-Somohano, Alice E. Smith, Joseph Ledet, Levent Yilmaz, and Halit Oğuztüzün. 2015. Amodel-driven

engineering approach to simulation experiment design and execution. In Proceedings of the 2015 Winter Simulation

Conference (WSC’15). 2632–2643. https://doi.org/10.1109/WSC.2015.7408371

[282] Thomas Thüm, Ina Schaefer, Martin Hentschel, and Sven Apel. 2012. Family-based deductive verification of software

product lines. ACM SIGPLAN Notices 48, 3 (2012), 11–20.

[283] Andreas Tolk, Saikou Y. Diallo, Jose J. Padilla, and Heber Herencia-Zapana. 2013. Reference modelling in support of

M&S—Foundations and applications. Journal of Simulation 7 (2013), 69–82.

[284] Andreas Tolk and James A. Muguira. 2003. The levels of conceptual interoperability model. In Proceedings of the 2003

Fall Simulation Interoperability Workshop, Vol. 7. Citeseer, 1–11.

[285] Christian Tominski, James Abello, and Heidrun Schumann. 2009. CGV—An interactive graph visualization system.

Computers & Graphics 33, 6 (2009), 660–678.

[286] Mamadou K. Traoré and Alexandre Muzy. 2006. Capturing the dual relationship between simulation models and

their context. Simulation Modelling Practice and Theory 14, 2 (2006), 126–142.

[287] Gianluca Turin, Andrea Borgarelli, Simone Donetti, Einar Broch Johnsen, Silvia Lizeth Tapia Tarifa, and Ferruccio

Damiani. 2020. A formal model of the Kubernetes container framework. In Leveraging Applications of Formal Methods,

Verification and Validation: Verification Principles. Lecture Notes in Computer Science, Vol. 12476. Springer, 558–577.

https://doi.org/10.1007/978-3-030-61362-4_32

[288] AdelindeM. Uhrmacher, Peter Frazier, Reiner Hähnle, Franziska Klügl, Fabian Lorig, Bertram Ludäscher, Laura Nenzi,

Cristina Ruiz-Martin, Bernhard Rumpe, Claudia Szabo, Gabriel A. Wainer, and Pia Wilsdorf. 2023. Context, compo-

sition, automation and communication: Towards sustainable simulation studies. In Computer Science Methods for

Effective and Sustainable Simulation Studies (Dagstuhl Seminar 22401). DOI:https://doi.org/10.4230/DagRep.12.10.1
[289] Andrea Unger and Heidrun Schumann. 2009. Visual support for the understanding of simulation processes. In Pro-

ceedings of the 2009 IEEE Pacific Visualization Symposium. 57–64. https://doi.org/10.1109/PACIFICVIS.2009.4906838

[290] Roman Vaculín, Richard Hull, Terry Heath, Craig Cochran, Anil Nigam, and Piyawadee Sukaviriya. 2011. Declarative

business artifact centric modeling of decision and knowledge intensive business processes. In Proceedings of the 2011

IEEE 15th International Enterprise Distributed Object Computing Conference. IEEE, 151–160.

[291] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. experience: Evaluating the usability

of code generation tools powered by large language models. In Extended Abstracts of the 2022 CHI Conference on

Human Factors in Computing Systems (CHI EA ’22). ACM, New York, NY, Article 332, 7 pages. https://doi.org/10.

1145/3491101.3519665

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1145/2818641
https://doi.org/10.1098/rsta.2020.0077
https://doi.org/10.1109/WSC.2015.7408371
https://doi.org/10.1007/978-3-030-61362-4_32
https://doi.org/10.4230/DagRep.12.10.1
https://doi.org/10.1109/PACIFICVIS.2009.4906838
https://doi.org/10.1145/3491101.3519665


23:50 A. M. Uhrmacher et al.

[292] Anna van Bruggen, Ior Nikolic, and Jan Kwakkel. 2019. Modeling with stakeholders for transformative change. Sus-

tainability 11, 3 (2019), 825. https://doi.org/10.3390/su11030825

[293] Simon VanMierlo, Bentley James Oakes, Bert VanAcker, Raheleh Eslampanah, JoachimDenil, andHans Vangheluwe.

