
Special Issue Article

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2024, Vol. 100(12) 1297–1318

� The Author(s) 2024

DOI: 10.1177/00375497241291871

journals.sagepub.com/home/sim

100 volumes of SIMULATION—
20 years of DEVS research

Gabriel Wainer and Sasisekhar Govind

Abstract
The growth of real-time embedded applications has surged in recent years, marked by both an increase in the number
and complexity of tasks performed across various industries. Modeling and simulation (M&S) has been used for enhan-
cing product quality while reducing lifecycle costs, primarily through improved testability and maintainability of real-time
embedded systems applications, as M&S-based design approach allows for early hardware functionality testing, fosters
collaboration between hardware and software teams, and shortens the product development cycle. The discrete-event
system specification (DEVS) framework has been used for developing such discrete-event M&S systems. This article
starts by highlighting the various DEVS publications in our journal over the past 20 years, reflecting the evolving land-
scape of simulation methodologies, which we organized into four categories: theory, methodology, tools, and applica-
tions. This curated selection reflects the diversity of topics and the evolution of scholarship within the field, encouraging
further exploration and innovation. We conclude with recent research in the field, including our own research in real-
time embedded systems development using DEVS software for modeling, simulation, and real-time execution of models.
This paves the way for future discussions in this important field of research.

Keywords
Applications in science and engineering, embedded systems, BR, theory and methodology, DEVS methodology, discrete
systems

1. Introduction

In recent years, the growth of real-time (RT) embedded

applications has been remarkable, with not only an

increase in the number of systems but in the complexity of

tasks they perform. Recent advancements in computing

technology have enabled the automation of a wide range

of tasks in RT applications to levels once thought impossi-

ble, resulting in more complex and sophisticated applica-

tions across multiple industries.1 However, this complexity

poses significant challenges in the development of RT

software, where critical considerations such as functional-

ity, predictability, and reliability must be addressed to

meet operational requirements. RT software often strug-

gles to scale-up effectively, with extensive testing efforts

that do not guarantee a bug-free product, which can lead to

increased risks of failures in deployed applications.

Modeling and Simulation (M&S) techniques have shown

to be valuable tools for analyzing such scenarios, provid-

ing methods to create products of higher quality while

simultaneously reducing lifecycle costs. This is primarily

achieved through enhanced testability and maintainability

brought about by M&S approaches. Using an M&S-based

design approach facilitates early testing of hardware func-

tionality, fostering collaboration between hardware and

software teams, reducing the product development cycle

and time-to-market period as well as improving the overall

efficiency of the development process. This early-stage

verification capability allows identifying and addressing

potential issues and accelerates innovation by allowing for

iterative refinements and optimizations throughout the

design phase. M&S methodologies also allow stakeholders

to visualize the model before implementation, fostering

collaboration and identifying potential flaws early, thus

reducing costly errors in later stages.

In particular, the discrete-event system specification

(DEVS), introduced by Zeigler,2 provides a robust

Advanced Real-Time Simulation Laboratory, Department of Systems and

Computer Engineering, Carleton University, Ottawa, ON, Canada

Corresponding author:

Gabriel Wainer, Advanced Real-Time Simulation Laboratory, Department

of Systems and Computer Engineering, Carleton University, Ottawa, ON

K1S5B6, Canada.

Email: gwainer@sce.carleton.ca

https://doi.org/10.1177/00375497241291871
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497241291871&domain=pdf&date_stamp=2024-12-02


theoretical framework for the development of discrete-

event M&S systems. Since its inception, DEVS has shown

itself to be useful, versatile, and effective in many applica-

tions across different fields. Based on systems theory,

DEVS provides a formal method for building complex

systems, offering a structured way to create hierarchical

modular models that encourage reuse and improve system

design modularity.

One of the key strengths of the DEVS formalism is its

ability to define hierarchical and modular models, which

allows users to construct complex systems in a structured

manner. To this end, there are two types of DEVS formal

models: behavioral (or atomic) and structural (or coupled).

Atomic models encapsulate the behavior of a single sys-

tem component using basic elements such as its inputs, the

outputs that it generates, and state variables. Atomic mod-

els include functions to compute the next states and out-

puts based on the received inputs and the existing state.

On the contrary, coupled models consist of multiple inter-

connected submodels (atomic or coupled). This allows for

the representation of complex interactions and dependen-

cies among multiple system components. DEVS supports

a layered approach to system design, where individual

components can be developed, tested, and validated inde-

pendently before being integrated into a more extensive

system configuration.

Although DEVS is a theoretical M&S technique, it has

been applied in practical settings ranging from logistics

and manufacturing to telecommunications and health care.

Its adaptability to various domains showcases its capabil-

ity to model dynamic, event-driven systems accurately.

The hierarchical structure of DEVS models also promotes

reusability, as components can be repurposed across dif-

ferent simulations and modified without impacting the

entire system.

Another significant advantage is the separation of

model definition, implementation, simulation, and experi-

mentation through independent formal specifications and

execution frameworks. This clear separation allows

researchers and engineers to focus on the conceptual

design of models independently from the technical speci-

fics of execution, enhancing clarity and organization in the

development workflow. Furthermore, DEVS supports

models across different platforms, which means that mod-

els can be implemented in various environments (desktop,

RT, parallel, embedded, distributed) without the loss of

fidelity in its behavior. This is due to the fact that the

DEVS simulation algorithm has been formally verified,

ensuring its correctness. This rigorous foundation makes it

ideal for safety-critical systems and large engineering

projects.

Another important advantage of DEVS, presented by

Vangheluwe in 2000,3 is introduced in Figure 1. DEVS

can be seen as a unifying framework that serves as a com-

mon denominator for other modeling methodologies and

formalisms. Figure 1 shows a formalism transformation

graph, showcasing how DEVS can effectively bridge vari-

ous modeling paradigms. This is advantageous in the

Figure 1. Formalism transformation graph. Adapted from Vangheluwe.3

1298 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



context of complex embedded systems where components

may be described through different modeling techniques,

such as Petri nets, Statecharts, or agent-based models. The

ability to compose these models allows for a multi-

paradigm representation of the system, capturing interac-

tions across multiple models and formalisms.

In this Volume No. 100 of SIMULATION, we want to

highlight the extensive growth of DEVS publications in

our journal. The DEVS contributions to this area have been

substantial and varied, reflecting the evolving landscape of

simulation methodologies. In the past 20 years alone, our

journal has served as a prominent platform for a variety of

research in the field of DEVS M&S. This period has seen

numerous innovative applications, theoretical advance-

ments, and practical implementations of the DEVS formal-

ism that we discuss here. From foundational studies that

enhance its theoretical underpinnings to applied research

showcasing its utility in diverse fields, the journal has pub-

lished numerous articles that collectively enrich our under-

standing of DEVS.

As we celebrate this 100th volume, this paper focuses

on the significant contributions of researchers and practi-

tioners who have dedicated their efforts to advancing

DEVS methodologies. Their work not only reflects the

rigorous academic inquiry associated with the formalism

but also showcases its relevance in addressing complex

real-world challenges through effective simulation

techniques.

The investigation into DEVS research published in

the journal SIMULATION has produced valuable

insights, which we organized into four categories: the-

ory, methodology, tools, and applications. The focus was

particularly on the advances in DEVS through the publi-

cations in the journal, with a focus on its application in

RT computing. A thorough review was conducted of all

SIMULATION publications since 2000, resulting in the

selection of 134 articles. From this list, 129 were chosen

as representative of significant and relevant research in

simulation. This curated selection aims to reflect the

diversity of topics and the evolution of research within

the field. The selection process sought to consider a

broad range of studies and is not meant to diminish any

works not included. The goal is to understand recent

DEVS simulation research, encouraging further explora-

tion and innovation in the field.

The paper is structured as follows: Section 2 explores

recent theoretical advancements in DEVS, emphasizing

research articles published in this journal. Section 3 delves

into the latest developments in DEVS methodology. In

Section 4, we review various articles that focus on DEVS

simulation tools, while Section 5 showcases a wide range

of applications within the domain of DEVS. Finally,

Section 6 highlights current trends in DEVS M&S, includ-

ing insights from our own research on DEVS applications

for RT embedded systems.

2. Advances in DEVS theory

In the last 20 years, SIMULATION has witnessed numer-

ous advances in the field of DEVS theory. These develop-

ments improved our theoretical understanding of the field.

A historical perspective of the origins of DEVS theory

was presented by Ören and Zeigler.4 This work reviewed

the historical development and contributions of A. Wayne

Wymore to the field of system-theoretic foundations in

M&S. The paper highlights the establishment of the first

systems engineering department and formulating the gen-

eral system theory, particularly through the development

of the DEVS formalism, and its significant impact on

advancing the field. In this section, we introduce some of

these significant advancements published in

SIMULATION. Some of the published articles advanced

the DEVS formalism itself, as research has enhanced the

foundational aspects of DEVS, ranging from continuous to

hybrid DEVS models that integrate continuous- and

discrete-event simulations (DESs).

For instance, the paper ‘‘Generalized Discrete Event

Simulation of Bond Graph’’5 presented a GDEVS

approach for bond graph modeling, integrating DEVS with

bond graphs to represent physical systems’ energy and

power interactions (including mechanical, electrical, and

hydraulic domains, with varied case studies that demon-

strate the method’s applicability in modeling complex

engineering systems). Similarly, Barros6 defined heteroge-

neous flow system specification (HFSS), which models

combined discrete and continuous systems with dynamic

structure. HFSS enables the modular and hierarchical con-

struction of models, accommodating multirate sampling

systems and numerical solutions for differential equations

with discontinuities. Similarly, Barros7 Barros proposed a

formal representation for hybrid mobile components

HFSS, extending HFSS theory by Barros6 to include

mobile components, which are essential for representing

systems where entities move between different models. In

terms of variable structure models in DEVS which was

first introduced, Barros7,8 introduces a method for incor-

porating variable structures in DEVS-based component

M&S. The approach allows for dynamic changes in model

structure during simulation, accommodating the evolving

nature of complex systems.9 Applications include adaptive

control systems and reconfigurable manufacturing sys-

tems, highlighting the benefits of dynamic structure mod-

eling for flexibility and scalability.

Barros research also included hybrid hierarchical mod-

els in pHYFLOW,10 a modular approach to the process

interaction worldview, supporting the definition of hybrid

hierarchical models. The formalism is demonstrated

through examples such as a DC–DC converter model,

showcasing its ability to handle hybrid systems with com-

plex interactions and varying topologies. The paper

‘‘Modular representation of asynchronous geometric

Wainer and Govind 1299



integrators with support for dynamic topology’’11 presents

a framework for the modular representation of asynchro-

nous geometric integrators, enabling support for dynamic

topology in system models. This approach leverages the

DEVS formalism to handle asynchronous interactions and

topological changes, enhancing the ability to model and

simulate complex systems with varying structures.

Applications in multi-agent systems and adaptive control

show this method’s effectiveness in maintaining accuracy

and efficiency.

Various research has focused on the use of DEVS for

model verification. For instance, Saadawi and Wainer12

presented a new extension to the DEVS formalism, called

the Rational Time-Advance DEVS (RTA-DEVS), which

permits modeling the behavior of RT systems that can be

modeled by DEVS, and can be formally verified with stan-

dard model-checking algorithms and tools. We introduce a

procedure to create timed automata (TA) models that are

behaviorally equivalent to the original RTA-DEVS models

that enable the use of the available TA tools and theories

for formal model checking. Similarly, the research by

Cicirelli et al.13 explored the use of time stream Petri nets

(TSPNs) for modeling, analyzing, and enacting workflow

processes specified by TSPNs. The authors show that the

functional and temporal properties of a TSPN model can

be checked using exhaustive verification or a DEVS-based

simulation tool and the enactment rests on a decentralized

enactment engine based on the service-oriented computing

paradigm, which enables execution of workflow processes

where the coordinated activities may involve cross-

boundary organizations. In the work by Fonseca i Casas,14

an algorithm and a simulation infrastructure are defined to

transform a simulation model represented using the DEVS

formalism to the standard language (SDL). The algorithm

can be viewed as a mechanism to represent DEVS models

graphically. The timed sequential machine (TSM) formal-

ism, defined by Giambiasi,15 presents a formalism less

expressive than the DEVS or TA, but is well adapted to

intermediate abstraction levels in the design or analysis

processes of discrete systems. The authors also propose

methods for the minimization of completely specified

finite-state TSMs and for the simplification of incomple-

tely specified finite-state TSMs. Imprecise-DEVS (I-

DEVS), introduced by Mello and Wainer,16 proposed a

new method to integrate schedulability analysis to address

the design and execution challenges of embedded RT sys-

tems under transient overloading conditions. The inte-

grated framework allows for formal verification of high-

level models and their execution as RT tasks, incorporat-

ing worst-case execution time (WCET) and worst response

time (WRT) analysis. The proposed method demonstrates

improved predictability and feasibility in scheduling, espe-

cially under overload conditions, ensuring that critical

tasks meet their deadlines while optional tasks are handled

based on system capacity.

