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ABSTRACT In this paper, we propose a novel Multi-Agent Reinforcement Learning (MARL) -based
paradigm for distributed and joint resource allocation, beamforming (BF), and beam combining of uplink
transmissions in 5G networks. The proposed paradigm employs two types of heterogenous agents that learn
to perform and optimize different tasks in order to achieve the main objective of the system, as well as the
objective of the individual agents. In the proposed paradigm, UEs can be multi-agents that optimize their
own resource allocation and BF. In addition to these multi agents (i.e., UEs), the BS is a different type of
agent that optimizes the combining of UEs’ transmissions. We developed three different implementations
of our proposal using three different MARL algorithms: Independent Q Learners (IQL), Multi-Agent Deep
Deterministic Policy Gradient (MADDPG), and QTRAN. Various experiments were conducted to validate
the usability of our proposal. Our results show that the proposed paradigm can successfully optimize the task
of joint resource allocation, beamforming, and combining. Furthermore, we provide a comparative analysis
of the three different implementations, highlighting noteworthy insights into the strengths and limitations of
fully distributed algorithms, such as IQL, in comparison to algorithms employing the Centralized Training
with Decentralized Execution (CTDE) framework, exemplified by QTRAN and MADDPG.

INDEX TERMS Deep reinforcement learning, multi-agent reinforcement learning, distributed resource
allocation, beamforming, 5G.

I. INTRODUCTION
As the number of mobile devices is exponentially increas-
ing, the Fifth Generation (5G) wireless communication
systems are aiming to improve the network capacity by a
thousand folds. Furthermore, 5G wireless communication
systems are designed to improve spectrum efficiency by
up to 15 times [1], [2]. This is to support new applica-
tions that require high data rates, high reliability, and low
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latency in areas such as entertainment, healthcare, agri-
culture, and industry. An example of these applications in
the field of entertainment is ultra-high-definition streaming,
which requires data rates around 25 Mbps with less than
100 milliseconds of latency. Other mission-critical applica-
tions such as self-driving cars require 50-100Mbps data rates.

To increase the efficiency of the radio spectrum, which
has become a valuable and scarce resource, new technolo-
gies have been introduced such as network densification [3],
Device to-Device (D2D) communications [4], [5], [6], [7],
[8], [9], massive MIMO [10], and other multiple-tiered
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network architectures with a co-channel deployment [11],
[12]. Although such technologies and network architectures
provide promising solutions and help meet the increasing
demand, they complicate the power and resource alloca-
tion problem. Cognitive Radio (CR); where secondary users
can sense the spectrum and exploit vacant spectrum bands,
is another example where power and resource allocation can
be a very challenging task [13], [14], [15], [16]. Other sce-
narios might involve multiple operators that share the same
infrastructure. In such network architectures, the different
traffic loads, transmission powers, channel access priorities,
and the provision of peer-to-peer communication complicate
the dynamics of resource allocation.

Recent studies have shown that optimal resource alloca-
tion in multi-tier networks is generally an NP-hard problem,
and hence computationally expensive. Traditionally, resource
allocation is performed in a centralized manner (e.g., at the
Base-Station (BS)). Several attempts have been made to
develop centralized algorithms to optimize resource alloca-
tion of such networks. For example, in [17], the authors
investigate the communication performance of a Space-
Air-Ground Integrated Network (SAGIN) that utilizes an
active Reconfigurable Intelligent Surface (RIS) and Non-
Orthogonal Multiple Access (NOMA) with CR capabilities.
The authors aim to maximize the weighted sum mean rate
and weighted sum mean energy efficiency for the secondary
network. To achieve their objective, they propose an alternat-
ing optimization framework based on the Block Coordinate
Ascent (BCA) technique to solve this complex problem.
In [18], the authors study the problem of efficient resource
allocation in opportunistic CR networks, where secondary
users opportunistically access the licensed spectrum of a pri-
mary network when it is sensed to be idle. The paper proposes
a cross-layer resource allocation approach where a fusion
center plays a central role in resource allocation and selecting
SUs for spectrum sensing. A near-optimal greedy algorithm
is proposed to solve the resource allocation problem.

While the proposed centralized methods above might work
for small-sized systems, such paradigms that are based on
centralized methods for solving resource allocation problems
might not be scalable for the aforementioned scenarios. First,
the computational complexity grows significantly as the num-
ber of nodes in the network increases. Moreover, a great deal
of signaling and communication overhead are usually needed
to perform the task at a single node, as this requires a single
entity to have a global view of the network and its nodes
to manage resource allocation. This requires continuous data
collection from all nodes or subsystems (sensing information,
channel state information, etc.), leading to excessive com-
munication load. This might lead to network congestion or
delays in data transmission, and hence, impact optimization
efficiency.

Distributed or semi-distributed resource allocation meth-
ods can provide more efficient and scalable solutions to solve
power and resource allocation problems for complex network

scenarios. This is due to the reduced amount of signaling
and computational complexity. In such solutions, multiple
nodes can perform resource allocation independently. In the
extreme case, resource allocation is performed at the edge
of the network by the User Equipment (UE) themselves.
However, the limited global view in such methods may lead
to inefficient or conflicting decisions.

In recent years, Reinforcement Learning (RL) and Deep
RL (DRL) [19] have been increasingly utilized to address
various problems and challenges in the field of 5G wire-
less communication systems. This includes problems such
as power and resource allocation, handover, and caching and
offloading. RL is a learning process where an agent finds an
optimal policy by periodically making decisions, observing
the results, and adjusting its strategy. This allows agents to
learn the characteristics of the environment, avoid the exhaus-
tive search in the Action Space (AS) of the problem, and
can provide near-optimal solutions to maximize the end-user
performance (e.g., SINR and data rate). This is particularly
useful in cases with non-convex optimization problems.

Although RL and DRL are very useful for solving
problems with a single agent (e.g., centralized resource allo-
cation), they might not be suitable to develop algorithms for
distributed execution. Multi-Agent Reinforcement Learning
(MARL), on the other hand, can provide a promising solution
for such scenarios with distributed execution, as it involves
multiple agents that learn by interacting within a common
environment. Each time step, an agent makes a decision to
achieve a predetermined goal that maximizes expected future
return. The goal in this case would be for agents to learn
a policy such that all agents together achieve the goal of
the system. This is very suitable for the case of distributed
resource allocation, where UEs need to achieve their data
rate requirements and also maximize the performance of the
network.

In this paper, we propose a novel MARL-based paradigm
for joint resource allocation, beamforming (BF), and combin-
ing for uplink transmissions in 5G networks. The proposed
paradigm employs two types of heterogenous agents that
learn to perform and optimize different tasks in order to
achieve the main objective of the system, as well as the
objective of the individual agents. In the proposed paradigm,
UEs can be multi-agents that optimize their own resource
allocation and BF. In addition to these multi agents (i.e.,
UEs), the BS is a different type of agent that optimizes the
combining of UEs’ transmissions. We developed three dif-
ferent implementations of our proposal using three different
MARL algorithms: Independent Q Learners (IQL), Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [20],
and QTRAN [21].

