
RESEARCH ARTICLE
www.advtheorysimul.com

A Web-Based Architecture to Operationalize Geospatial
Simulation Environments

Gabriel Wainer* and Bruno St-Aubin*

Large scale geospatial simulation projects require multidisciplinary efforts by
actors with highly variable skills and domains of expertise. Subject matter
experts, modelers, developers, analysts, and decision makers must
collaborate closely to model a real-world system, simulate it, analyze its
results and disseminate them. Simulation environments, tailored to business
scenarios, can provide the necessary support to facilitate their collaboration
throughout the simulation lifecycle. Commercial modeling and simulation
software can provide an environment to facilitate simulation studies for users
but, they tend to be narrowly scoped. This research focuses on the different
categories of users and introduces four business processes that carry those
users across the simulation lifecycle. These concepts are translated into an
architecture that facilitates the operationalization of geospatial simulation
environments using modeling and simulation as a service and Discrete Event
Systems Specification.

1. Introduction

Geospatial simulation is inherently complex and
multidisciplinary,[1,2] It requires subject matter expertise about
the system under study (economy, biology, logistics, etc.), knowl-
edge of simulation theory and an understanding of geospatial
concepts (coordinate systems, spatial analysis, topology, etc.).
Across the lifecycle of a simulation project (from knowledge
acquisition to the operationalization of a model), different
skills are required. Beyond trivial systems, it is unlikely that a
single participant possesses all the skills required to conduct a
simulation project by themselves. Therefore, multi-disciplinary
collaboration is commonplace when developing, validating, and
operationalizing such simulation models.

G. Wainer, B. St-Aubin
Dept. of Systems and Computer Engineering
Carleton University
Ottawa, ON Canada
E-mail: gwainer@sce.carleton.ca; brunostaubin@cmail.carleton.ca

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adts.202400144

© 2024 The Author(s). Advanced Theory and Simulations published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the original
work is properly cited, the use is non-commercial and no modifications
or adaptations are made.

DOI: 10.1002/adts.202400144

Consider for example, a demography
model meant to study the effects of socio-
economic policy changes on a given munic-
ipality. Depending on the policies to evalu-
ate, understanding the system may require
urban planners, engineers, policy makers,
economists, etc. Abstracting the city into a
model requires that they communicate with
a simulation expert that can translate their
knowledge into a model. Once simulated,
data scientists and analystsmust extract pat-
terns and meaning from the results of a
simulation experiment and then pass their
analyses along to the policy makers in a
position to make decisions. Other scenar-
ios would unfold similarly. Studying patient
pathways in healthcare for example, would
require knowledge of the healthcare system
so perhaps doctors, nurses or hospital ad-
ministrators could be involved as subject

matter experts (SME) alongside modelers, programmers, and
analysts.
A typical solution to facilitate and support users is to build sin-

gle use simulators that cater to very specific problems. Since end
users are well known, the software can be tailored to their skills
and knowledge base. Examples of such approach would include
EnergyPlus (a well-established engine for energy simulation in
buildings, which includes HVAC, lighting, etc.),[3,4] OpenFlows
FLOOD (a geospatial simulation software to understand andmit-
igate flood risks[5]), DIALux[6] or Radiance[7] (for planning indoor
and outdoor lighting in design). These software provide exten-
sive sets of domain-specific parameters that can be used to con-
duct simulation on a system. They also tend to adopt language
that is familiar to their intended user’s domain of expertise. The
software relies on black box models that are highly coupled with
the simulator, enough so that models become indistinguishable
from the simulator. Therefore, they are difficult to reuse outside
of the application domain they were intended for. This leads to
the proliferation of single use simulators that cannot be used eas-
ily in the context of multidisciplinary projects. Indeed, the inte-
gration of single use simulators to compose larger scoped simula-
tions is a complex problem that has led to co-simulation research,
a subfield of M&S that consists of the theories and techniques to
enable global simulation of a coupled system via the composition
of simulators.[8]

Geospatial simulation software exhibit the same challenges:
their models are often ad hoc and tightly coupled to the soft-
ware,making it difficult to share, reuse, validate or combine them
with other models.[9] They are generally siloed within highly
specialized subfields (as discussed above, or others, such as

Adv. Theory Simul. 2024, 2400144 2400144 (1 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

http://www.advtheorysimul.com
mailto:gwainer@sce.carleton.ca
mailto:brunostaubin@cmail.carleton.ca
https://doi.org/10.1002/adts.202400144
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadts.202400144&domain=pdf&date_stamp=2024-06-19


www.advancedsciencenews.com www.advtheorysimul.com

flood management[10–12] forest fire response[13–15] land use[16–18]

or transportation,[19,20]).
In this research we propose a different approach: using a for-

mal specification as the core foundation of modeling and simula-
tion activities. We integrate the Discrete Event Systems Specifica-
tion (DEVS) into an architecture that supports multi-disciplinary
simulation studies. DEVS is a modular and hierarchical simu-
lation method that can be used as a common denominator for
any other simulation formalism.[21] Any models that follow the
specification can be coupled to compose models that represent
larger, more complex systems. It is therefore possible for mod-
elers to assemble multi-disciplinary libraries of models to be
reused in simulation applications. Despite its advantages, DEVS
has only seen limited usage in industrial and commercial scenar-
ios. Besides notable exceptions such as the MS4Me software,[22]

very few DEVS simulators can be considered to be consumer
off the shelf (COTS) software, ready to be used by non-expert
users.
As noted in,[23] it is unlikely that a simulation approach will

be taken seriously by industry and the general public unless
it can be packaged as a COTS software. In the rest of the ar-
ticle, we show our main contribution of this research: an ar-
chitecture that contains the components necessary to easily
prepare ready-to-use simulation environments tailored to the
end user’s business requirements. The architecture relies on
a clear definition of roles and responsibilities to cater to a se-
ries of business processes for modelers, subject matter experts
(SME), web developers and end users. The research addresses
long standing simulation challenges identified by the commu-
nity. Notably, we provide new means to democratize the use
of DEVS modeling and simulation by lowering the barrier to
entry, providing tools for collaboration and a data-centric ap-
proach to simulation modeling. We show how the proposed
method is well suited to data-heavy, multi-disciplinary processes
like geospatial simulation. We also discuss how it also preserves
key features of DEVS (genericity, modularity, flexibility, etc.)
and encourages users to follow best practices in model docu-
mentation which fosters model reusability and improves model
discoverability.

2. Background and Related Work

Beyond the practical challenges faced by modelers discussed in
the introduction, there are various issues that warrant further
study and that contribute to the lack of adoption for generic sim-
ulation methodologies:

• The need to lessen the modeling efforts through model
composability.[24,25]

• Adequate tools and environments to support collaboration
over the entire simulation lifecycle, including experiment
management, results analysis, feedback process, etc.[26,27]

• Democratization of M&S should capitalize on the fact that
technical skills are now prevalent in all research fields. Re-
searchers require adequate tools to empower them to collab-
orate across multiple disciplines.[25–27]

• Modeling and simulation as a service (MSaaS) is deemed nec-
essary for increased accessibility to simulation in decision-
making processes.[25,26,28]

As discussed in,[26] complexity, size and quality of M&S
projects are limited by the methods and tools that we have,
and the authors propose the use of Web Simulation Science
(WSS), orModeling and Simulation Ecosystems to create theories,
methods and technologies needed to realize large scale simula-
tion projects.[23] proposes the use of hypermodeling principles,[29]

which allow models to be interconnected, integrated and linked
to heterogeneous documents. Although WSS has not gained
much traction in the M&S research community, related topics
have generated higher volumes of literature which are coherent
with a WSS approach[30–32] Research on model and simulation
as a service or simulation visualization could also be considered
related to the concept[33–36]

Component based modeling (CBM) has been put forth to
facilitate the role of the modeler in the simulation lifecycle.
CBM decomposes complex systems into self-contained, reusable
building blocks. For instance, in plant engineering piping and
instrumentation diagrams (P&ID) are used to automatically
derive simulation models.[37] Examples of P&ID to automate
simulation modelling are abundant[38–41] It is used in many
other field such as construction where CYCLONE (Cyclic Op-
erations Network)[42] is a popular method to simulate job site
processes.
Another common way to support modelers is through vi-

sual programming languages. CoSMoS for example, is one
such tool.[43] CoSMoS users can manually connect boxes repre-
senting individual models to compose a larger coupled model
in Java. DesignDEVS[44] also allows modelers to choose from
predefined models, configure them through a user interface
(UI) and assemble them. Other examples include[45] or CD++
Builder.[46] These tools specifically target the modeling activities
and only offer limited capacity at supporting the remainder of the
lifecycle.
Simulation as a service has been proposed to support the sim-

ulation execution step. RESTful Interoperability Simulation Envi-
ronment (RISE)[47] exposes a simulator as an easily accessible web
service. By offloading the simulation to one or more servers, it
lowered the technological barrier to entry for simulation. How-
ever, it does not offer any support to the simulation lifecycle be-
yond the remote execution of a simulation.
Research on post-simulation activities such as visualization

and analysis of simulation results is more uncommon.[48] wrote
that “visualization offers one of the most promising means to
convey information from a simulation model to decision-makers
in a meaningful way”. Macal also remarked a clear gap in this
subfield of simulation.[49] In,[50] authors highlighted the impor-
tance and role of visualization for simulation by writing that
“ultimately, the acceptance of complexity models within main-
stream science and society will depend on the results that are
produced visually”. But often, research on visualization occurs
in the context of specific application domains. In[51] CLINSim
was used to model queues in hospitals using specific icons to
show different actors, colors to show their states, vector graphics
for rooms, etc. CAPSIS is an open-source software designed to
model and simulate forest growthmodeling.[52] Likewise,[53] built
a framework to followmicrobial contamination of produce across
supply chains. Numerous other examples of domain specific vi-
sualization tools that strongly coupled to models or simulators
exist.