Other research focused on the theory of DEVS simula-

tion; for instance, Hong and Kim17 defined a specification

of multi-resolution modeling space (MRMS) for multi-

resolution system simulation. The proposed specification

is based on concepts of decoupling multi-resolution model-

ing (MRM) and multi-resolution simulation. This MRMS

specification supports MRM in two parts: resolution con-

version for dynamically changing simulation model struc-

tures and resolution matching interfaces between events in

different resolutions. Goldstein et al.18 introduced a multi-

scale approach to representing simulated time, addressing

the challenges of time granularity in simulations. By inte-

grating different time scales within a single simulation

framework, the method allows for the accurate modeling

of processes occurring at varying temporal resolutions.

This approach is particularly useful in scenarios such as

biological systems and network simulations, where events

occur at multiple, interconnected time scales.

Some research extended DEVS theory to include other

kinds of formal specifications; for instance, Castro et al.19

defined an extension to DEVS based on the use of the

probability spaces theory, called stochastic DEVS

(STDEVS). STDEVS provides a formal framework for

M&S of general non-deterministic discrete systems. The

main theoretical properties of the STDEVS framework are

treated, including a new definition of legitimacy of models

in the stochastic context and a proof of STDEVS closure

under coupling. Similarly, in the work by Hu and

Zeigler,20 an activity-based framework was introduced;

this new extension to DEVS links information and energy

using a quantization-based approach for modeling infor-

mation processing and defines weighted activity to model

the energy consumption of information processing. The

authors provide a formal description of this framework

that enables one to study the interaction between informa-

tion and energy in energy-aware information processing.

Castro and Kofman21 generalize the concept of activity of

continuous-time signals by defining the concept of activity

of order n, providing a method to estimate the number of

sections of polynomials up to order n which are needed to

represent any given signal with a certain accuracy, and

deriving a theoretical lower bound for the number of steps

performed by quantization-based integration algorithms in

the simulation of ordinary differential equations (ODEs).

A fundamental advance in theory of DEVS was pre-

sented by E. Kofman and his team at the Universidad

National de Rosario; this is discussed by Castro et al.22 a

comprehensive review of the evolution and current state of

quantized state systems (QSSs) methods for the DES of

continuous-time systems. It discusses the theoretical foun-

dations, key developments, and practical applications of

QSS, highlighting its advantages in terms of computational

efficiency and accuracy. The review covers various QSS

techniques, including first-order and higher-order methods,

and their application in engineering and scientific

1300 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



simulations. Kofman23 introduced a quantization-based

approach to simulate differential algebraic equation (DAE)

systems, leveraging the DEVS formalism for efficient

numerical integration. The quantization method discretizes

the continuous state space, reducing computational com-

plexity and improving simulation performance. The article

shows various applications in electrical circuit simulation

and mechanical systems to demonstrate the effectiveness

of the approach. Similarly, Migoni et al.24 present new

classes of numerical ODE solvers based on QSS. The

authors present a first-order accurate QSS-based stiff sys-

tem solver, which exhibits properties that make it a poten-

tially attractive alternative to the classical numerical ODE

solvers. A first-order accurate QSS-based solver designed

for solving marginally stable systems, called the centered

QSS (CQSS), is also outlined. Another advance, presented

by Bergero and Kofman,25 is the introduction of vectorial

DEVS (VECDEVS), an extension of the DEVS formalism

for large-scale system modeling and parallel simulation.

The extension includes an algorithm for automatically par-

titioning VECDEVS models into submodels for efficient

parallel execution. The research by Fernández and

Kofman26 defined a standalone implementation of the

QSS integration methods that improve computation times

significantly, achieving performance gains of over an order

of magnitude compared with their implementation of a

DEVS engine. Also, Bergero et al.27 discuss the effects of

replacing time discretization with state quantization in the

simulation of a one-dimensional advection–diffusion–reac-

tion (ADR) equation. By discretizing the ADR equation in

space using a regular grid, the study compares the perfor-

mance of traditional time discretization algorithms with

QSS methods. The analysis shows that the second-order

linearly implicit QSS method significantly outperforms

classical algorithms (Dormand-Prince, Radau, and

Differential/Algebraic System Solver), achieving more than

an order of magnitude improvement in computational effi-

ciency. Also, Di Pietro et al.28 present enhancements to line-

arly implicit QSS methods, focusing on improving the

stability and efficiency of simulations involving stiff ODEs.

The proposed methods adaptively adjust quantization inter-

vals to handle stiffness more effectively, resulting in better

numerical stability and reduced computational costs.

3. Advances in DEVS methodology

The theoretical advances in DEVS led to further advances

in the methodological aspects of DEVS, with researchers

developing sophisticated algorithms and methods that

facilitate the simulation of complex models. This includes

a variety of new methods and algorithms that improved

performance, enabling simulations that were previously

computationally prohibitive. In this section, we will

explore these advances in greater detail, shedding light on

their implications for the future of DEVS methodology

through publications in SIMULATION.

This section explores several methodological advance-

ments in simulation research, organizing them into differ-

ent categories based on their approaches. We first discuss

DEVS methodologies in the context of parallel computing,

which utilizes multiple processors to execute simulations

simultaneously, to improve computational performance.

We then discuss DEVS application in distributed systems,

where simulations are normally executed across geogra-

phically dispersed machines. Another area is the integra-

tion of various modeling paradigms (for instance, discrete-

event, agent-based, and continuous models) to create more

advanced representations of complex systems.

Furthermore, we discuss how DEVS methodologies con-

tribute to improved verification and validation processes

in simulation software, ensuring that the models represent

the intended phenomena and provide credible results. We

also discuss spatial modeling, which emphasizes the inte-

gration of spatial and geographical factors into simula-

tions. The section concludes a discussion on RT

simulations and their application in developing systems

that require tight timing constraints. These advancements

show the nature of DEVS simulation research and the need

of employing diverse methodologies to build complex

real-world applications.

Parallel discrete-event simulation (PDES) has allowed

executing DESs in parallel environment. In this sense,

research by Liu and Wainer29 shows how to conduct paral-

lel execution of DEVS and Cell-DEVS models using a time

warp synchronization layer. Existing simulation algorithms

for parallel DEVS and parallel Cell-DEVS models were

redesigned for parallel optimistic simulation, simplifying

message analysis with wall clock time slice and enhancing

state-saving with a two-level user controller state-saving

mechanism, which demonstrated significant speedups. An

extension of this work, introduced by Liu and Wainer,30

introduced multicore acceleration of DEVS, using data and

event parallelism through multi-grained parallelism. The

idea is to use innovations such as SIMD intrinsics, double-

buffered DMA, and SPE-based synchronization to acceler-

ate both memory-bound and compute-bound computational

kernels in parallel DEVS simulations.

Other important results in this field include the results

presented in31 which presented a generic model partition-

ing algorithm to decompose multiscale models into parti-

tion blocks using cost modeling and analysis. This

approach leverages DEVS to translate domain-specific

information into homogeneous cost metrics, enabling opti-

mal partitioning and improved parallelism. Similarly,

Cardoen et al.32 introduced DEVS-Ex-Machina (dxex), a

parallel DEVS simulator that implements multiple syn-

chronization protocols. The simulator enhances simulation

efficiency by enabling the user to switch protocols at run-

time. The authors show that the modularity of dxex does

Wainer and Govind 1301



not impede performance and that it can achieve significant

speedups under the right conditions. Similarly, the

research by Adegoke et al.33 proposes a conceptual frame-

work to standardize the development of DEVS parallel

simulations by defining a taxonomy of key concepts and

formal definitions to enable symbolic reasoning and auto-

mated code synthesis. The authors offer a systematic

approach to constructing DEVS simulators, enhancing the

interoperability, scalability, and performance of distributed

simulation (DS) systems.

The scaled RT synchronization (SRTS) for parallel

DEVS simulation of continuous and hybrid systems intro-

duced by Bergero et al.34 involves splitting models into

submodels that are concurrently simulated on different

processors, with local synchronization to a scaled version

of physical time. SRTS ensures bounded numerical errors

despite synchronization imperfections. Furthermore, the

adaptive-SRTS adjusts the time-scaling parameter dynami-

cally based on system workload, improving simulation

efficiency. The challenges and risks posed by common

errors associated with parallel simulations are discussed by

Nutaro and Ozmen.35 The authors propose two approaches

to combat the risks to reproducible parallel simulations,

including the Model of Computation approach36 and

DEVS, which is highlighted as a robust approach to M&S

that separates model concerns from simulation algorithms.

DS became popular in the 21st century due to several

key factors, including advances in networking, cloud com-

puting, virtualization, distributed software, and middle-

ware, which improved DSs by providing scalable

resources without significant hardware investment. In

addition, the development of standards, such as the High-

Level Architecture (HLA), enhanced interoperability and

collaboration among researchers. Some of these aspects

were summarized by Tolk37 a comprehensive review of

30 years of simulation interoperability research. This arti-

cle revisited the levels of conceptual interoperability

model (LCIM) and discussed various methods such as

message-oriented methods and common object models.

The DEVS formalism is highlighted for its role in ensuring

that models from different systems align conceptually,

promoting accurate and reliable simulations across diverse

domains. Other efforts use ontologies for discrete-event

M&S,38 discussing various existing taxonomies and prod-

ucts and an ontology with four subclasses. The concept of

DEVS was used to standardize and formalize the represen-

tation of simulation models under a process-oriented

subclass.

The research team at Arizona Center for Integrative

Modeling and Simulation (ACIMS) was a key player in

this area. For instance, in the work by Nutaro and

Sarjoughian,39 ACIMS researchers presented a framework

for DS based on system-theoretic and logical-process con-

cepts. It outlines a three-part worldview comprising mod-

eling formalisms, abstract simulators, and computational

environments, and defines a unified notion of causality for

parallel simulations. Later, research introduced by Wutzler

and Sarjoughian40 introduced a shared abstract model

approach to enable interoperability among DEVS-based

simulations across different programming languages and

engines. The approach supports efficient, scalable simula-

tions and flexible integration of independently developed

models, making it suitable for heterogeneous simulation

environments on parallel and distributed platforms.

Many other researchers contributed in this field. For

instance, Zacharewicz et al.41 showed a workflow environ-

ment that leverages DEVS and GDEVS formalisms for

DS. The authors proposed a method to transform

Workflow specifications into GDEVS models using XML

and detailed the development of a HLA-compliant distrib-

uted environment. Likewise, Boukerche et al.42 introduced

a formal approach using DEVS to design a RT run-time

infrastructure (RTI) for large-scale DSs. DEVS was used

to model and predict the performance of RTI designs,

facilitating early identification of potential issues and opti-

mizing system performance. DEVS provided a structured,

reusable framework that enhances the efficiency and accu-

racy of RTI system design.

Technological advances, such as the HLA standard and

web services, provided further advances in the field. Mittal

et al.43 presented DEVS/SOA, a service-oriented architec-

ture framework for DEVS-based M&S. DEVS ensured

consistent model execution across different platforms, sup-

porting net-centric operations and interoperability in DS

environments. Similarly, Wang et al.44 showed a survey of

service-oriented simulation frameworks. DEVS showed its

pivotal role, providing a structured methodology to trans-

late high-level specifications into executable models that

can be tested and validated in a net-centric environment.

We introduced the first RESTful interoperability middle-

ware, which was extended by Wang and Wainer45 lever-

aging cloud computing and simulation as a service

(SimaaS) for scalable and collaborative development.

More recently, researchers in the work by Sun et al.46

introduced the Universal Service-Oriented Software

(USOS) system, which was designed to enhance the devel-

opment and integration of service-oriented software,

emphasizing flexibility, reusability, and efficiency. DEVS

is utilized in the context of model debugging and flexible

model-driven applications, ensuring accurate simulation

and efficient model management.

Foundational research in the field was introduced by

Mosterman and Vangheluwe47 where they introduced the

concept of Computer Automated Multi-Paradigm

Modeling (CAMPaM). This domain-independent frame-

work for multi-paradigm modeling encompasses multi-

abstraction, multi-formalism, and meta-modeling. It high-

lights the central role of model transformations through

graph grammar to automate model abstraction and refine-

ment. Illustrated with a power window system example,

1302 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



CAMPaM demonstrates how leveraging different models

and simulation techniques facilitates comprehensive design

and analysis across various development stages. Further

research in this field, presented by Hardebolle and

Boulanger,48 discussed multi-paradigm modeling, empha-

sizing the integration of various modeling techniques to

address complex system behaviors. The DEVS formalism

is used to manage discrete-event dynamics within these

multi-paradigm frameworks, ensuring a structured

approach to modeling system interactions and transforma-

tions. More recently, research by Denil et al.49 constructed

a multi-paradigm DEVS simulation model for AUTOSAR-

based electronic control units. DEVS formalism was used

to support the concurrent simulation of control, plant, and

environment models, aiding in the assessment of design

choices and ensuring system behavior and performance in

automotive applications.