A. RELATED WORK
In recent years, RL has rapidly gained attraction for solving
diverse problems in 5G networks, such as radio resource
management problems, including the intricacy of resource
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allocation. Resource allocation, a well-defined problem in
wireless communication, encompasses a variety of issues
such as resource provisioning, load balancing, scalability, and
energy management [22]. In this context, Cong and Lang pro-
posed using a centralized RL algorithm to improve spectrum
in dynamic spectrum access environment [23]. In an envi-
ronment with several secondary users, the authors trained a
deep recurrent neural network at a centralized node to allocate
the Resource Block Groups (RBGs) used in each secondary
user’s transmission. The results showed that the proposed
RL models significantly increased spectrum utilization and
minimized collisions between primary and secondary users
when compared to existing centralized algorithms. Like-
wise, He, et al., used RL to train a centralized scheduler
for optimizing TDMA/FDMA scheduling in time-varying
interference alignment networks [24]. The centralized RL
deep Q-network (DQN) collected channel state information
of users requesting service and scheduled the optimal users to
actively transmit during the current radio frame. Comparing
the RL algorithm to two previously proposed non-RL-based
power allocation models [25], [26] showed a considerable
performance improvement in both sum rate and energy
efficiency.

While centralized RL shows encouraging results, it is
unable to address several challenges including scalability,
computational complexity, and large signaling overhead.
A distributed approach allows computations to be split among
multiple nodes, reducing computational complexity, while
being more scalable. Furthermore, communication is often
limited between nodes reducing the signaling overhead seen
when communicating with a central node, e.g., BS. In addi-
tion to the above, distributed resource allocation can give
the UEs in the network the ability to be autonomous, lever-
aging scenarios such as CR Networks and multi-operator
networks. As such, researchers have been considering new
methods that exploit MARL for such problems. Sana et al
show the advantages of decentralizedMARL over centralized
solutions [27]. They compared several centralized approaches
against their decentralized MARL algorithm for managing
multiple UEs requesting downlink services from nearby
BSs. During testing, the authors’ solution outperformed the
sum-rate performance of centralized baseline methods by
almost 40%. In [28], the authors address the requirements
of ultra-reliable low-latency communications, and the high
throughput demands of mobile broadband users in 5G net-
works by proposing a distributed MARL-based approach for
power and RBG allocation. Their results showed a 21-fold
increase in throughput withminimal impact on latency or reli-
ability over a priority-based proportional fairness algorithm
for fixed power allocation. Similarly, Simsek et al. proposed
using MARL for decentralized power allocation to increase
the throughput for individual femtocell UEs [29]. Using a
simulation scenario based on the 3GPP Technical Specifi-
cation Group, and considering each BS as a decentralized
agent, the simulation results illustrated MARL’s ability in

determining the optimal power levels used for each RBG.
Thus, reducing interference and increasing throughput for
femtocell UEs when compared to traditional algorithms. The
work in [30] and [31] further explore the use of MARL for
resource allocation in UAV to ground communications and
vehicle-to-vehicle communication with both papers showing
communication with a centralized system can be eliminated
while still satisfying communication requirements.

Despite the promising results achieved by decentralized
MARL, it is important to acknowledge its limitation in com-
plex environments. Distributed approaches often have limited
access to global information, resulting in partial observabil-
ity. Furthermore, they can suffer from the non-stationarity
of the environment problem, as the actions of the different
agents in the environment change unexpectedly. Central-
ize Training with Decentralized Execution (CTDE) is a
notable approach that integrates advantages from both fully
centralized paradigms and fully distributed MARL. During
training, a centralized network enables information to be
shared among all agents, providing stability, and increas-
ing coordination. During execution, each agent operates
its fully trained local network without the need to know
the global state of the network; deploying the local policy
developed during training to still coordinate with unob-
served agents. Cao et al. used CTDE MARL to address
the task of offloading problem in Mobile-Edge Computing.
The authors performed numerous simulations, with several
different parameter combinations, which all demonstrated
that the MARL-based algorithm could reduce computational
delay by 33.38%, increase the channel access success rate
by 14.88%, and increase channel utilization by 3.24% with
respect to standard centralized RL methods. Motivated by
the challenge of managing spectrum resource allocation, Li,
Guo, and Xuan proposed using MARL to reduce interference
caused by D2D communications. The authors considered
an environment with a single BS performing downlink
transmission to several D2D pairs. Traditional centralized
solutions require exchanging global information, causing
significant signal overhead, and additional interference. For
this reason, the authors developed a RL algorithm called
Neighbor-Agent Actor Critic (NAAC) that takes advantage of
CTDE. Simulation results from the paper showed that NAAC
reduced D2D outage probability and signaling overhead,
improved the sum throughput rate, and outperformed other
decentralized approaches including Uncoupled Stochas-
tic Learning Algorithms, Deep Q-learning, and traditional
actor-critic.

In [32], we considered the problem of resource allocation
for uplink transmission by many UEs in a cell and proposed
a MARL-based solution that follows the CTDE paradigm.
We showed that a distributed joint policy can be learned by the
UEs to manage resource allocation. The trained policy max-
imized the sum rate of users while achieving the minimum
data rate requirements of users during each radio subframe.
Additionally, we showed that MARL provides efficient
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and near-optimal solutions for computationally infeasible
problems [33].

In this paper, we propose a novel MARL-based paradigm
for joint resource allocation, BF, and combining for uplink
transmissions in 5G networks. The proposed paradigm
employs two types of heterogenous agents that learn to per-
form and optimize different tasks in order to achieve the
main objective of the system, as well as the objective of
the individual agents. In the proposed paradigm, UEs can be
multi-agents that optimize their own resource allocation and
BF. In addition to these multi agents (i.e., UEs), the BS is a
different type of agent that optimizes the combining of UEs’
transmissions. We developed three different implementations
of our proposal using three different MARL algorithms. Two
of the adoptedMARL algorithms, namely theMADDPG [20]
and QTRAN [21] frameworks, follow the CTDE approach.
The third method, namely IQL, falls under the independent-
learners approach. Each algorithm is discussed in Section IV.
We ran various simulations to evaluate the performance of
the three implementations. The results obtained show that the
implementations of the proposed paradigm can successfully
learn local policies to maximize the cell data rate and achieve
the minimum data rate requirements for each UE. The trained
models allow the UEs to achieve the tasks above for any
scenario (any distribution of the UEs in the cell).

B. CONTRIBUTIONS
In the following, we summarize the main contributions of this
paper,

• A system model, and an optimization model for the
problem of joint resource allocation, BF, and combining,
to maximize the cell data rate, and achieve a minimum
data rate for each UE.

• A novel heterogenous MARL-based paradigm for joint
resource allocation, BF, and combining.

• Three different implementations of the proposed
paradigm, with three algorithms, namely, IQL,
MADDPG, and QTRAN.

• Performance evaluation of the three different
implementations.