2020. Exploring validity frames in practice. In Systems Modelling and Management. Communications in Computer

and Information Science, Vol. 1262. Springer, 131–148.

[294] Yentl Van Tendeloo and Hans Vangheluwe. 2014. The modular architecture of the Python(P)DEVS simulation kernel.

In Proceedings of the 2014 Symposium on Theory of Modeling and Simulation- (DEVS’14). 387–392.

[295] Sandhya Vasudevan, Faizan Zafar, Yuan Xingran, Ravikumar Singh, and Wil M. P. van der Aalst. 2021. A Python

extension to simulate Petri nets in process mining. arXiv preprint arXiv:2102.08774 (2021).

[296] Jac A. M. Vennix. 1999. Group model-building: Tackling messy problems. System Dynamics Review 15, 4 (1999), 379–

401. https://doi.org/10.1002/(SICI)1099-1727(199924)15:4<379::AID-SDR179>3.0.CO;2-E

[297] Daniele Vernon-Bido, Andrew Collins, and John Sokolowski. 2015. Effective visualization in modeling & simulation.

In Proceedings of the 48th Annual Simulation Symposium (ANSS’15). 33–40.

[298] Alejandro F. Villaverde, Fabian Fröhlich, Daniel Weindl, Jan Hasenauer, and Julio R. Banga. 2018. Benchmarking

optimization methods for parameter estimation in large kinetic models. Bioinformatics 35, 5 (2018), 830–838. https:

//doi.org/10.1093/bioinformatics/bty736

[299] Ludovica Luisa Vissat, Michele Loreti, Laura Nenzi, Jane Hillston, and Glenn Marion. 2019. Analysis of spatio-

temporal properties of stochastic systems using TSTL. ACM Transactions on Modeling and Computer Simulation 29,

4 (2019), Article 20, 24 pages. https://doi.org/10.1145/3326168

[300] Alexey Voinov, Karen Jenni, Steven Gray, Nagesh Kolagani, Pierre D. Glynn, Pierre Bommel, Christina Prell, Moira

Zellner, Michael Paolisso, Rebecca Jordan, Eleanor Sterling, Laura Schmitt Olabisi, Philippe J. Giabbanelli, Zhanli

Sun, Christophe Le Page, Sondoss Elsawah, Todd K. BenDor, Klaus Hubacek, Bethany K. Laursen, Antonie Jetter,

Laura Basco-Carrera, Alison Singer, Laura Young, Jessica Brunacini, and Alex Smajgl. 2018. Tools and methods in

participatory modeling: Selecting the right tool for the job. Environmental Modelling & Software 109 (2018), 232–255.

https://doi.org/10.1016/j.envsoft.2018.08.028

[301] Erik Von Elm, Douglas G. Altman, Matthias Egger, Stuart J. Pocock, Peter C. Gøtzsche, and Jan P. Vandenbroucke.

2007. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for

reporting observational studies. Lancet 370, 9596 (2007), 1453–1457.

[302] Gerd Wagner. 2014. Tutorial: Information and process modeling for simulation. In Proceedings of the 2014 Winter

Simulation Conference (WSC’14). IEEE, 103–117.

[303] Gabriel Wainer, Gastón Christen, and Alejandro Dobniewski. 2001. Defining DEVS models with the CD++ toolkit.

In Proceedings of SCS European Simulation Symposium.

[304] JyrkiWallenius, James S. Dyer, Peter C. Fishburn, Ralph E. Steuer, Stanley Zionts, and KalyanmoyDeb. 2008. Multiple

criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management

Science 54, 7 (2008), 1336–1349.