Adv. Theory Simul. 2024, 2400144 2400144 (2 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

2.1. Discrete Event System Specification

DEVS is a well-established technique for efficiently modeling
real-life systems. It is derived from systems theory and was first
described by Bernard Zeigler in 1976.[24] It provides a discrete
event-based method to abstract systems into models that can be
used for experimentation in cases where it is impractical or im-
possible to experiment on the real system. A complete descrip-
tion of the formalism can be found in.[24]

By its nature, DEVS has all the characteristics required to sup-
port a data-centric, component-basedmodeling approach like the
one used in the architecture we propose. It supports hierarchi-
cal and modular model development, favoring the reusability of
models. Through composition, any model can be reused as a
component to represent larger and more complex systems. It
has been demonstrated that the DEVS formalism can be used
as a common denominator for any formal method of model-
ing, whether discrete or continuous.[21] But this generic nature
comes at a cost: increased complexity in the modeling process.
Coding DEVS models often relies on a simulator specific frame-
work, which means that models prepared for one simulator are
not compatible with another simulator even if both are based on
the same programming language.
A common problem is that modelers often do not adequately

separate experiments from models. Experiment parameters are
hard coded in the models which makes it difficult to reuse them.
There is also the possibility of namespace clashes when trying to
reuse models. Attempts have been made to decouple model and
simulator through small languages. Cell-DEVSmodels in CD++
is one such example.[25] If many simulators were to adopt these
small languages, then models could be reused easily across sim-
ulators but, this has not been the case due to significant limita-
tions. Otherwise, standardization of models has been attempted
only with mitigated success.[28]

2.2. Simulation in Geographic Information Systems (GIS)

Geographic Information Science (GIScience) is concerned with
acquisition, management, processing, analysis, representation,
and storage of geographic data. Geographic Information Systems
(GIS) are software tools designed to carry out these tasks. GIS
have become standard tools used in an increasingly large array
of applications; urban logistics, land use planning, emergency re-
sponses, natural resources inventory, tracking epidemics, socio-
economic analysis, etc. They can include simulation capacity,[54]

however, their simulation potential is limited; they offer fewmod-
els that cannot be extended, and the performance is constrained
by the computer’s hardware.[55]

Adoption of GIS as a geostatistical tool occurred rapidly and
the proliferation of geospatial data followed suit. Big data has be-
come commonplace in the field and has led to a number of chal-
lenges, which can be summarized as follows:[56]

• Volume: The large size of the geospatial data that can some-
times exceed the capabilities of current computer systems.

• Velocity: The varied and sometimes high frequencywithwhich
geospatial datasets are generated and updated can exceed the
capacity of current computer systems.

• Variety: The heterogeneous nature of geospatial data. The data
originates from different sources, has different levels of accu-
racy, is stored in different formats and can be more or less
structured.

• Veracity: The unreliability of data in terms of precision, accu-
racy, or other aspects of uncertainty.

Although this can be somewhat mitigated using certain strate-
gies (generalization or down-sampling for example), GIS data of-
ten originates from heterogeneous sources, another challenge to
geospatial modelling. Data standards are uncommon. Datasets
on a common topic may contain different attributes or the value
domain for an attribute may be different. For example, the city
of Toronto, Montreal and Ottawa each describe bicycle paths
differently.[70–72] There have been efforts to standardize various
aspects of GIS and the data it uses, but most standards are fo-
cused on semantics, file formats, and web services[57] and in prac-
tice are rarely applied. Some of these challenges can be overcome
through robust GIS ecosystems and tools.[58]

Democratization of GIS occurred naturally over time. Al-
though their evolution was originally driven by business require-
ments of users, they have reached a level of maturity where they
now generate business opportunities for users. The web-based
architecture for DEVS simulation we propose in this paper is in-
spired from GIS environments and architectures. Like GIS, we
believe that a robust but flexible architecture is a necessary step
towards the democratization of simulation.

3. Users and Gaps in the Simulation Lifecycle

Abundant research on the simulation lifecycle exists.[59] Most fol-
low a similar pattern where the emphasis is on the steps that
lead to the simulation itself rather than those that follow. Some
research exclusively focusses on pre-simulation steps. For exam-
ple, Sargent in[60] presents a bidirectional iterative cycle of three
steps to represent the modeling process: problem entity, concep-
tual model, computerized model. The author puts data validity at
the heart of the process, each step is subject to a specific type of
validation: conceptualmodel validation, computerizedmodel val-
idation and operational validation. Some lifecycles proposed such
as the nine step version proposed by Benjamin et al.[61] and de-
rived by Loper[62] are straightforward and focusmostly on the pre-
simulation steps. In[63] the authors present a version of the lifecy-
cle that slightly modifies the nomenclature of Law’s process and
emphasizes the importance of the data collection step. To frame
our architecture, situate users in it and identify gaps, we propose
a simplified version of the lifecycle, illustrated in Figure 1.
The lifecycle includes 3 pre-simulation steps. The initial sys-

tem knowledge step consists of gathering information on the real-
world system to model. This can be achieved through data or
through discussions with SMEs. This step covers problem for-
mulation, data acquisition and conceptual model definition. It
can lead to several artefacts such as data files, a collection of sci-
entific papers, diagrams, etc. The model step consists of build-
ing the model, testing (pilot simulation runs) and validating it.
The typical artefact generated by this step is the source code for
the simulation model. The simulation step is the execution of
the simulation using the model previously built. It includes the

Adv. Theory Simul. 2024, 2400144 2400144 (3 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 1. Simplified simulation lifecycle.

preparation of experiments and leads to a set of simulation re-
sults in the form of log files containing the simulation trace.
Post-simulation includes 4 steps. The visualization and anal-

ysis steps, when included in simulation lifecycles, are generally
presented as a single step. In our case, we decided to separate
them since we consider that each requires different skillsets to
accomplish and therefore involve different users. Visualization
is exclusively the process of preparing a visual representation of
the simulation trace throughwhatever platform is appropriate for
the model. For cellular automata models, this could be a lattice
of cells, for spatial models, possibly a map. Analysis, on the other
hand, is the act of extracting meaning from the simulation out-
puts, often through statistics or data science related processes.
Both steps can lead to various simulation artefacts such as data
tables, diagrams, animations of the simulation trace, analytical
notes, etc. Verification and validation serve as a decision point on
whether the model requires an additional refinement iteration
or whether more experiments should be conducted. Finally, the
operation step is where simulation artefacts are put into opera-
tion. This may be achieved in different ways, some simpler than
others. In this research, we focus on the dissemination of simu-
lation artefacts through a web-based simulation application that
leverages any simulation lifecycle artefact previously mentioned.

3.1. Users in the Simulation Lifecycle

Large scale multi-disciplinary simulation projects unavoidably
involve actors with various roles and backgrounds. Although it
is clear in the literature that authors assume that multiple stake-

holders are involved in a simulation project, we have found no
clearly accepted categorization of their personas. However, in[59]

Balci identifies four types of stakeholders: the M&S developer,
the projectmanager, the organization (client) and the community
of interest. Unfortunately, the categories of users are ill-defined,
and it is unclear what their roles are in the lifecycle. Therefore,
to frame the lifecycle we propose, we review and summarize the
categories of users we originally described in (Table 1).[64]

In the lifecycle we propose, the SMEs occupy a central role;
they provide the real-world knowledge upon which the model
is built and against which it is analyzed and validated. A SME
could be an epidemiologist for disease spread models, an urban
planner for traffic simulation, an economist for socio-economic
policy planning, etc. SMEs are specialists in their field, they are
not cross trained in simulation theory or web services technol-
ogy. They must transfer their knowledge of the real-world system
to the modeler who translates it into a model ready to be simu-
lated. Therefore, a modeler must be skilled in the programming
language of the simulator and its modeling framework. To op-
erationalize a model, web developers prepare web environments
tailored to the needs of their end users. This can be as simple
as a web application that displays interactive charts and tables
for sets of pre-run simulations or as complex as a web applica-
tion that allows end users to experiment with a model or even
build their own models. The nature and complexity of a simula-
tion environment depends on the use case and business require-
ments it is tailored to. Web developers require a different subset
of software development skills than modelers: web development,
networking, graphic design, etc. Finally, the end users in the

Table 1. Summarized categories of users from.[64]

Stakeholder Role Skills Requirements

Model developer Build model
Run simulation

Simulation formalism
Limited coding skills

Assisted modelling
Debugging tools
Organized models
Documented models

Subject matter expert Provide System knowledge
Analysis
Verification, validation

Data science and analysis
Subject matter expertise

Standardized simulation outputs
Parse simulation outputs

Web developer Visualization
Dissemination

Software engineering Tools to abstract the complexity of the
simulation

Decision-maker Decision Organizational knowledge Intuitively presented simulation results
(reports, infographics, etc.)

Adv. Theory Simul. 2024, 2400144 2400144 (4 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Table 2. A subset of Grand Challenges identified over the past decade.

Gap Author Description Steps of the lifecycle

A general simulation
environment (web
simulation science)

Khan,[25] Khan,[27]

Taylor[26]
An environment to support simulation related activities
for multi-disciplinary users.

All steps

Model discoverability and
composability

Morse and Tolk,[25]

Morse[27]
Allow users to find previously built models, explore them,
and reuse them to build larger scale models.