The rest of this paper is organized as follows: Section II
discusses our system model and problem formulation.
Section III presents our proposed heterogenous MARL
paradigm and provides an overview of MARL and the
adopted MARL algorithms for implementing our solution.
Section IV presents the simulation environment, a compar-
ative analysis of the MARL-based solutions against two
centralized algorithms, and the results for training and testing
with the three adopted MARL algorithms. Section V states
the conclusion and future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a one-cell network, with the BS (also known
as gNodeB) at the center of the cell, and multiple UEs dis-
tributed in the cell, as can be seen in Fig. 1. The UEs in the

cell have data to upload, and they need to share the radio
channel. The channel is equally divided into U RBGs. Both
the gNodeB and UEs have uniform linear arrays of LBS and
LUE antennas, respectively. The received signal at the gNodeB
from the mth UE’s transmission on the uth RBG, can be
written as [34],

ym,u = f HBS,mHm,u fmxm,u +

∑
q̸=m

f HBS,mHq,u fqxq,u + f HBS,mnm

(1)

where xm,u and xq,u represent the transmitted signals from
the mth and qth users, respectively, to the gNodeB on the
uth RBG, Hm,u represents the channel matrix from the mth

UE to gNodeB at the uth RBG, Hq,u represents the channel
matrix from the qth UE to gNodeB on the uth RBG, fm and
fq represent the transmitter’s (UE) BF vector for the mth and

qth users, respectively, fBS,m and fBS,q represent the receiver’s
combining vector for the transmission of the mth and qth

users, respectively, and nm∼N (0, σ 2
nI) is the received AWGN

vector at the gNodeB (sampled from a complex normal distri-
bution with zero mean and σ 2

n variance). The first term in (1)
represents the signal from the intended UE, while the second
term represents the interference from other UEs served by the
same gNodeB transmitting on the same RBG.

We adopt the geometric channel model in [34], [35], and
[36], where the channel model between the mth UE and the
gNodeB at the uth RBG can be represented as,

Hm,u =

√
LUE

√
LBS

PLm

Nρ
m∑

ρ=1

gρ
m,uαBS

(
θ

ρ
BS,m

)
αHUE

(
θ

ρ
m,BS

)
,

(2)

whereNρ
m is the number of paths for the transmission from the

mth UE to the gNodeB, gρ
m,u is the gain of the pth path frommth

UE to the gNodeB at the uth RBG. The path amplitudes are
assumed to be Rayleigh distributed, i.e., gρ

m,u ∼ (0,PR), with
PR the average power gain. θρ

m,BS and θ
ρ
BS,m are the Angle of

Departure (AOD) and Angle of Arrival (AoA), respectively,
of the pth path from mth UE to the gNodeB, αUE

(
θ

ρ
m,BS

)
and αBS

(
θ

ρ
BS,m

)
are the array responses of the AOD and AoA,

respectively, and PLm is the average pathloss between the
mth UE and gNodeB. It is worth mentioning that in MIMO
systems, particularly in uplink transmission, the physical
locations of the sender (UE) and the receiver (gNodeB) sig-
nificantly impact both the AoA and AoD. AoA and AoD are
fundamentally geometric concepts determined by the spatial
positioning between the transmitting and receiving antennas.
Changing the relative positions of the UE and BS directly
alters the geometric paths that signals follow, impacting both
AoA and AoD. Hence, we propose a system in Section IV
that indirectly employs the location of the mth UE within the
cell (xm and ym) relative to the location of the gNodeB (xBS
and yBS) as the state of the UE.

For simplicity, we omitted the time index in the previ-
ous equations, even though the variables mentioned above
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vary with each Transmission Time Interval (TTI). However,
wewill explicitly include the time indexmoving forward. The
received SNIR from the mth UE on the uth RGB (assuming
that the UE transmits on that RGB) is given by [37],

γm,u(t)

=
pm,u(t)

∣∣f HBS,m(t)Hm,u(t) fm(t)
∣∣2∑

q̸=m
pq,u(t)

∣∣f HBS,m(t)Hq,u(t) fq(t)
∣∣2 + σ 2

n

∥∥fBS,m(t)
∥∥2

(3)

where pm,u(t) and pq,u(t) are the power of the signal transmit-
ted by the mth and qth users, respectively, to the gNodeB on
the uth RBG. Furthermore, the achieved data rate by the mth

UE can be calculated as,

Rm(t) =

U∑
u=1

δm,u(t)B log2
(
1 + γm,u(t)

)
, (4)

where δm,u(t)ϵ0, 1} is 1 for that RBG if the mth UE transmits
on it at time t , and 0 otherwise, and B is the bandwidth of the
RBG. If Rm,u(t) is the data rate achieved by the mth UE on
the uth RBG at radio subframe t , Rm(t) in (4) is the aggregate
data rate of the mth UE on all the RBGs it transmits on at t .

FIGURE 1. Illustration of the system model; UEs performing uplink
transmission (withBF) to a BS (using combining).

The goal is to maximize the sum data rate of the UEs in the
network at each TTI, while also maintaining a minimum data
rate for all UEs. The above problem can be formulated as,

argmax
pm,u(t), fBS,m(t), fm(t)

∑
m∈{1,2,...M}

Rm(t), (5)

Subject to,

fm(t) ∈ FUE , (6)

fBS,m(t) ∈ FBS, (7)

Rm(t) ≥ Rmin, (8)

where, m is UE’s index, FUE is the BF codebook, FBS is the
combining codebook, and Rmin is the minimum data rate that
needs to be achieved by each UE every subframe.

Unfortunately, the above problem is NP hard. Hence,
we propose a MARL-based solution in this paper.

III. PROPOSED HETEROGENEOUS MARL SOLUTION AND
IMPLEMENTATIONS
A. PROPOSED SOLUTION
In this section, we present the proposed heterogeneous-
MARL solution. Considering the system model in Section II,
we outline the key components and assumption of our
approach. As previously mentioned, we consider the UEs
as individual agents within the network cell. The gNodeB
is assumed to have access to the coordinates of the served
UEs, which are used to compute the angles between each UE
and the gNodeB (as detailed in Section IV). These angles are
utilized to generate an environment status report that captures
the relative angular positions of all UEs with respect to the
gNodeB. This report is then broadcasted to all UEs either
periodically or in an event-driven manner, such as when a
UE’s location changes. The UEs utilize the status report to
retrieve the environment states required to select the next
action.

We implement our proposal with three different algo-
rithms. One of them is fully distributed (IQL) and the other
two follow the CTDE approach, i.e., MADDPG andQTRAN.
In the case of IQL, both training and execution are performed
in a decentralized manner at the UE level. On the other hand,
with CTDE algorithms, the training process is conducted
centrally at the BS, where fully observable state-action infor-
mation is readily available. Once training is completed, the
developed local models are distributed to each UE for local
execution. During any subsequent executions, the UEs do
not receive any information about the action taken by other
UEs. Instead, the UEs rely solely on their local policies to
select actions. Hence during execution, the agents are fully
decentralized.

In addition to the above, the BS itself acts as another type
of agent (and hence, the heterogeneous system) responsible
for isolating incoming UE transmissions based on the AOA.
For either IQL or the CTDE algorithms, training is completed
using the same information available in the environment
status report.

B. ADOPTED ALGORITHMS FOR IMPLEMENTATION
1) A QUICK REVIEW OF MARL
RL is a subdomain of machine learning focused on training
an agent to find an optimal policy through interactions with a
mutable environment. At each time step, t , the agent observes
the environment states, st , and selects an action, at , to execute.
The executed action transitions the environment into the next
state, st+1. A reward is used to evaluate the environment’s
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new state. A state-action pair (st , at ) refers to the chosen
action at a specific state. The agent uses a policy to strate-
gically determine the action to execute at a certain state [38].
The agent’s objective is to develop a policy to select the best
action at each state.