Other research focuses on multi-models and multi-

paradigm modeling; for instance, in the work by Risco-

Martı́n et al.,50 eUDEVS, combined executable UML

(eUML) with DEVS to provide rigorous simulation

semantics, enabling precise and verifiable execution of

eUML models within a DEVS-based simulation frame-

work. In the work by Gianni et al.,51 SimArch defined a

layered architecture designed to simplify the development

of DS by converting local simulation systems into DS sys-

tems. The authors demonstrate the effectiveness of

SimArch through a reference model, showing how it sig-

nificantly reduces the development effort compared with

traditional DS environments. Likewise, in the work by

Schmidt et al.,52 a methodology for fidelity evaluation of

complex, modular simulation models was introduced; par-

ticularly for cyber-physical systems (CPSs). It employs the

system entity structure (SES) ontology to describe a fam-

ily of models and their configurations, enabling automated

test case generation and execution. The approach inte-

grates with MATLAB/Simulink, facilitating a structured

and automated fidelity evaluation process, which is impor-

tant for ensuring the reliability and accuracy of CPS simu-

lations. Similarly, Santucci et al.53 focused on enhancing

the SES framework to incorporate abstraction hierarchies

and time granularity into DEVS M&S. The SES frame-

work represents system elements and their relationships

hierarchically, and it was extended to manage different

levels of detail and temporal granularity in complex sys-

tems. DEVS and Modelica were combined describing

agent-based models by Sanz and Urquia.54 Modelica, a

robust modeling language for continuous-time systems,

lacks support for agent-based models (ABM). The authors

proposed using DEVS to formally describe agent beha-

viors within Modelica, enabling the combination of ABM

with Modelica’s continuous-time modeling capabilities.

Other agent-based simulation multi-paradigm methods

were introduced; for instance, Kim and Kim55 defined a

formal framework for modeling and simulating mobile

agent systems using the mobile DEVS. A modified

abstract simulation algorithm was introduced, and the

AgentSim environment was built.

The team led by Lin Uhrmacher at the University of

Rostock has used multi-paradigm modeling for biological

models; for instance, Peng et al.56 presented a methodol-

ogy for reusing experiment specifications by successive

composition. The research shows a new methodology for

developing complex models by composing existing ones,

using a domain-specific language for simulation experi-

ments called Simulation Experiment Specification via a

Scala Layer (SESSL) for automated experiment genera-

tion. This is demonstrated through the Wnt/b-catenin sig-

naling pathway, to validate composed models’ semantic

correctness. DEVS is used implicitly for structured model

development and validation.

As stated earlier, DEVS includes advanced facilities for

verification and validation of simulation software and

state-based software. For instance, Yilmaz57 addressed the

challenge of verifying collaborative behavior in

component-based DEVS models. It presents formalized

local consistency conditions and decidable inference

mechanisms to ensure compositional consistency and safe

refinement of DEVS models. The proposed method

includes interaction policies and mediator consistency

analysis to verify that component interactions comply with

collaboration constraints. The practical utility of these

techniques is demonstrated through a semaphore-based

process synchronization case study. Yacoub et al.58 intro-

duced a formalism combining DEVS and PROMELA for

the modeling, verification, and validation of complex soft-

ware systems like video games. This hybrid approach

leverages the strengths of both model-checking and DES

to ensure accurate and efficient verification and validation

processes. DEVS provides a formal representation of the

system’s behavior, enabling the combination of qualitative

and quantitative analysis, enhancing the robustness and

correctness of the software design. Similarly, Samuel

et al.59 showed a framework for the full verification pro-

cess of complex systems that supports the graphical mod-

eling of both the system of interest and the requirements

to be checked, using the High-Level Language for

Systems Specification. DEVS formalism is utilized as the

semantic domain for simulation, enabling the framework

to integrate system behavior modeling and formal verifica-

tion using tools like UPPAAL.

An important methodological advance included the def-

inition of spatial models. In this sense, the research by

Wainer and Giambiasi60 introduced the Cell-DEVS form-

alism for spatial modeling. Cell-DEVS combines cellular

automata with the DEVS framework to address limitations

in traditional cellular automata approaches. This metho-

dology improves precision and performance, allowing for

the simulation of complex environmental systems, such as

pollution spread, fire dynamics, and watershed formation,

Wainer and Govind 1303



in various simulation environments (single-user, RT, dis-

tributed/parallel). By leveraging DEVS, Cell-DEVS facili-

tates model construction, execution, and analysis, enabling

subject matter experts without extensive programming

knowledge to study and analyze the phenomena in their

respective domains. The article described the implementa-

tion and performance of Cell-DEVS models, which

includes explicit complex timing behaviors by introducing

concepts of transport and inertial delays. The research also

includes a hierarchical simulator and a flattened one,

which obtained a speedup of 2 to 7 times in execution

time. Sun and Hu61 investigated the performance of

dynamic structure DEVS for large-scale cellular space

models, focusing on models that can dynamically change

their structure and couplings. The study demonstrates that

we can enhance simulation efficiency by concentrating on

active models.

DEVS methodology has shown itself to be a versatile

framework for RT computing, CPS, RT co-simulation, and

hardware–software co-design. DEVS showed how to effec-

tively handle complexity, enhance system interoperability,

and streamline the design process in these areas. DEVS

provides a structured approach for modeling systems that

require strict timing adherence, and it includes an efficient

specification of event-driven behaviors, as well as support-

ing synchronization and adequate semantic support for

modeling. This helps engineers analyze performance and

test strategies before real-world deployment. DEVS facili-

tates the simultaneous interaction of multiple models, aid-

ing comprehensive analysis across different subsystems

and improving overall system design. In this area, numer-

ous research has been presented in SIMULATION.

For instance, the research by Song and Kim62 showed

the use of RT DEVS to analyze a discrete-event control

system, focusing on untimed controller design and safety

analysis with weak synchronization. The proposed reach-

ability analysis algorithm (timed behavior analysis) uses

vector time and clock matrices to manage the infinite state

space, although it has high space complexity. DEVS

allowed unified modeling, analysis, performance evalua-

tion, and virtual prototyping for controller design and

implementation. Similarly, Sarjoughian et al.63 presented a

co-design methodology using the DEVS/DOC formalism

for distributed mission training systems. The study uses

the formalism to characterize the system architecture and

predict scalability and performance under different config-

urations. In the work by Cao64 a co-simulation of multi-

resolution models used the multi-resolution (MR)-agent-

DEVS specification within an HLA framework. This

framework proposes the structure and formal description

of MR-agent-DEVS federate models, emphasizing the

communication mechanism and simulation process.

Various M&S tools for CPS were integrated through

the MECSYCO middleware,65 which allows the co-

simulation of different pre-existing and heterogeneous

tools by using a DEVS-based wrapping strategy. DEVS

wrappers are developed (using the Functional Mock-up

Interface) for continuous tools, leveraging the DEVS &

DESs hybrid formalism and QSS solvers. This approach

ensures the rigorous integration of heterogeneous M&S

tools, facilitating comprehensive and synchronized co-

simulation of CPS.

The team led by Rodrigo Castro at the Universidad de

Buenos Aires developed techniques for the modeling of

multi-paradigm CPS under a unified M&S platform, lever-

aging DEVS for the combined specification of QSS solvers

and stochastic queueing networks. For instance, a hybrid

supervisory controller was developed for unmanned aerial

vehicles (UAVs) with sensitive physical-computational

couplings.66 The controller dynamically balances the use

of processing resources in a setting where computational

(discrete) and physical (continuous) dynamics compete

with each other, while operating on an unpredictable envi-

ronment. The approach is presented as a general end-to-

end DEVS-based design blueprint for a broader class of

CPS.

DEVSys presented by Kapos et al.67 introduces a

framework that bridges SysML and DEVS to automate the

generation of executable simulation code. This framework

leverages the model-driven architecture approach, integrat-

ing a DEVS SysML profile to enrich SysML models with

simulation-specific properties. It also includes a DEVS

meta-model and utilizes the QVT (Query/View/

Transformation) language to transform SysML models

into DEVS models. The Sarjoughian and Gholami68

extended the DEVS formalism by incorporating actions

specified with RT constraints, defined as time windows,

which are to be executed within hard RT deadlines. The

models are simulated using an abstract simulator protocol

that ensures actions are completed within their designated

time windows under constrained computational resources.

In summary, this section discussed the numerous

advancements in DEVS methodologies, reflecting a

dynamic and growing field that continues to adapt to the

challenges presented by complex systems. These advance-

ments improve the usability and efficacy of DEVS for aca-

demic and industry professionals.

Numerous methodological advances have been focused

on DEVS simulation algorithms. For instance, Lee et al. 69

describe the design and development of the DEVS/Generic

Data Distribution Management (GDDM) environment, a

layered simulation framework that supports data distribu-

tion management using space-based quantization schemes.

DEVS/GDDM aims to reduce data communication in DSs,

enhancing performance and scalability. The paper provides

empirical results using a ballistic missiles simulation to

demonstrate the effectiveness of the DEVS/GDDM envi-

ronment in reducing local computation demands and

achieving favorable communication data reduction. The

DEVS BUS research presented by Kim et al.70 introduced

1304 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



a heterogeneous simulation framework that uses the DEVS

BUS to integrate various simulation models and tools. The

framework facilitates the interoperability and coordination

of different modeling paradigms, enabling comprehensive

system simulations. The DEVS BUS acts as a middleware,

supporting seamless communication and data exchange

between diverse simulation components.

Other research focused on formally defining DEVS-

based simulators.71 The approach involves converting

existing factory models, modeled by employing a job-

resource relation network (JR-net), into DEVS models to

take advantage of DEVS modularity and hierarchical mod-

eling capabilities. The converted DEVS models are used

to simulate factory operations, providing detailed insights

into production processes and system performance. As

well, Nutaro et al. 72 integrate DEVS with continuous sys-

tem simulation techniques to manage time effectively in

hybrid simulations. The split modeling approach proposes

the creation of a simulator where the individual sub-

components of a model are simulated using the most

appropriate algorithms: numerical integration methods for

continuous components and discrete-event algorithms

(DEVS + Hybrid Input-Output Automata (HIOA) + event

scheduling) for discrete components.

4. DEVS simulation tools

The formal definitions of DEVS enable the straightforward

establishment of DEVS simulation environments. Given

that the algorithms are rigorously defined and verified,

developing software implementations of these algorithms

is easy, resulting in a variety of DEVS tools available.

Some of these tools have been previously discussed in the

SIMULATION journal and will be detailed further in this

section. Such advanced DEVS tools enhance the M&S

process, including advanced features that facilitate more

accurate and efficient simulations. In addition, these tools

provide user-friendly platforms for practitioners, promot-

ing the practical application of DEVS methodologies. A

critical consideration in the design of simulation software

is the performance of these tools. To this end, it is essential

to not only support modeling but also evaluate the perfor-

mance of DEVS simulation models. This evaluation

includes identifying bottlenecks to optimize efficiency,

ensuring that the tools can operate effectively in various

applications.

For instance, Gonzalez et al.73 presented a novel simu-

lation tool designed specifically for the modeling and con-

trol of distributed systems. The tool can handle complex

interactions and RT constraints, making it suitable for

many applications in distributed computing. DEVS is uti-

lized to provide a robust framework that simplifies the

simulation of distributed systems and enhances model

accuracy. Research by Cho et al.74 discuss the RTDEVS/

CORBA environment, which integrates DEVS with

CORBA middleware to support the simulation-based

design of distributed RT systems. The framework ensures

model continuity from design to execution, enhancing

flexibility and reducing the time and cost of testing. It pro-

vides a comprehensive solution for managing software

complexity and consistency in large-scale distributed sys-

tems. Later, Lee et al.75 explored the use of DEVS and

HLA. The integration enhances interoperability and reusa-

bility of models, supporting the development of efficient

models by allowing comprehensive testing and analysis.

This was later expanded by Lee et al.76 with an environ-

ment that integrates various transportation models to

improve traffic management and control, facilitating the

development of advanced transportation solutions. The

hierarchical approach allows for detailed and scalable

modeling of transportation networks. DEVS is used to

structure the hierarchical models, to simulate complex

transportation systems, to and improve the efficiency of

traffic management solutions.

Some of the general-purpose tools for DEVS modeling

include, for instance, those introduced in Wainer et al.77

where various tools developed for the graphical specifica-

tion and visualization of DEVS models were analyzed.

These tools are designed to enhance user interaction with

DEVS models by providing intuitive interfaces and

advanced visualization capabilities. They aim to make

DEVS modeling more accessible and comprehensible,

especially for complex systems. This was further expanded

by Bonaventura et al.78 where CD++ Builder defined a

graphical modeling tool to simplify the construction and

simulation of DEVS models. CD++ Builder uses Eclipse

and provides a user-friendly interface for creating and test-

ing DEVS models, making the modeling process more

intuitive and efficient.

The PowerDEVS environment, presented by Kofman’s

team by Bergero and Kofman,79 is a software tool devel-

oped for the modeling and RT simulation of hybrid sys-

tems. PowerDEVS integrates DEVS with continuous

system simulation using QSS methods to efficiently han-

dle hybrid models. This tool supports the simulation of

systems with both continuous and discrete components,

enhancing the analysis of complex dynamic systems. QSS

was also used by Nutaro80 which discussed an extension

to the OpenModelica compiler that allows the use of

Modelica models within DESs (specifically, aDEVS, by

James Nutaro). The extension aims to enhance the versati-

lity and applicability of Modelica models by integrating

them into DEVS-based simulation environments. This

integration supports more comprehensive and detailed sys-

tem simulations.