Modeling

M&S as a service Tolk,[25] Tolk[27] Lower the technological barrier to entry for simulation by
offloading simulation to web services.

Modeling, Simulation

Replicability Yilmaz,[25] Yilmaz[27] Facilitate simulation experiment reproduction through
various means.

Modeling, Verification and
Validation

Democratization Khan,[25] Zander and
Mosterman,[25]

Zander,[27] Page[26]

Lower the barrier to entry for simulation by providing
tools to all types of simulation users

Analysis, Visualization,
Decision

lifecycle operate the dissemination application. Although they do
not possess any specific technical skills, they can be expected to
understand the business domainwithinwhich the dissemination
application is operated since it is tailored to their requirements.
It should be noted that these categories of stakeholders are

meant to be a guide for the division of labor within the simula-
tion lifecycle in a larger organization. They are not immutable. In
many cases, there will also be overlap between them; one stake-
holder may play multiple roles. For example, the modeler may
also be responsible for developing a web application for dissem-
ination since there is some overlap in the skillsets required for
both steps. In certain fields, for example those where SMEs are
also data scientists, it may be conceivable for an SME to learn
how to develop a model using a specific simulator framework.
For small simulation projects, it is entirely possible that a single
person could assume all the roles.

3.2. Gaps in the Simulation Lifecycle

Across the simulation lifecycle, there are multiple pressure
points that users must face. Many of these gaps were captured
through panels on the grand challenges of simulation that have
occurred over the last decade.[25–27] In the following table, we
summarize and describe the gaps for which we propose mitiga-
tion strategies further in this paper and we identify the steps of
lifecycle and users that they affect (Table 2).
We believe that many of these challenges can be addressed

through the definition of a collaboration process between actors
of the simulation lifecycle and an environment that supports sim-
ulation activities for them. The architecture can spawn environ-
ments that increase model discoverability through web services
and favor the replication of experiments through proper docu-
mentation of models with a metadata specification. It can also
contribute to the democratization of simulation by exposing sim-
ulation resources as a service which lowers the barrier to entry.

4. An Architecture to Support the Simulation
Lifecycle

In this chapter, we present a web-based architecture that enables
users to build and publish geospatial simulation environments

tailored to their business needs while considering the skills and
expertise of different actors. We focus on geospatial use cases
since the data sources used in this field lend themselves well
to data-centric modeling and can lead to applications in diverse
fields. The architecture relies on geoprocessing workflows for
model composition, interoperable simulation artefacts and a tool-
box to enable the visualization of simulation results. We first
present a conceptual overview of the architecture.

4.1. Architecture Overview

The architecture allows non-expert users to prepare simulation
environments that are customized according to domain-specific
requirements. It is a flexible architecture that provides several
capabilities that can be employed partially or in their integrality
to operationalize geospatial simulation models. It serves diverse
purposes: model documentation, automated transition between
experiment and model, visualization support, etc. Any of these
capabilities can be integrated into environments spawned by the
architecture. The figure below describes the web-based architec-
ture for geospatial simulation at a conceptual level and summa-
rizes the roles that different users assume to prepare custom sim-
ulation environments for end users (Figure 2).
The architecture relies on a central repository that holds arte-

facts generated as users collaborate across the business processes
defined further in this section. SMEs possess knowledge of the
application domain at the center of a simulation project. They
provide the real-world knowledge upon which models are built.
They are also responsible for analyzing results and preparing vi-
sualizations as well as creating Model Composition Workflows
(MCW) that can be called to generate models from geospatial
data sources. Model metadata files, MCWs, analyses and visual-
izations are stored in the central repository and can be reused at
any other point by other users. The modeler uses the knowledge
provided by the SME to build a conceptual model, implements it,
and adds it to the library of models, also contained in the central
repository. Anymodel can be used inMCWs once they have been
added to the library of models.
At this point in the process, web developers, in collaboration

with end users, can create an environment for simulation-based
experimentation. End users must first provide the requirements

Adv. Theory Simul. 2024, 2400144 2400144 (5 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 2. Overview of roles and responsibilities in the architecture proposed.

for their business case (which workflows they will use, the data
sources required, the look and feel of their application, etc.)
Web developers can then build an application that will fulfill
those requirements and act as a simulation experimentation en-
vironment for end users. With the help of a front-end library of
tools, web developers do not require any simulation expertise to
build visualization platforms. The environment built this way can
reuse any simulation artefact in the central repository. End users
can leverage any of the resources to conduct experiments, analy-
ses, visualizations, and disseminate them.

4.2. Interoperable Simulation Artefacts

The integration of the architecture’s components requires in-
teroperable simulation artefacts that “glue” them together. To
achieve this, we propose specifications for two key simulation
artefacts: model metadata and simulation results. Well-specified,
machine-readable artefacts can be used to integrate components
seamlessly. In an ideal scenario, this would rely on an interop-
erability standard for DEVS simulation artefacts but, to the best
of our knowledge, there are no such standards. There has been
no concerted effort by the DEVS community or the wider simula-
tion research community to design standards to document DEVS
models through metadata or to properly structure simulation re-
sults.

4.2.1. Metadata Specification for DEVS Simulation Models

The metadata specification we propose is derived from the
Dublin Core Metadata Initiative (DCMI) with additional ele-
ments to describe DEVS models. Appendix 1 describes each ele-
ment of the specification in more detail. For each element, we
provide its label, a description and indicate whether they are
mandatory (M), optional (O) and repeatable (R). A more detailed

version of the specification with examples is available.[65] This
specification has been the subject of a separate publication.[66]

For the sake of brevity, we only discuss the elements introduced to
support DEVS models in this section. These elements are meant
to document the structure and behavior of DEVS atomic or cou-
pled models with the goal of providing a general, high-level un-
derstanding of the model.
The time metadata element documents the time representa-

tion used for the model. In DEVS, models can use different time
representations. For example, onemodel could consider one unit
of time to be a day while another would consider it to be a second.
In these cases, models may simply be incompatible, or the simu-
lator may require a time conversion when it determines the next
event to occur in a simulation. In any case, this element allows a
system to warn users trying to couple models with different time
representations.
The behavior element provides a high-level description of the

model’s behavior or in other words, a description of its inter-
nal, external, output and time advance functions. This is mainly
meant to support model discovery. The state element provides in-
formation about the variables that constitute the state of a model.
It contains repeatable variable elements for each state variable of
themodel. Each variablemust contain a name to label the variable
and optionally, a high-level description to provide context to users.
It also includes a message identifier that references the type of
the message that is logged when the state is output. Many DEVS
simulators output the state of a model at certain steps of the sim-
ulation process. The messages logged are often not sufficient by
themselves to be automatically interpreted in post-simulation ap-
plications. To mitigate this, the specification includes an element
that captures all the information required to interpret them fur-
ther in this section. Therefore, the message element here is a
unique identifier that refers to a single message definition docu-
mented at the end of this section.
A subcomponent is a model instance that composes a coupled

model. Therefore, only coupled models should document this

Adv. Theory Simul. 2024, 2400144 2400144 (6 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 3. A simulation message defined according to the metadata
specification.

element. Each subcomponent consists of a value that identifies
the instance and amodel element that identifies themodel type as-
sociated to the instance. For example, a processor coupled model
could have 4 instances of a core model where each one is identi-
fied by a letter. Coupled models should also provide a coupling el-
ement that documents the internal and external couplings of the
model. Each coupling identifies the origin model (from model),
origin port (from port), the destination model (to model) and the
destination port (to port) involved. The repeatable port element
documents a model’s ports through which messages are output.
Each port specifies a name to label it, a type (whether it meant for
input or output) and is associated to the message type used when
it outputs and logs a message.
The final element in this section is one of the most useful. It

documents each type of message that is output by a model, either
when its state is logged or when a message is output through a
port. It provides a way for post-simulation applications to visually
represent a simulation trace in post-simulation applications. It
also contains the needed context for users to correctly understand
the contents of messages. Onemodel may output many different
messages either when the simulator logs the state of a model or
when a model outputs a message through a port. Each message
has a unique identifier so that it can be referenced by both the
state and port elements of a model. Each message also specifies
one ormore field elements where each field describes a value from
the message. Each field has a name used to label the value and a
description to provide contextual information to users. Each field
also has a series of optional qualifiers for the value. Type indicates
whether the variable associated to the value is nominal, numeri-
cal or ordinal. This can be used when preparing color scales when
visualizing a simulation trace. Uom informs of the unit of mea-
sure associated to the field; this provides additional context for
interpretation. Units of measures can be considered when vali-
dating coupling between models. Finally, a field element can also
contain nested field elements. This is used to represent messages
with amore complex data structure. For example, a vehiclemodel

Table 3. Example assumptionsmade by simulation tools when interpreting
log files.

Assumption level Example assumption when reading log files

Simulator • For CD++, parse only log messages beginning with
“Message Y”

• For Cadmium, read message data between characters
“<“ and “>“

Model • Display a road network on a map to show vehicle models
long roads.

• Hardcode pictograms to represent specific models like a
hospital or a school

• Hardcode “speed” and “acceleration” labels for the state
variables of a “car” model

Experiment • Hardcode labels related to the experiment (e.g., growth
rate in a demography experiment)

that outputs a message containing its position and travel velocity
could be documented using JavaScript object notation (JSON) as
shown in the figure below. Note that the latitude and longitude
fields are nested within the position field (Figure 3).