One strategy used by the agent is to use value function
(V-function), Vπ (s), which estimates the utility of being in
particular state. However, to evaluate the complete utility of a
state, the agent must consider not only the immediate reward
received, but also the rewards obtained onward through all
future timesteps as well. The cumulative discounted reward,
denoted by W , takes into account the immediate reward as
well as all future rewards:

Wt = wt + γwt+1 + γ 2wt+2 + . . . γ Twt+T . (9)

Here gamma, γ , represents the discount factor, where a
value between 0 and 1 determines the importance of future
rewards [38]. As such, the V-function gives the expected
cumulative discounted reward that is obtainable at a certain
state,

Vπ (st) = Eπ [Wt |st ], (10)

where Eπ [.] is the expected value.
The Q-function, Qπ (s,a), is an extension of Vπ (s) into

an action-value approximation, and it evaluates state-action
pairs [39]. Each state-action approximation is known as a
Q-value, and is defined by,

Qπ (st , at) = Eπ [Wt |st , at ]. (11)

The Bellman’s equation computes the optimal Q function
in a recursive manner, instead of summing over the consid-
ered time steps, as follows,

Q∗
π (st , at ) = Eπ,s′ [ws,a,s′ + γmaxa′Q∗

π (s
′, a′)|st , at ]. (12)

The Q-values, Q∗, are calculated by summing the reward
for the current state-action pair and discounted future reward
for the state-action pair in the next timestep. Selecting the
maximum Q-value is based on the principle that it corre-
sponds to the state-action pair with the highest expected
reward for the subsequent state, which incorporates the max-
imum Q-value for its own subsequent state. This recursive
approach allows the agent to consider all future outcomes
for each state-action pair and make decisions that will max-
imize the long-term reward. The agent’s policy can utilize
the Q-function to determine the best action. Usually, the
action with the highest expected Q-value is selected. A DQN
is an advanced algorithm utilizing Deep Neural Networks
(DNNs) to approximate and map Q-values of actions at each
state. With each interaction in the environment, the agent
acquires experience, which provides the true action-value for
the selected state-action. A DNN is trained by minimizing
the loss between the predicted Q-values and the true val-
ues received by the environment. Throughout training, DQN
continues to execute actions in the environment, providing

additional experience to further refine the DNN’s approxi-
mated values. Once DQN has been successfully trained, it can
be utilized by the agent as its Q-function.

MARL is an extension of standard RL to accommodate
environments that include two or more agents. Furthermore,
the environment’s reward is structured depending on the
goal of the system. In competitive environments where each
agent needs to maximize its individual goal, an individualized
reward is assigned to each agent, whereas in cooperative
environments, a global reward may be assigned communally
to promote collaboration between the agents. In cooperative
environments, collaboration between agents is essential in
order to achieve the system’s goal. The global reward is an
evaluation of the group’s performance, rather than any agent’s
individual performance. However, in certain scenarios, indi-
vidual rewards may also be utilized alongside the global
reward to facilitate individuality among agents. As with RL,
an agent must interact with the environment to gain experi-
ence, which can be used to develop its policy. The agent’s
local policywill be used by an agent to take actions to collabo-
rate with or compete against the local policies of other agents
in the environment. When agents are learning independently
and each agent is oblivious to the actions of the other agents
during training, this could lead to the non-stationarity of the
environment problem; making it challenging to train multiple
agents simultaneously in a common environment [20], [40],
[41].

We implemented our MARL-based solution with three
different MARL algorithms: IQL, MADDPG, and QTRAN.
IQL is a simple and scalable decentralized framework. How-
ever, its partial observability could lead to the non-stationarity
problem in complex environments. QTRAN and MADDPG
are CTDE-based algorithms for fully observable centralized
networks to alleviate unstable learning and increase con-
vergence speed, while including decentralized networks for
distributed execution after training is complete.

2) IQL
Independent learning is a common method used to imple-
ment MARL. All agents are unaware of each other in the
environment and learn their policies individually. One of the
most established independent learning algorithms is IQL,
proposed in [42] and [43], where each agent uses its own
Q-function to select the best action at each state. Agents can
be trained using DQN. IQL is simple and can be trained
in a decentralized manner, allowing for parallel training of
multiple agents. Training an independent learner is the same
as training a single Q-learner, where the agent performs
an action, observes updated environment states, obtains a
reward, and updates its Q-function to reflect the reward with-
out considering the actions taken by other agents. However,
the global reward can be used to reflect the performance of all
agents (or the system) caused by all agents’ actions.With each
agent impacting the state of the environment, estimating the
Q-value for a state-action pair can be challenging. Indepen-
dent learning is appealing as it is simple, scalable, does not
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require communication between agents and works for many
multi-agent systems [43]. However, IQL’s simplicity also
exposes some problems. Independent learners’ main draw-
back is their susceptibility to the non-stationarity problem.
Agents try to optimize their policies while other agents are
doing the same. These simultaneous-policy updates make the
environment intractable causing the non-stationarity problem
in some cases.

3) MADDPG
An actor-critic architecture is an RL algorithm consisting of
two separate DNNs learning in parallel for an agent. The
first DNN, the actor, uses an action-value approximation
policy to select the best action given the state of the agent.
The second DNN, the critic, trains to estimate its agent’s
value-function considering the current state and the next
state resulting from the actor’s selected action. The critic is
used to guide the actor’s action-value. Deep Deterministic
Policy Gradient (DDPG) is a popular RL algorithm based
on the actor-critic architecture [44]. MADDPG created by
Lowe et al. [20] extends DDPG for MARL by adapting the
critic network to be centralized. As such MADDPG follows
CTDE. In MADDPG, each agent has its own actor and critic
networks. The actor is fully decentralized, without any global
information or central communication as it only receives
states which will be available during execution. However,
the critic is centralized with a fully observable set of states
and chosen actions for each agent in the environment. The
critic is trained to estimate its agent’s local value-function
considering the current states and actions of all agents, as well
as the cumulative value-function for any future states. The
critic network is trained by minimizing the Mean Squared
Error (MSE) between predicted values, ŷ, and actual values, y,

MSE =
1
2

∑ (
y− ŷ

)2
, (13)

where ŷ is the critic’s predicted state-value, and y is calculated
as the sum of the immediate reward for the state action reward
and the discounted reward for the next timesteps [20], given
by,

y = w (st , at) + γVπ (st+1) , ŷ = Vπ (st) . (14)

The actor network is trained using the critic’s predicted
state value as feedback for the chosen action, such that
the error is calculated by minimizing the negative mean of
the critic’s predicted values for a mini batch of training
experiences [20],

actor loss = −mean (Vπ (st)) . (15)

Reducing the negative mean teaches the actor to select
actions that will maximize the positive mean, thereby lead-
ing to future selected actions producing a higher overall
value-function evaluation from the critic. The fully observ-
able critic network is able to optimize its paired actor network
to pick the optimal action for the joint policy. Addition-
ally, it can facilitate faster convergence toward an effective

joint-action policy by leveraging centralized training. Specif-
ically, by observing and incorporating the action tendencies
of other agents, it encourages the selection of complemen-
tary actions, thereby promoting coordinated behavior among
agents. The critic network also helps minimizing unstable
learning which can lead to the non-stationarity problem.
As an CTDE algorithm, the actor network can be deployed
in a completely decentralized manner, while still adhering to
the joint-action policy even with its partial observability.