Research by Stolpe et al.81 introduced a logic-based

event controller designed for means-end reasoning within

simulation environments. The controller supports complex

decision-making processes, enabling simulations to handle

Wainer and Govind 1305



intricate event sequences and dependencies more effec-

tively. DEVS provides the framework for the event con-

troller, allowing for the integration of logical reasoning

capabilities within DEVS-based simulations and enhan-

cing their ability to manage complex scenarios.

The team led by Hans Vangheluwe introduced by Van

Tendeloo and Vangheluwe82 in which they use computa-

tional resource usage models, or ‘‘activity’’ models, to

enhance the performance of DEVS simulators. By aug-

menting DEVS models with domain-specific information,

the approach optimizes data structure usage, load balan-

cing, and model allocation. The improvements are vali-

dated using the PythonPDEVS simulator, showing

significant performance gains. PythonPDEVS was also

used by Van Mierlo et al.83 which presents a visual model-

ing, simulation, and debugging environment. The authors

deconstruct and reconstruct the PythonPDEVS simulator

using the Statecharts formalism, which allows the integra-

tion of debugging features such as breakpoints, manual

state manipulation, and reversible debugging. This envi-

ronment combines traditional code debugging concepts

with simulation-specific operations to provide a robust

tool for model debugging. The approach facilitates interac-

tive, visual debugging and enhances the usability and

effectiveness of DEVS simulations.

Visualization aspects are crucial in most simulation

tools, as discussed by Maleki et al.84 by a team lead by

Azam Khan and Rhys Goldstein at Autodesk Research.

The research discusses the design of visual interfaces for

DEVS modeling, aimed at making DEVS more accessible

to end-user programmers. The interfaces were designed to

simplify the modeling process and enhance user experi-

ence, enabling users with varying levels of expertise to

construct and manipulate DEVS models effectively.

Similarly, this team developed DesignDEVS,85 a simula-

tion environment tailored for practical applications of

DEVS modeling. The research focuses on various features

and enhancements made to improve usability and simula-

tion efficiency, emphasizing practical aspects such as

model management and execution.

This non-comprehensive list shows the variety of

DEVS tools and their publication in our journal. In fact,

Van Tendeloo and Vangheluwe86 provided a comprehen-

sive evaluation of various DEVS simulation tools, asses-

sing their performance, usability, and feature sets. The

evaluation aims to guide users in selecting the appropriate

tool for their specific needs, highlighting the strengths and

limitations of each tool. This research made use of an

important analysis tool, presented by Wainer et al.87 the

DEVStone benchmark. DEVStone is a synthetic bench-

mark we defined with the purpose of having a standard

mechanism to evaluate the performance of DEVS-based

simulators. DEVStone generates a suite of models with

varied structures and behaviors to automate performance

evaluations. DEVStone was also used by Risco-Martı́n

et al.88 where it was used to evaluate DEVS-based simula-

tors’ performance. The authors introduce new equations to

compute the number of triggered events and propose a

new model, HOmem, which has similar computational

requirements as a complex benchmark but is easier to

implement and analyze. The study compares five DEVS

simulators—DEVSJAVA, CD++, aDEVS, xDEVS, and

PyPDEVS—on two hardware platforms, analyzing execu-

tion time and memory usage. The results highlight signifi-

cant differences in performance, with aDEVS and xDEVS

generally performing better in terms of memory usage and

execution time, respectively.

As we can see, there is a broad array of DEVS tools

available, each of which emphasizes the framework’s abil-

ities across various applications. Each tool possesses

unique features tailored to specific needs, such as advanced

modeling capabilities, user-friendly interfaces for non-pro-

grammers, and performance analysis tools for optimizing

simulations. Overall, this diversity reflects ongoing inno-

vation in the field, which allows users to choose the right

tools for their work when DEVS methodology is needed.

5. Advances in DEVS applications

The exploration of DEVS has expanded into diverse

domains such as health care, transportation, and many oth-

ers, which we will introduce in this section. The interdisci-

plinary nature of DEVS encourages collaboration among

researchers from different fields, enhancing the methodol-

ogies used and fosters the development of new models,

driving further advancements in DEVS theory. For

instance, DEVS has been used for planning and designing

complex rail infrastructures,89 up to simulating networks

of spiking neurons.90 This section will include examples

of applications in a wide range of areas of interest.

For instance, in the work by Xie and Verbraeck,91 a

particle filter-based data assimilation framework for DESs

using DEVS was presented. This method addresses state

retrieval and variable dimension problems with an interpo-

lation operation and particle filters. Validated through a

gold mine system case study, the framework improves

accuracy and robustness in estimating system states from

RT data. A follow-up research in this area by Huang

et al.92 examined the impact of three critical experimental

conditions on particle filter-based data assimilation in

discrete-event systems. By analyzing time intervals

between iterations, particle numbers, and measurement

error levels using an M/M/1 queuing system, the study

found that shorter intervals and optimal particle counts

significantly improve estimation accuracy.

DEVS has been used in numerous projects in the field

of development of artificial systems. For instance, Ghosh

and Giambiasi93 introduced an innovative approach to

modeling and simulating mixed-signal electronic designs

1306 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



using nVHDL. By integrating DEVS with nVHDL, the

methodology unifies the temporal resolutions of analog

and discrete subsystems, facilitating comprehensive simu-

lations of mixed-signal circuits. This approach enhances

the accuracy and efficiency of electronic design simula-

tions, addressing the challenges posed by the differing nat-

ures of analog and digital components. Likewise, Hamri

et al.94 highlight the advantages of using the Min–Max

DEVS formalism for modeling and simulating digital cir-

cuits. The Min–Max DEVS formalism effectively handles

the inherent uncertainty in hardware delays by defining

delays as temporal windows (intervals), allowing a more

realistic and flexible representation of timing behavior

compared with fixed or probabilistic delays used in tradi-

tional hardware description languages. Research intro-

duced by Sarjoughian et al.95 defined a DEVS-based

simulation environment for MIPS32 processor designs.

The simulator models single-cycle, multi-cycle, and pipe-

line processors at the register-transfer level using DEVS

formalism, providing detailed visualization, performance

data collection, and animation of processor operations. It

enhances the educational experience by allowing students

to explore and understand processor architectures through

interactive simulations, supporting various levels of

abstraction and reusable component-based models. In the

work by Migoni et al.,96 DEVS-based algorithms using

QSS were used to simulate switched mode power

Supplies. The study demonstrated that linearly implicit

QSS models significantly improve simulation speed and

accuracy compared with traditional solvers. The method

efficiently handles stiffness and discontinuities, and it can

achieve 3–200 times faster simulations with enhanced

accuracy. DEVS has been used to study network perfor-

mance,97 by modeling a wireless sensor networks, includ-

ing routing management, energy consumption, and CPU

activity, as well as CPSs;98 here, SimConnect and

SimTalk facilitate the coordination of multiple simulators,

preserving event causality among different models of com-

putation and abstraction levels.

Some of the artificial systems defined had a specific

domain in the area of defense and emergency planning.

For instance, Pang and Mathew99 proposed a reconfigur-

able discrete-event control framework for network-centric

warfare. Using DEVS, the study extends an existing frame-

work with matrix decomposition to enable reliable ad hoc

reconfiguration of tasks and resources during multiple

simultaneous missions. The environment allows different

platforms to join and leave the network seamlessly, enhan-

cing the flexibility and responsiveness of command and

control structures. Extensive simulations involving the

Singapore Armed Forces demonstrate the effectiveness of

the proposed system in dynamically managing mission

tasks and resource allocation without causing operational

blockages. In this field, research by Kim et al.100 presented

a framework for battle experiments that integrates mission-

level and engagement-level models. The study demon-

strated that combining these heterogeneous models pro-

vides new insights into military doctrines, particularly in

naval air defense scenarios. The interoperation of models

reveals optimal decision-making timings for command and

control that are not obtainable from standalone models,

highlighting the benefits of simulation interoperation for

comprehensive doctrine analysis. The paper in the work by

Seo et al.101 presented a DEVS-based modeling method

for engagement-level military simulations, focusing on the

structural and behavioral delineation of combat entities.

The study categorizes combat entities into platform and

weapon models and details their core activities using hier-

archical and compositional DEVS models. This approach

improves model reusability and provides comprehensive

insights into engagement scenarios, validated through anti-

submarine warfare simulations.

Various models have been used to deal with the current

global warming crisis, and various DEVS models exist to

study energy and environmental applications. For instance,

Fard and Sarjoughian102 presented a DEVS-based interac-

tion model for simulating water and energy interactions.

Utilizing the Knowledge Interchange Broker approach, the

framework integrates WEAP and LEAP models through a

RESTful architecture, enhancing flexibility and scalability.

Research by Risco-Martı́n et al.103 presented DEVS-

BLOOM, a novel framework designed for the RT monitor-

ing and management of harmful algal and cyanobacterial

blooms. Utilizing the DEVS formalism, the framework

integrates Internet of Things (IoT) and digital twin technol-

ogies to support high-performance hazard detection and

response. The study demonstrated the ability to provide

early warning systems, predict harmful formations, and

optimize the deployment of resources like sensors and

unmanned surface vehicles. Byon et al.104 highlighted the

stochastic nature of wind turbine loading and the complex-

ities of maintenance decision-making. It compared sched-

uled maintenance and condition-based maintenance

(CBM) strategies, finding that CBM significantly improves

wind power generation by reducing turbine failure rates.

The simulation results showed that CBM offers more effi-

cient maintenance planning and better economic benefits.

A further investigation presented by Pérez et al.105 showed

that DEVS-based modeling provides significant insights

into optimizing maintenance schedules, improving wind

farm performance, and reducing operational costs by effec-

tively managing component deterioration and failure.

Similarly, a new extension on the previous research, pre-

sented by Pérez,106 developed a simulation-driven online

scheduling algorithm to optimize the maintenance and

operation of wind farm systems.

Various research has delved into the realm of social sci-

ence, and social simulation models have been defined.

Research presented by Bouanan et al.107 showed an archi-

tecture using DEVS for simulating the dissemination of

Wainer and Govind 1307



information within multi-layer social networks. The paper

presents a set of models to represent individual behaviors

and their interactions within a social network, validated

through a military scenario. Likewise, Khalil and

Wainer108 presented a comprehensive framework for mod-

eling, simulating, and predicting indoor carbon dioxide

(CO2) dispersion using Cell-DEVS and deep learning tech-

niques. The framework combined the strengths of Cell-

DEVS for detailed spatial-temporal modeling with the pre-

dictive power of deep learning to forecast CO2 levels under

various ventilation scenarios. The approach was validated

through simulations that demonstrate its effectiveness in

predicting CO2 concentrations, offering valuable insights

for improving indoor air quality in classrooms.

Various works in the area of medical simulation have

been presented. Some of these articles focus on the logistic

aspects of patients and clinics. Pérez et al.109 discuss

nuclear medicine patient service management, including

scheduling patients, radiopharmaceuticals, and other

resources, considering patient preferences and resource

constraints. The model, validated using historical data

from a real clinic, provides insights into optimizing patient

throughput, resource utilization, and patient satisfaction.

Various scheduling algorithms were tested, demonstrating

the model’s effectiveness in improving health care service

management. DEVS was used to derive a generic simula-

tion model for nuclear medicine patient service manage-

ment that takes both patient and management perspectives.

In the work by Alvarado et al.,110 a DEVS-based frame-

work is presented for modeling and simulating the opera-

tions of oncology clinics to improve patient flow and

resource utilization. The model captures various processes

such as patient registration, consultation, treatment, and

follow-up, enabling the analysis of clinic performance

under different scenarios. The simulation results provide

insights into optimizing scheduling and resource allocation

to reduce patient wait times and enhance service quality.

Djitog et al.111 introduce a multi-paradigm modeling

framework combining DEVS, agent-based, and system

dynamics approaches to simulate health care systems. The

framework supports holistic analysis by integrating differ-

ent modeling paradigms to capture various aspects of

health care delivery, such as patient behavior, resource

allocation, and system dynamics. This approach is demon-

strated through case studies on hospital emergency depart-

ments and chronic disease management. Likewise, paper

proposed by Traoré et al.112 proposes a M&S framework

for value-based health care systems using DEVS and

agent-based modeling. The framework aims to optimize

health care delivery by evaluating different value-based

care strategies and their impact on patient outcomes and

system costs. The simulation results offer insights into

improving care coordination, resource allocation, and

patient satisfaction in value-based health care models.

Various models built in DEVS dealt with the spread of

diseases. Özmen et al.113 investigated how different mod-

eling choices and assumptions impact the outcomes of

compartmental epidemiological models, particularly in the

context of the 1918 influenza pandemic. By comparing

differential equation-based models and agent-based mod-

els, the authors highlighted significant differences in dis-

ease spread dynamics based on factors such as model

trajectories, temporal resolution, and the nature of interac-

tions between agents. The study emphasizes the impor-

tance of documenting initial modeling assumptions to

ensure the reliability and reproducibility of epidemiologi-

cal models. DEVS is used to create event-based ABMs. In

particular, the COVID-19 pandemic emphasized the need

for such models, and in Davidson et al.,114 we proposed a

geographical Cell-DEVS approach to model and simulate

the spatial spread of infectious diseases. The methodology

incorporates geographical information and mobility pat-

terns to create a realistic representation of disease

dynamics. The model was validated through simulations

of COVID-19 spread in urban areas, highlighting the

importance of geographic factors in disease transmission.