4.2.2. Decoupled Simulation Results

Simulation log files are generated by simulators as they simulate
a model. Most DEVS simulators log output messages emitted af-
ter an internal transition by the output function. Some simula-
tors, like Cadmium, also output state messages when the simula-
tion time step advances. The message format varies significantly
by simulator. Since there are no common format, post-simulation
tools to visualize and analyze simulation results are not interop-
erable. They are built in an ad hoc manner and rely on assump-
tions made about the simulator, the model or even the experi-
ment. The table below provides examples of such assumptions
(Table 3).
The format we propose to store simulation results is simple

and its implementation is minimalist to reduce the size of log
files as much as possible. When considered alongside model
metadata, it provides the information required to reconstruct
simulation traces and interpret them in visualization applica-
tions. The figure below illustrates the integration between the
metadata specification and the results specification. The classes
introduced in the diagram are generic, and they encapsulate op-
erations that can be used with a variety of data types according
to the needs of the simulation engine and the models developed
(Figure 4).
The results format consists of a list of sequential time frames

where each frame holds a time value. Frames act as containers for
messages. Amessage can be amodel message in which case it con-
tains the data for the state of a model and is associated to a model
subcomponent. The message can be reconstructed using the mes-
sage type associated to the state of the subcomponent’s model
type. A message can also be a port message in which case it con-
tains the data for an output message and is associated to a model
port. In this case, the message is reconstructed using themessage
type associated to the port. Using the integrated specification, a
message can be stored in its minimal expression. To reference
models and ports, we use their positional index in the metadata

Adv. Theory Simul. 2024, 2400144 2400144 (7 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 4. The integrated metadata (left) and results (right) specification (O stands for optional, M for mandatory and R for repeatable).

specification, and we use the message metadata to reconstruct
the message. Consider for example, the sample simulation re-
sults below (Figure 5).
The first line contains a single numeric value that indicates

a new time frame. Each message that follows, until another line
with a single digit is reached (or the end of file), is part of that time
frame. In this example, the 8th time frame of the simulation con-
tains 4 messages. A message containing a single numeric value
to the left of the semi-colon is amodel statemessage. In this case,
the value represents the positional index of a subcomponent in
the coupled model. A message containing two numeric values to
the left of a semi-colon is a port output message. In this case,
the first value again identifies the subcomponent by its position
while the second value represent the position of the port in the
port list of the subcomponent’s model type. Values to the right of
the semi-colon contain the message data which must be injected
into the message type associated to either the state or the port. A
complete description of the reconstruction process is beyond the
scope of this paper and will be the subject of a future paper.

4.2.3. Business Processes of the Simulation Lifecycle

The integrated architecture described in 4.1 has components to
support each user category in conducting multi-disciplinary sim-

Figure 5. Sample simulation results following the specification.

ulation studies. Its loosely coupled components can be partially
or integrally implemented to support some or all the business
processes involved in the simulation lifecycle. A business process
(BP) is a coordinated chain of activities intended to produce a re-
sult, or a repeating cycle that reaches a goal.[67] A single BP can
involve interaction between different categories of users and sys-
tems in an organization. BPs divide the work involved in a sim-
ulation project into units that can be addressed by experts with
different skillsets. In this section we decompose the simulation
lifecycle in four main BPs to provide a practical foundation to
build DEVS simulation environments.

4.2.4. Building New Model Components

Figure 6 introduces a BP for collaboration between the modeler
and the SME. It covers the first two steps of the lifecycle and aims
at preparing model components, documenting them, and pub-
lishing them to be reused in subsequent steps. We use the term
model component to designate models that can be assembled to
represent the system under study. We need to use this BP only
when themodel components required to represent the real-world
system do not already exist in the library of models.
The first activity of this BP consists of a SME transferring their

real-world knowledge about the system under study to a mod-
eler who will use it to prepare a conceptual model of a system
component. Although there are numerous definitions of what
a conceptual model is [65] and there is no consensus on defini-
tions, we focus on what can be acted upon by the modeler in
the subsequent activity. Therefore, in this research the concep-
tual model must describe the possible states of the system, its
behavior, the assumptions it requires, its limitations, etc. With
this information, the Modeler can implement the model, which

Adv. Theory Simul. 2024, 2400144 2400144 (8 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 6. A business process to prepare model components and document them.

involves defining its behavior and structure using the corre-
sponding modeling method, formalism or software framework.
In our case we are mainly interested in DEVSmodels, and there-
fore, a modeler could use a DEVS modeler to define the struc-
ture of the coupled models, and the behavior of the atomic mod-
els (in the implementation we introduce in[64,66] we use the Cad-
mium simulator and its simulation framework). Once a model
is complete, the Modeler and SME should evaluate whether it
is fit for purpose through functional tests (i.e., simulating the
atomic model with test input data and verifying the output).
If it is not fit, then it should be conceptually revaluated and
rebuilt.
Once a model is deemed to be satisfactory, the modeler pub-

lishes it to a library of models, a collection of properly docu-
mented, compiled and reusable components available in the sys-
tem. To do so, Modelers may need to integrate the new model
to the library manually (which might involve coding the model
in a programming language, adding the code to the library, re-
compiling it, etc. A code versioning system with continuous in-
tegration could be used to automate the deployment of the li-
brary of models). Once this is accomplished, the SME should
document the model troughmetadata and publish the document
to the server. At this point the component is exposed publicly
by the environment, it becomes discoverable and ready to be
reused in the model composition business process we present
next.

4.2.5. Model Composition as a Service with Domain Specific
Workflows

The second BP, presented in Figure 7 further supports the mod-
eling steps of the lifecycle by allowing users to build simulation
models through domain-specific model composition workflows
(MCW). A MCW is a series of steps that maps model compo-
nents onto real-world data and couples them together using re-
lationships extracted from the data. This approach is important
in domains where the data is typically rich and abundant. For in-
stance, in the field of GIS, geospatial data is generally organized
as tables that represent conceptual layers onwhichmodel compo-
nents can be mapped. Layers also contain topological and other
spatial relationships that can be used to derive model couplings.
Similarly, Business Information Models (BIM), commonly used
by architects, provide a rich source of data that can be used to
composemodels. In these fields, workflow approaches to process
data are commonplace. The ESRI software suite uses the model-
Builder tool while QGIS, uses the graphical modeler. Both tools
use a visual programming approach to let users assemble work-
flows that can extract, transform, and load data. For architectural
models, Autodesk Revit provides a similar capability of workflow-
based 3D design.
This BP is entirely accomplished by the SME using the archi-

tecture. The first step is for a SME to manually prepare a MCW
that defines how models will be composed from domain-specific

Figure 7. SMEs prepare a model composition workflow hosted as a service.

Adv. Theory Simul. 2024, 2400144 2400144 (9 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 8. A business process to simulate a user defined simulation scenario.

data. For GIS, a MCW is a sequence of computational geome-
try and spatial analysis operations (concretely, a JSON or XML
file that documents the sequence of operations, input and out-
put data sources, parameters needed, etc.) For example, if users
require an intersection between two spatial data layers, then the
workflow should include a “spatial intersection” operation with
parameters indicating each layer involved and the output layer
generated. Similarly, if a spatial buffer is required, then theMCW
should include a “buffer” operation and indicate the source layer
that will be buffered as well as a distance radius. A MCW file can
be preparedmanually, or visual programming could be used (i.e.,
a tool similar to ESRI ModelBuilder).
MCWs generate simulation scenarios used in the subsequent

BP to run a simulation. The workflow should provide sufficient
parameterization options for users to conduct the experiments
required by their business case. Once a workflow is ready, the
SME can publish it as a service. Before hosting it as a service,
the system validates the workflow. A workflow is valid if its syn-
tax is correct, if the data sources it requires were provided and if
the couplings it will attempt to create are valid. To validate cou-
plings, the system uses themodel metadata previously published
and verifies that input and output ports involved in couplings are
compatible. It can verify for example, whether the units of mea-
sure of both ports match, whether all model time representations
are coherent, if spatial coverages between models match, etc.
Domain specific MCWs provide a way for non-simulation ex-

perts to build complex models using a language that is familiar
to them. In that sense this BP contributes to democratization of
the field. It also favors composability and reusability since it is
specifically designed to reuse model components and assemble
them in a larger-scale model. Since the workflows are published
as services, it would be easy to integrate them intomore elaborate
contexts such as geospatial optimization studies. Workflows can
be as simple or as complex as a use cases requires.

4.2.6. Simulating a Composed Model

The third BP provides Simulation as a Service capabilities. This
BP focuses on the third step of the simulation lifecycle described
in section 3. Because of the prior work accomplished in collabora-
tion by the modeler and the subject matter expert, this workflow
can be conducted by the end user. Indeed, it relies on the models
and the workflow that were published to the environment to fa-

cilitate the simulation process. Executing a simulation is only a
matter of providing the experiment parameters (Figure 8).
There are two entry points to this process, and both involve

the preparation of a simulation scenario file. A simulation sce-
nario describes a model, its subcomponents, and the couplings
between them. With a scenario, the simulator can instantiate
a model, simulate it and generate results. The first entry point
assumes that users are building a model with a MCW as de-
scribed in the previous section. The second entry point assumes
that users are manually creating the simulation scenario. This is
meant to favor loose coupling of the BPs; a user is not required
to go through all the BPs to execute a simulation, they can simply
simulate a model by directly providing a scenario.
From the first entry point, end users must first prepare a sim-

ulation experiment. The experiment is the set of parameters re-
quired by the workflow. The end user then requests a workflow
execution with the experiment and the system validates that the
parameters provided are correct for the selected workflow. The
system then executes the workflow that generates the simula-
tion scenario from the experiment. Starting from the second en-
try point, users must manually prepare a simulation scenario
then request a simulation execution. Regardless of the entry point
used, the system validates the scenario provided. Various aspects
of model couplings can be validated. For example, the system can
verify that the couplings involve ports that exist on the models,
that messages sent and received use the same units of measure,
that time representations are compatible, etc. After validation, the
simulation scenario is ready, and the system can simulate it, gen-
erate results, package them as outputs and return them to the end
user.
This BP provides modeling and simulation as a service and

therefore addresses the democratization gap in the lifecycle since
it lowers the barrier to entry for users that wish to simulate a
model. Indeed, users do not require powerful hardware since the
computation is offloaded to the server. In addition, it also offers
an easy way to execute simulation through a web API that can be
integrated to any other system.