4) QTRAN
QTRAN is a proposed CTDE algorithm which uses Value
Function Factorization (VFF) to discretize individual agent’s
contributions toward the join-action function [21]. As each
joint-action transitions the environment into the next step, the
reward reflects all actions, not explicitly the individual con-
tributions from any single agent. VFF allows an agent to learn
their local action-value function from the joint-reward, such
that their own optimization leads to the optimization of the
joint action-value function. As such, even during execution
when the agents are decentralized, the optimal joint-action
will be executed simply by each agent following their indi-
vidual action-value function, without reference to the joint
one. QTRAN’s VFF employs CTDE for its three types of
interconnected DNN estimators:

• Each agent’s individual action-value network
fq : (τi, ai) → Qi,

• Centralized joint action-value network fr : (τ, a)→ Qjt,
and

• Centralized state-value network fv : τ→ V jt.

where τi represents the agent’s observation, and Qjt and Vjt
represent the joint action-value and state-value functions,
respectively. An individual action-value network is assigned
to each agent in the environment and is used to take actions
using the agent’s local observations and learned Q-value
mapping, unlike the other two networks. The single cen-
tralized join-action value network is used to combine the
chosen action from each agent’s individual network and com-
putes an approximated global Q-values for the joint-action
taken. Simultaneously, the state-value network evaluates the
combination of each agent’s observed states. This eliminates
the partial observability of the other two networks and is
used to calculate the loss. Furthermore, the loss between the
predicted global Q-values and the sum of obtained reward
is combined. The combined loss is backpropagated through
the centralized networks and into each agent’s individual
action-value network. The loss calculated by the central-
ized networks pushes the agent’s decentralized networks
towards Q-values optimal for the joint-action while maintain-
ing partial observability. After training, each agent’s Q-value
matches the joint-action value-network, allowing the net-
works to be fully disconnected from the centralized networks.
The individual networks will continue to collaborate with
the joint-action, even with completely decentralized execu-
tion. QTRAN’s advanced VFF enables the efficient discovery

VOLUME 13, 2025 101497



A. Al-Habashna et al.: Decentralized and Joint Resource Allocation, BF, and Beamcombining

of complex joint optimal actions in MARL environments,
even as complexity grows exponentially with each additional
agent. A summary of the similarities and differences of the
three algorithms is presented in Table 1.

TABLE 1. A summary of the similarities and differences of the three
MARL algorithms.

IV. RESULTS
We ran various simulations to evaluate the performance of
the proposed solutions in multiple scenarios. In this section,
we present and discuss the results obtained.

A. ENVIRONMENT SETUP
Our simulation environment is derived from the systemmodel
described in Section II, where there is a single cell with a
centralized BS serving several UEs. This environment will
be considered for model training and testing for each of the
MARL solutions proposed in Section IV. LUE and LBS equal
2 and 8 antennas, respectively. Each UE is considered an
agent, and the UEs in the cell are required to discover a
joint-action policy in order to collectively maximize the goal
outlined in Section II. An episode is set to the radio subframe.
The beginning of each episode starts with the environment
being reset as eachUE is placed at a random set of coordinates

within the cell’s boundaries. This means that UEs are ran-
domly placed within the cell at the start of each episode,
enabling the algorithm to learn a policy adaptable to various
UE distributions, in contrast to a fixed configuration. The BS
is assumed to have the coordinates of the served UEs. This
can be done either through uplink Sounding Reference Sig-
nals which can be used by the gNodeB to measure the UEs’
coordinates or through the Location Management Function
(LMF) which can compute the UEs’ geographic coordinates.
The BS then broadcasts a message that includes, S, the set of
environment state variables. We have chosen S to be the set of
angles from the base station to each UE in the environment,
which can be given as,

sm = tan−1
(
ym − yBS
xm − xBS

)
, m = 1, 2, . . .M , (16)

where, sm is the m th variable corresponding to the angle of
the mth UE, xm, ym, xBS , and yBS are the mth UE coordinates,
and the BS coordinates, respectively.

FIGURE 2. Environment configuration for worse case UE distribution.

An agent uses the environment state, S, as an input to its
local policy to select an action from the available action set,A.
The appropriate combination of selected transmission power
on each RBG, and BF vector at the UE is crucial for ade-
quate transmission of the data. Unless otherwise specified,
we consider two transmission power options: a power level
of 23 dBm (indicating that the UE chooses to transmit on
the RBG) or no transmission on that RBG. An agent jointly
performs resource allocation (selecting the power level on
each RBG) and BF. In the environment considered, a UE will
choose from multiple BF angles and RBGs, allowing an AS
of AUE for each UE to choose from. AUE , i.e., the AS for each
UE, can be calculated as,

AUE = 2RBG × |FUE | , (17)
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where RBG is the number of RBGs and |FUE | is the number
of available BF vectors in the BF codebook.

We adopt a joint reward, wUEs, for all UEs in the environ-
ment, which is represented as follows,

wUEs = mean
(
RUE,RBG

)
− η.std (RUE) , (18)

where RUE,RBG is the data rate achieved by a UE on an RBG
it transmits on (i.e., Rm,u, in Section II, when δm,u = 1),
while RUE is the total throughput achieved by a UE over all
RBGs (i.e., Rm in Section II). The parameter η is introduced
to balance the trade-off between maximizing the aggregate
data rate (via the first term) and promoting fairness (via the
second term), ensuring that UEs are more likely to achieve
their minimum required data rates. mean

(
RUE,RBG

)
is mea-

sured by aggregating the data rate achieved by all UEs on
all RBGs and dividing it by the number of transmissions.
For instance, if a UE transmits on two RBGs, this counts
as 2 transmissions. In addition to the UEs, we consider the
BS as an additional agent utilizing a separate instance, but
same MARL algorithm as the UEs. The BS is responsible for
selecting the combining vectors used for receiving the UEs’
transmission (i.e., fBS,m(t) ∈ FBS). The BS uses the same state
variables, S, to select an action.We have selected a combining
codebook with 28 path vectors. The BS selects an action and
receives the corresponding reward, wBS , as follows,

wBS = mean (RUE) , (19)

This means that BS is rewarded for maximizing the aggre-
gate data rate.

Training of the networks is supported through the use
of experience replay. At every time step, the agents (UEs
and the BS) select and execute their respective actions. The
experience-replay buffer logs these experiences (consisting of
the state, actions, and rewards) at each time step t . Random
samples are then drawn from this buffer to performminibatch
training of the networks. This method enhances training sta-
bility and helps prevent convergence to local minima [45].
In IQL, each agent uses an individual feedforward neural
network, consisting of an input layer sized to match the
agent’s observation space, three hidden layers of 128 neurons
with ReLU activations, and an output layer representing a
Q-value for each possible agent’s action. QTRAN adopts a
similar structure for each agent’s personal Q-network but
additionally employs a separate central joint action-value net-
work with four hidden layers of 128 ReLU-activated neurons.
MADDPG, on the other hand, assigns each agent both an
actor and a critic network; the actor network follows the
same structure as IQL, while each critic network has an input
layer that includes all the actions and observations, and three
hidden layers with 128 neuron each (with ReLU activations).