[305] Dagmar Waltemath, Richard Adams, Daniel A. Beard, Frank T. Bergmann, Upinder S. Bhalla, Randall Britten, Vijay-

alakshmi Chelliah, Michael T. Cooling, Jonathan Cooper, Edmund J. Crampin, Alan Garny, Stefan Hoops, Michael

Hucka, Peter Hunter, Edda Klipp, Camille Laibe, Andrew K. Miller, Ion Moraru, David Nickerson, Poul Nielsen,

Macha Nikolski, Sven Sahle, Herbert M. Sauro, Henning Schmidt, Jacky L. Snoep, Dominic Tolle, Olaf Wolkenhauer,

and Nicolas Le Novère. 2011. Minimum information about a simulation experiment (MIASE). PLoS Computational

Biology 7, 4 (2011), e1001122.

[306] Dagmar Waltemath, Richard Adams, Frank T. Bergmann, Michael Hucka, Fedor Kolpakov, Andrew K. Miller, Ion

I. Moraru, David Nickerson, Sven Sahle, Jacky L. Snoep, and Nicolas Le Novere. 2011. Reproducible computational

biology experiments with SED-ML-the simulation experiment description markup language. BMC Systems Biology

5, 1 (2011), 1–10.

[307] David Waltz and Bruce G. Buchanan. 2009. Automating science. Science 324, 5923 (2009), 43–44.

[308] WenguangWang, Andreas Tolk, andWeipingWang. 2009. The levels of conceptual interoperability model: Applying

systems engineering principles to M&S. In Proceedings of the 2009 Spring Simulation Multiconference (SpringSim’09).

Article 168, 9 pages.

[309] TomWarnke, Oliver Reinhardt, and Adelinde M. Uhrmacher. 2016. Population-based CTMCS and agent-based mod-

els. In Proceedings of the 2016 Winter Simulation Conference (WSC’16). IEEE, 1253–1264.

[310] Tom Warnke and Adelinde M. Uhrmacher. 2018. Complex simulation experiments made easy. In Proceedings of the

2018 Winter Simulation Conference (WSC’18). IEEE, 410–424.

[311] Tim Weilkiens. 2008. Systems Engineering with SysML/UML: Modeling, Analysis, Design. Elsevier.

[312] MeikeWill, Gunnar Dressler, David Kreuer, Hans-Hermann Thulke, Adrienne Grêt-Regamey, and Birgit Müller. 2021.

How to make socio-environmental modelling more useful to support policy and management? People and Nature 3,

3 (2021), 560–572. https://doi.org/10.1002/pan3.10207

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.3390/su11030825
https://doi.org/10.1002/(SICI)1099-1727(199924)15:4<379::AID-SDR179>3.0.CO;2-E
https://doi.org/10.1093/bioinformatics/bty736
https://doi.org/10.1145/3326168
https://doi.org/10.1016/j.envsoft.2018.08.028
https://doi.org/10.1002/pan3.10207


Context, Composition, Automation, and Communication 23:51

[313] Pia Wilsdorf, Nadine Fischer, Fiete Haack, and Adelinde M. Uhrmacher. 2021. Exploiting provenance and ontologies

in supporting best practices for simulation experiments: A case study on sensitivity analysis. In Proceedings of the

2021 Winter Simulation Conference (WSC’21). 1–12. https://doi.org/10.1109/WSC52266.2021.9715362

[314] Pia Wilsdorf, Fiete Haack, and Adelinde M. Uhrmacher. 2020. Conceptual models in simulation studies: Making it

explicit. In Proceedings of the 2020 Winter Simulation Conference (WSC’20). IEEE, 2353–2364.

[315] Pia Wilsdorf, Jakob Heller, Kai Budde, Julius Zimmermann, TomWarnke, Christian Haubelt, Dirk Timmermann, Ur-

sula van Rienen, andAdelindeM. Uhrmacher. 2022. Amodel-driven approach for conducting simulation experiments.

Applied Sciences 12, 16 (2022), 7977.

[316] Pia Wilsdorf, Anja Wolpers, Jason Hilton, Fiete Haack, and Adelinde Uhrmacher. 2023. Automatic reuse, adaption,

and execution of simulation experiments via provenance patterns. ACM Transactions on Modeling and Computer

Simulation 33, 1-2 (Feb. 2023), Article 4, 27 pages. https://doi.org/10.1145/3564928

[317] Pia Wilsdorf, Marian Zuska, Philipp Andelfinger, and Adelinde M. Uhrmacher. 2023. Validation without data—

Formalized stylized facts of time series. In Proceedings of the Winter Simulation Conference (WSC’23). IEEE, 2674–

2685.