4.2.7. Model and Results Operationalization

The BP in Figure 6 is a collaboration between the web developer,
SME and the end users. It covers all the steps of the simula-
tion lifecycle that occur after the simulation step. Its goal is the

Adv. Theory Simul. 2024, 2400144 2400144 (10 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 9. A business process for the preparation of a web-based simulation platform.

operationalization of a simulation model and results. Opera-
tionalization can simply mean the presentation of simulation re-
sults as tables or charts. In more complex cases, operationaliza-
tion can be an interactive web application that allows users to
conduct their own experiments using an intuitive, browser-based
user interface. The complexity depends on the goals the end-user
seeks to accomplish (Figure 9).
This BP hasmultiple entry points. The first one involves build-

ing a web application for operationalization. End users must first
elicit their requirements. This can involve preparing user inter-
face mockups, describing user stories, identifying analytics to be
shown to users, clarifying the interactions with the simulation
data, etc. This provides guidance for web developers to build a
first iteration of the platform. Once the platform is deemed fit
for purpose through testing by the end user, it can be published
to a server (in our case, a DEVS web server can also serve as a
hosting platform). The second entry point provides a sub process
for the SME to publish content to be used by an already existing
application. The SME can execute simulations and publish their
results on the web environment. Once published, the results are
available to the platform which can display them to the end user.
Providing a simple and intuitive platform to allow users to in-

teract and analyze simulation results is a step towards democra-
tization of the field. Indeed, it allows non-expert users to under-
stand simulations and even perhaps conduct their own if such is
the purpose of the dissemination platform.

5. Architecture Implementation

In practice, there are many ways in which the architecture can
be operationalized. Each component of the architecture must be
implemented, and several technologies selected to do so, each
with their own advantages and disadvantages. In this chapter, we
discuss implementation considerations for the architecture and
present the choices we made to implement a prototype version
of the architecture used in the case study presented in the next
section.

5.1. Implementation Overview

Different technologies can be used to implement each com-
ponent of the architecture. For example, there are several en-

gines that can execute geoprocessing workflows, some are open-
sourced, some are proprietary and custom user solutions could
even be used. Similarly, there are many possible strategies to
implement the library of models: traditional relational database
management systems, NoSQL databases or even a non-database
approach such as the one we used in our implementation. Each
choice of technology has advantages and disadvantages that must
be balanced according to the context within which the architec-
ture is implemented. Many factors can be considered: financial
considerations (open versus proprietary), familiarity with specific
programming languages, the type of front-end platform used to
access the environment (desktop, mobile, browser), familiarity
with specific web development frameworks (React, vue.js, D3,
etc.), the complexity of the spatial analysis operations required,
performance required (redundancy, high availability, backups,
etc.), and others.
When prototyping the architecture for this research, we tested

different technology variations. Considering the academic con-
text in which this research occurred, we opted for open-sourced
technologies due to limited availability of funding and resources.
We first implemented the architecture using Cadmium for sim-
ulation, Spring Boot for services, QGIS for workflows and SQL
Server for the library of models. We successfully implemented a
prototype using these technologies but observed that a relational
database solution to document models was too rigid as we were
developing the concept. Data maintenance and evolution of the
data model was time-consuming and error prone. Therefore, we
built a second version where we replaced the relational database
management system by a non-database solution that relies on the
file system. Figure 10 below illustrates the implementation.

5.2. Back-End Library of Models and Simulator

5.2.1. Simulation Artefact Management

This implementation adopts a database-less approach to organize
and manage simulation artefacts. It simply uses the server’s file
system to store artefacts. When installing the web services pack-
age, a file system location must be provided. At this location, the
system will create folders for each branch of the services that al-
low users to upload files (models to store model metadata files,

Adv. Theory Simul. 2024, 2400144 2400144 (11 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 10. Second version of the implemented architecture.

workflows to store workflow files and, visualizations to store visu-
alization related files). The system will also create index JSON
files for each folder. Index files list the contents of each folder
with a summary description and a creation date. They are used
to facilitate discovery. Finally, the system uses a scratch folder for
the purpose of holding temporary files as different operations are
executed.
When users upload resource(s) to the environment the sys-

tem stores it in the corresponding folder. In some cases, users
must upload multiple files for a resource. Workflows, for exam-
ple, must be published alongside any data sources they require.
Therefore, the system creates a sub-folder to hold the files. Sub-
folders are labeled using a UUID and the identifier is entered in
the corresponding index file. The system also creates a REST end
point for each resource that allows users to retrieve them, delete
them or update them. When a resource is removed from the en-
vironment or updated, the index file is updated. The figure below
illustrates the folder structure used (Figure 11).

5.2.2. Geoprocessing Workflow Engine

The architecture allows users to define and publish model com-
position workflows (MCW). A MCW consists of a series of se-
quential spatial analysis tasks that compose simulation models
using a CBM approach. MCWs process geospatial data, associate
atomic models to records and assemble them in coupled mod-
els according to their spatial relationships or other characteris-
tics. In our implementation, users defineworkflows as JSONfiles
which are then interpreted by a workflow engine we built using
PyQGIS, the library behind the QGIS software. A conceptual rep-
resentation of a workflow file is described below.

Figure 11. Simulation artefact storage structure.

A workflow contains 3 sections. The inputs section specifies
the geospatial data layers and non-geospatial attribute tables that
are used by the workflow. The outputs section indicates which
geospatial layers should be output by the workflow in addition
to the simulation scenario file. Output data are overlaid on the
map upon visualization and serve as a medium on which simu-
lation results can be attached. For example, a workflow that builds
a simulation scenario for road traffic could output the road net-
work layer as a contextual layer and color road segments accord-
ing to the model’s state. The tasks section contains a list of pa-
rameterized spatial analyses and other computational geometry
tasks. Each task must identify the spatial analysis operation by
name, specify its input data source(s), output locations and any
other parameters required by the operation. It is also possible for
users to provide parameters that override those contained in the
workflow. This mechanism provides more flexibility for users to
conduct simulation experiments (Figure 12).
When executing tasks, the engine can handle task results in

different ways. It can store them on the file system so that they
can be reused later for visualization. It can also hold them in
memory so that any subsequent tasks in the workflow can reuse
them. It can also hold them temporarily in memory so that only
the next task can reuse them. This provides some control over
memorymanagement for workflow designers. Each task can also
have a set of parameters that can be either static or dynamic.
Static parameters are invariable parameters that are defined in
the workflow file. Dynamic parameters can be provided in sev-
eral ways and their content is determined at runtime.
Finally, a workflowmust also specify how the atomicmodel in-

stances and relationships will be mapped onto data. They must
specify which tasks results themodels will bemapped to, the type
ofmodel that will be used, the field used to retrieve a unique iden-
tifier for themodel instance and a series of fields that will be used
to initialize model instances. Relation sets are used to establish
the couplings between the models. A relation set specifies a join
operation on two task results, one for the origin and the other for
the destination. Each set of joined records becomes a coupling. A
set of relations must also indicate the output and input port that
will constitute the coupling.
Workflows are processed in 4 phases: request reception, work-

flow initialization, task execution and scenario preparation. The
first phase begins when a user requests a workflow execution
by sending a request to the appropriate REST endpoint. Once
the request is received, the engine retrieves the workflow by its
UUID. The workflow is loaded and the engine proceeds to load
the geospatial data layers that the workflow requires in memory,
as specified in the workflow definition file. The second phase
consists of executing spatial analysis or computational geome-
try tasks sequentially. First, a task is instantiated and parame-
terized using the configuration contained in the workflow file.
Then, the engine injects data layers required by the task. This
can be a previous result that was explicitly stored or, a data layer
that was published alongside the workflow. If the task supports
user parameters and the user has provided them, they will be
injected into the task parameterization. The final step of pa-
rameterization is the injection of previous results if required.
Once executed the workflow will output the task results if re-
quested otherwise, it moves on to the next task until none re-
main. The final phase of a workflow consists of preparing the

Adv. Theory Simul. 2024, 2400144 2400144 (12 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 12. Conceptual representation of a workflow definition.

scenario file itself. To do this, the engine first writes results
to disk as specified by the workflow. Then, it creates the sets
of instances and relationships which indicate how model in-
stances are created and coupled. Instance sets and relationship
sets are written to a scenario file which completes the workflow
execution.

5.2.3. Component-Based Simulation in Cadmium

We modified the Cadmium simulator and its framework so that
it can build complete simulationmodels from a scenario file. The
specification for a simulation scenario is described in Figure 13

below. The data structure represents the main coupled model
to simulate, sometimes referred to as the top model. A coupled
model contains a list of components and a list of couplings that
connect models together. Components can be another coupled
model or a sourced component and must specify the model type
they represents. A sourced component tells the simulator how to
create instances of a model type from a data source which can be
direct or external. Direct source components use data included
in the scenario file as a list of JSON initialization objects used to
instantiate model components. Externally sourced components
are more complex and not used in the context of this work.
Couplings are simple: each coupling indicates the origin and

Figure 13. Conceptual data model of a simulation scenario (left) and a scenario file excerpt (right).