B. SIMULATION RESULTS
In the following, we discuss the results obtained. We start
by comparing the proposed MARL-based solutions with two
centralized methods. Afterwards, we compare the training

and testing results obtained with our proposal with the three
MARL-based algorithms.

1) COMPARATIVE ANALYSIS: CENTRALIZED SEARCH VS
MARL
To evaluate the performance of our MARL-based solutions,
we compare their performance to that of two centralized
search algorithms. The first one is an exhaustive search
(brute-force) strategy to systematically evaluate the entire
AS, identifying the optimal joint action for the UEs and BS
in the cell. The size of the joint AS, denoted by AS joint ,
is calculated as follows,

AS joint = (2RBG × |FUE | × |FBS |)
M

, (20)

where RBG represents the number of RBGs, M corresponds
to the number of UEs, |FUE | and |FBS | denote the numbers
of available BF and combining vectors, to the UEs and BS,
respectively. The second algorithm is a Semi-Greedy (SG)
algorithm that makes local sub-optimal choices per device
with the hope of approximating a good global solution. The
algorithm iterates over all N devices, and for each device it
evaluates all possible actions, and selects the best ζ portion of
the actions for this device. Then, the algorithm searches over
the space of the selected best actions per device to find the
best joint action. As such the AS of this algorithm is:

ASSG = (ζ × 2RBG × |FUE | × |FBS |)
M

. (21)

In this subsection, we compare the results achieved by
the centralized algorithms with the MARL-based algorithms.
As can be seen in (20), AS joint experiences a polynomial
growth with each additional subchannel. In order to reduce
the computational requirements for the brute-force approach,
we limit the number of RBGs and UEs to three each, for
this comparison. The number of BF and combining paths will
remain at 4 and 28, respectively, as described in the Environ-
ment Setup. As such, the complete AS is equal to 719,323,126
combinations. Fig. 2 shows the selected test scenario for
this comparison; a worst-case UE distribution, with the UEs
positioned at the same location. This configuration needs
the most coordination between UEs, while also requiring the
optimal BF and combining angles to be chosen. The search
algorithm explored the whole action space in 78 hours to
find the optimal solution for this test scenario. The solution
found resulted in all UEs achieving the same data rate of
86.66 Mbps. This is achieved by having the UEs transmitting
on different RBGs. The SG algorithm (with ζ = 0.2) also
achieved the same data rate in 39minutes, achieving a 99.17%
reduction in search time.
The MARL algorithms were trained using multiple

episodes, each with a random UE distribution. This means
that UEs are randomly placed within the cell at the start
of each episode, enabling the algorithm to learn a policy
adaptable to various UE distributions, in contrast to a fixed
configuration. Once the UE data rates stabilized, we con-
cluded training and tested each algorithm on the test scenario.
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IQL finished in 380’000 episodes, MADDPG in 370’000
episodes, and QTRAN in 370’000 episodes, each taking less
than half an hour. Please note that the trained models can
be used to solve any distribution of UEs, not just the test
scenario. IQL, MADDPG, and QTRAN each obtained the
same data of 86.66 Mbps, matching that achieved by the
exhaustive search method. Interestingly, for the test scenario,
the MARL algorithms did not select the same joint action.
An important point here is that the biggest advantage of the
MARL-based algorithms is not only that they were able to
train the models in less time, but also the fact that such
trained models are able to find plausible joint-actions for any
scenario in the execution phase in a very short time (around
2 µs) which is suitable for the Time Transmission Interval
(TTI) of 1 ms. On the other hand, the central algorithms, i.e.,
exhaustive search and semi-greedy algorithms, would still
need 78 hours and 39 minutes, each time a joint decision
needs to be found, which is not suitable for our time subframe
(i.e., TTI).

2) MARL-BASED ALGORITHMS: TRAINING RESULTS
We trained MARL-based models with the three algorithms,
i.e., IQL, MADDPG and QTRAN in three scenarios, each
with a different number of UEs in the cell. Specifically,
the scenarios encompassed 6 to 8 UEs performing uplink
transmission on 5 available RBGs. An intentional decision
to have more UEs than RBGs was selected to ensure the
agents learn to coordinate transmissions on the same RGBs,
where UEs might have to share the same RBG. During the
training process, the agents were evaluated every 10’000
episodes, where an additional 1000 evaluation episodes were
conducted. The evaluation episode is considered successful if
all UEs obtain an individual minimum data rate of 15 Mbps.
Training was deemed complete once the success percentage
during the 1000 evaluation episodes reaches or exceeds 95%.

We utilized the number of training episodes required to
reach the 95% success percentage threshold as a metric to
determine the performance of each algorithm in terms of
convergence speed. The training duration was not considered,
as we found that this metric was extremely dependent on the
specifications of the computer used to perform training, and
the degree of concurrency during training.

Fig. 3 shows the data rate achieved (in the evaluation
episodes) during training, for each algorithm. At the start
of training, the agents have no prior experience and take
seemly random actions in the environment. Consequently, the
majority of UEs experience low data rates as their transmis-
sions interfere with each other. However, there are instances
where one or two UEs may have slightly better rates when,
by chance, they choose favorable actions.

As training progresses, the agents gradually achieve bet-
ter individual data rates, and consequently better mean data
rate. Eventually, the agents of each algorithm learn a near-
optimal joint policy, resulting in all UEs converging to a joint
policy that maximizes the data rate with all UEs converg-
ing to similar data rates. Alongside the maximized mean,

at least 95% of the time, all UEs obtain a minimum data rate
of 15 Mbps.

Fig. 4 shows the mean data rate achieved by the UEs
(for 7 UEs scenario) for each algorithm to compare the
mean data rates obtained by the three algorithms. By the
end of their training, the three algorithms achieve simi-
lar mean data rate values. However, the total number of
episodes needed and data rates during evaluation differ
between the algorithms. Furthermore, Fig. 5 showcases the
success percentage obtained by each algorithm throughout
training. Both Fig. 4 and Fig. 5 show that QTRAN is the
fastest to converge, followed closely by MADDPG, while
IQL requires the most training episodes. This pattern is not
unique, as demonstrated in Fig. 6, which displays the number
of training episodes for each algorithm across the various
scenarios.

In addition to the previously described experiments,
we also trained models with the 6-UE scenario, but with three
power levels: no transmission, 13 dBm, and 23 dBm. The
IQL model was trained for 6 million episodes and achieved
a mean data rate of 137.9 Mbps but failed to reach the
target success percentage of 95%, achieving a maximum
success rate of 89% over the entire training period. In con-
trast, MADDPG successfully achieved a 95% success rate
with an average data rate of 146.8 Mbps after approximately
5.75 million episodes. QTRAN reached the 95% success
threshold with an average data rate of 102.7 Mbps in around
2.11 million episodes. However, when QTRAN was trained
for 5.75 million episodes (same number of episodes asMAD-
DPG) it achieved a higher mean data rate of 148.3 Mbps.
QTRAN achieves superior convergence performance because
its design is specifically intended to maintain consistent VFF,
which promotes stable and reliable convergence. Further-
more, QTRAN’s improved stability and convergence stems
from its novel approach to VFF in cooperative MARL [21].
Instead of directly factorizing the joint action-value function
under structural constraints, QTRAN aims to transform the
original joint action-value function into a new, easily factor-
izable one that shares the same optimal joint actions. The
improvement in the mean data rate achieved by these models
can be attributed to two key factors. Firstly, the use of three
discrete power levels, as opposed to two, enhances the flexi-
bility for coordination among UEs. This increased flexibility
enables more UEs to transmit simultaneously on the same
resource block groups (RBGs), thereby improving overall
spectrum utilization. Secondly, extended training durations,
ranging from 5 to 6 million episodes, allow the models to
explore the environment more thoroughly and converge to
more effective transmission policies.