Similarly, in the work by Ayadi et al.,115 a hybrid

approach combining DEVS simulation with ontological

modeling was defined to analyze the hierarchical spread

and control of severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2). The integrated framework enabled

detailed modeling of virus transmission dynamics and the

evaluation of intervention strategies. Case studies demon-

strate the effectiveness of the approach in simulating the

impact of social distancing and vaccination on infection

rates.

Other biomedical simulations are focused on low-level

phenomena. Watanabe et al.,116 present a model of repro-

ducible disease using the systems biology markup lan-

guage (SBML) to ensure consistency and transparency in

biomedical simulations. The paper emphasizes the need

for collaborative efforts to improve model reproducibility

and reliability in the biomedical research community.

While the primary focus is on SBML, the paper acknowl-

edges the role of DEVS in modeling discrete-event sys-

tems and its potential integration with SBML to enhance

the reproducibility and scalability of disease models.

Ozmen et al.117 defined a tissue-scale agent-based model

to simulate the premalignant progression of Barrett’s eso-

phagus toward esophageal adenocarcinoma. The model

uses DEVS to handle the discrete-event nature of cellular

changes and proliferation within the esophageal tissue.

The simulation provides insights into the spatial dynamics

of dysplasia and cancer development, aiding in the optimi-

zation of screening protocols.

Our team developed a few spatial models using the

Cell-DEVS formalism; Wainer and Fernández118 provided

an in-depth exploration of the application of Cell-DEVS

1308 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



for modeling and simulating complex cellular automata.

We showed how Cell-DEVS enhances the modeling pro-

cess by introducing timing delays and simplifying the defi-

nition of complex timing behaviors. The paper highlighted

the use of the CD++ tool to create executable models of

cellular automata, illustrating the methodology with exam-

ples such as a three-state two-color Turing machine and a

self-reproducing cellular automaton. Similarly, Wainer and

Giambiasi119 showed how to use Cell-DEVS to build asyn-

chronous cell spaces with explicit timing delays. The paper

focused on modeling the electrical behavior of heart tissue

and traditionally analyzed using differential equations and

cellular automata. The integration of GDEVS with Cell-

DEVS provided precise results at a fraction of the compu-

tational cost, offering a more efficient and scalable

approach for complex system analysis. Also, Wainer120

explored the use of Cell-DEVS for environmental model-

ing. The paper highlights the application of Cell-DEVS in

modeling different environmental scenarios, demonstrating

the advantages of this formalism in simplifying the para-

digm shift from discrete-time to discrete-event-based mod-

eling. Kazi and Wainer121 introduced an integrated

framework for modeling and simulating ecosystems using

the Cell-DEVS formalism, coupled with web-based simu-

lation and geographic information systems (GIS). This

framework automates data extraction from GIS, employs

the CD++ cellular modeling tool for simulation, and inte-

grates results with Google Earth for visualization.

Two particular types of spatial models have drawn

attraction from the DEVS community. One of them is

crowd modeling and pedestrian flow. A method that

enables pedestrians to make movement decisions based on

significant changes in their spatial position rather than at

fixed time intervals was defined by Qiu and Hu.122 The

research shows that this approach improves simulation

efficiency. By applying this approach, the study demon-

strates more efficient simulations, particularly for hetero-

geneous pedestrian crowds, compared with conventional

time-based models. The results show that the spatial

activity-based model can effectively capture crowd

dynamics while reducing computational costs. The paper

in the work by Bae et al.123 employed a multi-agent sys-

tem to model individual behaviors and interactions, con-

sidering factors such as road networks, shelters, and

transportation modes. The results highlight the importance

of coordinated evacuation plans, the impact of different

evacuation strategies on traffic congestion, and the critical

role of RT information dissemination in improving eva-

cuation efficiency and reducing casualties. The authors

make use of the large-scale, distributed, extensible, and

flexible (LDEF) formalism, an extension of DEVS that

supports incremental and flexible modeling of multi-agent

systems. Al-Habashna and Wainer124 introduced a method

for M&S of pedestrian behavior using Cell-DEVS formal-

ism. It presents various examples of entity-based crowd

models in one, two, and three dimensions, extending to

complex scenarios such as multi-level building evacua-

tions. The models are validated through simulations that

demonstrate their efficiency and accuracy in predicting

pedestrian movement patterns, particularly in emergency

evacuation scenarios. Similarly, Jafer and Lawler125 built

a framework for modeling and simulating emergency

crowd evacuation scenarios using the Cell-DEVS formal-

ism. The authors developed 12 egress models representing

various human behaviors and authority activities during

emergencies. The framework aims to provide a risk-free,

economical method for practicing evacuation strategies,

training first responders, and aiding decision-making in

RT emergency situations.

The second type of spatial model that achieved popu-

larity is those related to the M&S of forest fires, an impor-

tant application these days. Ntaimo et al.,126 modeled

forest fire spread and suppression using a spatial DEVS

approach, modeling Rothermel’s stationary model. The

model leverages DEVSJAVA to simulate dynamic condi-

tions such as changing weather patterns and firefighting

efforts. The simulation helps to predict forest fire beha-

vior, enabling tactical decision-making for fire control and

suppression. Lately, Muzy et al.127 built and validated a

DES model for fire spread using DEVS and Cell-DEVS.

The research addresses the complexity of accurately mod-

eling fire behavior, and the computational challenges

involved in RT simulation. DEVS and Cell-DEVS were

utilized to create modular, hierarchical models that support

complex timing behaviors and efficient simulation. The

study involved comparing simulation results with con-

trolled laboratory experiments, demonstrating the effec-

tiveness of these formalisms in improving model accuracy

and computational efficiency for fire spread analysis. The

paper in the work by Ntaimo et al.128 focuses on the defi-

nition of DEVS-FIRE, a DEVS-based integrated simula-

tion model for predicting wildfire spread and containment.

The model uses a cellular space approach combined with

agent-based models for fire suppression, incorporating real

spatial data for fuels, terrain, and weather. The dynamic

structure implementation of DEVS-FIRE improves simu-

lation performance and allows for RT decision support in

wildfire management. Preliminary experiments validate

the model’s effectiveness in simulating wildfire behavior

using high-resolution GIS data. This was expanded by Hu

et al.129 where a cellular space model for fire spread and

agent-based models for fire suppression were presented.

The study introduces a new ignition event scheduling

method, which significantly improved simulation perfor-

mance compared with the original method. The model is

validated using real and artificially generated data, demon-

strating its utility and efficiency in wildfire simulation and

suppression planning. In the work by Filippi et al.,130 a

new method, formalism, and software for the simulation

of interface dynamics were defined. The method (called

Wainer and Govind 1309



Vector-DEVS) focuses on front-tracking without splitting

the space into discrete nodes, allowing high-resolution

simulations on large scales. By coupling DEVS with a

physical fire rate of spread model, the study achieves effi-

cient simulation of fire dynamics, demonstrating the meth-

od’s capability to perform large-scale simulations with

high resolution on standard personal computers in a short

time. Gu131 introduced a novel method for data assimila-

tion in wildfire spread simulations using a localized recur-

sive spatial-temporal state quantification (LRSSQ)

approach. The LRSSQ method improves the state infer-

ence of wildfire simulations by measuring particle conver-

gence at runtime and adaptively adjusting the particle

filter to enhance accuracy and computational efficiency.

The LRSSQ method leverages the DEVS-FIRE model to

assimilate RT observation data, enhancing the accuracy

and performance of wildfire simulations.

The section emphasized the wide-ranging applications

of DEVS across various domains, ranging from patient to

networks and hardware design, including social models

and urban planning. This shows the interdisciplinary

nature of DEVS and the potential collaboration among

researchers.

6. Current trends

Besides more traditional applications, DEVS is now

widely applied across several technological domains, nota-

bly in machine learning, the IoT, and digital twins. As dis-

cussed in the following paragraphs, DEVS also offers a

structured framework for modeling complex systems,

enabling to create detailed simulations, generating syn-

thetic data vital for enhancing predictive analytics and

decision-making using machine learning. This framework

allows for the exploration of various scenarios without the

limitations of real-world data collection, producing custo-

mized data sets that improve algorithm performance and

support thorough model validation. In the case of IoT,

DEVS can be used to model the interactions between

numerous connected devices, identifying performance bot-

tlenecks, which is crucial for optimizing network architec-

ture and functionality. DEVS has also been used to

develop digital twins creating dynamic models for various

scenarios, facilitating predictive maintenance and

improved decision-making.

In particular, Choi and Kim132 showed how to identify

an unknown discrete-event system by recognizing charac-

teristic functions of a DEVS model. The identification pro-

cess consists of two major steps: behavior learning using a

compound recurrent neural network (CRNN) and extrac-

tion of a DEVS model from the trained network. The

CRNN network is specifically designed to learn the input/

output behavior of an unknown DES and then extract the

DEVS model that accurately represents this behavior. The

method is validated through experiments with different

types of DESs, demonstrating the effectiveness of this

model extraction approach. Kim et al.133 identified the

limitations of data M&S modeling approaches and pro-

posed a complementary cooperation modeling method that

combines their strengths. The authors apply this method to

a real-world greenhouse, using data modeling for the con-

troller and simulation modeling for the plant and actuator.

The results demonstrate improved control performance

and stability, highlighting the effectiveness of the com-

bined modeling approach in managing complex systems

with big data. Kang et al.134 proposed a method to reduce

simulation time for analyzing combat effectiveness in

network-centric warfare. The authors define a discrete-

event dynamic surrogate model for communication sys-

tems, integrated with a command and control model. This

model uses machine learning to identify unknown func-

tions and reflects communication effects accurately while

significantly reducing simulation execution time. DEVS is

used to describe the dynamic surrogate model, ensuring

the discrete-event nature of the simulation.

A formal framework for enhancing Digital Twin tech-

nology with self-updating capabilities, presented by

Diakité and Traoré,135 was used to organize various infer-

ence capabilities into a structured model and validated

through a smart mobility system case study. The frame-

work extends the DEVS formalism, adding the concepts

of phase, semantic domain, activity. Niyonkuru and

Wainer136 presented the concept of Digital Quadruplets,

which extends the Digital Twin model to include a formal

discrete-event model (Digital Triplet) and a physical

model (Digital Quadruplet) for RT embedded systems.

This approach leverages the DEVS formalism to ensure

model continuity and consistency across simulation, visua-

lization, and RT execution. The paper focuses on using a

DEVS kernel running on bare-metal hardware, avoiding

the need for an operating system, thereby improving per-

formance and predictability in embedded system design

and implementation. In the next sections, we will discuss

the current advances in our research related to this field:

the use of DEVS for embedded RT applications.

6.1. Using RT cadmium for IoT and sensor fusion

As DEVS continues to showcase its versatility across

emerging technological domains, its relevance within the

IoT and embedded systems grows significantly. The mod-

ularity and hierarchical nature of the DEVS formalism

make it especially adept at modeling the intricate interac-

tions that characterize these systems, where physical pro-

cesses and computational control are closely intertwined.

A prime example of this can be seen in the definition of a

methodology for Discrete-Event Modeling of Embedded

Systems,137 an M&S-based approach for software devel-

opment in embedded RT systems. This expands upon

1310 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



DEVS to establish a cohesive modeling framework that

spans the entire development cycle of embedded

systems—from simulation through to RT implementation.

Concerning IoT, the integration of the open-source

IBM-developed Node-RED138 into IoT projects is a natu-

ral fit due to its ability to manage and orchestrate commu-

nication between diverse devices and services, making it

an indispensable tool for creating complex, interconnected

systems. Node-RED’s capability to streamline the devel-

opment process by abstracting the underlying complexity

of IoT protocols and device communication allows develo-

pers to focus on building functional workflows without

getting lost in the technical details. This ease of integration

is crucial in the IoT landscape, where systems often

involve multiple hardware platforms, sensors, and actua-

tors that need to work together seamlessly. By leveraging

Node-RED, developers can quickly prototype, test, and

deploy IoT applications, ensuring that data flow efficiently

between all components of the system.

Building on this foundation, the integration of DEVS

with the Node-RED platform marks a leap forward in the

field of IoT and embedded systems. By merging the mod-

ularity and timing precision of DEVS with the flexibility

and user-friendliness of Node-RED, we have developed a

method that enables interaction between real-world

devices and DEVS-based simulations. This integration

accelerates the development and deployment of IoT appli-

cations, creating a dynamic environment where DEVS

models can engage with physical devices through Node-

RED’s intuitive interface. As a result, the applicability of

DEVS in real-world scenarios is greatly enhanced. In

addition, the project introduced a distributed data acquisi-

tion (DAQ) and processing system built on DEVS, specifi-

cally designed to simulate and evaluate system behavior

under demanding conditions, thereby ensuring the sys-

tem’s robustness and reliability.

Figure 2 shows a block diagram of the software archi-

tecture proposed, which consists of three primary compo-

nents: DAQ units, a network, and data processing (DP)

units. The DAQ section includes multiple sensors, a

DAQ_Packetizer, and a Publisher, all collaborating to

gather data from the physical environment and publish it

to the network. The network model facilitates the seamless

transfer of data between the DAQ units and the DP units.