Adv. Theory Simul. 2024, 2400144 2400144 (13 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 14. Route diagram for the simulation lifecycle management web API.

destination models and ports as well as pairs of identifiers for
each origin and destination component.
Each model type used in a scenario must be coded following

the Cadmium pattern (i.e., models must inherit from the ap-
propriate base classes and implement a series of properties and
methods representing the different elements of a DEVS model
such as state, internal transition, external transition, etc.) Each
model must also be registered with the simulator and added to a
library of models. This involves assigning a string unique identi-
fier to the model class so that it can be recuperated automatically.
Once amodel is tested and integrated into a local version of the li-
brary, adding it to the server-side library is simple, it is a matter of
uploading the code and compiling it. Although straightforward,
it is a manual process and therefore, error prone. For this reason,
we are exploring a process where the library would be automat-
ically updated and compiled from an online repository such as
GitHub.
To process a scenario file into amodel ready to simulate, we im-

plemented a factory, a well-known software development pattern.
The factory relies on a hashmap that associates model unique
identifiers to class definitions. At runtime, the factory retrieves a
model definition using the string identifier provided and creates
multiple instances of it as specified in the scenario file. Once the
model is fully built, the system can simulate it which generates
a set of simulation results. The results are then packaged as an
archive and sent back to the user or published for visualization.

5.3. Middleware Services

The central component of the web architecture for geospatial
simulation is a REST based service architecture that enables
the BPs detailed in section 4. It provides the services required

to “glue” the four BPs together. The architecture illustrated
in Figure 14 was implemented using Spring Boot, a popular
Java framework that facilitates the development of web services
through dependency injection, among other features. The ser-
vices, once developed, were published on an Apache Tomcat
server hosted on the Compute Canada cloud provided by the
Digital Research Alliance of Canada. Each branch of the web
API roughly corresponds to one of the four BPs. The model
branch allows users to document models using metadata (sec-
tion 4.3.1), the workflow branch allows users to publish MCWs
(section 4.3.2), the simulation branch provides simulation as a
service capability (section 4.3.3) and the visualization branch is
used to publish simulation results and visualization configura-
tions (section 4.3.4). Each branch provides a way for users to cre-
ate resources on the server and expose them publicly for discov-
ery and consumption.
The model, workflow and visualization branches display a com-

mon behavior. Users can publish (create) new resources by send-
ing a POST request to the appropriate endpoint with the correct
payload. The payload typically consists of the file itself and ad-
ditional descriptive data for the file (author, date created, etc.)
Whenever a file is published, the system generates a UUID to
identify it, stores it on the server’s file system and updates an
index that lists all files of that type. Users can also read, up-
date, or delete a resource by respectively sending a GET, PUT or
DELETE request to the REST endpoint of a resource identified by
its UUID (i.e., api/{branch}/{uuid}) and providing the required
payload. For each of these branches, users can also send a GET
request to the file endpoint of a resource to download the file.
For example, sending a GET request to the api/workflow/{uuid}
endpoint will return the summary descriptive data for the corre-
sponding workflow definition file while sending a GET request to
the api/workflow/{uuid}/file endpoint will download the workflow

Adv. Theory Simul. 2024, 2400144 2400144 (14 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

file itself. Sending a GET request to the list endpoint of a branch,
for example api/model/list will display the contents of the index
file for that branch. It will list all themodels available in themodel
repository.

5.4. Front-End Tools for Dissemination

5.4.1. Front-End Library for Simulation-Based Web Applications

In the field of simulation, dissemination of models and results
is often limited to the publication of analytical charts, tables,
statistics, or other static analyses issued from the simulation re-
sults. Advanced data visualization applications allow end-users
to interact with simulation models or results in a manner that
is tailored to their specific needs. The web services in the ar-
chitecture provide access to the backend resources that these
applications require. However, non-expert end users do not in-
teract directly with web services. They require a front-end tai-
lored to facilitate interaction. Building customized front-end
applications is time and effort consuming. To mitigate this,
the architecture includes a library of front-end tools that ab-
stracts some of the complexity involved in interacting with the
architecture.
The library contains several useful data structures. The config-

uration package provides several classes to hold map visualiza-
tion configuration, to handle playback options, layout and size
for the visualization, style to be applied to models, etc. It con-
tains functions to facilitate access to each configuration parame-
ter. This data structure will be explained in the following section.
The simulation package contains classes that hold the simulation
results and themodelmetadata as discussed in section 4.2. These
provide functions to access the structural elements of a model
(components, ports, couplings, etc.) Optimized access to model
components is important when animating the simulation trace
since these functions are called often enough to impact on per-
formance. There are also functions to control the flow of a sim-
ulation animation which emits events when moving forward or
backward. This allows other components to listen to changes in
the state of the simulation and react accordingly. The visualization
engine for example rely on these events to redraw itself when the
simulation state changes. Finally, themetadata structure contains
all elements of the metadata specification.
The library also contains various utility classes to help users

accomplish different tasks when building web applications. The
tools package contains a series of static utility classes provided for
the convenience of developers. Dom provides document object
model (DOM) manipulation functions, Net has functions used
to send web requests to the web services of the architecture and
Zip is used to manipulate compressed files on the front-end. The
UI package contains simple user interface elements such as a
box-input element that allows users to upload files, a color picker
element to let users choose colors used to draw simulation results
and a popup element to show dialog windows to users. There are
also more complex widgets such as the palette widget which al-
lows users to assign styles to Cell-DEVS visualizations, the settings
widget used to configure visualization options and the linkerwid-
get used to associate diagram to structural elements of a model.
There are also non-GUI elements such as the chunk reader which

can be used to read a simulation log file by chunks and the parser
which reads simulation results.
The front-end tools also contain three main visualization com-

ponents that can be used to visualize different types of DEVS sim-
ulations. The diagram class is used to visualize standard DEVS
models using SVG to display and animatemessages as they travel
through models and ports (right-most image in Figure 15 shows
an example). The grid class is used to visualize Cell-DEVS mod-
els using a canvas HTML element which behaves in a manner
similar to bitmap images (left-most image in Figure 15 shows an
example). Each cell has a red, green, blue value assigned accord-
ing to the state of the cell using a color classification schema. The
gis class is used to draw a regular DEVS model on a map. Due to
its central role in the architecture, we discuss it in greater detail
in the next section.

5.4.2. Map Based Visualization

Map-based visualization can be used to disseminate geospa-
tial simulation results. Web developers can develop interactive
maps that display the results of geospatial simulations executed
through the architecture. In this implementation, we use the
OpenLayers API to draw the map. It is a long-standing, well-
established open-sourced library for the development of interac-
tive maps on the web. Other libraries could have been used, for
example, MapBox GL js, ArcGIS js API, or Leaflet but we settled
on OpenLayers due to it being open-sourced and our familiarity
with it. Using the library, all that is required is to create an in-
stance of the gis class and initialize it by providing a visualization
configuration that indicates the geospatial data files to display,
the simulation results to associate to them and, the map styles to
use. A conceptual representation of the visualization configura-
tion file is shown in the appendix.
A visualization configuration must first specify a basemap

which is shown underneath the vector data and usually contains
hydrography, basic road network, land use information, etc. It
must also specify a center and zoom level to set the initial extent
of the map. It also contains several data layers to represent the
geospatial features in the simulation model (for example, roads,
buildings, administrative areas, etc.) Each layer has the following
fields:

• A unique id so the layer can be uniquely referenced in an ap-
plication.

• A geometric primitive type (point, line polygon) used to deter-
mine the appropriate style object used to draw the layer.

• A file path to the geojson file containing the geometries for the
layer. This file is often generated by the model composition
workflows.

• A list of attribute fields that will be loaded from the geojson file
and included with the layer in the application.

• A label used to name the layer in a user-friendly manner in the
application.

• A join field used to link the geospatial layer and the simulation
results.

• Each layer is also associated to a default style object used to
draw the layer when it is not associatedwith simulation results.

Adv. Theory Simul. 2024, 2400144 2400144 (15 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 15. A Cell-DEVS grid visualization (left) and a DEVS diagram visualization (right).

Similarly, the visualization can containmultiple variables. Each
variable represents a value from themodel statemessages. A vari-
able has a name used for labeling purposes and must be associ-
ated to the layer representing the correspondingmodel and a style
to be used when drawing the variable on the map. Our develop-
ment library currently supports several styling options for geo-
metric primitives: points, lines, and polygons. The table below
summarizes the options (Table 4).
A good way to intuitively display changes to a model’s state

to vary visual variables (size, stroke, fill, etc.) as the value of a
model’s state variable changes. Each model state variable can be
displayed using dynamic visual variables. Users can specify how
to vary the scale, radius, stroke or fill of a geometry’s symbol accord-
ing to the state of amodel. To do this, they can use the bucket scale,
bucket radius, bucket stroke and bucket fill classes. Each of these
style option allows users to define how to vary the style according
to the model state variable. They can use equivalent classification

where the spread of the values for the variable is divided in equal
classes. They can also use quantile classification which divides
the spread of values in classes with the same number of values
in each. The number of classes is defined either by the number
of colors provided (for fill and stroke) or the classes value (for ra-
dius and scale). In the case of stroke and fill styles, the fill colors
and stroke widths for each class can be provided as lists of color
codes and width values, respectively. For radius and scale, mini-
mum andmaximum values are provided, and the system derives
the values for each class to be used.