With each additional UE added, the environment complex-
ity escalates, demanding the agents to coordinate an increased
number of RBG reuse (multiple UEs transmitting on the same
RBG). The complexity also increases with increasing the
number of power levels, RBGs, or BF or combining vectors
(due to increasing the joint action space). With the increased
complexity, the advantages of CTDE become more apparent.
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FIGURE 3. Data rates of each UE during training with IQL, MADDPG, and QTRAN (7 UEs).

FIGURE 4. Mean data rate of all UEs during training with IQL, MADDPG,
andQTRAN (7 UEs).

FIGURE 5. Percentage of the obtained successful episodes during training
withIQL, MADDPG, and QTRAN (7 UES).

Both QTRAN and MADDPG were able to achieve the target
success rate with fewer episodes. However, IQL initially
started close to the others but began to require more training
episodes with the added complexity. This is likely attributed
to the non-stationarity of the environment problem, as the
IQL algorithm does not consider or account for the policy of
other agents, making coordination a challenging task. As the
number of agents (or the AS in general) increases, coupled

with the increased requirement to share RBGs, CTDE shows
a clear advantage over completely decentralized algorithms
when it comes to convergence speed.

3) MARL-BASED ALGORITHMS: TESTING RESULTS
Testing each algorithm consisted of running 1’000’000 tests
after training was completed, each with a different distribu-
tion of the UEs within the cell. Fig. 7 shows the percentage
of UEs that achieved a data rate that equals or exceeds the
minimum threshold (15 Mbps). The results show that more
than 99% of transmissions achieved data rates that equal or
exceeded the threshold, i.e., less than 1% of the transmissions
achieved data rates below the threshold. Furthermore, the two
CTDE algorithms have a slightly higher success rate, with
MADDPG having the highest. Additionally, Fig. 8 shows
the minimum and maximum data rates achieved by each
algorithm. IQL consistently has the highest maximum data
rate, followed by QTRAN, and then MADDPG.

FIGURE 6. Training episodes to reach 95% success percentage.

An extremely high value, i.e., the 500 Mbps data rate seen
in IQL, occurs when a greedy agent transmits on all 5 RBGs,
thus starving other UEs of any data. This supports the results
from Fig. 7, as MADDPG obtains a higher success rate as
well as the lowest variance from minimum to maximum,
suggesting a fairer policy, with fewer greedy agents.

Fig. 9 focuses on the mean data rate achieved by all UEs
during the evaluation episodes. The margin of error values for
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FIGURE 7. Percentage of UEs during testing that achieved data rate equal
to or above threshold.

95% confidence interval are shown in the figure, however,
they are invisible as these values are relatively too small.
This shows that the mean values shown in the figure repre-
sent with high confidence the actual mean values. Initially
with 6 UEs, QTRAN starts with the highest mean, followed
byMADDPG and then IQLwith the lowest. With 7 UEs, IQL
and MADDPG begin to narrow the difference to QTRAN
and by 8 UEs the three algorithms are within 0.03 Mbps
of each other. The added complexity of each additional UE
requires the algorithms to further refine their joint policy
compared to the easier scenarios. In particular, they must
increase the coordination between UEs, as greedy behavior
will have more impact on the other UEs and cause increased
likelihood of their transmissions missing the minimum data
rate.

FIGURE 8. Data rate range (from minimum to maximum) from the test
results.

As a result, the refined policies achieve a higher average
compared to the previous ones, and by the final scenario, all
algorithms converge to similar data rates. Recall from Fig. 6,
the refined policies needed a higher number of episodes,
and that with IQL significantly higher number of episodes
were needed to achieve the same target success percentage
as MADDPG and QTRAN. From these results, we can see

that for the scenarios considered, IQL might be able to
achieve similar data rates with significantly higher number
of episodes. However, as the number of UEs increases, this
might be infeasible, and the superiority of the CTDE algo-
rithms will be more prevalent and much needed.

FIGURE 9. Mean data rates of all transmissions from the test results.

Fig. 10 also displays the mean data rate, however, only
considering data rate values from the 1st to 99th percentile.
This is to remove outliers and analyze the results of successful
transmissions, i.e., ones with data rates equal to or above
the threshold data rate. As with Fig. 9, QTRAN has the
highest mean data rate, with MADDPG and IQL converging
closer as the environment complexity increases and they
have an increased training duration to refine their policies.
These results agree with the findings in Fig. 9. Fig. 11 shows
boxplots of the data rate values (1st to 99th percentile). The
figure shows all the algorithms reach similar max and median
data rates. However, when analyzing the minimum values,
MADDPG has the highest values, followed by QTRAN with
close values. IQL achieves the lowest minimum data rate of
all algorithms. This is because CTDE algorithms can develop
a policy resulting in fairer RBG allocation and better coordi-
nation between UEs. This also means that they can be used to
produce more reliable policies where more UEs achieve their
target data rates.

In conclusion, the testing results show that CTDE achieved
higher reliability in meeting and surpassing the minimum
data rate threshold, i.e., the percentage of transmissions that
satisfied or exceeded the defined 15 Mbps minimum thresh-
old. Also, QTRAN andMADDPG achieved overall similar or
higher mean and higher minimum data rates while requiring
shorter training durations. In contrast, IQL had the highest
variability between minimum and maximum values and con-
sistently had the lowest number of transmissions achieving a
data rate equal to or above 15Mbps. As a result, these findings
suggest that CTDE algorithms provide a more reliable joint
policy between UEs compared to IQL. This is attributed to
the non-stationarity of the environment problem, where IQL
agents are trained independently without knowing the actions
of other agents in the environment. As previously mentioned,
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while IQL might be able to achieve similar data rates with
significantly higher number of episodes for the considered
scenarios, this might be infeasible as the number of UEs grow,
and the superiority of the CTDE algorithms will be more
prevalent and much needed.

FIGURE 10. Mean data rates of all transmissions from the test results
(1st-99th percentile).

FIGURE 11. Boxplot of data rates of transmissions from the test results
(1st-99th percentile).

As previously described, the MARL algorithms were
trained over multiple episodes, with each episode featuring
a random distribution of UEs. At the beginning of every
episode, UEs were randomly positioned within the cell,
enabling the algorithms to learn robust policies adaptable
to diverse UE distributions, rather than a single fixed con-
figuration. By employing multiple models, each tailored for
a specific number of UEs, the proposed framework can
effectively adapt to dynamic environments characterized by
varying numbers and distributions of UEs within the cell.