Meanwhile, the DP unit—comprising Subscribers,

DataParsers, Fusion blocks, a DP_Packetizer, and an addi-

tional Publisher—handles the processing of data collected

by the various DAQ units. This organized structure

ensures efficient data flow and processing throughout the

system.

One of the widely adopted protocols in IoT is called

Message Queueing Telemetry Transport (MQTT) proto-

col.139 The development of the DEVS-MQTT framework

was defined to enhance the capabilities of DEVS in IoT

environments. By building on the foundational principles

of DEVS, this integration facilitates efficient communica-

tion among the distributed components of a CPS. The

framework plays a critical role in managing data flow and

synchronization across a network of devices, which sub-

stantially improves the scalability of DEVS-based systems.

The focus of this initiative was on ensuring secure and

efficient data transmission within distributed networks,

Figure 2. System Architecture Diagram.

Wainer and Govind 1311



enabling DEVS models to operate effectively in RT IoT

applications with minimal latency and overhead.

The distributed architecture defined in this research

effectively segregates DAQ and processing across multiple

microcontroller units (MCUs), utilizing the DEVS formal-

ism to ensure synchronized operation. By distributing the

responsibilities of DAQ and processing, the system can

manage larger volumes of data and implement more com-

plex processing algorithms without overloading any single

component. This approach not only enhances the scalabil-

ity and flexibility of the system but also allows for more

efficient utilization of computational resources, ensuring

that each component can operate independently while

remaining aligned with the overarching system objectives.

While the integration of DEVS with Node-RED and

MQTT brought significant benefits in terms of flexibility

and scalability, the project also faced challenges, particu-

larly in managing the synchronization and timing of dis-

tributed components. These challenges highlighted the

need for further enhancements, leading to the development

of an improved RT-clock mechanism, as explored by

Govind et al.140 In addition, the need for a robust commu-

nication protocol was addressed by Govind and Wainer141

which introduced enhancements to the DEVS-based com-

munication framework. Finally, the issues related to han-

dling interrupts in RT simulations were tackled by Govind

and Wainer142 which proposed a novel approach to man-

aging asynchronous events within the DEVS framework.

These advancements collectively contributed to the cre-

ation of a more resilient and reliable DEVS-based system

for RT IoT applications.

6.2. Managing clocks for RT applications

RT systems depend on precise timing mechanisms, mak-

ing the selection of an appropriate clock crucial for opti-

mal performance. Typically, simulations of DEVS models

are conducted in virtual or simulation time,143 where

events are processed based on their scheduled timestamps

rather than on real (wall-clock) time. This approach is

highly effective for simulating complex systems, as it

prioritizes the analysis of model performance over strict

adherence to RT. However, when deploying DEVS mod-

els in RT platforms such as embedded systems or IoT

environments, it becomes essential that the system aligns

with RT requirements.

The RT-clock in cadmium enables RT synchronization

between simulation events and hardware interactions, con-

trasting with the simulation clock that skips over time

intervals. In DEVS, the wait time is defined by the ta(s) of

the system’s models. To help embedded systems with lim-

ited resources meet strict deadlines, the RT-clock features

a ‘‘scheduler slip’’ mechanism that allows for slight

adjustments in timing constraints. By specifying a value,

modelers can accommodate hardware limitations without

compromising system performance. This RT-clock uses

standard C++ libraries, like chrono, to manage timing con-

straints across different platforms.140 However, variations

in library implementations have caused performance

inconsistencies between simulation and execution. While

effective for rapid testing, the generic RT-clock falls short

in optimizing performance, prompting the development of

platform-specific RT-clocks. The ESP32 was chosen for

its IoT applicability. Previous designs that employed a

hardware abstraction layer (HAL) resulted in performance

degradation and increased binary sizes. To overcome these

challenges, the authors created an improved RT-clock

using the ESP32’s native framework, enhancing overall

performance.

The results by Govind et al.140 show the performance

improvements a platform-specific RT-clock would intro-

duce. It significantly reduces scheduler slip by using dedi-

cated hardware timers, which operate with much finer

granularity than the software-based timers in the HAL

implementation. The new clock mechanism also allows

for more reliable timekeeping and deadline management,

ensuring that the DEVS models remain in sync with the

real-world hardware processes even under load. These

enhancements are particularly valuable in applications like

sensor fusion and RT DP, where timing precision directly

impacts the system’s performance and accuracy.

6.3. Defining communication protocols: DEVS-Inter
Atomic Communication

In distributed IoT systems, reliable and predictable com-

munication protocols are essential for swift responses to

RT stimuli. While working on the DAQ-DP research, we

faced challenges with the erratic performance of the com-

munication protocol, which hindered scalability and

resulted in inconsistent message delivery and synchroniza-

tion issues among devices with varying processing abil-

ities. As more devices were introduced, these problems

worsened, leading to data loss and increased latency.

Understanding the root causes of these issues, particularly

in protocols like MQTT, is complex due to external factors

such as Wi-Fi signal strength. Developing the capability to

model and simulate the communication protocol end-to-

end could help predict system behavior across different

network configurations and facilitate the resolution of

potential issues before deployment.

In this context, DEVS offers a comprehensive frame-

work for modeling and simulating communication proto-

cols by breaking them into modular atomic models that

represent various components of the communication stack.

This approach allows for the isolated testing and optimiza-

tion of individual components and their interactions, tai-

lored to specific system requirements. The DEVS-inter

atomic communication (DEVS-IAC) protocol was

1312 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



developed using this method, enabling detailed simula-

tions of distributed systems like the DAQ-DP.141 This

facilitated analysis of data management during network

congestion and synchronization across geographically dis-

persed devices. The ability to model both normal and

stressed conditions proved crucial for refining the protocol

to meet the demands of RT distributed IoT systems.

We used the Open Systems Interconnection (OSI)

model to create various layers of a communication proto-

col tailored for hard RT distributed systems. While tradi-

tional protocols like Fieldbus and CAN have been

effective,141 the rise of Ethernet as a cost-effective stan-

dard for businesses and educational institutions offers an

opportunity to move away from outdated protocols like

RS485.144 However, since Ethernet was not initially

designed for hard RT communication, modifications to its

protocol stack are necessary. Pedreiras et al.145 examined

strategies to adapt Ethernet by altering its layers, enabling

RT communication among distributed system nodes. By

leveraging the Ethernet stack,141 they developed the

DEVS-IAC protocol, resulting in a reliable communica-

tion solution that meets the demands of IoT applications in

varying network conditions with minimal delay and data

loss.

Using DEVS for simulating a communication protocol

allowed for a detailed comparison between predicted theo-

retical performance and actual real-world performance.

The system was tested under various network conditions,

including additive white Gaussian noise, to replicate real

environmental disruptions. A case study, such as a traffic

light system, was used to evaluate the protocol’s perfor-

mance in both RT and simulation contexts. The findings

showed a significant alignment between DEVS models

and physical implementations, with RT performance

closely matching simulation predictions, even under stress

and noise conditions. This correspondence underscores

DEVS’s effectiveness in modeling complex RT communi-

cation systems, paving the way for more robust and scal-

able IoT and embedded applications.

6.4. Adding interrupt-based external events in
Cadmium

The implementation of the DEVS-IAC protocol on hard-

ware needed specific configurations tailored to the plat-

form for both data transmission and reception. Initially,

the receiver node employed polling to capture incoming

messages. While polling is a common method for monitor-

ing inputs in RT systems, it has notable drawbacks, espe-

cially when handling asynchronous events and high data

throughput. In the case of the DEVS-IAC protocol, the

receiver’s reliance on continuous polling for new data

resulted in increased latency and inefficient resource

usage. This approach required the system to continuously

query the input status, which consumes processing power

even during periods of inactivity. As the system scaled up

and the frequency of events increased, polling became

increasingly impractical, leading to greater delays and

diminished overall system responsiveness. These chal-

lenges underscored the necessity for a more efficient,

event-driven solution to effectively manage RT inputs. To

deal with these limitations, we introduced an interrupt

component (IC) designed to efficiently handle asynchro-

nous inputs.142 Unlike polling, which requires the system

to continuously check for new data, interrupts allow the

system to remain in a passive state until an external event

occurs, at which point it is ‘‘interrupted’’ to process the

input. This significantly reduces computational overhead,

as the system is not burdened by constant checks. The IC

in RT-cadmium effectively bridges the gap between real-

world signals and the DEVS framework by converting

physical inputs into DEVS-compatible messages, ensuring

that external events are captured and processed with opti-

mal efficiency. Polling involves continuous checking of an

input, which can drain system resources and lead to delays,

particularly when dealing with high-frequency inputs.

Interrupts, however, allow the system to only respond

when necessary, minimizing unnecessary processing.

DEVS inherently supports interrupt-driven behavior

through its event-based architecture, making it a natural fit

for integrating interrupts within the simulation environ-

ment. By utilizing interrupts, systems can prioritize critical

tasks without sacrificing performance, especially under

high load conditions, which is essential for maintaining the

responsiveness and timing constraints in RT systems.

As mentioned earlier, DEVS is well-suited for the effi-

cient handling of asynchronous inputs. In RT-cadmium,

the IC was developed to enhance the abstract simulation

algorithm, facilitating the seamless integration of external

interrupts into the simulation framework. The IC functions

by intercepting physical signals, converting them into

DEVS-compatible messages, and forwarding them to the

root coordinator of the DEVS simulation. This ensures that

external events are addressed in RT without disrupting the

internal logic of the DEVS models. The case study on the

video surveillance system illustrates how the IC enabled

prompt responses to environmental stimuli while preser-

ving the integrity of the DEVS formalism throughout both

the simulation and execution phases.

The transition from a polling-based system to an

interrupt-driven approach greatly improved the perfor-

mance of the DEVS-IAC protocol. Initially, polling caused

delays in input detection and processing, particularly under

high system loads, leading to resource wastage and perfor-

mance bottlenecks in distributed systems managing high-

frequency asynchronous events. The integration of the IC

allowed the receiver to respond instantly to incoming sig-

nals, ensuring that DEVS models stayed synchronized with

RT inputs, even under stress. This shift reduced latency,

Wainer and Govind 1313



optimized resource use, and significantly enhanced system

scalability, as demonstrated in a case study involving effi-

cient handling of asynchronous video capture and trans-

mission in a high-frequency environment.

These advancements position DEVS as a critical tool

for the development and optimization of IoT and CPS,

where precise M&S are essential for ensuring system relia-

bility and performance.

7. Conclusion

Modern hard RT distributed systems consist of decen-

tralized, interconnected compute nodes that execute

time-sensitive processes, which can be independent or

interdependent. The performance of these systems is

often hampered by the communication network, mak-

ing the development of a robust, deterministic, and reli-

able communication protocol essential for meeting

deadlines. Furthermore, traditional embedded system

design typically involves independent hardware and

software development, leading to disconnects and

delays. Software teams often await hardware proto-

types, while hardware developers rely on software for

verification, which hinders collaboration and extends

the development timeline. The conventional practice in

the early stages of embedded system design often

involves the independent development of hardware and

software components.

M&S has been widely used to enhance the quality of

RT applications while reducing lifecycle costs, primarily

through improved testability and maintainability, through

early hardware functionality testing, fosters collaboration

between hardware and software. This early verification

helps identify issues and accelerates innovation through

iterative refinements. In particular, the DEVS formalism

has been widely used in this area. DEVS provides a robust

foundation for developing discrete-event M&S systems. It

defines both atomic models, which encapsulate individual

system component behavior, and coupled models, which

represent complex interactions among multiple compo-

nents. DEVS fosters a structured, hierarchical design

approach that promotes component reuse and independent

validation before integration. Its versatility has made it

applicable in diverse fields like logistics, telecommunica-

tions, and health care, showcasing its capability to model

dynamic systems accurately. DEVS also benefits from a

clear separation between model definition and execution,

allowing for conceptual design without technical execu-

tion complexities. Models can be implemented across dif-

ferent platforms, maintaining fidelity and correctness due

to the formally verified DEVS simulation algorithm. This

makes DEVS particularly suitable for safety-critical sys-

tems and large engineering projects. In this paper, we have

shown the significant growth of publications on DEVS in

the SIMULATION journal over the past two decades. Our

journal has become a key platform for a diverse range of

research in DEVS M&S, showcasing its effectiveness in

addressing complex challenges in various fields such as

engineering, computer science, health care, and environ-

mental modeling. We have witnessed a substantial expan-

sion in the theoretical and practical applications of DEVS,

leading to improved modeling capabilities. The numerous

publications in the field and the recent advances in RT

embedded applications using DEVS show the critical role

in advancing simulation methodologies and paving the

way for future exploration. We look forward to seeing

what the next 100 volumes will bring to this area of

research.

Funding

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

ORCID iD

Gabriel Wainer https://orcid.org/0000-0003-3366-9184

References

1. Preuveneers D and Ilie-Zudor E. The intelligent industry of

the future: a survey on emerging trends, research challenges

and opportunities in Industry 4.0. J Ambient Intel Smart

Environ 2017; 9: 287–298.