6. Data Driven Geospatial Simulation
Environments

In this section, we discuss a case study where the environment
described in the previous sections was used to build a web-based
simulation application. This is an artificial scenario that is meant

Table 4. Styling options by geometric primitive.

style geometries property example

scale point size

radius point size

stroke point, line polygon width

stroke point, line polygon color

fill point, polygon color

Adv. Theory Simul. 2024, 2400144 2400144 (16 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 16. Workflow used in the case study (blue: data inputs, yellow: user parameters, green: outputs, grey: operations).

to highlight how each component of the environment could be
employed in an organization to allow SMEs to conduct their own
simulation experiments and disseminate the results. The sce-
nario focuses on the management of medical emergencies by
geographic areas. It allows end users to create their own simula-
tionmodels and visualize results through an intuitive,map-based
user interface. The general concept of the scenario is to prepare
a model that will generate and process emergencies according to
the spatial characteristics of the region selected by the end user.
A more complete video of this use case scenario is available.[68]

The scenario relies on two atomicmodel components: an emer-
gency area model generates emergencies that are mapped to ge-
ographic areas and a hospitalmodel that processes the emergen-
cies. The number of emergencies generated by each area is based
on a simple formula that considers a base emergency rate and
the area’s population count to determine a maximum number of
emergencies that can occur. The number of emergencies emit-
ted every 24 hours by an area is randomized between one and
the maximum value calculated. Emergencies are sent to the first
nearest hospital. If the hospital is under capacity, it will accept
the emergencies. Otherwise, it will reject them, and the area will
send it to the next closest hospital. It will repeat this once more if
needed and, if it is still rejected, will register it as a failed emer-
gency (i.e., death). Hospitals process emergencies daily at a rate
defined by their parameters. This model can be considered as a
“toy model”. Preparing a truly representative emergency man-
agement model is beyond the scope of this work. Following the
business process presented earlier, the two models were coded
for the Cadmium simulator, and uploaded to the environment
along with their metadata.
We then prepared the model composition workflow shown in

Figure 16. It consists of several spatial analysis and attribute data
operations. It uses several data sources from Statistics Canada to
prepare a model: Canadian census subdivisions (CSD) and dis-
semination areas (DA), the Open Database of Healthcare Facil-
ities (ODHF), the National Road Network (NRN) and, the Cen-

sus Profile 2016. The workflow is parameterized to accept a list
of CSD unique identifiers (a CSD corresponds roughly to a mu-
nicipality in more population dense areas) and a list of hospital
parameters that overwrite their default capacity and rate values.
This allows users to designate a simulation area and test different
scenarios for hospitals.
The first step of the workflow is to dissolve (merge) the selected

CSDs into a single polygon that represents the simulation area.
The DA, ODHF and NRN datasets are then constrained to the
simulation area polygon through a clip or extract by location op-
eration. For each DA, the workflow joins the population counts
from the Census Profile. Next the workflow overrides ODHF hos-
pital attributes for each set of user-defined hospital attributes pro-
vided. Centroids for DAs are computed and used to calculate an
origin-destination road distance matrix with each ODHF hospi-
tal in the simulation area based on the NRN. This requires calcu-
lating the driving distance along the road network between each
permutation of DA centroids and hospital points. This is the bot-
tleneck of the workflow since a shortest distance algorithm, a no-
toriously computationally expensive operation, must be executed
for each pair of points. Using the resulting origin-destinationma-
trix, the workflow can determine the three closest hospitals for
each DA. The unique identifier for each closest hospital is stored
on each DA as separate fields (i.e., three fields are added to the
DA layer, hospital_1, hospital_2 and hospital_3). Finally, the work-
flow outputs the DA, hospital and NRN data then constructs the
scenario for the simulator. The scenario dictates that emergency
area and hospital type models should be mapped onto the result-
ing DAs and ODHF hospitals, respectively. It also specifies that
each emergency area should be connected to the hospitals identi-
fied using the origin-destination matrix.
The workflow was then published to be subsequently used as

a service. Then, we built a web application using the front-end
toolbox that allows users to define their own experiments us-
ing the model and generate different. Users can select a simu-
lation area and override hospital attributes by interacting with

Adv. Theory Simul. 2024, 2400144 2400144 (17 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 17. Users select a simulation area and set experiment parameters.

a map. To do so, they must click on CSDs to select them and
hospitals to modify their values. In Figure 17, a user has se-
lected Toronto as a simulation area and overrode the param-
eters for the Scarborough Centenary Hospital. Once the user
has defined an experiment, they click the simulate button which
first calls the execute endpoint for the published workflow ser-
vice (./api/workflow/{uuid}/execute). Once executed, the ap-
plication calls the simulation endpoint (./api/simulation) and
sends the scenario file resulting from the workflow execution.
After the simulation is complete, the system publishes a vi-
sualization to the server by calling the visualization endpoint
(./api/visualization) and providing the simulation and workflow
outputs. Once this process is complete, the application shows the
visualization as shown in Figures 18 and 19.

7. Conclusion and Future Work

The current modeling and simulation ecosystem, particularly
with regard to the DEVS methodology, lacks a comprehensive
framework to properly support non-expert users in complex sim-
ulation projects. The four web-based BP and the implemented
simulation environment introduced in this paper support the
simulation lifecycle. The first BP allows users to prepare models
and document them thoroughly using a model metadata speci-
fication. The second allows users remotely simulate models by
providing simulation scenarios. The third provides the tools re-
quired for users to prepare visualization platforms and publish
visualizations for their simulation results. The fourth one is an
extension of the second. It allows users to automatically build spa-
tial simulation models through model composition workflows

Figure 18. The experiment is simulated on the server.

that map model components on geospatial data using geomet-
ric and topological characteristics. The architecture, through its
web services, can act as the “glue” between the different steps of
the simulation lifecycle. It also provides a way to decompose the
lifecycle into parts that can be tackled by individuals with differ-
ent skillsets. We limit the role of modelers and web developers to
a few very specific activities in the BPs. The SME assumes most

Figure 19. A visualization of the resulting simulation.

Adv. Theory Simul. 2024, 2400144 2400144 (18 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

of the work composing models, documenting them, conducting
experiments, preparing visualizations, and analyzing results.
Further research is required to study specific aspects of the ar-

chitecture to further reduce the burden on the modelers, ana-
lysts, and developers or to improve user experience. For example,
determining better mechanisms to transfer simulation results
from the back end to the front end and researching better ways
of processing that data on the front-end. Web workers are now
well supported in modern browsers and enable parallel threads
in browsers. These could be used to efficiently prepare the sim-
ulation data for rendering as it arrives from the back end. We-
bAssembly is a new type of code that can be run in web browsers.
It is a low-level assembly-like language that runs at near-native
performance. These tools could improve user experience by re-
ducing transfer and processing delays. It would also allow the vi-
sualization of much larger simulation results. Another interest-
ing research avenue is to evaluate the usefulness of simulation
analytics as a service to easily extract insights from simulation
results. A suite of services could be designed to query results and
compile statistics that are ready to visualize as analytics such as
conventional charts (line, bar, pie, etc.) or more elaborate ones
(Sankey diagrams, sunburst, heatmaps, etc.)
DEVS based simulation, for all its theoretical advantages (mod-

ularity and hierarchy), remainsmarginally used in the simulation
industry due to its complexity. Domain specific, single use sim-
ulators remain more popular largely because they are tailored to
their domain of application. This provides avenues to simplify
their usage, often by tightly coupling simulator and model or
by leaning heavily on parametric models. On the other hand, it
makes it difficult to integrate in multi-disciplinary models and
therefore, condemns them to remain in their disciplinary silo.
Through a better simulation environment, it is possible to reduce
the barrier to entry for DEVS so that it can become a common
formalism to implement multi-disciplinary models in a collabo-
rative manner.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Research data are not shared.

Keywords
geosimulation, geospatial simulation, simulation environment, simula-
tion lifecycle

Received: February 7, 2024
Revised: May 17, 2024

Published online:

[1] J. O. Henriksen, Journal of Simulation 2008, 2, 3.
[2] M. Batty, P. M. Torrens, J Geog 2001.
[3] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J. Huang,

C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J. Witte, J.
Glazer, Energy Build. 2001, 33, 319.

[4] EnergyPlus, EnergyPlus | EnergyPlus 2021, https://energyplus.net/
(accessed April 23, 2022).

[5] OpenFlows FLOOD Modeling Software, Bentley Systems Incor-
porated, 2022, https://www.bentley.com/en/products/product-
line/hydraulics-and-hydrology-software/openflows-flood (accessed:
April 2022).

[6] DIALux, DIALux - DIAL 2021, https://www.dial.de/en/dialux/ (ac-
cessed March 5, 2021).

[7] D. Fuller, A. McNeil, Radiance — Radsite 2017, https://www.
radiance-online.org/ (accessed: March 2021).

[8] C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, ACM
Comput. Surv. 2018, 51, 1.

[9] A. Crooks, C. Castle, M. Batty, Comput Environ Urban Syst 2008, 32,
417.

[10] X. Meng, M. Zhang, J. Wen, S. Du, H. Xu, L. Wang, Y. Yang, Sustain
2019, 11.

[11] L. Liu, Y. Liu, X. Wang, D. Yu, K. Liu, H. Huang, G. Hu, Nat. Hazards
Earth Syst. Sci. 2015, 15, 381.