[318] Eric Winsberg. 2010. Science in the Age of Computer Simulation. University of Chicago Press.

[319] Eric Winsberg, Jason Brennan, and Chris W. Surprenant. 2020. How government leaders violated their epistemic

duties during the SARS-CoV-2 crisis. Kennedy Institute of Ethics Journal 30, 3 (2020), 215–242.

[320] Marcus Woo. 2020. The rise of no/low code software development—No experience needed? Engineering (Beijing,

China) 6, 9 (2020), 960.

[321] Jiajian Xiao, Philipp Andelfinger, Wentong Cai, Paul Richmond, Alois Knoll, and David Eckhoff. 2020. OpenABLext:

An automatic code generation framework for agent-based simulations on CPU-GPU-FPGA heterogeneous platforms.

Concurrency and Computation: Practice and Experience 32, 21 (2020), e5807. https://doi.org/10.1002/cpe.5807

[322] Bernhard P. Zeigler. 1976. Theory of Modeling and Simulation. John Wiley.

[323] Bernard P. Zeigler. 1977. Constructs for the specifications of models and experimental frames. ACM SIGSIM Simula-

tion Digest 9, 1 (Sept. 1977), 12–13. https://doi.org/10.1145/1102505.1102510

[324] Bernard P. Zeigler, Alexandre Muzy, and Ernesto Kofman. 2018. Theory of Modeling and Simulation: Discrete Event &

Iterative System Computational Foundations. Academic Press, San Diego, CA.

[325] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. 2000. Theory of Modelling and Simulation: Integrating Dis-

crete Event and Continuous Complex Dynamic Systems. Academic Press, San Diego, CA.

[326] Bernard P. Zeigler and Hessam Sarjoughian. 2005. Introduction to DEVS Modeling and Simulation with JAVA: Develop-

ing Component-Based Simulation Models. Technical Report. Arizona Center of Integrative Modeling and Simulation,

University of Arizona.

[327] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. 2018. Towards automated deep learning: Efficient joint

neural architecture and hyperparameter search. arXiv:1807.06906 (2018). https://doi.org/10.48550/ARXIV.1807.06906

[328] Feng Zhu, Yiping Yao, Jin Li, and Wenjie Tang. 2019. Reusability and composability analysis for an agent-based

hierarchical modelling and simulation framework. Simulation Modelling Practice and Theory 90 (2019), 81–97.

[329] Daniel Zinn, Shawn Bowers, Timothy M. McPhillips, and Bertram Ludäscher. 2009. Scientific workflow design with

data assembly lines. In Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Scienc (WORKS’09).

ACM, New York, NY. https://doi.org/10.1145/1645164.1645178

[330] Steffen Zschaler, Dimitrios S. Kolovos, Nikolaos Drivalos, Richard F. Paige, and Awais Rashid. 2009. Domain-specific

metamodelling languages for software language engineering. In Proceedings of the International Conference on Soft-

ware Language Engineering. 334–353.

[331] Steffen Zschaler and Fiona A. C. Polack. 2020. A family of languages for trustworthy agent-based simulation. In

Proceedings of the 13th ACM SIGPLAN International Conference on Software Language Engineering (SLE’20). ACM,

New York, NY, 16–21. https://doi.org/10.1145/3426425.3426929

Received 7 October 2023; revised 13 May 2024; accepted 3 June 2024

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 23. Publication date: August 2024.

https://doi.org/10.1109/WSC52266.2021.9715362
https://doi.org/10.1145/3564928
https://doi.org/10.1002/cpe.5807
https://doi.org/10.1145/1102505.1102510
https://doi.org/10.48550/ARXIV.1807.06906
https://doi.org/10.1145/1645164.1645178
https://doi.org/10.1145/3426425.3426929