2. Zeigler BP. Theory of modelling and simulation. New York:

John Wiley & Sons, 1976.

3. Vangheluwe H. DEVS as a common denominator formulti-

formalism hybrid systems modelling. In: IEEE international

symposium on computer-aided control system design

(ed Varga A), Anchorage, AK, 25–27 September 2000,

pp. 129–134. New York: IEEE.

4. Ören TI and Zeigler BP. System theoretic foundations of

modeling and simulation: a historic perspective and the

legacy of A Wayne Wymore. SIMULATION 2012; 88:

1033–1046.

5. Naamane A, Giambiasi N and Damiba A. Generalized dis-

crete event simulation of bond graph. SIMULATION 2001;

77: 4–22.

6. Barros FJ. Modeling and simulation of dynamic structure het-

erogeneous flow systems. SIMULATION 2002; 78: 18–27.

7. Barros FJ. A formal representation of hybrid mobile compo-

nents. SIMULATION 2005; 81: 381–393.

8. Barros FJ. Dynamic structure discrete event system specifi-

cation formalism. Trans Soc Comput Simul 1996; 13: 35–46.

9. Hu X, Hu X, Zeigler BP, et al. Variable structure in DEVS

component-based modeling and simulation. SIMULATION

2005; 81: 91–102.

10. Barros FJ. Defining hybrid hierarchical models in

pHYFLOW. SIMULATION 2024; 100: 643–655.

11. Barros FJ. Modular representation of asynchronous geo-

metric integrators with support for dynamic topology.

SIMULATION 2018; 94: 259–274.

1314 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



12. Saadawi H and Wainer G. Principles of discrete event sys-

tem specification model verification. SIMULATION 2013;

89: 41–67.

13. Cicirelli F, Furfaro A and Nigro L. Using time stream Petri

nets for workflow modelling analysis and enactment.

SIMULATION 2013; 89: 68–86.

14. Fonseca i and Casas P. Transforming classic discrete event

system specification models to specification and description

language. SIMULATION 2015; 91: 249–264.

15. Giambiasi N. An introduction to timed sequential machines.

SIMULATION 2014; 90: 337–352.

16. Mello BA and Wainer G. Integrating I-DEVS and schedul-

ability methods for analyzing real-time systems constraints.

SIMULATION 2022; 98: 1143–1159.

17. Hong S-Y and Kim TG. Specification of multi-resolution

modeling space for multi-resolution system simulation.

SIMULATION 2013; 89: 28–40.

18. Goldstein R, Khan A, Dalle O, et al. Multiscale representa-

tion of simulated time. SIMULATION 2018; 94: 519–558.

19. Castro R, Kofman E and Wainer G. A formal framework for

stochastic discrete event system specification modeling and

simulation. SIMULATION 2010; 86: 587–611.

20. Hu X and Zeigler BP. Linking information and energy—

activity-based energy-aware information processing.

SIMULATION 2013; 89: 435–450.

21. Castro R and Kofman E. Activity of order n in continuous

systems. SIMULATION 2014; 91: 337–348.

22. Castro R, Bergonzi M, Pecker-Marcosig E, et al. Discrete-

event simulation of continuous-time systems: evolution and

state of the art of quantized state system methods.

SIMULATION 2024; 100: 613–638.

23. Kofman E. Quantization-based simulation of differential alge-

braic equation systems. SIMULATION 2003; 79: 363–376.

24. Migoni G, Kofman E and Cellier F. Quantization-based new

integration methods for stiff ordinary differential equations.

SIMULATION 2012; 88: 387–407.

25. Bergero F and Kofman E. A vectorial DEVS extension for

large scale system modeling and parallel simulation.

SIMULATION 2014; 90: 522–546.

26. Fernández J and Kofman E. A stand-alone quantized state

system solver for continuous system simulation.

SIMULATION 2014; 90: 782–799.

27. Bergero F, Fernández J, Kofman E, et al. Time discretization

versus state quantization in the simulation of a one-

dimensional advection–diffusion–reaction equation.

SIMULATION 2016; 92: 47–61.

28. Di Pietro F, Migoni G and Kofman E. Improving linearly

implicit quantized state system methods. SIMULATION

2019; 95: 127–144.

29. Liu Q and Wainer G. Parallel environment for DEVS and

Cell-DEVS Models. SIMULATION 2007; 83: 449–471.

30. Liu Q and Wainer G. Multicore acceleration of discrete

event system specification systems. SIMULATION 2012;

88: 801–831.

31. Park S, Hunt CA and Zeigler BP. Cost-based partitioning for

distributed and parallel simulation of decomposable multiscale

constructive models. SIMULATION 2006; 82: 809–826.

32. Cardoen B, Manhaeve S, Van Tendeloo Y, et al. A PDEVS

simulator supporting multiple synchronization protocols:

implementation and performance analysis. SIMULATION

2018; 94: 281–300.

33. Adegoke A, Togo H and Traoré MK. A unifying framework

for specifying DEVS parallel and distributed simulation

architectures. SIMULATION 2013; 89: 1293–1309.

34. Bergero F, Kofman E and Cellier F. A novel parallelization

technique for DEVS simulation of continuous and hybrid

systems. SIMULATION 2013; 89: 663–683.

35. Nutaro J and Ozmen O. Race conditions and data partition-

ing: risks posed by common errors to reproducible parallel

simulations. SIMULATION 2023; 99: 417–427.

36. Lee EA and John II. Overview of the ptolemy project, 1999,

https://ptolemy.berkeley.edu/index.htm (accessed October

2024).

37. Tolk A. Conceptual alignment for simulation interoperabil-

ity: lessons learned from 30 years of interoperability

research. SIMULATION 2024; 100: 709–726.

38. Silver GA, Miller JA, Hybinette M, et al. DeMO: an ontology

for discrete-event modeling and simulation. SIMULATION

2011; 87: 747–773.

39. Nutaro J and Sarjoughian H. Design of distributed simulation

environments: a unified system-theoretic and logical pro-

cesses approach. SIMULATION 2004; 80: 577–589.

40. Wutzler T and Sarjoughian HS. Interoperability among par-

allel DEVS simulators and models implemented in multiple

programming languages. SIMULATION 2007; 83: 473–490.

41. Zacharewicz G, Frydman C and Giambiasi N. G-DEVS/

HLA environment for distributed simulations of workflows.

SIMULATION 2008; 84: 197–213.

42. Boukerche A, Zhang M and Shadid A. DEVS approach to

real-time RTI design for large-scale distributed simulation

systems. SIMULATION 2008; 84: 231–238.

43. Mittal S, Risco-Martı́n JL and Zeigler BP. DEVS/SOA: a

cross-platform framework for net-centric modeling and

simulation in DEVS unified process. SIMULATION 2009;

85: 419–450.

44. Wang W, Wang W, Zhu Y, et al. Service-oriented simula-

tion framework: an overview and unifying methodology.

SIMULATION 2011; 87: 221–252.

45. Wang S and Wainer G. A simulation as a service methodol-

ogy with application for crowd modeling, simulation and

visualization. SIMULATION 2015; 91: 71–95.

46. Sun F, Zhou J, Guo S, et al. Flexible model specification

and application for service-oriented software. SIMULATION

2019; 95: 363–381.

47. Mosterman PJ and Vangheluwe H. Computer automated

multi-paradigm modeling: an introduction. SIMULATION

2004; 80: 433–450.

48. Hardebolle C and Boulanger F. Exploring multi-paradigm

modeling techniques. SIMULATION 2009; 85: 688–708.

49. Denil J, De Meulenaere P, Demeyer S, et al. DEVS for

AUTOSAR-based system deployment modeling and simula-

tion. SIMULATION 2017; 93: 489–513.

50. Risco-Martı́n JL, de la, Cruz JM, Mittal S, et al. EUDEVS:

executable UML with DEVS theory of modeling and simula-

tion. SIMULATION 2009; 85: 750–777.

51. Gianni D, D’Ambrogio A and Iazeolla G. A software archi-

tecture to ease the development of distributed simulation sys-

tems. SIMULATION 2011; 87: 819–836.

Wainer and Govind 1315



52. Schmidt A, Durak U and Pawletta T. Model-based testing

methodology using system entity structures for MATLAB/

Simulink models. SIMULATION 2016; 92: 729–746.

53. Santucci JF, Capocchi L and Zeigler BP. System entity

structure extension to integrate abstraction hierarchies and

time granularity into DEVS modeling and simulation.

SIMULATION 2016; 92: 747–769.

54. Sanz V and Urquia A. Combining PDEVS and Modelica for

describing agent-based models. SIMULATION 2023; 99:

455–474.

55. Kim J-H and Kim TG. DEVS-based framework for model-

ing/simulation of mobile agent systems. SIMULATION 2001;

76: 345–357.

56. Peng D, Warnke T, Haack F, et al. Reusing simulation

experiment specifications in developing models by succes-

sive composition — a case study of the Wnt/b-catenin sig-

naling pathway. SIMULATION 2017; 93: 659–677.

57. Yilmaz L. Verifying collaborative behavior in component-

based DEVS models. SIMULATION 2004; 80: 399–415.

58. Yacoub A, Hamri MEA and Frydman C. DEv-PROMELA:

modeling, verification, and validation of a video game by

combining model-checking and simulation. SIMULATION

2020; 96: 881–910.

59. Samuel KG, Bouare N-DM, Maı̈ga O, et al. A DEVS-based

pivotal modeling formalism and its verification and valida-

tion framework. SIMULATION 2020; 96: 969–992.

60. Wainer G and Giambiasi N. Application of the cell-DEVS

paradigm for cell spaces modelling and simulation.

SIMULATION 2001; 76: 22–39.

61. Sun Y and Hu X. Performance measurement of dynamic

structure DEVS for large-scale cellular space models.

SIMULATION 2009; 85: 335–351.

62. Song HS and Kim TG. Application of real-time DEVS to

analysis of safety-critical embedded control systems: railroad

crossing control example. SIMULATION 2005; 81: 119–136.

63. Sarjoughian HS, Hild DR, Hu X, et al. Simulation-based

SW/HW architectural design configurations for distributed

mission training systems. SIMULATION 2001; 77: 23–38.

64. Cao Q. Research on co-simulation of multi-resolution models

based on HLA. SIMULATION 2023; 99: 515–535.

65. Camus B, Paris T, Vaubourg J, et al. Co-simulation of cyber-

physical systems using a DEVS wrapping strategy in the

MECSYCO middleware. SIMULATION 2018; 94: 1099–

1127.

66. Pecker-Marcosig E, Giribet JI and Castro R. Hybrid resource

allocation control in cyber-physical systems: a novel

simulation-driven methodology with applications to UAVs.

SIMULATION (Submitted).

67. Kapos G-D, Dalakas V, Nikolaidou M, et al. An integrated

framework for automated simulation of SysML models using

DEVS. SIMULATION 2014; 90: 717–744.

68. Sarjoughian HS and Gholami S. Action-level real-time

DEVS modeling and simulation. SIMULATION 2015; 91:

869–887.

69. Lee JS, Zeigler BP and Venkatesan SM. Design and devel-

opment of data distribution management environment.

SIMULATION 2001; 77: 39–52.

70. Kim YJ, Kim JH and Kim TG. Heterogeneous simulation

framework using DEVS BUS. SIMULATION 2003; 79: 3–18.

71. Choi B-K, Park B-C and Park J-H. A formal model conver-

sion approach to developing a DEVS-based factory simula-

tor. SIMULATION 2003; 79: 440–461.

72. Nutaro J, Kuruganti PT, Protopopescu V, et al. The split sys-

tem approach to managing time in simulations of hybrid sys-

tems having continuous and discrete event components.

SIMULATION 2012; 88: 281–298.

73. Gonzalez FG and Davis WJ. A new simulation tool for the

modeling and control of distributed systems. SIMULATION

2002; 78: 552–567.

74. Cho YK, Hu X and Zeigler BP. The RTDEVS/CORBA envi-

ronment for simulation-based design of distributed real-time

systems. SIMULATION 2003; 79: 197–210.

75. Lee J-K, Lee M-W and Chi S-D. DEVS/HLA-based model-

ing and simulation for intelligent transportation systems.

SIMULATION 2003; 79: 423–439.

76. Lee J-K, Lim Y-H and Chi S-D. Hierarchical modeling and

simulation environment for intelligent transportation sys-

tems. SIMULATION 2004; 80: 61–76.

77. Wainer G and Liu Q. Tools for graphical specification and

visualization of DEVS models. SIMULATION 2009; 85:

131–158.

78. Bonaventura M, Wainer GA and Castro R. Graphical model-

ing and simulation of discrete-event systems with

CD++Builder. SIMULATION 2013; 89: 4–27.

79. Bergero F and Kofman E. PowerDEVS: a tool for hybrid sys-

tem modeling and real-time simulation. SIMULATION 2011;

87: 113–132.

80. Nutaro J. An extension of the OpenModelica compiler for

using Modelica models in a discrete event simulation.

SIMULATION 2014; 90: 1328–1345.

81. Stolpe A, Rummelhoff I and Hannay JE. A logic-based event

controller for means-end reasoning in simulation environ-

ments. SIMULATION 2023; 99: 831–858.