[12] S. Jin, Y. Yan, X. Jiang, IOP Conf. Ser. Earth Environ. Sci. 2017, 100.
[13] I. Kaur, A. Mentrelli, F. Bosseur, J. B. Filippi, G. Pagnini, Commun

Nonlinear Sci Numer Simul 2016, 39, 300.
[14] O. Jellouli, A. Bernoussi, M. Mâatouk, M. Amharref, Math. Comput.

Model. Dyn. Syst. 2016, 22, 493.
[15] J. B. Filippi, F. Bosseur, C. Mari, C. Lac, Atmosphere 2018, 9, 218.
[16] X. Zhang, China, J. Geogr. Inf. Syst. China. J. Geogr. Inf. Syst. 2016, 8,

317.
[17] R. Wang, Y. Murayama, ISPRS Int. J. Geo-Information. 2017, 6,

150.
[18] M. Batty, Y. Xie, Z. Sun, Comput Environ Urban Syst 1999, 23, 205.
[19] Y. Huang, A. Verbraeck, M. D. Seck, Simulation 2015, 91, 1027.
[20] M. Zhao, X. Yao, J. Sun, S. Zhang, J. Bai, IEEE trans Intell Transp Syst

2019, 20, 323.
[21] H. L.M. Vangheluwe, inCACSD. IEEE Int. Symp. Comput. Control Syst.

Des., 2000, (Cat. No.00TH8537), IEEE, USA, pp. 129–134.
[22] RTSync Corp., Better Predictions, Smarter Decisions | RTSync 2021,

http://www.rtsync.com/pages/products/ms4me.html (accessed:
April 2022).

[23] S. J. E. Taylor, in Proc. 2011Winter Simul. Conf., IEEE, 2011, pp. 2904–
2908.

[24] B. P. Zeigler, H. Praehofer, T. G. Kim, Theory of Modeling and Simula-
tion, 2nd ed., Elsevier, San Diego, CA, USA, 2000.

[25] G. A. Wainer, Discrete-Event Modeling and Simulation : A Practitioner’s
Approach, Taylor & Francis, Boca Raton, FL 2009.

[26] H. L. Vangheluwe, J. De Lara, P. J. Mosterman, AI, Simul. Plan. High
Auton. Syst. 2002, 9.

[27] G. A. Wainer, N. Giambiasi, Discret Event Dyn Syst 2002, 12, 135.
[28] G. Wainer, K. Al-Zoubi, D. Hill, S. Mittal, J. Martín, H. Sarjoughian, L.

Touraille, M. Traoré, B. Zeigler, in Discret. Model. Simul., CRC Press,
USA, 2010, pp. 393–425.

[29] R. M. Fujimoto, ACM Trans. Model. Comput. Simul. 2016, 26, 1.
[30] S. J. E. Taylor, A. Khan, K. L. Morse, A. Tolk, L. Yilmaz, J. Zander, P. J.

Mosterman, Simulation 2015, 91, 648.
[31] S. J. E. Taylor, R. M. Fujimoto, E. H. Page, P. A. Fishwick, A. M.

Uhrmacher, G. A. Wainer, in Proc. Title Proc. 2012 Winter Simul.
Conf., IEEE, 2012: pp. 1–15.

[32] S. J. E. Taylor, A. Khan, K. L. Morse, A. Tolk, L. Yilmaz, J. Zander, in
Proc. Symp. Theory Model. Simulation, 2013, pp. 1–8.

[33] L. Yilmaz, S. J. E. Taylor, R. M. Fujimoto, F. Darema, Winter Simul.
Conf. Savannah, Georg. 2014, 2014, 2797.

[34] M. F. Goodchild, Annu Rev Environ Resour 2003, 28, 493.
[35] C. R. Dietrich, G. N. Newsam,Water Resour Res 1993, 29, 2861.
[36] M. Zapatero, R. Castro, G. A.Wainer, M. Houssein, Proc. 2011Winter

Simul. Conf 2011, pp. 997–1009.
[37] M. F. Goodchild, Dialogues Hum Geogr 2013, 3, 280.

Adv. Theory Simul. 2024, 2400144 2400144 (19 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com
https://energyplus.net/
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-software/openflows-flood
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-software/openflows-flood
https://www.dial.de/en/dialux/
https://www.radiance-online.org/
https://www.radiance-online.org/
http://www.rtsync.com/pages/products/ms4me.html


www.advancedsciencenews.com www.advtheorysimul.com

[38] A. C. Robinson, U. Demšar, A. B. Moore, A. Buckley, B. Jiang, K. Field,
M.-J. Kraak, S. P. Camboim, C. R. Sluter, Int. J. Cartogr. 2017, 3, 32.

[39] S. Li, S. Dragicevic, F. A. Castro, M. Sester, S. Winter, A. Coltekin, C.
Pettit, B. Jiang, J. Haworth, A. Stein, T. Cheng, ISPRS J Photogramm
Remote Sens 2016, 115, 119.

[40] D. Laney,META Delta 2001, 949, 4.
[41] S. Sutharan, Eval Rev 2014, 41, 4.
[42] A. Sawhney, S. M. AbouRizk, D. W. Halpin, Can. J. Civ. Eng. 1998, 25,

16.
[43] H. S. Sarjoughian, V. Elamvazhuthi, Second Int. ICST Conf. Simul.

Tools Tech, ICST, USA, 2009, pp. 1–9.
[44] R. Goldstein, S. Breslav, A. Khan, in Proc. 2016 Spring Simul.

Multiconference – TMS/DEVS Symp. Theory Model. Simulation,
TMS/DEVS, USA, 2016, 2016.

[45] F. Bergero, E. Kofman, Simulation 2011, 87, 113.
[46] M. Bonaventura, G. A. Wainer, R. Castro, Simulation 2013, 89, 4.
[47] K. Al-Zoubi, G. Wainer, J Parallel Distrib Comput 2013, 73, 580.
[48] R. Goldstein, S. Breslav, A. Khan, Simulation 2018, 94, 301.
[49] C. M. Macal, Simulation 2001, 77, 90.
[50] A. J. Collins, D. K. Ball, J. Romberger,MODSIM World 2014, 1.
[51] J. Kuljis, R. J. Paul, C. Chen, Simulation 2001, 77, 141.
[52] S. Dufour-Kowalski, B. Courbaud, P. Dreyfus, C. Meredieu, F. de

Coligny, Ann For Sci 2012, 69, 221.
[53] C. Zoellner, M. A. Al-Mamun, Y. Grohn, P. Jackson, R. Worobo, Appl.

Environ. Microbiol. 2018, 84, e00813.
[54] https://pro.arcgis.com/en/pro-app/2.8/help/analysis/

geoprocessing/modelbuilder/what-is-modelbuilder-.htm (accessed:
April 2022).

[55] QGIS, https://docs.qgis.org/3.16/en/docs/user_manual/
processing/modeler.html (accessed: April 2022).

[56] Natural Resources Canada, Geospatial Standards and Operational
Policies, 2019, https://www.nrcan.gc.ca/earth-sciences/geomatics/
canadas-spatial-data-infrastructure/8902 (accessed: July 2022).

[57] Open Geospatial Consortium, OGC Standards | OGC 2022, https:
//www.ogc.org/docs/is (accessed: February 2022).

[58] ESRI, ArcGIS Web AppBuilder 2022, https://developers.arcgis.com/
web-appbuilder/guide/xt-welcome.htm (accessed: July 2022).

[59] O. Balci, Simulation 2012, 88, 870.
[60] R. G. Sargent, Proc. 2010 Winter Simul. Conf., IEEE, USA, 2010, pp.

166–183.
[61] P. Benjamin, M. Patki, R. Mayer, in Proc. 2006 Winter Simul. Conf.,

IEEE, 2006, pp. 1151–1159.
[62] M. L. Loper, Modeling and Simulation in the Systems Engineering Life

Cycle, Springer London, London, 2015.
[63] J. Byrne, P. Byrne, D. Carvalho e Ferreira, A. M. Ivers, in Proc. Winter

Simul. Conf., IEEE, USA, 2014, 2014, pp. 2738–2749.
[64] B. St-Aubin, J. Menard, G. Wainer, in Proc. 2021 Annu. Model. Simul.

Conf. ANNSIM, IEEE, USA, 2021, 2021, pp. 1–12.
[65] Full metadata documentation: https://staubibr-stable.github.io/

doc-meta.
[66] B. St-Aubin, G. Wainer, in IEEE/ACM 26th Int. Symp. Distrib. Simul.

Real Time Appl, IEEE, Alès, France 2022, pp. 160–163.
[67] A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen, M. Weiss,

A. J. Forster, Electron. Commer. Res. 2009, 9, 269.
[68] Use case scenario video: https://youtu.be/VAtNItlEVh0.

Adv. Theory Simul. 2024, 2400144 2400144 (20 of 20) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202400144, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com
https://pro.arcgis.com/en/pro-app/2.8/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
https://pro.arcgis.com/en/pro-app/2.8/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
https://docs.qgis.org/3.16/en/docs/user_manual/processing/modeler.html
https://docs.qgis.org/3.16/en/docs/user_manual/processing/modeler.html
https://www.nrcan.gc.ca/earth-sciences/geomatics/canadas-spatial-data-infrastructure/8902
https://www.nrcan.gc.ca/earth-sciences/geomatics/canadas-spatial-data-infrastructure/8902
https://www.ogc.org/docs/is
https://www.ogc.org/docs/is
https://developers.arcgis.com/web-appbuilder/guide/xt-welcome.htm
https://developers.arcgis.com/web-appbuilder/guide/xt-welcome.htm
https://staubibr-stable.github.io/doc-meta
https://staubibr-stable.github.io/doc-meta
https://youtu.be/VAtNItlEVh0