4) SENSITIVITY ANALYSIS
In this subsection, we discuss the sensitivity analysis of the
algorithms to hyper-parameter values, network architecture,
and to the reward function.

Various hyperparameter configurations were evaluated,
including learning rate, batch size, and buffer size. As a

sample of such results, we present a summary of the results
obtained with different hyper-parameter values for MAD-
DPG in Table 2. The other algorithms exhibited similar
performance trends. It is important to note that the choice
of hyperparameters primarily influenced the convergence
behavior of the algorithms; specifically, the number of
episodes required to reach satisfactory performance, rather
than significantly affecting the mean data rate.

Regarding the learning rate, smaller values typically
resulted in slower convergence, whereas larger values accel-
erated the learning process but sometimes introduced instabil-
ity, often manifested as oscillatory (ping-pong) behavior due
to overshooting. Larger batch sizes, while computationally
more expensive, generally led to more stable gradient descent
and increased generalization by averaging the loss across
more samples. They also allowed for slightly higher learning
rates. This effect was especially beneficial in CTDE-based
networks (QTRAN and MADDPG) where global observa-
tions increase the stability and effectiveness of larger batches
during centralized training.

TABLE 2. Achieved results with different hyper-parameter values
(MADDPG with 6 UEs).

Regarding the replay-buffer size, larger buffers offered
better performance by providing stability with a large set
of past experiences (especially for more complex scenarios).
However, overly large buffers slowed down the convergence
of the algorithms. This is because a very large buffer retains
experiences from outdated policies that no longer reflect the
current agents’ behaviors. With overly large replay buffer,
new relevant experiences are diluted by a vast number of older
experiences. This was more apparent in IQL where very large
buffer sizes increased non-stationarity.

During our experimentation with varying the neural
network architectures of the MARL-based algorithms,
we observed that performance was moderately influenced by
the network depth. Architectures with two or fewer hidden
layers consistently underperformed, highlighting the need for
deeper networks to effectively approximate complex func-
tions and policies in high-dimensional state and action spaces.
For IQL, a minimum of three hidden layers was necessary
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to enable agents to learn accurate value functions from
local observations. In QTRAN, incorporating three hidden
layers in the joint Q-network significantly enhanced its rep-
resentational capacity. However, increasing the depth beyond
five layers introduced optimization challenges and elevated
the risk of violating the network’s factorization constraints.
Similarly, for the MADDPG critic networks, three hidden
layers proved effective in enabling the actor networks to
learn more expressive policies. Nevertheless, increasing the
number of layers beyond four led to greater sensitivity to
non-stationarity and data inefficiency. In terms of width,
we experimented with various configurations and found that
using 128 nodes per hidden layer provided a favorable
balance between learning performance and computational
efficiency.

In designing the reward function, we explored the impact
of varying the coefficient η associated with the standard devi-
ation of the data rate, which was introduced to promote some
degree of fairness among users and help the UEs meet the
minimum data rate required. Through empirical evaluation,
we found that setting η = 1.5 provided the best mean data rate
while maintaining the target success rate. Lower values of η

resulted in a higher mean data rate but at the cost of a reduced
success rate, indicating that the algorithm prioritized maxi-
mizing throughput. Conversely, increasing η beyond 1.5 (e.g.,
2) led to suboptimal outcomes in both mean data rate and
success percentage, as the algorithm became overly focused
on minimizing data rate variance, thereby compromising the
efficient use of the available channel.

5) COMPLEXITY ANALYSIS OF THE CENTRALIZED TRAINING
PHASE
In this subsection, we discuss the extra training complex-
ity incurred by the central networks that follow the CTDE
approach (i.e., QTRAN andMADDPG). QTRAN uses a cen-
tralized joint action-value network that takes the joint actions
of all agents as an input and outputs a single scalar value [21].
Training complexity in this case grows linearly with the
number of agents, M , primarily due to the increased input
size affecting the first layer, i.e., O(M ). MADDPG learns
a separate centralized critic for each agent [20]. Therefore,
if there are M agents, there will be M critic networks. This
implies a linear increase in the number of critic networks with
the number of agents. Each centralized critic for each agent
takes as input the states and actions of all M agents. This
means that the input size to each network also grows linearly.
As such, the complexity of the central network would exhibit
M × O(M ) = O(M2) growth in complexity with increasing
the number of agents.

Although the central networks in QTRAN and MAD-
DPG incur extra training complexity that increases with
the number of agents, it is important to note that these
CTDE-based algorithms yield more reliable joint policies
among UEs than IQL, mainly due to better handling of the
environment’s non-stationarity. While IQL may eventually
achieve comparable data rates, it requires significantly more

training episodes and struggles to converge and stabilize
as the number of UEs or the action space grows (as can
be seen in subsection IV-B.2). Moreover, this centralized
training is conducted at the gNodeB, which is equipped
with high-performance computational resources, making it
well-suited for handling the complexity of multi-agent coor-
dination and model optimization efficiently.

V. CONCLUSION
In this paper, we proposed a novel Multi-Agent Reinforce-
ment Learning (MARL) -based paradigm for distributed and
joint resource allocation, BeamForming (BF), and combining
for uplink transmissions in 5G wireless networks. Our pro-
posed solution employed two types of heterogenous agents
that learn to perform and optimize different tasks in order
to achieve the main objective of the system, as well as the
objective of the individual agents.

In our solution, UEs can be multi agents that optimize their
own resource allocation and BF. We developed three imple-
mentations of our proposal; each with a different MARL
algorithm. The first implementation employs Independent
Q Learners (IQL); an algorithm where both training and
resource allocation is done in a distributed manner. The other
two implementations are based on two Centralized Train-
ing with Distributed Execution (CTDE) -based algorithms,
namely, Multi-Agent Deep Deterministic Policy Gradient
(MADDPG), and QTRAN.

We executed various simulations to evaluate the perfor-
mance of our proposals with the three algorithms. First,
we compared the three MARL-based solutions with two cen-
tralized approaches that finds the optimal solution. All three
solutions acquired the same optimal solution as the central-
ized search algorithms in a significantly reduced number of
episodes and execution time. Furthermore, the models gener-
ated by the MARL-based solutions are capable of handling
any distribution of UEs within the cell, rather than being
limited to a single predefined scenario. Additionally, they
offer exceptionally fast performance during the execution
phase.

We also conducted a comparative analysis of the training
and testing results between the three MARL-based solu-
tions. During training, we found that CTDE algorithms
completed training in similar times, while the completely
distributed solution (IQL) initially showed similar train-
ing requirements but needed significantly higher number of
episodes as the action space increased. This is attributed
to the non-stationarity of the environment. Testing results
demonstrated that CTDE-based algorithms (QTRAN and
MADDPG) offered higher reliability in meeting or exceeding
the minimum data rate threshold, as well as achieving compa-
rable or superior mean and minimum data rates with shorter
training durations. In contrast, IQL exhibited the highest vari-
ability in data rate performance, reflecting its limited ability
to learn stable joint policies in non-stationary environments
where agents are trained independently. While IQL may
achieve similar performance with significantly more training
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episodes, its scalability becomes impractical as the number
of UEs or action space increases. These findings highlight
the advantage of CTDE frameworks in enabling more reliable
coordination among agents.
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