82. Van Tendeloo Y and Vangheluwe H. Increasing the perfor-

mance of a Discrete Event System Specification simulator by

means of computational resource usage ‘‘activity’’ models.

SIMULATION 2017; 93: 1045–1061.

83. Van Mierlo S, Van Tendeloo Y and Vangheluwe H.

Debugging parallel DEVS. SIMULATION 2017; 93: 285–306.

84. Maleki M, Woodbury R, Goldstein R, et al. Designing

DEVS visual interfaces for end-user programmers.

SIMULATION 2015; 91: 715–734.

85. Goldstein R, Breslav S and Khan A. Practical aspects of the

DesignDEVS simulation environment. SIMULATION 2018;

94: 301–326.

86. Van Tendeloo Y and Vangheluwe H. An evaluation of

DEVS simulation tools. SIMULATION 2017; 93: 103–121.

87. Wainer G, Glinsky E and Gutierrez-Alcaraz M. Studying

performance of DEVS modeling and simulation environ-

ments using the DEVStone benchmark. SIMULATION 2011;

87: 555–580.

88. Risco-Martı́n JL, Mittal S, Jiménez JCF, et al. Reconsidering

the performance of DEVS modeling and simulation environ-

ments using the DEVStone benchmark. SIMULATION 2017;

93: 459–476.

89. Huang Y, Seck MD and Verbraeck A. Component-based

light-rail modeling in discrete event systems specification

(DEVS). SIMULATION 2015; 91: 1027–1051.

1316 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)



90. Grinblat GL, Ahumada H and Kofman E. Quantized state

simulation of spiking neural networks. SIMULATION 2012;

88: 299–313.

91. Xie X and Verbraeck A. A particle filter-based data assimila-

tion framework for discrete event simulations. SIMULATION

2019; 95: 1027–1053.

92. Huang Y, Xie X, Cho Y, et al. Particle filter–based data

assimilation in dynamic data-driven simulation: sensitivity

analysis of three critical experimental conditions.

SIMULATION 2023; 99: 403–415.

93. Ghosh S and Giambiasi N. Breakthrough in modeling and

simulation of mixed-signal electronic designs in nVHDL.

SIMULATION 2001; 76: 279–281.

94. Hamri M, Naamane A, Frydman C, et al. Why we should use

Min Max DEVS for modeling and simulation of digital cir-

cuits. SIMULATION 2022; 98: 519–532.

95. Yu Chen Sarjoughian HS. A component-based simulator for

MIPS32 processors. SIMULATION 2010; 86: 271–290.

96. Migoni G, Kofman E, Bergero F, et al. Quantization-based

simulation of switched mode power supplies. SIMULATION

2015; 91: 320–336.

97. Antoine-Santoni T, Santucci JF, De Gentili E, et al. Discrete

event modeling and simulation of wireless sensor network

performance. SIMULATION 2008; 84: 103–121.

98. Pfeifer D, Valvano J and Gerstlauer A. SimConnect and

SimTalk for distributed cyber-physical system simulation.

SIMULATION 2013; 89: 1254–1271.

99. Pang CK and Mathew J. Dynamically reconfigurable com-

mand and control structure for network-centric warfare.

SIMULATION 2015; 91: 417–431.

100. Kim J, Moon I-C and Kim TG. New insight into doctrine

via simulation interoperation of heterogeneous levels of

models in battle experimentation. SIMULATION 2012; 88:

649–667.

101. Seo K-M, Choi C, Kim TG, et al. DEVS-based combat

modeling for engagement-level simulation. SIMULATION

2014; 90: 759–781.

102. Fard MD and Sarjoughian HS. A knowledge interchange

broker composition modeling framework for simulating

water, energy, and water-energy nexus systems.

SIMULATION 2024; 100: 657–682.

103. Risco-Martı́n JL, Esteban S, Chacón J, et al. Simulation-

driven engineering for the management of harmful algal

and cyanobacterial blooms. SIMULATION 2023; 99: 1041–

1055.

104. Byon E, Pérez E, Ding Y, et al. Simulation of wind farm

operations and maintenance using discrete event system

specification. SIMULATION 2011; 87: 1093–1117.

105. Pérez E, Ntaimo L and Ding Y. Multi-component wind tur-

bine modeling and simulation for wind farm operations and

maintenance. SIMULATION 2015; 91: 360–382.

106. Pérez E. A simulation-driven online scheduling algorithm

for the maintenance and operation of wind farm systems.

SIMULATION 2022; 98: 47–61.

107. Bouanan Y, Zacharewicz G, Ribault J, et al. Discrete event

system specification-based framework for modeling and

simulation of propagation phenomena in social networks:

application to the information spreading in a multi-layer

social network. SIMULATION 2019; 95: 411–427.

108. Khalil H and Wainer G. A framework for modeling, gener-

ating, simulating, and predicting carbon dioxide dispersion

indoors using cell-DEVS and deep learning. SIMULATION

2024; 100: 421–434.

109. Pérez E, Ntaimo L, Bailey C, et al. Modeling and simula-

tion of nuclear medicine patient service management in

DEVS. SIMULATION 2010; 86: 481–501.

110. Alvarado MM, Cotton TG, Ntaimo L, et al. Modeling

and simulation of oncology clinic operations in discrete

event system specification. SIMULATION 2018; 94:

105–121.

111. Djitog I, Aliyu HO and Traoré MK. A model-driven frame-

work for multi-paradigm modeling and holistic simulation

of healthcare systems. SIMULATION 2018; 94: 235–257.

112. Traoré MK, Zacharewicz G, Duboz R, et al. Modeling and

simulation framework for value-based healthcare systems.

SIMULATION 2019; 95: 481–497.

113. Özmen Ö, Nutaro JJ, Pullum LL, et al. Analyzing the

impact of modeling choices and assumptions in compart-

mental epidemiological models. SIMULATION 2016; 92:

459–472.

114. Davidson G, Fahlman A, Mereu E, et al. A methodological

approach for modeling the spread of disease using geogra-

phical discrete-event spatial models. SIMULATION 2024;

100: 39–70.

115. Ayadi A, Frydman C, Laddada W, et al. Combining DEVS

simulation and ontological modeling for hierarchical analy-

sis of the SARS-CoV-2 replication. SIMULATION 2023;

99: 1011–1039.

116. Watanabe L, Barhak J and Myers C. Toward reproducible

disease models using the systems biology markup language.

SIMULATION 2019; 95: 895–930.

117. Ozmen O, Nutaro J, Ostvar S, et al. Tissue scale agent-

based simulation of premalignant progressions in Barrett’s

esophagus. SIMULATION 2022; 98: 275–284.

118. Wainer G and Fernández J. Modelling and simulation of

complex cellular models using Cell-DEVS. SIMULATION

2016; 92: 101–115.

119. Wainer G and Giambiasi N. Cell-DEVS/GDEVS for complex

continuous systems. SIMULATION 2005; 81: 137–151.

120. Wainer G. Applying cell-DEVS methodology for modeling

the environment. SIMULATION 2006; 82: 635–660.

121. Kazi BU and Wainer G. Integrated cellular framework for

modeling ecosystems: theory and applications. SIMULATION

2018; 94: 213–233.

122. Qiu F and Hu X. Spatial activity-based modeling for pedes-

trian crowd simulation. SIMULATION 2013; 89: 451–465.

123. Bae JW, Lee S, Hong JH, et al. Simulation-based analyses

of an evacuation from a metropolis during a bombardment.

SIMULATION 2014; 90: 1244–1267.

124. Al-Habashna A and Wainer G. Modeling pedestrian behavior

with Cell-DEVS: theory and applications. SIMULATION

2016; 92: 117–139.

125. Jafer S and Lawler R. Emergency crowd evacuation model-

ing and simulation framework with cellular discrete event

systems. SIMULATION 2016; 92: 795–817.

126. Ntaimo L, Zeigler BP, Vasconcelos MJ, et al. Forest fire

spread and suppression in DEVS. SIMULATION 2004; 80:

479–500.

Wainer and Govind 1317



127. Muzy A, Innocenti E, Aiello A, et al. Specification of dis-

crete event models for fire spreading. SIMULATION 2005;

81: 103–117.

128. Ntaimo L, Hu X and Sun Y. DEVS-FIRE: towards an inte-

grated simulation environment for surface wildfire spread

and containment. SIMULATION 2008; 84: 137–155.

129. Hu X, Sun Y and Ntaimo L. DEVS-FIRE: design and appli-

cation of formal discrete event wildfire spread and suppres-

sion models. SIMULATION 2012; 88: 259–279.

130. Filippi J-B, Morandini F, Balbi JH, et al. Discrete event

front-tracking simulation of a physical fire-spread model.

SIMULATION 2010; 86: 629–646.

131. Gu F. Localized recursive spatial-temporal state quantifica-

tion method for data assimilation of wildfire spread simula-

tion. SIMULATION 2017; 93: 343–360.

132. Choi SJ and Kim TG. Identification of discrete event sys-

tems using the compound recurrent neural network: extract-

ing DEVS from trained network. SIMULATION 2002; 78:

90–104.

133. Kim BS, Kang BG, Choi SH, et al. Data modeling versus

simulation modeling in the big data era: case study of a green-

house control system. SIMULATION 2017; 93: 579–594.

134. Kang BG, Seo K-M and Kim TG. Machine learning-based

discrete event dynamic surrogate model of communication

systems for simulating the command, control, and communi-

cation system of systems. SIMULATION 2019; 95: 673–691.

135. Diakité M and Traoré MK. Formalizing a framework of

inference capabilities for digital twin engineering.

SIMULATION 2024; 100: 887–902.

136. Niyonkuru D and Wainer G. A DEVS-based engine for build-

ing digital quadruplets. SIMULATION 2021; 97: 485–506.

137. Wainer G. Applying modelling and simulation for develop-

ment embedded systems. In: 2013 2nd Mediterranean con-

ference on embedded computing (MECO), Budva, 15–20

June 2013.

138. Ferencz K and Domokos J. Using node-RED platform in

an industrial environment. In: XXXV Jubileumi Kandó

Konferencia proceedings, Budapest, 14–15 November

2019, pp. 52–63.

139. Soni D and Makwana A. A survey on MQTT: a protocol of

internet of things (IoT). In: International conference on tel-

ecommunication, power analysis and computing techniques

(ICTPACT-2017), Chennai, India, 6–8 April 2017, Vol. 20,

pp. 173–177. Hubei, China: Aconf.org.

140. Govind SM, Alex JS and Wainer G. Adapting the DEVS

kernel ‘‘RT-CADMIUM’’ to the ESP32 embedded plat-

form. arXiv, 2023, https://arxiv.org/abs/2304.07961

141. Govind S and Wainer G. DEVS based robust communica-

tion protocol for inter-simulation communication in

Cadmium. In: ANNSIM 2024 proceedings, Washington,

DC, 20–23 May.

142. Govind S and Wainer G. Handling asynchronous inputs in

DEVS based real-time kernels. In: Proceedings of the 2024

Winter simulation conference, Orlando, FL, 15–18

December.

143. Chow AC, Zeigler BP and Kim DH. Abstract simulator for

the parallel DEVS formalism. In: Fifth annual conference

on AI, and planning in high autonomy systems, Gainesville,

FL, 13–15 December 1994, pp. 157–163.

144. Neumann P. Communication in industrial automation—

what is going on? Control Eng Pract 2007; 15: 1332–1347.

145. Pedreiras P, Almeida L and Fonseca JA. The quest for real-

time behavior in Ethernet. In: Zurawski R (ed.) The

Industrial Information Technology Handbook. Boca Raton,

FL: CRC Press, 2005, pp. 1–14.

Author biographies

Gabriel Wainer received his PhD degree (highest hon-
ors) from Université d’Aix-Marseille III, Marseille,
France. He is currently a Full Professor with Carleton
University, Ottawa, ON, Canada, where he is also the
Head of the Advanced Real-Time Simulation Laboratory,
Centre for advanced Simulation and Visualization (V-
Sim). He held visiting positions at the University of
Arizona; LSIS (CNRS), Université Paul Cézanne,
University of Nice, INRIA Sophia-Antipolis, Université
de Bordeaux (France); UCM, UPC (Spain), University of
Buenos Aires, National University of Rosario (Argentina),
and others. He is editor in chief of SIMULATION,
Transactions of the SCS. He is also a member of the
Editorial Board of the IEEE Computing in Science &
Engineering, Wireless Networks (Elsevier), and The
Journal of Defense Modeling and Simulation (SCS). He is
a member of the Board of Directors of the SCS. He was a
recipient of various awards, including various best papers,
the SCS McLeod Founder Award for distinguished service
to the profession, the ACM Recognition of Service
Award, and the IEEE Outstanding Engineering Award
(Ottawa Section). He is a fellow of SCS. His email
address is gwainer@sce.carleton.ca

Sasisekhar Govind is a PhD candidate at Carleton
University under the supervision of Dr. Gabriel Wainer.
He holds a bachelor’s degree in Electronics and
Communications Engineering from VIT, India. His
research interests lie in embedded systems and distributed
simulations. His email address is sasisekharmangalamgo
@cunet.carleton.ca

1318 Simulation: Transactions of the Society for Modeling and Simulation International 100(12)


